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The effect of thermal boundary conditions on
forced convection heat transfer to fluids at

supercritical pressure
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We use direct numerical simulations to study the effect of thermal boundary conditions
on developing turbulent pipe flows with fluids at supercritical pressure. The Reynolds
number based on pipe diameter and friction velocity at the inlet is Reτ0 = 360
and Prandtl number at the inlet is Pr0 = 3.19. The thermodynamic conditions are
chosen such that the temperature range within the flow domain incorporates the
pseudo-critical point where large variations in thermophysical properties occur. Two
different thermal wall boundary conditions are studied: one that permits temperature
fluctuations and one that does not allow temperature fluctuations at the wall
(equivalent to cases where the thermal effusivity ratio approaches infinity and zero,
respectively). Unlike for turbulent flows with constant thermophysical properties and
Prandtl numbers above unity – where the effusivity ratio has a negligible influence
on heat transfer – supercritical fluids shows a strong dependency on the effusivity
ratio. We observe a reduction of 7 % in Nusselt number when the temperature
fluctuations at the wall are suppressed. On the other hand, if temperature fluctuations
are permitted, large property variations are induced that consequently cause an
increase of wall-normal velocity fluctuations very close to the wall and thus an
increased overall heat flux and skin friction.

Key words: pipe flow boundary layer, turbulence simulation, turbulent flows

1. Introduction

There has been a considerable interest in utilising fluids at pressures and
temperatures above their vapour–liquid critical point in many industrial applications.
Supercritical fluids exhibit significant deviations from ideal thermodynamic behaviour
and do not undergo vaporisation or condensation phase transitions. Supercritical
fluid-based technologies are involved in a wide variety of technical process such as
pharmaceutical processes for the formation of micro and nanoparticles (Fages et al.
2004) and in chemical engineering as solvents (Matson et al. 1987a; Matson, Petersen
& Smith 1987b; Debenedetti et al. 1993). Due to their peculiar thermodynamic
properties, they are also used in energy applications, such as heat pumps, refrigeration
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FIGURE 1. Property variations of carbon dioxide CO2 versus enthalpy for pressures
P0 = 78, 80 and 82 bar based on Span & Wagner (2003) (arrows show the direction of
increasing P0). (a) Density ρ (——) and isobaric heat capacity cp (— · —), (b) dynamic
viscosity µ (——) and thermal conductivity λ (— · —) and (c) Prandtl number (——).

cycles (Ma, Liu & Tian 2013), power cycles (Dostal, Hejzlar & Driscoll 2006; Chen,
Goswami & Stefanakos 2010) and biodiesel production (Saka & Kusdiana 2001).

In the supercritical region, small changes in temperature and pressure can lead to
substantial changes in thermophysical properties. As an example, figure 1 shows the
variation of thermophysical properties of CO2 as a function of temperature at three
different pressures above the critical pressure (Pcritical= 73.773 bar). It shows that the
thermophysical properties of the fluid, at constant pressure, vary significantly within
a narrow temperature range (295–355 K) across the pseudo-critical temperature Tpc.
The pseudo-critical temperature Tpc is defined as the temperature along a supercritical
isobar at which the specific heat capacity cp has a maximum value. This is also the
point where a supercritical isobar intersects with the critical isochore (density at the
critical point). Owing to these unusual thermophysical properties, heat transfer at a
supercritical pressure is very different from that at subcritical pressures. Experimental
and numerical studies of heat transfer characteristics of flows at supercritical pressure
have been reviewed by Yoo (2013) and detailed turbulence statistics containing
second-order moments for Reynolds stresses and turbulent heat flux obtained from
direct numerical simulation (DNS) are given in Bae, Yoo & Choi (2005), Bae, Yoo &
McEligot (2008) and Nemati et al. (2015). It was shown that property fluctuations, in
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the case of an isoflux wall boundary condition, significantly affect the mean energy
transfer and strongly modify the average heat flux distribution at, and close to, the
wall. This motivated us to study the effect of the thermal effusivity ratio on heat
transfer to supercritical fluids.

The thermal effusivity ratio K (also called the thermal activity ratio) describes
the ability of two materials to exchange heat. The thermal effusivity is defined
as the square root of the product of density, thermal conductivity and specific
heat capacity, namely e = √ρλcp (Carslaw & Jaeger 1959). For example, if two
semi-infinite materials with different temperatures T1 and T2 are brought into
contact, the equilibrium contact temperature is a function of K = e2/e1, expressed
as Tc = (T1 + KT2)/(1 + K). It follows that for K � 1, the contact temperature
is closer to T2, while for K � 1 it is closer to T1. In the case of heat transfer
between a turbulent flow and a solid, the thermal effusivity ratio (K = efluid/esolid) not
only determines the averaged contact temperature but also whether wall temperature
fluctuations are allowed or suppressed. Kasagi, Kuroda & Hirata (1989) investigated
the effect of thermal effusivity ratio, wall thickness, and Prandtl number on wall
temperature fluctuations and turbulent heat transfer. They found that for thick solid
walls and K → 0, no temperature fluctuations can occur, such that the thermal
boundary condition can be approximated as an ideal isothermal wall. This condition
is met for combinations of air and most solid materials, and for water if heated or
cooled by a thick copper wall. On the other hand, for K →∞ the wall heat flux
can be described by an ideal isoflux wall boundary condition. For values of K ≈ 1,
such as water and glass, temperature fluctuations at the wall are approximately 50 %
to that of an ideal isoflux wall. Kasagi et al. (1989) also investigated the effect of
wall thickness on temperature fluctuations. For fluids with Pr ≈ 1 and a thermal
conductivity a hundred times lower than that of the solid, temperature fluctuations
are independent for wall thicknesses larger than the non-dimensional wall distance of
y+ ≈ 100 of the fluid. By decreasing the wall thickness, the temperature fluctuations
approach the value of the ideal isoflux condition, even for K� 1. Later, Tiselj et al.
(2001a) confirmed the results of Kasagi et al. (1989) by performing DNS of fully
developed turbulent channel flows with conjugate heat transfer by varying values of
wall thickness, effusivity ratio and Prandtl number.

Kays & Crawford (1993) found that in a fully developed turbulent pipe flow
the effects of temperature fluctuations on heat transfer vanish with increasing
Prandtl number and that the Nusselt number for isoflux and isothermal boundary
conditions are equal if Pr > 0.7. This can be explained by the thickness of thermal
resistance region, which depends on the Prandtl number. For fluids with Pr� 1 the
dominant heat transfer mechanism is thermal conduction, which causes the thermal
resistance region to move toward the centre of the pipe. In this case, different
thermal wall boundary conditions have a large influence on temperature fluctuations
and consequently heat transfer from the wall. A higher value of Pr causes the thermal
resistance region to move closer to the wall, such that the vanishing (small) velocity
fluctuations very close to the wall mitigate the effect of temperature fluctuations
on the wall-normal turbulent heat flux. Studies on flat plate boundary layers with
respect to different thermal boundary conditions were performed by Kong, Choi &
Lee (2000) and Li et al. (2009). They showed that close to the wall the behaviour of
the wall-normal heat flux for isothermal wall boundary conditions is similar to that of
the Reynolds shear stress, implying consistency between temperature and streamwise
velocity. They also confirmed that the mean temperature profiles and the streamwise
Stanton number (St = Nu/(Re Pr)) distributions are independent of the boundary
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condition for Prandtl numbers above unity. Further studies on this topic have been
performed by Iritani, Kasagi & Hirata (1985), Hetsroni & Rozenblit (1994), Mosyak,
Pogrebnyak & Hetsroni (2001), Verzicco & Sreenivasan (2008), who also investigated
the effect of thermal wall boundary condition on wall temperature fluctuations and
turbulent heat transfer.

In this work, we investigate the influence of thermal wall boundary conditions,
namely isothermal (K → 0) and isoflux (K → ∞), on heat transfer to fluids with
large property variations and high Prandtl numbers. The configuration is a heated
developing pipe flow with supercritical CO2 at a pressure of 80 bar. The fluid
temperature at the inlet is slightly below the thermodynamic pseudo-critical point
and the fluid is heated at the wall, such that the fluid crosses a region where strong
thermophysical property variations occur. If supercritical CO2 at 80 bar is considered
as the heat transfer medium in a heat exchanger made of stainless steel, the effusivity
ratio at the pseudo-critical temperature is of the order of K = 0.15. Thus, it can
be expected that considerable temperature fluctuations at the wall can occur, which
can be estimated to approximately 20 % that of ideal isoflux boundary conditions
for thick walls (see, for example, Kasagi et al. 1989; Tiselj et al. 2001a; Tiselj &
Cizelj 2012). For thin walls, the fluctuations can be even higher. However, the Prandtl
number close to the pseudo-critical point is approximately 14 (see figure 1) and the
effect of the thermal boundary conditions – and thus wall temperature fluctuations –
on the turbulent heat transfer should be negligible. As we will outline in this work,
this is not the case for fluids with large property variations.

The organisation of the paper is as follows. In § 2 the governing equations of
momentum and energy in their low Mach number approximation are briefly described
and §§ 3 and 4 discuss the simulation set-up and boundary conditions. Section 5
outlines the results for the instantaneous fields (§ 5.1), mean and turbulence statistics
(§ 5.2), quadrant analysis of the Reynolds shear stress and the turbulent heat flux
(§ 5.3) and turbulence budgets in § 5.4. In § 5.5 we exploit the Fukagata, Iwamoto
& Kasagi identity (Fukagata, Iwamoto & Kasagi 2002) to show the exact relations
between wall quantities, e.g. wall shear stress and wall heat flux, and the contributions
from different physical mechanisms. The summary of our results is given in § 6.

2. Governing equations

In the present study, the anelastic (also known as the low Mach number)
approximation of the Navier–Stokes equations in cylindrical coordinates is solved.
The effects associated with density changes in response to pressure fluctuations,
which are regarded as compressibility effects, are thus not captured. However, the
variable inertia effects related to density changes due to heat transfer are taken into
account (Lele 1994). For the sake of brevity, the derivation of the governing equations
is omitted and can be found in Nemati et al. (2015). The final form of the equations
is:

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
=− ∂p

∂xi
+ 1

Reτ0

∂τij

∂xj
, (2.2)

∂ρh
∂t
+ ∂ρuih

∂xi
=− 1

Reτ0Pr0

∂qi

∂xi
, (2.3)
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where τij = 2µSij = µ(∂ui/∂xj + ∂uj/∂xi − 2/3 ∂uk/∂xkδij) is the stress tensor,
qi = −λ∂T/∂xi = −α∂h/∂xi is the Fourier law for the heat conduction and δij is
the Kronecker delta. Note, the Fourier law can be also expressed in terms of the
enthalpy as, qi=−α∂h/∂xi, with cp= ∂h/∂T and α=λ/cp. The symbols t, xi, ρ, µ, λ,
cp, ui, T , p and h are the dimensionless time, coordinates, density, dynamic viscosity,
thermal conductivity, isobaric heat capacity, velocity, temperature, hydrodynamic
pressure and enthalpy, respectively. These quantities are non-dimensionalised as:

t= t∗

D∗/u∗τ0
, xi = x∗i

D∗
, ρ = ρ

∗

ρ∗0
, µ= µ

∗

µ∗0
, λ= λ

∗

λ∗0
,

cp =
c∗p
c∗p0
, ui = u∗i

u∗τ0
, T = T∗

T∗0
, p= p∗

ρ∗0 u∗2τ0
, h= h∗ − h∗0

c∗p0T∗0
.

 (2.4)

Here, the superscript ∗ denotes the dimensional quantities and the subscript 0 denotes
the values at the pipe inlet. The non-dimensional numbers are given by

Reτ0 = ρ
∗
0 u∗τ0D∗

µ∗0
, Pr0 =

µ∗0c∗p0

λ∗0
, Q= q∗wD∗

λ∗0T∗0
, (2.5a−c)

with Reτ0 the Reynolds number based on the inlet friction velocity and the pipe
diameter D∗, Pr0 is the inlet Prandtl number, Q is the non-dimensional constant wall
heat flux and q∗w is the dimensional constant wall heat flux.

3. Thermal boundary conditions and simulation set-up
Before we discuss the numerical details and the results, it is necessary to outline

the procedure for setting the thermal boundary conditions in our simulations. The aim
of this work is to investigate the effect of wall temperature fluctuations on the Nusselt
number for flows with variable thermophysical properties. Therefore, it is crucial that
the thermodynamic conditions for all the investigated cases are equivalent, such that
the observed effects on heat transfer only depend on wall temperature fluctuations and
not on different thermodynamic states (note, the thermophysical properties depend on
the absolute value of temperature).

Kong et al. (2000) and Li et al. (2009) investigated the effect of zero/non-zero
wall temperature fluctuations on the Nusselt number for constant property fluids by
setting isothermal and isoflux boundary condition, respectively. The Nusselt number
is defined as Nu=HL∗ref /λ

∗
ref , with the heat transfer coefficient H, a reference length

L∗ref and a reference thermal conductivity λ∗ref of the fluid. In their simulations, the
non-dimensional temperature Θ , the thermal wall boundary condition, and the Nusselt
number Nu for K→ 0 and K→∞ can be summarised as follows,

K→ 0 : Θ = (T∗w − T∗)/(T∗w − T∗∞), Θ|w = 0, Nu= ∂Θ/∂y|w, (3.1a−c)

K→∞: Θ = (T∗∞ − T∗)/(q∗wL∗ref /λ
∗
ref ), ∂Θ/∂y|w = 1, Nu= 1/Θ, (3.2a−c)

where T∗∞ is the free stream temperature, T∗w is the wall temperature and q∗w is the wall
heat flux. Note, the bar in (3.1) and (3.2) indicates Reynolds averaging to properly
define the average Nusselt number. It is apparent that for constant thermophysical
properties, the Nusselt number in (3.1) and (3.2) only depends on the non-dimensional
temperature Θ .
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Isoflux boundary condition (heat flux Q)
r

z

Inflow generator

D

is applied for successive simulation
Averaged wall enthalpy h 

FIGURE 2. (Colour online) Simulation set-up: an inflow generator is used to provide a
fully developed turbulent flow for the developing pipe flows. A simulation with constant
heat flux is performed first, which then provides the averaged wall enthalpy for a
successive simulation.

If the thermophysical properties are a function of temperature, the Nusselt number
not only depends on the temperature but also on the thermal conductivity as follows

Nu=
λ∗
∂T∗

∂y∗

∣∣∣∣
w

λ∗ref (T
∗
w − T∗b )/L

∗
ref

. (3.3)

Moreover, it is also not possible to use isoflux and isothermal boundary conditions
and to ensure the same thermodynamic conditions at the wall.

We therefore use a different approach. First, we perform a simulation with a
constant heat flux boundary condition that corresponds to a solid–fluid configuration
with K→∞. The averaged wall enthalpy obtained from this simulation is then used
for a successive simulation, whereby the wall enthalpy is constant in time but with
the same streamwise distribution, as obtained from the simulation with the constant
wall heat flux. This simulation is associated with a solid–fluid configuration with
K→ 0. This procedure of applying a fluctuating and non-fluctuating wall temperature
boundary condition is outlined in figure 2. The same approach was also performed
for the constant property simulations to verify this set-up. Note, an equivalent
approach would have been to first perform a simulation with an isothermal wall
boundary condition (K→ 0), and then to use the obtained bulk enthalpy increase to
calculate the streamwise heat flux distribution for the successive simulation (K→∞).
Four cases have been investigated: two cases with fluid properties corresponding
to supercritical CO2 at 80 bar and two cases with a constant property fluid. For
both pairs, simulations with either a fluctuating or non-fluctuating enthalpy boundary
condition at the wall were performed. A summary of all case studies is given in
table 1.

4. Numerical details
The numerical scheme used in this work is the same as that given in Nemati

et al. (2015). The governing equations are solved using a staggered arrangement
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Case Fluid properties Thermal wall boundary condition

SCK→∞ Supercritical CO2 Isoflux Q= 2.4
SCK→0 Supercritical CO2 Averaged wall enthalpy hw

CPK→∞ Constant property Isoflux Q= 2.4
CPK→0 Constant property Averaged wall enthalpy hw

TABLE 1. Case studies corresponding to thermal wall boundary conditions and
fluid properties.

of the velocity components with respect to scalars in space. A second-order central
difference scheme is used to discretize the spatial derivatives. The Koren slope
limiter (Koren 1993) is used for the advection term in the energy equation to ensure
smooth solutions in regions with sharp enthalpy gradients. The integration in time
is performed similar to the method developed by Najm, Wyckoff & Knio (1998).
The second-order Crank–Nicolson scheme is applied for the implicit terms (spatial
derivatives in the circumferential direction in diffusive terms), and for the explicit
terms the Adams–Bashforth (first sub-step) and Adams–Moulton (second sub-step)
schemes are used.

The inflow conditions for the developing pipe are generated separately with a
periodic adiabatic pipe flow simulation with a pipe length of 5D∗. A no-slip boundary
condition is specified for the velocity components at the wall and a convective outflow
boundary condition is used for the velocities and the enthalpy. A constant heat flux
of Q = 2.4 is imposed at the wall for the cases with a fluctuating wall temperature
(K → ∞) over a length of L∗. The temperature at the inlet of the pipe is set to
T∗0 = 301.15 K, which corresponds to h∗0 = 274.68 kJ kg−1 and Pr0 = 3.19 for the
supercritical fluid case. The Reynolds number based on pipe diameter and friction
velocity at the inlet is Reτ0 = 360. The conditions for the constant property cases
have the same Reynolds and Prandtl number of 360 and 3.19, which are constant in
space.

Several equations of state can be used to model the real gas behaviour of fluids.
Currently, the most accurate equations of state in the thermodynamic region close to
the critical point are multiparameter equations of state, such as the one developed by
Kunz & Wagner (2012) for CO2, as used in this work. The relations for the viscosity
and thermal conductivity are given in Fenghour, Wakeham & Vesovic (1998) and
Vesovic et al. (1990), respectively. These multiparameter equations of state and
the models for the transport properties are implemented in the NIST REFPROP
database (Lemmon, Huber & McLinden 2013). Because the thermodynamic pressure
is constant in time and space, the density, dynamic viscosity, thermal conductivity
and temperature are tabulated as a function of enthalpy and then calculated each time
step using a third-order spline interpolation along the isobar of P0 = 80 bar.

The mesh for the pipe for cases SCK→∞ and SCK→0 (see table 1) is 126× 288×
1728 in radial, circumferential and axial directions, respectively, and has a length of
L∗ = 30D∗. For the constant property cases (CPK→∞ and CPK→0) a shorter pipe of
L∗= 20D∗ and a mesh size of 126× 288× 1152 was selected. A uniform grid spacing
is used in axial and circumferential directions, while the radial grid is non-uniform and
finer close to the wall. The corresponding grid resolutions are 0.55 (wall) 6 1r+ 6
4.31 (centre), (D/21φ)+= 3.93 and 1z+= 6.25 in wall units based on the inlet. The
thermal scales are expected to be smaller than the Kolmogorov length scale since the
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FIGURE 3. Spatial resolution normalized by Kolmogorov scale η = (ν3/ε)1/4 (lines with
symbols) and thermal scales ηθ =η/

√
Pr (lines) for SCK→∞. (a) Radial, (b) circumferential

and (c) streamwise resolution; (——) z= 0 (CPK→∞ and CPK→0), (– – –) z= 5, (— · —)
z= 20.

Prandtl number Pr > 1. The Prandtl number at the inlet is Pr0 = 3.19, whereas very
close to the wall it is approximately unity. In a thin region away from the wall, where
the enthalpy corresponds to the pseudo-critical value, the Prandtl number exhibits a
maximum value of 14. Therefore, the radial mesh distribution has been kept constant
until y+ 6 30 where the flow, depending on streamwise location, crosses the pseudo-
critical point. For most of the remaining flow Pr≈ 4. Based on Tennekes & Lumley
(1972), the relation between the smallest velocity scales η and the thermal structures
ηθ is given as ηθ = η/

√
Pr. Thus, the mesh resolution should be approximately twice

– and at the location of the pseudo-critical temperature four times (see figure 1c) –
as fine as required to resolve the velocity field. The mesh resolution in terms of the
Kolmogorov η and thermal scales ηθ is shown in figure 3, where it can be seen
that the Kolmogorov scales are well resolved in all directions (lines with symbols).
The resolution for the thermal scales (lines) is 0.5<1y/ηθ < 2.8 in the wall-normal
direction, 0.2<∆(rφ)/ηθ < 9 in the circumferential direction and 4<1x/ηθ < 15 in
the streamwise direction. The local maxima of the lines correspond to the locations
of the pseudo-critical point, where the spatial resolution indicates that the thermal
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FIGURE 4. (Colour online) Instantaneous enthalpy fluctuations h′ in φ–z at y+=2.5 (based
on inlet condition). (a) SCK→∞ and (b) SCK→0.

scales are slightly under-resolved. However, a detailed grid independency study in our
previous work (Nemati et al. 2015) showed that the first -and second-order statistics
exhibited insignificant differences for a coarser mesh with half the number of grid
points in the circumferential direction. A comparable mesh resolution has been used
by Zonta, Marchioli & Soldati (2012) and Lee et al. (2013). For example, the mesh
resolution used by Lee et al. (2013) is 0.599<1y/ηθ < 2.99 in wall-normal direction,
1z/ηθ = 7.9 in spanwise direction and 1x/ηθ = 12.4 in streamwise direction.

The computer program is parallelized using the 2DECOMP&FFT library for
two-dimensional pencil decomposition (Li & Laizet 2010). The simulations are
performed using 1152 processors on 48 bullx B720 nodes. The time step for both
inflow generator and developing pipe simulations was set to 1t = 2 × 10−5 and the
corresponding maximum Courant number was 0.1. Statistics were sampled after 10
time units. The time averages were taken over 25 time units, which corresponds to
12 flow through times (30D). The samples were taken every 500 time steps.

5. Results and discussion
5.1. Instantaneous fields

The effects of the thermal wall boundary condition on turbulence can be visually
highlighted by instantaneous enthalpy fluctuations in a plane parallel to the wall (φ–z),
as depicted in figure 4. The plane is located at y+ = 2.5 (based on inlet conditions),
which corresponds to a wall-normal position of y = 1 − 2r = 0.012. It should be
noted that all simulations use an identical inflow velocity field and that the enthalpy
fluctuations are plotted at the same time instant.
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FIGURE 5. Two-point spatial correlation of enthalpy fluctuations pzz(±s) at y+=2.5 (based
on inlet condition); (——) SCK→∞ and (– – –) SCK→0.

As seen in figure 4, turbulent structures are clearly observed in enthalpy fluctuations
and differences between SCK→∞ and SCK→0 are visible. The regions of low and
high enthalpy fluctuations are stronger for SCK→∞ as compared to SCK→0. Similar
differences in near-wall scalar fluctuations for incompressible boundary layers were
reported by Kong et al. (2000) and Li et al. (2009). The plot also shows a decrease
in streamwise coherency for SCK→0. In order to quantify the change in coherency,
figure 5 shows the streamwise autocorrelation function, defined as

pzz(±s)=
√
ρ(r, z)h′′(r, z)

√
ρ(r, z± s)h′′(r, z± s)

ρ(r, z)h′′(r, z)h′′(r, z)
(5.1)

at y+ = 2.5 (based on inlet condition) for both SCK→∞ and SCK→0 cases. It can
be seen that the autocorrelation function clearly indicates shorter structures for case
SCK→0 as compared to SCK→∞. Furthermore, small-scale structures (ripples) can
be observed in figure 4, which emerge after approximately z > 10 at the shear
layers between the streaks that separate hot and cold fluid regions (see also the
supplementary movie available at http://dx.doi.org/10.1017/jfm.2016.411). The strong
gradients of viscosity and density across the shear layer cause destabilising effects
(Govindarajan & Sahu 2014). Similar small-scale structures were also observed in
Duan, Beekman & Martin (2010) for the case with strong wall cooling.

5.2. Mean flow and turbulence statistics
The mean quantities are obtained by taking a statistical average over time and the
homogeneous circumferential direction using Reynolds and Favre averaging. Velocity
components ui and enthalpy h are Favre averaged, whereas stress tensors τij, pressure
p, heat flux qi and thermophysical properties are Reynolds averaged. Reynolds
averaging decomposes any generic variable χ into its mean χ and its fluctuating
χ ′ part, as χ = χ + χ ′, with χ ′ = 0. For Favre averaging the generic variable is
decomposed into a mean χ̃ and a fluctuating part χ ′′ using a density weighted
average defied as χ̃ = ρχ/ρ, where ρχ ′′ = 0.
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FIGURE 6. (a) Comparison of streamwise distributions of the bulk enthalpy hb, (——)
SCK→∞, (– – –) SCK→0, (@) CPK→∞ and (A) CPK→0; and (b) Nusselt number ratio along
the pipe, (——) supercritical fluid, (@) constant property fluid.

Figure 6(a) shows the distribution of bulk enthalpy in the streamwise direction for
all four cases. Based on the overall energy conservation, it follows that for cases
with constant wall heat flux (cases SCK→∞ and CPK→∞) the distribution of the bulk
enthalpy increases linearly as a function of z, namely hb = 4Qz/(Reb0Pr0). The bulk
enthalpy is defined as hb =

∫ R
0 ρuzhr dr/

∫ R
0 ρuzr dr. As can be seen, the symbols for

the constant property cases CPK→∞ and CPK→0 overlap, which highlights that the
boundary condition has no influence on the global energy balance. This result agrees
well with the observation from previous studies (Kays & Crawford 1993; Li et al.
2009) and also confirms the consistency of applying the thermal boundary conditions,
as described in § 3. For the two supercritical fluid cases, however, the bulk enthalpy
distributions are affected by the thermal boundary conditions. In figure 6(a) it can
be seen that less energy is transferred to the fluid if the enthalpy at the wall is
non-fluctuating (SCK→0), and in figure 6(b) the Nusselt number ratio (NuK→∞/NuK→0)
shows that NuK→∞ is approximately 7 % higher for the case with the fluctuating wall
enthalpy boundary condition. The Nusselt number is defined as

Nu=
α
∂h
∂r

∣∣∣∣
w

D

αb(hw − hb)
. (5.2)

To investigate this Nusselt number dependency on the wall boundary condition,
we will first analyse mean profiles for the enthalpy, velocity and several turbulence
correlations. Figure 7 shows the radial distribution of the mean enthalpy – normalised
by the value at the wall – and streamwise velocity for all cases investigated at a
streamwise location of z= 15. Hereafter, all radial profiles are shown at z= 15, since
this location is representative of almost the entire length of the pipe, except very
close to the inlet where the heating of the pipe starts (the region between z= 0 and
z ≈ 3). While the constant property cases show no difference with respect to the
applied boundary condition, the supercritical cases indicate a small difference. There
are higher enthalpy gradients at the wall for SCK→∞, which support the results of
a higher heat flux from the wall. The mean streamwise velocity shows only slightly
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FIGURE 7. (a) Mean enthalpy h̃/h̃w and (b) streamwise velocity ũz at z= 15;
(——) SCK→∞, (– – –) SCK→0, (@) CPK→∞ and (A) CPK→0.
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10–1 100

FIGURE 8. Enthalpy fluctuations h′rms at z=15; (——) SCK→∞, (– – –) SCK→0, (@) CPK→∞
and (A) CPK→0.

higher values for SCK→∞ in the near-wall region. Larger differences are obtained
for the enthalpy variance h′rms as shown in figure 8 for all four cases at the same
streamwise location of z = 15. For CPK→∞ the variance at the wall is non-zero and
its slope is zero, while for the case CPK→0 the value at the wall is zero and its slope
is proportional to y. Similar observations were made in Kong et al. (2000), Tiselj
et al. (2001b), Li et al. (2009). The supercritical cases show higher variances for
both cases. However, the main difference is that for case SCK→∞, the slope of the
enthalpy variance at the wall is non-zero. This can be explained by using Reynolds
decomposition for the instantaneous heat flux:

α
∂h
∂r

∣∣∣∣
w

+ α′ ∂h
∂r

∣∣∣∣
w

+ α∂h′

∂r

∣∣∣∣
w

=Q (5.3)
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FIGURE 9. Wall-normal heat flux qr at z= 15 (a) CPK→∞ and CPK→0 and (b) SCK→∞ and
SCK→0; (——) SCK→∞ and CPK→∞, (– – –) SCK→0 and CPK→0, (@) α∂h/∂r, (A) α′∂h′/∂r,
(C) −ρu′′r h′′Reτ0Pr0.

after multiplication with h′, substituting y= 1− 2r and time averaging we obtain

∂h′2

∂y

∣∣∣∣∣
w

= −
α′h′

∂h
∂y
α

∣∣∣∣∣∣∣∣∣
w

. (5.4)

Note, for the case SCK→∞ the wall heat flux Q is constant, and thus the term h′Q
vanishes after averaging. When the property fluctuations are present, as they are in
case SCK→∞ (α′ 6= 0), the right-hand side of (5.4) does not vanish – the consequence
is that the gradient of h′rms at the wall is non-zero (see solid line in figure 8). The
enthalpy variance for the case SCK→0 shows a similar behaviour as for CPK→0,
because the fixed wall enthalpy boundary conditions results in zero and negligible
property fluctuations at and close to the wall, respectively.

Next, components of the total radial heat flux are compared for different thermal
wall boundary conditions. Using Reynolds decomposition, the heat flux can be
decomposed as

qr,tot = α∂h
∂r
+ α′ ∂h′

∂r
− ρu′′r h′′Reτ0 Pr0, (5.5)

where α∂h/∂r is the averaged molecular heat flux, ρu′′r h′′ is the turbulent heat flux and
α′∂h′/∂r is an additional averaging term due to property fluctuations. Their profiles
for all cases are shown in figure 9 at z = 15. As can be seen in figure 9(a), the
averaged molecular heat flux for the constant property cases is 2.4 at the wall, which
corresponds to the specified heat flux value for the case CPK→∞; and the different
thermal wall boundary conditions (cases CPK→∞ and CPK→0) have no effect on the
overall heat transfer since Pr > 1. For the supercritical case SCK→∞, however, the
averaged molecular heat flux at the wall is substantially higher than the specified
value of 2.4 (see figure 9b). The additional term α′∂h′/∂r in (5.5) causes a negative
heat flux contribution of approximately −0.1. For the case SCK→0 the wall value
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FIGURE 10. (a) PDF of radial velocity fluctuations u′′r , (b) PDF of streamwise velocity
fluctuations u′′z , at two different wall-normal positions, and (c) turbulent shear stress profile
ρu′′r u′′z ; (——) SCK→∞, (– – –) SCK→0 and symbols CPK→∞ (CPK→0) at z= 15.

for the averaged molecular heat flux α∂h/∂r is below 2.4 and the additional term
α′∂h′/∂r= 0. This confirms the decreased heat transfer rate as shown in figure 6 when
the constant heat flux boundary condition SCK→∞ is replaced by its corresponding
averaged wall enthalpy in case SCK→0.

The effect of thermal wall boundary conditions on the averaged heat flux and the
additional term is limited to the near-wall region y60.03, while the turbulent heat flux
is affected over the entire cross-section of the pipe. It can be seen that −ρu′′r h′′ for
SCK→0 is lower than for SCK→∞. This difference stems from the correlation between
enthalpy h′ and density ρ ′ fluctuations, whereby enhanced density fluctuations ρ ′ cause
increased mass fluctuations and consequently larger velocity fluctuations.

This is quantified in figure 10 by means of probability density functions (PDF)
of radial u′′r and streamwise u′′z velocity fluctuations and the turbulent shear stress.
The radial u′′r and streamwise u′′z velocity fluctuations are compared at two different
wall-normal locations for the cases SCK→∞ and SCK→0 in figures 10(a) and 10(b).
Two observations can be made. First, both radial and streamwise velocity fluctuations
are higher for SCK→∞ than for SCK→0 (however, more pronounced in streamwise
velocity), which again can be linked to the effect of higher density fluctuations
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in SCK→∞. Second, the velocity fluctuations for both cases increase close to the
wall, while they decrease close to the centre if compared to the CPK→0 (CPK→∞).
The latter observation can also be seen from the profile of the Reynolds shear
stress, which is plotted in figure 10(c) at the same streamwise position for different
cases. As discussed in our previous work (Nemati et al. 2015), this is due to flow
acceleration using thermal expansion, which results in an increase in the bulk velocity.
In laminar flows, the thermal expansion increases the convective heat transfer because
of flow acceleration. In turbulent convection the effects are opposite (Kim, He &
Jackson 2008). Although the flow acceleration increases the velocity close to the
wall, it reduces turbulence production. The wall-normal velocity gradient in the
viscous dominant region increases, where it has a small influence on the turbulence
production, while further away from the wall the velocity gradient decreases and thus
also decreases the turbulence production.

5.3. Quadrant analysis
In order to identify the fractional contributions of instantaneous fluctuations to
turbulence statistics, such as the turbulent heat flux ρu′′r h′′ and the turbulent shear
stress ρu′′r u′′z , a quadrant analysis is performed next. For this technique, ρu′′r h′′

and ρu′′r u′′z are conditionally averaged into four quadrants of
√
ρu′′r − √ρh′′ and√

ρu′′r − √ρu′′z planes, respectively, as shown in figure 11. The first quadrant Q1
is associated with sweep events since cold and high-speed fluid moves toward
the wall and the third quadrant Q3 indicates ejections, which are hot fluids with
low streamwise velocity moving away from the wall. The second quadrant Q2
contains outward motions of high-speed and cold fluids, while the fourth quadrant
Q4 contains events of inward motions with low-speed hot fluids. Figure 11(a) shows
the contributions from each quadrant to the radial turbulent heat flux ρu′′r h′′ plotted as
a function of wall-normal coordinate. In the case of non-fluctuating wall temperature
(case SCK→0), all contributions to the turbulent heat flux are attenuated. It can be
seen that the Q1 and Q3 events, which have the largest contributions, are smaller for
case SCK→0 than for SCK→∞. In other words, for the case SCK→0 the hot fluid has
less tendency to leave the wall, which consequently leads to the lower heat transfer.

The fractional contributions to the Reynolds shear stress ρu′′r u′′z are shown
in figure 11(b) for SCK→∞ and SCK→0. Similar to the turbulent heat flux, all
contributions to the Reynolds shear stress are decreased when the fluctuating wall
temperature (SCK→∞) is changed to the non-fluctuating wall temperature condition
(SCK→0). Sweep Q1 and ejection Q3 events, which have positive contributions to
the Reynolds shear stress, show the largest differences. Choi, Moin & Kim (1994)
reported that reduction in Q1 and Q3 events result in skin friction reduction.

5.4. Turbulence budgets
To study the effect of different enthalpy wall boundary conditions on the averaged
transport equation for turbulence kinetic energy and wall-normal turbulent heat flux,
their budgets are examined next. The evolution equation for the Favre-averaged
turbulence kinetic energy is k= 1/2ũ′′i u′′i can be written as follows (Huang, Coleman
& Bradshaw 1995):

∂ρk
∂t
+Ck = Pk + Tk +Πk +Φk + Vk + εk + E(1)k + E(2)k , (5.6)
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FIGURE 11. Fractional contribution to the (a) radial turbulent heat flux ρu′′r h′′ and
(b) Reynolds shear stress ρu′′r u′′z at z= 15; (——) SCK→∞, (– – –) SCK→0.
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FIGURE 12. Turbulence kinetic energy k = 1/2ũ′′i u′′i budgets at z = 15 (a) CPK→∞
(CPK→0), (b) (——) SCK→∞ and (– – –) SCK→0. Note, the profiles for CPK→∞ (CPK→0)
are equivalent to z= 0 for the SC cases.

with

Ck = ∂ρũjk
∂xj

, Pk =−ρu′′i u′′j
∂ ũj

∂xi
, Tk =−1

2
∂ρu′′i u′′i u′′j
∂xj

,

Πk =−∂p′u′′j
∂xj

, Φk = p′
∂u′′j
∂xj

, Vk = 1
Reτ0

∂τ ′iju′′i
∂xj

,

εk =− 1
Reτ0

τ ′ij
∂u′′i
∂xj

, E(1)k = u′′i
1

Reτ0

∂τ ij

∂xj
, E(2)k =−u′′i

∂p
∂xi
,


(5.7)

where

τ ij =µ
(
∂ui

∂xj
+ ∂uj

∂xi

)
+µ′

(
∂u′i
∂xj
+ ∂u′j
∂xi

)
− 2

3
µ
∂uk

∂xk
δij − 2

3
µ′
∂u′k
∂xk

δij, τ ′ij = τij − τ ij.

(5.8a,b)
The terms in (5.7) are mean convection Ck, turbulence production Pk, turbulence
diffusion Tk, pressure diffusion Πk, pressure dilatation Φk, viscous diffusion of
turbulence kinetic energy Vk, turbulence dissipation εk and E(l)k (l= 1, 2) are additional
terms due to density and velocity fluctuations. These terms are referred to as additional
correlations and result from turbulent fluctuations that are responsible for energy
exchange between mean and turbulence kinetic energy (see Huang et al. 1995).
Emphasis is given to Pk, Tk, Vk, εk and Ek =∑2

l=1 E(l)k and their profiles are shown
in figure 12 for all cases at z = 15. Note, the budgets for the constant property
cases shown in figure 12(a) do not change in the streamwise direction, since the
energy equation is a passive scalar and the velocity field is unaffected by the heat
transfer. Thus, the profiles in figure 12(a) also correspond to the inlet condition for
the supercritical cases as shown in figure 12(b).

As discussed in our previous work (Nemati et al. 2015), flow acceleration due to
thermal expansion causes a decrease in turbulence for the supercritical cases. The
production rate in figure 12(b) is substantially lower than for the constant property
case in figure 12(a). The turbulence dissipation also shows a reduction for both
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supercritical cases, except for SCK→∞ very close to the wall. An equivalent effect
has been observed in Zonta et al. (2012), where they studied the effect of viscosity
variations on turbulence statistics in fully developed channel flows. They observed
that on the hot side of the channel (low viscosity) the turbulent dissipation decreases
above the viscous sublayer, but increases between the viscous sublayer and the wall.
The turbulent diffusion Tk is reduced due to the reduction in turbulence caused by
flow acceleration and thermal expansion.

With respect to the different boundary conditions, it can be seen that the turbulence
production Pk experiences a larger reduction for the non-fluctuating wall enthalpy case
SCK→0 as compared to SCK→∞. This can be further analysed by expanding Pk, in
cylindrical coordinates, to

Pk =−ρu′′r u′′r
∂ ũr

∂r
− ρu′′r u′′z

∂ ũr

∂z
− ρu′′φu′′φ

ũr

r
− ρu′′r u′′z

∂ ũz

∂r
− ρu′′z u′′z

∂ ũz

∂z
. (5.9)

The product of Reynolds shear stress and streamwise velocity gradient is the dominant
source of turbulence kinetic energy production (fourth term in (5.9)). Based on the
results discussed in § 5.2, the higher Pk in SCK→∞ can thus be explained by the higher
Reynolds shear stress ρu′′r u′′z (figure 10c), since the streamwise velocity gradient shows
only small differences in the near-wall region (figure 7b). The turbulence dissipation
in SCK→0 is slightly smaller over the entire cross-section of the pipe, than it is for
SCK→∞, but larger differences are observed very close to the wall. This is a direct
consequence of the higher gradients in velocity fluctuations for case SCK→∞. The
larger dissipation in the near-wall region is balanced with a higher energy transfer due
to viscous diffusion in the near-wall region for case SCK→∞. The turbulence diffusion
Tk, and the additional terms are less affected by the thermal boundary condition. As
can be seen, the additional terms E(1)k and E(2)k contribute to the production and sink
of turbulence kinetic energy, respectively. Figure 13 shows the largest components of
E(1)k and E(2)k at z= 15 for SCK→∞ and SCK→0. The term u′′z (∂rτ rz/r∂r)/Reτ0 (part of
E(1)k ) corresponds to a source (energy is received from the mean flow), whereas the
term −u′′z ∂p/∂z (part of E(2)k ) corresponds to a sink (energy is transferred to the mean
flow) of turbulent kinetic energy. Comparing these two additional terms for the cases
SCK→∞ and SCK→0, it is possible to observe a reduction in magnitude for SCK→0 that
stems from the difference in streamwise velocity fluctuations (see figure 10b) in the
near-wall region.

Similar to the turbulence kinetic energy, an evolution equation for the Favre-
averaged turbulent heat flux can be formulated as:

∂ρu′′i h′′

∂t
+Ce,i = Pe,i + Te,i +Πe,i + Ve,i + εe,i + Ee,i, (5.10)

with

Ce,i = ∂ ũjρu′′i h′′

∂xj
, Pe,i =−ρu′′j h′′

∂ ũi

∂xj
− ρu′′i u′′j

∂ h̃
∂xj
, Te,i =−∂ρu′′i u′′j h′′

∂xj
,

Ψe,i =−h′′
∂p′

∂xi
, Ve,i = 1

Reτ0

∂τ ′ijh′′

∂xj
+ 1

Reτ0Pr0

∂q′ju′′i
∂xj

,

εe,i =− 1
Reτ0

τ ′ij
∂h′′

∂xj
− 1

Reτ0Pr0
q′j
∂u′′i
∂xj

,

E(1)e,i = h′′
(

1
Reτ0

∂τ ij

∂xj
− ∂p
∂xi

)
, E(2)e,i =

1
Reτ0Pr0

u′′i
∂qj

∂xj
,



(5.11)
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FIGURE 14. Wall-normal turbulent heat flux −ρu′′r h′′ budgets at z= 15, (——) SCK→∞
and CPK→∞, (– – –) SCK→0 and CPK→0.

where

qi =−α
∂h
∂xj
− α′ ∂h′

∂xj
, q′i = qi − qi. (5.12a,b)

Here the terms are mean convection Ce,i, production Pe,i, turbulence diffusion Te,i,
enthalpy–pressure-gradient correlation Ψe,i, molecular diffusion Ve,i, dissipation of
turbulent heat flux εe,i and E(l)e,i(l = 1, 2) are additional terms that stem from density,
velocity and enthalpy fluctuations. Figure 14 shows profiles of Pe,r, Ψe,r, Ve,r, εe,r and
E(2)e,r (remaining terms are insignificant) for the constant property and the supercritical
pressure cases with different wall enthalpy boundary conditions at z = 15. It is
evident from figure 14(a) that the budgets for the constant property cases with
different boundary conditions collapse over a wide range. Only minor differences
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between CPK→∞ and CPK→0 appear for the dissipation εe,r, viscous diffusion Ve,r
and enthalpy–pressure-gradient correlation Ψe,r very close to the wall. This is due
to the wall enthalpy fluctuations in case CPK→∞. The production Pe,r does not
change, because it contains products of turbulent heat flux and velocity gradients, and
turbulent stresses and enthalpy gradients, see (5.11). Because none of these terms
change (see figures 7a and 9a) with respect to thermal boundary conditions, also Pe,r
is unaffected. The terms εe,r, Ve,r and Ψe,r contain products of h′′ with velocity and
pressure gradients. Because, h′′ is affected by the thermal boundary conditions, also
εe,r, Ve,r and Ψe,r change.

If the constant property and the supercritical fluid cases are compared, it can be seen
that, although the production Pe,r of the turbulent heat flux are nearly the same for
both fluids, the main destruction Ψe,r substantially differs. For the supercritical fluid
cases SCK→∞ and SCK→0 the enthalpy–pressure-gradient correlation Ψe,r is mainly
balanced by Pe,r and the additional term E(2)e,r , which is a source of turbulent heat flux
that only appears for the supercritical fluid cases. Unlike for the constant property
cases shown in figure 14(a), the effect of thermal wall boundary conditions on the
turbulent heat flux budgets is larger for the variable property cases in figure 14(b).
Similar to the turbulence kinetic energy budgets, the production for case SCK→∞ is
larger than for SCK→0. The enthalpy–pressure-gradient correlation Ψe,r shows larger
values for SCK→∞ than for SCK→0 case. The decreased enthalpy–pressure-gradient
correlation for SCK→0 is mainly because of the decreased enthalpy fluctuation, while
the gradient of the pressure fluctuations does not show major differences (not shown
here). The additional term E(2)e,r , the dissipation εe,r and the viscous diffusion Ve,r show
larger values in the near-wall region for case SCK→∞, which is due to the higher
velocity and enthalpy fluctuations.

5.5. Decomposition of skin friction coefficient and Nusselt number
To quantify the individual laminar and turbulent contributions to the total skin friction
and heat transfer we derive and apply the Fukagata, Iwamoto & Kasagi (FIK) identity
for the heated pipe that contains the fluid at supercritical pressure. The FIK identity
was derived by Fukagata et al. (2002) to investigate componential contributions that
different dynamical effects have on global integral quantities. Since then it has been
used extensively to study drag reduction mechanisms and active control strategies
in fully developed channel and pipe flows (Fukagata & Kasagi 2003), developing
turbulent boundary layers with suction and blowing (Kametani & Fukagata 2011),
heated developing turbulent boundary layers (Lee et al. 2013) and compressible flows
(Gomez, Flutet & Sagaut 2009). Fukagata, Iwamoto & Kasagi (2005) also used the
same approach to derive an identity relation for the Nusselt number and turbulent
heat flux in fully developed incompressible channel flows.

In this work we re-derive the FIK identity to take into account the strong property
fluctuations in supercritical fluids, by integrating the streamwise momentum and
enthalpy equations twice in the radial direction. The FIK identity for the skin friction
reads:

Cf ,FIK = − 2
ρbU2

bReτ0

∫ R

0
rµSrzr dr︸ ︷︷ ︸

CI

+ 2
ρbU2

b

∫ R

0
rρu′′r u′′z r dr︸ ︷︷ ︸

CII

+ 1
ρbU2

b

∫ R

0
(R2 − r2)

〈
∂p
∂z

〉
r dr︸ ︷︷ ︸

CIII
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+ 1
ρbU2

b

∫ R

0
rρũrũzr dr︸ ︷︷ ︸

CIV

+ 1
ρbU2

b

∫ R

0
(R2 − r2)

〈
∂ρũzũz

∂z

〉
r dr︸ ︷︷ ︸

CV

+ 1
ρbU2

b

∫ R

0
(R2 − r2)

〈
∂ρu′′z u′′z
∂z

〉
r dr︸ ︷︷ ︸

CVI

− 1
ρbU2

bReτ0

∫ R

0
(R2 − r2)

〈
1
r
∂rµ′S′rz

∂r

〉
r dr︸ ︷︷ ︸

CVII

− 1
ρbU2

bReτ0

∫ R

0
(R2 − r2)

〈
∂µSzz

∂z

〉
r dr︸ ︷︷ ︸

CVIII

− 1
ρbU2

bReτ0

∫ R

0
(R2 − r2)

〈
∂µ′S′zz

∂z

〉
r dr︸ ︷︷ ︸

CIX

, (5.13)

where 〈 〉 indicates the following operation

〈Φ(r, z)〉 =Φ(r, z)− 2
R2

∫ R

0
Φ(r, z)r dr. (5.14)

Equation (5.13) shows that the skin friction coefficient can be decomposed into
a laminar contribution CI , which for a constant property fluid is identical to the
analytical solution for laminar flows 16/Reb0, a turbulent contribution CII and several
inhomogeneous contributions CII–CIX . The merit of this equation is that different
contributions to skin friction can be compared for fluids with constant or variable
properties.

The results of (5.13) are plotted in figure 15 (note, insignificant terms are not
shown). In order to verify the FIK derivation, the sum of all terms is compared first
with the locally calculated wall shear stress Cf = 2τw/(ρbU2

b) for CPK→∞, SCK→∞
and SCK→0. An excellent agreement is obtained ensuring correctness and consistency
(symbols and line overlap). As expected, for CPK→∞ (results for CPK→0 are identical
and thus not shown) the laminar and turbulent contributions are 0.00302 = 16/Reb0
and 0.00620, respectively. These contributions are identical to the results of a fully
developed pipe flow that have also been reported by Fukagata et al. (2002).

Unlike for the constant property cases, the inhomogeneous contributions play a
significant role for the skin friction in the supercritical cases (see figure 15b). The
term related to the streamwise momentum flux CV is negative at the inlet and becomes
positive at z ≈ 7. At the beginning of the pipe, the thermal boundary layer is very
thin. The density rapidly decreases close to the wall and the mass flux increases.
To satisfy the mass flux balance, the velocity in the core region decreases, which
also causes a decrease of momentum flux ρũzũz. Proceeding downstream, the thermal
boundary layer grows until a net positive value of CV is reached at z ≈ 7 (note,
the weighting factor r(R2 − r2) within the integral is zero at the wall and R2 at
the cell centre). In contrast to CV , the magnitude of the term CIV (the product of
the mean density, mean wall-normal and streamwise velocities) experiences a sharp
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FIGURE 15. Componential contributions to the skin friction. The lines indicate the
individual terms as given in (5.13) and the symbols indicate the locally computed skin
friction Cf , (a) (——) CPK→∞, (– – –) CPK→0; (b) (——) SCK→∞, (– – –) SCK→0.

increase in the inlet region and shows a peak value of 0.33 at z = 0.7. Afterwards
CIV decreases and reaches a negative value of −0.09 at z= 17. This can be explained
by the sharp changes of streamwise velocity in the near-wall region, which results
in a high positive wall-normal velocity close to the inlet and negative wall-normal
velocity further downstream. The contributions of CI (laminar) and CII (turbulent) to
the skin friction show a decreasing trend, due to the reduction in mean viscosity and
Reynolds shear stress, respectively.

Figure 15(b) shows that the skin friction for SCK→∞ is higher along the pipe than
for SCK→0. Comparing the individual contributions for SCK→∞ and SCK→0, it can be
seen that the major difference in Cf ,FIK stems from the turbulent contribution CII .

As explained in § 5.3, the lower values of CII for SCK→0 are due to the lower
Reynolds shear stress, as also shown in figure 11(b). In conclusion, the non-fluctuating
wall enthalpy boundary condition causes the skin friction for case SCK→0 to reduce
by approximately 6 %.

Similar to the skin friction, the FIK identity for the Nusselt number reads:

NuFIK = 32
αb(hw − hb)

∫ R

0
rα
∂h
∂r

r dr︸ ︷︷ ︸
HI

− 32Reτ0Pr0

αb(hw − hb)

∫ R

0
rρh′′u′′r r dr︸ ︷︷ ︸

HII

− 16Reτ0Pr0

αb(hw − hb)

∫ R

0
(R2 − r2)

〈
1
r
∂rρh̃ũr

∂r

〉
r dr︸ ︷︷ ︸

HIII

− 16Reτ0Pr0

αb(hw − hb)

∫ R

0
(R2 − r2)

〈
∂ρh̃ũz

∂z

〉
r dr︸ ︷︷ ︸

HIV
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FIGURE 16. Componential contributions to the Nusselt number. The lines indicate the
individual terms in (5.15) and the symbols indicate the locally computed Nusselt number
Nu, (a) (——) CPK→∞; (b) (——) SCK→∞, (– – –) SCK→0.

− 16Reτ0Pr0

αb(hw − hb)

∫ R

0
(R2 − r2)

〈
∂ρh′′u′′z
∂z

〉
r dr︸ ︷︷ ︸

HV

+ 16
αb(hw − hb)

∫ R

0
(R2 − r2)

〈
1
r
∂r
∂r
α′
∂h′

∂r

〉
r dr︸ ︷︷ ︸

HVI

+ 16
αb(hw − hb)

∫ R

0
(R2 − r2)

〈
∂

∂z

(
α
∂h
∂z

)〉
r dr︸ ︷︷ ︸

HVII

+ 16
αb(hw − hb)

∫ R

0
(R2 − r2)

〈
∂

∂z

(
α′
∂h′

∂z

)〉
r dr︸ ︷︷ ︸

HVIII

, (5.15)

where HI is the laminar, HII is the turbulent and the remaining terms are inhomoge-
neous contributions to the Nusselt number. The comparison of componential
contribution to Nusselt number for CPK→∞, SCK→∞ and SCK→0 are shown in
figure 16 (the negligible terms are not shown). As for the skin friction discussed
above, the FIK derivation for the Nusselt number is first verified. The sum of all
terms is compared with the locally calculated Nusselt number for CPK→∞, SCK→∞
and SCK→0. An excellent agreement is obtained, ensuring correctness and consistency
of the derivation (symbols and line overlap). The most significant contributions to the
Nusselt number, in terms of relative magnitude, are attributed to the radial turbulent
heat flux HII , the laminar part HI , and the contribution of the mean streamwise
enthalpy flux HIV . It is evident that downstream from the inlet, the radial turbulent
heat flux HII has the largest contribution to the Nusselt number. The second largest
term is the laminar contribution HI and the term HIV has a positive contribution to
Nusselt number at inlet region and it becomes negative further downstream. This
is attributed to the growth of the enthalpy profile (thermal boundary layer) and its
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product with streamwise velocity. Figure 16(b) also shows the influence of different
thermal boundary conditions on the componential contributions to the Nusselt number
for case SCK→∞ and SCK→0. It is evident that the boundary condition solely affects
the turbulent radial heat flux HII , thus causing the Nusselt number to reduce for the
non-fluctuating wall enthalpy case SCK→0 by approximately 7 %.

6. Conclusion
In this work we used DNS to investigate the effect of thermal wall boundary

conditions on developing turbulent pipe flows with CO2 at a thermodynamic
supercritical pressure of P0 = 80 bar. The Reynolds number based on pipe diameter
and inlet friction velocity is Reτ0 = 360 and the inlet Prandtl number is Pr0 = 3.19.
Two different wall boundary conditions are studied, namely a case with fluctuating
(SCK→∞) and non-fluctuating (SCK→0) wall enthalpy. The boundary conditions
correspond to the upper and lower limit of thermal effusivity ratio K, respectively. To
incorporate both thermal wall boundary conditions, first, a simulation with a constant
heat flux boundary condition (SCK→∞) is performed. Then, for the other simulation,
the mean wall enthalpy obtained from the first simulation is used as the thermal wall
boundary condition (SCK→0).

To compare the effects of different thermal boundary conditions on heat transfer to
supercritical fluid cases, we also performed DNS with constant property fluids that
have the same Reynolds number and Prandtl number as the supercritical fluid cases
at the inlet of the pipe. The results show that the wall temperature fluctuations at the
wall have very limited effect on the mean enthalpy and Nusselt number for constant
property cases. This result is in agreement with existing literature, where it was shown
that the Nusselt number is independent of the thermal boundary condition if Pr > 1.

In contrast to the constant property cases, the heat transfer to supercritical fluids
with Pr > 1 strongly depends on the thermal wall boundary condition. A significant
increase in Nusselt number and bulk enthalpy is observed if thermal fluctuations
are allowed at the wall. We found that the wall enthalpy fluctuations cause strong
fluctuations in density, viscosity and thermal conductivity, which consequently promote
mass and velocity fluctuations that increase turbulent shear stress and turbulent heat
flux. A quadrant analysis and FIK identities for both quantities confirms this result,
which shows that the turbulent shear stress and turbulent heat flux are attenuated for
the non-fluctuating wall temperature case. The present work provides clear evidence
that thermal effusivity ratio has a large impact on Nusselt number and skin friction
for fluids with large property variations.
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