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Abstract

Using Auroux’s description of Fukaya categories of symmetric products of punctured
surfaces, we compute the partially wrapped Fukaya category of the complement of
k + 1 generic hyperplanes in CPn, for k > n, with respect to certain stops in terms
of the endomorphism algebra of a generating set of objects. The stops are chosen so
that the resulting algebra is formal. In the case of the complement of n + 2 generic
hyperplanes in CPn (n-dimensional pair of pants), we show that our partial wrapped
Fukaya category is equivalent to a certain categorical resolution of the derived category
of the singular affine variety x1x2 . . . xn+1 = 0. By localizing, we deduce that the (fully)
wrapped Fukaya category of the n-dimensional pair of pants is equivalent to the derived
category of x1x2 . . . xn+1 = 0. We also prove similar equivalences for finite abelian covers
of the n-dimensional pair of pants.

1. Introduction

Homological mirror symmetry was originally conceived by Kontsevich as an equivalence of the
Fukaya category of a compact symplectic manifold with the bounded derived category of coherent
sheaves on a mirror dual compact complex variety. Since then it has grown into a vast program
connecting Fukaya categories of several kinds associated with not necessarily compact symplectic
manifolds with derived categories of several kinds attached to possibly singular algebraic varieties.

In [LP18], we proved a version of homological mirror symmetry relating Fukaya categories of
punctured Riemann surfaces to some derived categories attached to stacky nodal curves. More
precisely, for a punctured Riemann surface Σ and a line field η on Σ, we choose a certain set of
stops Λ, and consider the sequence of pre-triangulated categories

F(Σ, η) →W(Σ,Λ, η) →W(Σ, η),

related by quasi-functors, where F(Σ, η) is the compact Fukaya category [Sei08],W(Σ,Λ, η) is the
partially wrapped Fukaya category [Aur10a, HKK17], andW(Σ, η) is the (fully) wrapped Fukaya
category [AS10]. The first functor is full and faithful, and the second functor is a localization
functor corresponding to dividing by the full subcategory of Lagrangians supported near Λ.

On the mirror side, we consider a nodal stacky curve C obtained by attaching copies of
weighted projective lines at their orbifold points (see [LP18] for details), and we again have a
sequence of categories

Perf(C) → Db(AC) → DbCoh(C),
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Mirror symmetry for higher-dimensional pairs of pants

Figure 1. Pair of pants.

Figure 2. Endomorphism algebra of a generating set.

where AC is a sheaf of algebras, called the Auslander order over C, that was previously studied
in [BD11]. We again have that the first functor is full and faithful, and the second functor is
a localization. The main result of [LP18] is an equivalence of homologically smooth and proper
pre-triangulated categories

W(Σ,Λ, η) ' Db(AC). (1.1)

It is proved by constructing a generating set of objects on each side and matching their
endomorphism algebras. The main point is that these algebras turn out to be formal (in fact,
concentrated in degree 0), which means that we only need to prove an isomorphism of the usual
associative algebras and do not have to worry about higher products.

One then deduces an equivalence W(Σ, η) ' DbCoh(C) by identifying the subcategories on
both sides of the equivalence (1.1) with respect to which to take the quotient. The equivalence
F(Σ, η) ' Perf(C) is deduced by characterizing both sides as subcategories of the two sides of
(1.1). Note that considering the same generators in the localized categories leads to differential
graded (dg) algebras which are far from formal. Note also that the embedding Perf(C) ↪→Db(AC)
is a simple example of categorical resolutions considered in [KL15].

Let us explain this in more detail in a simple case. Let Σ be the pair of pants, that is, a
three-punctured sphere, and let Λ be two stops at the outer boundary as drawn in Figure 1. We
also choose a line field η on Σ which has rotation number 2 around the outer boundary and 0
along the interior boundary components (see [LP20] for a recent detailed study of line fields on
punctured surfaces).

The partially wrapped Fukaya categoryW(Σ,Λ, η) is generated by the Lagrangians L0, L1, L2

shown in Figure 1, and their endomorphism algebra is easily computed to be given by the quiver
with relations on Figure 2.

On the B-side, the mirror is given by the Auslander order A over the node algebra

R = k[x1, x2]/(x1x2),
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where k is a commutative ring. The Auslander order in this case is simply

A = EndR(R/(x1)⊕R/(x2)⊕R).

One can directly see that A is isomorphic to the quiver algebra given in Figure 2. Note that R is a
Cohen–Macaulay algebra and the modules R, R/(x1), R/(x2) comprise the set of indecomposable
maximal Cohen–Macaulay modules of R, and they generate Db(A) as a triangulated category,
provided k is regular.

Now, the wrapped Fukaya categoryW(Σ, η) is the localization ofW(Σ,Λ, η) given by dividing
out by the subcategory generated by the objects T1, T2 supported near the stops. We can express
them in terms of L0, L1, L2 as follows:

T1 ' {L0
u1−→ L1

u2−→ L2},
T2 ' {L2

v2−→ L1
v1−→ L0}.

Similarly, Db(R) is the localization of Db(A) obtained by dividing out by the corresponding
subcategory, and this allows one to establish an equivalence

W(Σ, η) ' Db(R).

1.1 New results
In this paper we apply the above strategy to prove homological mirror symmetry for the higher-
dimensional pair of pants,

Pn = Symn(P1 \ {p0, p1, . . . , pn+1}),

where Symn(Σ) = Σn/Sn (see § 2 for a brief review of the symplectic topology of these spaces).
In other words, the n-dimensional pair of pants is the complement of (n+2) generic hyperplanes
in Pn.

On the A-side, we first introduce a stop Λ = Λ1∪Λ2, where Λi = {qi}×Symn−1(Σ) for some
base points q1, q2. We pick a grading structure η and consider the partially wrapped Fukaya
category W(Pn,Λ, η), where we use some commutative ring k as coefficients. There is a natural
generating set of objects {LS : S ⊂ {0, 1, . . . , n+ 1}, |S| = n} in this category and our first result
is an explicit computation of the algebra of morphisms between these objects. In fact, we do this
more generally for the symplectic manifolds

Mn,k = Symn(P1 \ {p0, p1, . . . , pk});

see Theorem 3.2.5 for the precise description of the resulting algebra.
Next, we specialize to the case k = n+1. In this case, on the B-side we consider the categorical

resolutions of the algebra

R = k[x1, x2, . . . , xn+1]/(x1x2 . . . xn+1)

given by

B◦ := EndR(R/(x1)⊕R/(x[1,2])⊕ · · · ⊕R/(x[1,n])⊕R)

and

B◦◦ := EndR

( ⊕
I⊂[1,n+1],I 6=∅

R/(xI)

)
,

where the summation is over all non-empty subintervals of [1, n + 1], and for I ⊂ [1, n + 1] we
use the notation xI :=

∏
i∈I xi.

By explicit computations we prove the following theorem (see Theorem 5.2.1).
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Theorem 1.1.1. There exists a grading structure η on Pn such that we have an equivalence of
pre-triangulated categories over k,

W(Pn,Λ, η) ' Perf(B◦◦).

We next analyze the localization of these categories corresponding to dividing out by objects
supported near the stops to deduce homological mirror symmetry for the (fully) wrapped Fukaya
categories.

Corollary 1.1.2. For the same grading structure η we have equivalences of pre-triangulated
categories over k:

W(Pn,Λ1, η) ' Perf(B◦).

Assume that k is a regular ring. Then we also have an equivalence

W(Pn, η) ' DbCoh(x1x2 . . . xn+1 = 0).

Finally, we deduce similar equivalences for finite abelian covers of Pn, associated with
homomorphisms π1(Pn) ' Zn+1

→ Γ into finite abelian groups Γ. On the B-side we take
equivariant versions of the above categories with respect to the natural actions of the dual
finite commutative group scheme G = Γ∗ (see Theorem 5.3.3).

Note that to prove the homological mirror symmetry statement (the second equivalence of
Corollary 1.1.2), it is enough to work with one stop Λ1. The reason we consider the picture with
two stops is due to the relation with the Auslander order discussed above and to Ozsváth and
Szabó’s bordered algebras (see also Remarks 5.3.5 and 3.2.7).

1.2 Relation to other works
Homological mirror symmetry for pair of pants is a much studied subject. However, a complete
proof of Corollary 1.1.2 has not appeared in writing until this paper. A motivation for studying
these particular examples of mirror symmetry comes from a theorem of Mikhalkin [Mik04] that
a hypersurface in CPn+1 admits a decomposition into several Pn, much like a Riemann surface
admits a decomposition into several P1.

In [She11], Sheridan identifies the mirror (immersed) Lagrangian in Pn corresponding to
O0, the structure sheaf of the origin in the triangulated category of singularities of the normal
crossing divisor x0x1x2 . . . xn+1 = 0 in Cn+2. By a theorem of Orlov [Orl04], the latter category
is quasi-equivalent to the matrix factorization category mf(Cn+2, x0x1x2 . . . xn+1). Note that by
the result of Isik [Isi13], the latter category (or more precisely, its Gm-equivariant version where
x1, . . . , xn+1 have weight 0 and x0 has weight 2) is naturally quasi-equivalent to the derived
category of x1x2 . . . xn+1 = 0 (see also [Shi12]). Under this equivalence, O0 corresponds to a
perfect object supported at the origin.

In [Nad16], instead of the wrapped Fukaya category of Pn, Nadler studies the Z2-graded
category of wrapped microlocal sheaves associated to a skeleton of Pn (see also the follow-up
paper by Gammage and Nadler [GN20]). It is then verified that this category agrees with the
Z2-graded category of matrix factorizations mf(Cn+2, x0x1x2 . . . xn+1). It is expected and in
certain cases proved that the wrapped microlocal sheaves category is equivalent to the wrapped
Fukaya category (see [GPS18b] for the case of cotangent bundles). However, such an equivalence
for arbitrary Weinstein manifolds has not yet been accomplished. Nonetheless, in view of the
works of Ganatra, Pardon and Shende [GPS19, GPS18a, GPS18b], such an equivalence in the case
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of Pn seems to be within reach (see, in particular, the discussion in [GPS18b, § 6.6] which outlines

a proof depending on work in progress). Establishing such an equivalence for Pn would give

another confirmation for Corollary 1.1.2 (at least in the Z2-graded case).

The work closest to ours is [Aur18], in which Auroux sketches a proof of homological mirror

symmetry for Pn which depends on certain conjectures about generation by an explicit collection

of Lagrangians and a classification of A∞-structures on their cohomology.

We also mention that partially wrapped Fukaya categories of symmetric products appear

predominantly in Heegaard Floer homology [LOT18, Aur10a, Aur10b] (see also [LP11]). In

particular, our computations ofW(Mn,k) give an alternative viewpoint for knot Floer homology.

We defer this to a future work.

This paper is organized as follows. After reviewing some background material on partially

wrapped Fukaya categories of symmetric powers of Riemann surfaces in § 2, we present the

computation of the algebra of morphisms between generating Lagrangians in Mn,k in § 3. Then

in § 4 we deal with the B-side of the story: we study the derived categories of modules over B◦ and

B◦◦. In particular, we construct semiorthogonal decompositions of these categories and obtain

localization results similar to those corresponding to the removal of a stop on the A-side. Finally,

in § 5 we prove the equivalences of categories on the A-side and on the B-side (see Theorem 5.2.1).

Conventions. We work over a base commutative ring k. When we write complexes of modules in

the form [. . . → ·], we assume that the rightmost term sits in degree 0. The morphism complexes

in dg-categories are denoted by lowercase hom, while their cohomology are denoted by Hom•.

We also abbreviate Hom0 simply as Hom. The wrapped Fukaya category we consider is defined

as the split-closed pre-triangulated envelope of the category whose objects are graded exact

Lagrangians.

2. A brief review of Fukaya categories of symmetric products of Riemann surfaces

Let Σ be a Riemann surface. For each n > 0, there exists a smooth n-dimensional complex
algebraic variety

Symn(Σ) := Σn/Sn, (2.1)

where Sn is the permutation group which acts by permuting the components of the product.

Let π : Σn
→ Symn(Σ) be the branched covering map. Fix an area form ω on Σ. In

[Per08, § 7], Perutz explains how to smoothen the closed current π∗(ω
×n) on Symn(Σ) to a Kähler

form Ω by modifying it in an arbitrarily small analytic neighborhood of the (big) diagonal. In

particular, outside this neighborhood we have Ω = π∗(ω
×n). Throughout, we will view Symn(Σ)

as a symplectic manifold equipped with such a Kähler form Ω.
If we write g = g(Σ) for the genus of Σ, the first Chern class of such a variety is given by

c1(Symn(Σ)) = (n+ 1− g)η − θ,

where η and θ are the Poincaré duals of the class {pt} × Symn−1(Σ) and the theta divisor,

respectively. These two cohomology classes span the invariant part of H2(Symn(Σ)) under the

action of the mapping class group of Σ. Moreover, we have that [Ω] = η.
In particular, when

Σ = P1 \ {p0, p1, . . . , pk}, (2.2)
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Symn(Σ) is an exact symplectic manifold with c1 = 0. Such symplectic manifolds are sometimes
referred to as symplectically Calabi–Yau manifolds, and their Fukaya categories can be Z-graded
[Sei00]. From the point of view of symplectic topology, the positions of the points do not matter,
so let us introduce the notation

Mn,k = Symn(P1 \ {p0, p1, . . . , pk}) (2.3)

to denote the exact symplectic manifold with c1 = 0. The grading structures are given
by homotopy classes of trivializations of the bicanonical bundle, and there is an effective
H1(Symn(Σ)) ' H1(Σ) worth of choices.

Recall the well-known isomorphism of algebraic varieties

Symn(P1) ' Pn (2.4)

given by sending an effective divisor of degree n on P1 to its homogeneous equation defined up
to rescaling.

Therefore, one can think of Mn,k as the complement of k+ 1 generic hyperplanes in Pn. This
provides an alternative way to equip Mn,k with a symplectic structure by viewing it as an affine
variety, but we will not pursue this any further, as we prefer to emphasize the structure of Mn,k

as a symmetric product on a punctured surface of genus 0. The two symplectic structures are
equivalent as they both tame the standard complex structure J = Symn(j) on Mn,k induced from

Pn (see [Per08, Proposition 1.1]). This also makes it clear that for 0 6 k < n, Mn,k = Cn−k×(C∗)k,
which is a subcritical Stein manifold, so our main interest will be in k > n.

We will also equip Mn,k with stops ΛZ corresponding to a choice of symplectic hypersurfaces
of the form {p}×Symn−1(Σ) for p ∈ Z, where Z is finite set of points. The set Z will be indicated
by choosing stops in the ideal boundary of Σ. More precisely, by removing cylindrical ends, we
view Σ as a two-dimensional surface with boundary and the set Z will be chosen as a finite set
of points on ∂Σ.

We write W(Mn,k,ΛZ) for the partially wrapped Fukaya category. Motivated by bordered
Heegaard Floer homology [LOT18], these categories were originally constructed by Auroux in
[Aur10a, Aur10b]. These works provide foundational results on these categories, as well as some
very useful results about generating objects and the existence of certain exact triangles.

All of the Lagrangians that we use will be of the form L1 × L2 × · · · × Ln, where Li ⊂ Σ
are pairwise disjoint Lagrangian arcs in Σ, which can be considered as objects in W(Σ, Z).
Auroux proves in [Aur10b, Theorem 1] that, given a set of Lagrangians L0, L1, . . . , Lk such that
their complement in Σ is a disjoint union of disks with at most one stop in their boundary,
for 1 6 n 6 k+1, the corresponding partially wrapped Fukaya category of Symn(Σ) is generated
by
(
k+1
n

)
product Lagrangians Li1 × · · · × Lin , where (i1, . . . , in) runs through subsets of {0, 1,

. . . , k} of size n. Notice that this generation result only depends on the configuration of Li on Σ
and is independent of n.

Furthermore, Auroux explains how to compute the dg-endomorphism algebra for such
product Lagrangians (see [Aur10b, Proposition 11]; note that there are no higher products).
As vector spaces, the morphism spaces are defined by

hom(Li1 × Li2 × · · · × Lin , Lj1 × Lj2 × · · · × Ljn)

=
⊕
σ

hom(Li1 , Lσ(i1))⊗hom(Li2 , Lσ(i2))⊗ · · · ⊗hom(Lin , Lσ(in)),

where σ runs through bijections {i1, . . . , in}→ {j1, . . . , jn}.
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Figure 3. A strand diagram with three boundary components.

Figure 4. A strand diagram with two strands crossing more than once.

Following [LOT18], we can represent these generators via strand diagrams as follows. First,
the endpoints of the Lagrangians Li1 , . . . , Lin , Lj1 , . . . , Ljn are grouped into equivalence classes
according to which boundary component of Σ they end on. Note that the set of endpoints lying
on each boundary component has a cyclic order induced by the orientation of the boundary.
Thus, given a morphism (f1, . . . fn), we can assume that it is of the form (fi1,1, . . . , fir1 ,1,
fi1,2, . . . , fir2 ,2 . . . , fi1,k, . . . , firk ,k) where fi1,s, . . . , firs ,s are Reeb chords along the sth boundary
component ∂Σs ⊂ ∂Σ, where the Reeb flow is simply the rotation along the orientation of the
boundary. Thus, each fij ,s either represents the idempotent of the corresponding Lagrangian Lij ,s
or goes in the strictly positive direction along ∂Σs. Thus, the set of Reeb chords fi1,s, . . . , firs ,s
can be represented in R × [0, 1] as upward veering strands from R × {0} to R × {1}, or as a
straight horizontal line if it corresponds to an idempotent. Here, R is the universal cover of the
component ∂Σs and [0, 1] is the time direction (see Figure 3).

In the case where a boundary component contains stops the Reeb chords are not allowed to
pass through the stops. Hence, instead of using the universal cover R, one cuts along the stops
and uses the subintervals to draw the strand diagram. We do not elaborate on the notation to
describe this.

Now, the product in W(Mn,k,ΛZ) is induced by the composition in W(Σ, Z). Namely, we
have

(f1⊗ · · · ⊗ fn) ◦ (g1⊗ · · · ⊗ gn) = (f1gσ(1)⊗ f2gσ(2)⊗ · · · ⊗ fngσ(n))

if there exists a σ ∈ Sn such that all the compositions figσ(i) in W(Σ, Z) are non-zero, and
with the additional important condition that in the strand representation no two strands of
the concatenated diagram cross more than once; otherwise the product is set to be zero (see
Figure 4).

The differential on the space of morphisms is defined as the sum of all the ways of resolving
one crossing of the strand diagram excluding resolutions in which two strands intersect twice
(see Figure 5).

In this way we get an explicit dg-category, quasi-equivalent toW(Mn,k,ΛZ). In what follows,
we use these results without further explanations.

We can choose a line field to give W(Σ, Z) a Z-grading (see [LP20] for a recent study
of this structure). There are effectively H1(Σ) worth of choices for the line field. The set
of grading structures for Mn,k is a torsor for an isomorphic group H1(Symn(Σ)) ∼= H1(Σ).
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Figure 5. Resolution of strand diagram.

However, the relation between grading structures on Σ and on Symn(Σ) seems to be quite
subtle: it is easy to see that the grading of a morphism (f1⊗ · · · ⊗ fn) in W(Mn,k,ΛZ) cannot
be given by the sum of the gradings of morphisms fi inW(Σ, Z). For example, we will encounter
objects L1, L2 and morphisms u ∈ hom(L1, L2) and v ∈ hom(L2, L1) such that

∂(idL1 ⊗uv) = ∂(vu⊗ idL2) = v⊗u ∈ hom(L1 × L2, L1 × L2).

This makes direct determination of the gradings in W(Mn,k,ΛZ) difficult. Instead, we are able
to pin down the grading structures on Mn,k using an explicit calculation of the endomorphism
algebra of a generating set of Lagrangians.

Finally, we recall a basic exact triangle from [Aur10a, Lemma 5.2]. Let us consider the
Lagrangians L = L1×L2×· · ·×Ln, L′ = L′1×L2×· · ·×Ln, and L′′ = L′′1×L2×· · ·×Ln, where
L′′1 is the arc obtained by sliding L1 along L′1. Then L, L′ and L′′ fit into an exact triangle

L
u⊗ id−→ L′ → L′′ → L[1] (2.5)

coming from an exact triangle

L1
u−→ L′1 → L′′1 → L1[1]

in W(Σ, Z).
Similarly, if L = L1 × L2 × · · · × Ln and L′ = L′1 × L2 × · · · × Ln, where L′1 is obtained by

sliding L1 along L2, then L and L′ are isomorphic in the category W(Mn,k,ΛZ). Indeed, in this
situation one can show that L and L′ are Hamiltonian isotopic (see [Per08, Aur10a]).

3. A-side

Throughout, we will work over a commutative ring k. We consider the sphere Σk with k + 1
holes and two stops Z = q1 ∪ q2 on one of the boundary components. We have a generating set
of Lagrangians L0, L1, . . . , Lk, which connect the ith hole to the (i+ 1)th hole for i ∈ Z/(k+ 1)
(see Figure 6 for k = 3). As in Figure 6, we view Σk as a k-holed disk. We call the punctures that
lie in the interior of the disk the interior punctures of Σk and label them 1, 2, . . . , k from left
to right. We call the unique puncture that corresponds to the boundary of the disk the exterior
puncture of Σk and label it 0.

Let Mn,k = Symn(Σk) and Λ = ΛZ = Λ1 ∪ Λ2 be the corresponding stops. Thus, Λi =
qi × Symn−1(Σk) are symplectic hypersurfaces in Mn,k.

The objects L0, . . . , Lk generate the partially wrapped Fukaya category W(Σ, Z).
Furthermore, by Auroux’s theorem [Aur10b, Theorem 1], the category W(Mn,k,Λ) is generated
by the Lagrangians

LS = Li1 × Li2 × · · · × Lin ,

where ij ∈ S and S is a subset of [0, k] of size n.
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Figure 6. Sphere with four holes, two stops, a generating set of Lagrangians (Li) and certain
other Lagrangians supported near stops (T1 and T2).

Below we will describe the algebra

A◦◦ =
⊕
S,S′

HomW(Mn,k,Λ)(LS , LS′). (3.1)

It will turn out that for n < k, A◦◦ is in fact an R-algebra, where

R = k[x1, . . . , xk]/(x1 . . . xk). (3.2)

Here xi will correspond to the closed Reeb orbit around the ith interior puncture of Σk.
At the ith interior puncture, we write ui, vi for the two primitive Reeb chords

ui ∈ homW(Σk,Z)(Li−1, Li), vi ∈ homW(Σk,Z)(Li, Li−1),

as in Figure 6.

3.1 The case of two-dimensional pair of pants
As a warmup, let us consider the special case n = 2, k = 3. The symplectic manifold M2,3 is also
known as the two-dimensional pair of pants. The category W(M2,3,Λ) is generated by

(
4
2

)
= 6

Lagrangians, and the following proposition computes all the morphisms between them.

Proposition 3.1.1. We have natural identifications

End(L2 × L3) = R/(x1),

End(L0 × L3) = R/(x2),

End(L0 × L1) = R/(x3),

End(L1 × L3) = R/(x1x2),

End(L0 × L2) = R/(x2x3),

End(L1 × L2) = R/(x1x2x3).

The morphisms between these objects are encoded by the quiver over R shown in Figure 7, with
relations

uivi = xi = viui, u3u2 = v2v3 = u2u1 = v1v2 = 0
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Figure 7. Morphisms between a generating set of objects.

and

u3u1 = u1u3, v3v1 = v1v3, u3v1 = v1u3, u1v3 = v3u1.

Proof. When K and L do not have endpoints on the same boundary component of Σ, the
generators for end(K × L) are just given by k⊗ id, id ⊗ l where k ∈ End(K) and l ∈ End(L).
The differential on end(K × L) is zero, and k and l commute. For example,

End(L0 × L3) = k〈id ⊗x3, x1⊗ id〉 = R/(x2).

On the other hand, when both K and L have an end in the ith boundary component of Σ, we
have that end(K × L) contains the vector subspace spanned by the elements

(viui)
m⊗ (uivi)

n, ui(viui)
m⊗ vi(uivi)n for m,n > 0. (3.3)

To understand the algebra structure let us set

ai = viui⊗ idL, bi = idK ⊗uivi, ci = ui⊗ vi.

Then we have the relations

aibi = biai = 0, aici = cibi, bici = ciai,

where the first relation comes from the product rule explained in Figure 4.
The quadratic algebra with these relations has the Gröbner bases

(cni , a
m
i c

n
i , b

m
i c

n
i )n>0,m>0,

consisting precisely of the elements (3.3). The differential is given by

∂(ai) = −∂(bi) = ci, ∂(ci) = 0

and extended by the graded Leibniz rule, where we have deg(ai) = deg(bi) = 0, deg(ci) = 1. It is
easy to check that the relations are preserved. This also determines the signs. Furthermore, we
have

∂(cni ) = 0, ∂(aic
n
i ) = −∂(bic

n
i ) = cn+1

i , ∂(ami c
n
i ) = −∂(bmi c

n
i ) = (am−1

i + bm−1
i )cn+1

i ,

where m > 2.
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If K and L end at the ith boundary component of Σ, we let

xi = ai + bi = viui⊗ idL + idK ⊗uivi.

One can see by a straightforward calculation from the explicit description of the chain
complex given above, that the contribution to the cohomology End(K×L) from the ith boundary
components comes from xi and its positive powers. This determines the cohomology. For example,

End(L1 × L2) = k〈u1v1⊗ id, v2u2⊗ id + id ⊗u2v2, id ⊗ v3u3〉 = R/(x1x2x3).

The morphisms between different Lagrangians are calculated in the same way (see
Theorem 3.2.5 below for a more general calculation). 2

Let us record one simple computation used above.

Lemma 3.1.2. Let us consider the subcomplex of end(K × L) spanned by the elements

((viui)
m⊗ (uivi)

n)m>0,n>0, (ui(viui)
m⊗ vi(uivi)n)m>0,n>0.

Then this subcomplex is exact.

Proof. In terms of the generators ai, bi, ci, our subcomplex is spanned by the elements

(ami c
n
i )m>0,n>0, (bmi c

n
i )m>0,n>0.

This complex splits into a direct sum of subcomplexes with fixed total degree (given by m+ n).
The subcomplex C• corresponding to the degree n > 0 has terms

C0 = 〈bni 〉, C1 = 〈an−1
i ci, b

n−1
i ci〉, C2 = 〈an−2

i c2
i , b

n−2
i c2

i 〉, . . . ,
Cn−1 = 〈aicn−1

i , bic
n−1
i 〉, Cn = 〈cni 〉.

Now we see that for m ∈ [1, n− 1], we have

ker(d : Cm → Cm+1) = 〈(an−mi + bn−mi )cmi 〉 = im(d : Cm−1
→ Cm),

while ker(d : C0
→ C1) = 0 and im(d : Cn−1

→ Cn) = Cn. 2

3.2 General n, k with k > n
We now describe the computation for arbitrary k, n with k > n. Let L0, . . . , Lk−1, Lk be the
arcs that generate W(Σ, Z) as before. The generators of W(Mn,k,Λ) are given by the

(
k+1
n

)
Lagrangians. Let

LS = Li1 × Li2 × · · · × Lin , with S = {i1 < i2 < · · · < in} ⊂ [0, k].

In order to understand morphisms between LS and LS′ we need the following combinatorial
statement.

Proposition 3.2.1. Let S, S′ ⊂ [0, k] be a pair of subsets of size n, and let g : S → S′ be a
bijection such that for every i ∈ S one has g(i) ∈ {i− 1, i, i+ 1}. Then there exists a collection
of disjoint subintervals I1, . . . , Ir ⊂ [0, k] such that S \ tjIj = S′ \ tjIj ; g(i) = i for i ∈ S \ tjIj ;
and for each subinterval Ij one of the following statements holds:

(1) Ij = [i, i+ 1] ⊂ S ∩ S′ and g swaps i with i+ 1;

(2) Ij = [a, b], S ∩ Ij = [a, b− 1], S′ ∩ Ij = [a+ 1, b], and g(i) = i+ 1 for i ∈ S ∩ Ij ;
(3) Ij = [a, b], S′ ∩ Ij = [a, b− 1], S ∩ Ij = [a+ 1, b], and g(i) = i− 1 for i ∈ S ∩ Ij .
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We need some preparation before giving a proof. For a pair of subsets S, S′ ⊂ [0, k] of size n,
let us set

T = T (S, S′) := {i | #(S ∩ [0, i]) = #(S′ ∩ [0, i])}.

We can write T as the union of disjoint intervals,

T = [s1, t1] t [s2, t2] t · · · t [sr, tr],

where tr = k, si 6 ti and ti + 1 < si+1.

Lemma 3.2.2. (i) Let g : S → S′ be a bijection such that for every i ∈ S one has g(i) ∈ {i− 1,
i, i+ 1}. Then g induces bijections

S ∩ [si+1, ti]
∼−→ S′ ∩ [si+1, ti], 2 6 i 6 r, S ∩ [ti+1, si+1]

∼−→ S′ ∩ [ti+1, si+1], 1 6 i 6 r − 1.

In addition, if s1 = 0 then

g(S ∩ [0, t1]) = S ∩ [0, t1] = S′ ∩ [0, t1],

and if s1 > 0 then

g(S ∩ [0, s1]) = S′ ∩ [0, s1], g(S ∩ [s1 + 1, t1]) = S′ ∩ [s1 + 1, t1].

Furthermore, we have

S ∩ [si + 1, ti] = S′ ∩ [si + 1, ti]

(note that these intervals could be empty). On the other hand, each restriction

g : S ∩ [ti + 1, si+1] → S′ ∩ [ti + 1, si+1]

(respectively, g : S ∩ [0, s1] → S′ ∩ [0, s1] if s1 > 0) is given either by g(j) = j− 1 or g(j) = j+ 1.
(ii) Let g : S → S be a permutation such that for every i ∈ S one has g(i) ∈ {i− 1, i, i+ 1}.

Then there exists a subset S0 ⊂ S of the form

S0 = {i1, i1 + 1, i2, i2 + 1, . . . , ir, ir + 1},

where is+1 < is+1, such that g swaps is and is+1 for s = 1, . . . , r, and g(i) = i for every i ∈ S\S0.

Proof. (i) Note that for every i we have g(S ∩ [0, i]) ⊂ S′ ∩ [0, i+ 1] and g−1(S′ ∩ [0, i]) ⊂ S ∩
[0, i + 1]. Now, since ti ∈ T and ti + 1 6∈ T , we have either ti + 1 ∈ S \ S′ or ti + 1 ∈ S′ \ S. In
the former case we have

g(S ∩ [0, ti]) ⊂ S′ ∩ [0, ti + 1] = S′ ∩ [0, ti],

while in the latter case we have

g−1(S′ ∩ [0, ti]) ⊂ S ∩ [0, ti + 1] = S ∩ [0, ti].

Thus, we get g(S ∩ [0, ti]) = S′ ∩ [0, ti].
Next, we have si − 1 6∈ T and si ∈ T , so either si ∈ S \ S′ or si ∈ S′ \ S. In the former case

we have

g(S ∩ [si + 1, k]) ⊂ S′ ∩ [si, k] = S′ ∩ [si + 1, k],
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while in the latter case we have

g−1(S′ ∩ [si + 1, k]) ⊂ S ∩ [si, k] = S ∩ [si + 1, k].

Since #(S ∩ [si + 1, k]) = #(S′ ∩ [si + 1, k]), we deduce that g(S ∩ [si + 1, k]) = S′ ∩ [si + 1, k].

This implies our first assertion.

Assume that si + 1 6 ti. Since both si and si + 1 are in T , either the element si + 1 belongs

to S ∩ S′, or it does not belong to both S and S′. Proceeding in the same way, we see that

S ∩ [si + 1, ti] = S′ ∩ [si + 1, ti].

Next, let us consider the interval [ti+1, si+1]. For every i in this interval, except for the right

end, we have i 6∈ T . Assume first that ti + 1 ∈ S. Then, since ti ∈ T and ti + 1 6∈ T , we should

have ti + 1 6∈ S′, so g(ti + 1) = ti + 2 ∈ S′. If ti + 2 < si+1 we can continue in the same way: since

#(S ∩ [0, ti + 1]) = #(S′ ∩ [0, ti + 1]) + 1 and ti + 2 ∈ S′ \ T , we should have ti + 2 ∈ S, and so

g(ti + 2) = ti + 3, and so on. In the case ti + 1 6∈ S, we should have ti + 1 ∈ S′, so we can apply

the same argument with S and S′ swapped and g replaced by g−1.

(ii) We use induction on the cardinality of S. Let i0 be the minimal element of S. Then we

have either g(i0) = i0 or g(i0) = i0 + 1. In the former case we have g(S \ {i0}) = S \ {i0}, so we

can apply the induction assumption to S \ {i0}. Now let us assume that g(i0) = i0 + 1. Then

g−1(i0) 6= i0, so we should have g−1(i0) = i0 + 1. Thus, in this case g swaps i0 and i0 + 1. Now

we can replace S by S \ {i0, i0 + 1} and apply the induction assumption. 2

Proof of Proposition 3.2.1. By Lemma 3.2.2(i), we can partition [0, k] into subintervals of two

kinds: those for which one of the conditions (2) or (3) of Proposition 3.2.1 holds, and subintervals

I such that S ∩ I = S′ ∩ I and g(S ∩ I) = S′ ∩ I. It remains to apply Lemma 3.2.2(ii) to all

subintervals of the second kind. 2

Definition 3.2.3. We say that two subsets S, S′ ⊂ [0, k] of size n are close if there exists a

bijection g : S → S′ such that g(i) ∈ {i− 1, i, i+ 1} for every i.

Corollary 3.2.4. If subsets S, S′ ⊂ [0, k] of size n are close then there exists a unique collection

of disjoint subintervals of [0, k], (I1, . . . , Ir, J1, . . . , Js), such that:

• ([0, k] \ taIa t tbJb) ∩ S = ([0, k] \ taIa t tbJb) ∩ S′;
• for each a = 1, . . . , r, if Ia = [i, j] then Ia ∩ S = [i, j − 1], Ia ∩ S′ = [i+ 1, j];

• for each b = 1, . . . s, if Jb = [i, j] then Jb ∩ S′ = [i, j − 1], Jb ∩ S = [i+ 1, j].

For every proper subinterval [i, j] ⊂ [0, k], let us set

A[i,j] =


k[xi, . . . , xj+1]/(xi . . . xj+1) if i > 0, j < k,

k[x1, . . . , xj+1] if i = 0, j < k,

k[xi, . . . , xk] if i > 0, j = k,

A′[i,j] = k[xi+1, . . . , xj ].

Finally, for each interval [i, j] we consider the elements

u[i,j] := ui+1⊗ui+2⊗ · · · ⊗uj ∈ hom(Li, Li+1)⊗ hom(Li+1, Li+2)⊗ · · · ⊗ hom(Lj−1, Lj),

v[i,j] := vi+1⊗ vi+2⊗ · · · ⊗ vj ∈ hom(Li+1, Li)⊗ hom(Li+2, Li+1)⊗ · · · ⊗ hom(Lj , Lj−1).
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Theorem 3.2.5. (i) For every k-tuple of integers (d1, . . . , dk) ∈ Zk there exists a unique grading
structure on Mn,k such that for S = [i1, j1] t [i2, j2] t · · · t [ir, jr] with js + 1 < is+1, one has a
natural isomorphism of graded algebras

End(LS) ' A(S, S) := A[i1,j1]⊗A[i2,j2]⊗ · · · ⊗A[ir,jr],

where we have deg(xi) = di.
(ii) For a pair of subsets S, S′ ⊂ [0, k] of size n, one has Hom(LS , LS′) = 0 if S and S′ are

not close. If S and S′ are close then there is a natural identification

Hom(LS , LS′) ' A(S, S′) · fS,S′ with A(S, S′) := A(S0, S0)⊗
r⊗

a=1

A′Ia ⊗
s⊗
b=1

A′Jb , (3.4)

where we use the subintervals (Ia), (Jb) from Corollary 3.2.4, and set

S0 = S \ (taIa t tbJb) = S′ \ (taIa t tbJb),

fS,S′ :=
r⊗

a=1

uIa ⊗
s⊗
b=1

vJb ⊗ id ∈ Hom(LS , LS′).

Furthermore, (3.4) is an isomorphism of End(LS′) − End(LS)-bimodules, where the structure
of a A(S′, S′) − A(S, S)-bimodule on A(S, S′) is induced by the surjective homomorphisms of
k-algebras

A(S, S) → A(S, S′), A(S′, S′) → A(S, S′)

sending each xi either to xi or to 0 (if xi is absent in A(S, S′)).
(iii) The compositions are uniquely determined by the bimodule structures on Hom(LS , LS′)

together with the rule

fS′,S′′fS,S′ =


( ∏

[i−1,i]⊂T (S,S′,S′′)

xi

)
· fS,S′′ , S and S′′ are close,

0 otherwise.

(3.5)

Here (Ia), (Jb) (respectively, (I ′a′), (J ′b′)) are the subintervals of Corollary 3.2.4 for the pair S, S′

(respectively, S′, S′′), and

T (S, S′, S′′) = ((taIa) ∩ (tb′J ′b′)) ∪ ((ta′I ′a′) ∩ (tbJb)),

which can be empty, in which case we put fS′,S′′fS,S′ = fS,S′′ .

(iv) The dg-algebra
⊕

S,S′ hom(LS , LS′) contains a quasi-isomorphic dg-subalgebra with the

trivial differential; in particular, it is formal.
For any abelian group D, and any given assignment of degrees, deg(xi) = di ∈D, i = 1, . . . , k,

there is at most one D-grading on the algebra

A◦◦ =
⊕
S,S′

Hom(LS , LS′)

coming from some choices of deg(fS,S′) = dS,S′ ∈ D, up to a transformation of the form dS,S′ 7→
dS,S′ + dS′ − dS . For D = Z and any di ∈ Z, such a Z-grading exists.
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Proof. (i) Recall that a grading structure on Mn,k is given by a fiberwise universal cover of the
Lagrangian Grassmannian of the tangent bundle [Sei00]. Such a cover exists since 2c1(Mn,k) = 0,
and the set of possible grading structures up to homotopy is a torsor overH1(Mn,k,Z)' Zk. As all
our Lagrangians LS are contractible, they can be graded (uniquely up to a shift by Z). Changing
the homotopy class of the grading by some cohomology class c ∈ H1(Mn,k;Z) ' H1(Mn,k, L;Z)
changes the degree of a Reeb chord x ∈ end(LS) by 〈c, [x]〉, where [x] ∈ H1(Mn,k, LS ;Z) (see
[AS10, § 9a]).

Now we use the fact that away from the big diagonal ∆ ⊂ Mn,k the Reeb flow is just the
product of the Reeb flows on the surface. In addition, we observe that the homotopy class of any
Reeb loop of the form (pt. × · · · × pt. × γi × pt. × · · · × pt.) in Mn,k \∆, coming from the loop
γi = uivi in Σ, for fixed i does not depend on the choice of points in the other components. It
follows that the degree of the generator of end(LS) corresponding to such a loop is independent
of S (it depends only on i). Hence, the fact that grading structures on Mn,k form a torsor over
H1(Mn,k,Z) implies that, for a given (d1, d2, . . . , dk) ∈ Zk, there exists a unique grading structure
such that |xi| = di.

Let us first calculate End(LS) in the case S = [i, j], where i > 0, j < k. Let us set

E[i, j] := end(L[i,j]).

First, we claim that there is a natural quasi-isomorphism of dg-algebras

k[xi, . . . , xj+1]/(xi . . . xj+1) → E[i, j], (3.6)

such that

xi 7→ (uivi)⊗ id ⊗ · · · ,
xs 7→ · · · ⊗ id ⊗ (vsus)⊗ id ⊗ · · ·+ · · · ⊗ id ⊗ (usvs)⊗ id ⊗ · · · for i < s 6 j,

xj+1 7→ · · · ⊗ id ⊗ (vj+1uj+1).

Here we view the source as a complex with zero differential. It is easy to check that the morphisms
corresponding to xs are closed, pairwise commute and their product is zero, so the map (3.6) is
well defined.

Next, we want to prove that (3.6) is a quasi-isomorphism. We proceed by induction on j− i.
In the base case j = i this is easy to see. For the induction step we start with a decomposition
into a direct sum of subcomplexes,

E[i, j] =
⊕
n>0

E[i, j](n).

Here, for n > 0, E[i, j](n) is spanned by elements of the form (uivi)
n⊗ · · · , while E[i, j](0) is

spanned by the remaining basis elements.
It is easy to see that, for n > 0, E[i, j](n) is isomorphic (by multiplication with xni ) to

E[i+ 1, j], so we know its cohomology from the induction assumption. More precisely, we know
that the map

xni · k[xi+1, . . . , xj+1]/(xi+1 . . . xj+1) → E[i, j](n)

is a quasi-isomorphism.
It remains to deal with E[i, j](0). Namely, we want to prove that the natural map

k[xi+1, . . . , xj+1] → E[i, j](0)

is a quasi-isomorphism.
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Let us define subcomplexes C(0) ⊂ C(1) ⊂ E[i, j](0) as follows. We define C(0) to be the
span of all elements of the form

((vi+1ui+1)m⊗ (ui+1vi+1)n⊗ idLi+2 ⊗ · · ·)m>0,n>0,

(ui+1(vi+1ui+1)m⊗ vi+1(ui+1vi+1)n⊗ idLi+2 ⊗ · · ·)m>0,n>0.

By Lemma 3.1.2, the complex C(0) is acyclic.
Next, we define C(1) to be spanned by C(0) and by all elements of the form idLi ⊗ · · · . We

have an isomorphism

E[i+ 1, j](0)
∼−→ C(1)/C(0)

induced by the natural embedding of E[i+1, j](0) into C(1). Thus, by the induction assumption,
the natural map

k[xi+2, . . . , xj+1] → C(1)/C(0)

is a quasi-isomorphism.
Finally, the quotient E[i, j](0)/C(1) splits into a direct sum of subcomplexes E(n) numbered

by n > 0, where E(n) is spanned by elements of the form (vi+1ui+1)n⊗ · · · (modulo C(1)). Note
that we have

xni+1 ≡ (vi+1ui+1)n⊗ id ⊗ · · · modC(1),

and it is easy to see that the multiplication by xni+1 gives an isomorphism of complexes,

E[i+ 1, j](0)
∼−→ E(n).

Therefore, we deduce that the natural map

xni+1k[xi+2, . . . , xj+1] → E(n)

is a quasi-isomorphism for every n > 0.
Thus, we have a morphism of exact triples of complexes

0 // k[xi+2, . . . , xj+1]

��

// k[xi+1, . . . , xj+1]

��

//
⊕

n>0 x
n
i+1k[xi+2, . . . , xj+1]

��

// 0

0 // C(1)/C(0) // E[i, j](0)/C(0) // E[i, j](0)/C(1) // 0

in which the left and right vertical arrows are quasi-isomorphisms, hence the middle one is also
a quasi-isomorphism.

Next, we can slightly modify the above argument for the cases i = 0 and j < k (respectively,
i > 0 and j = k). In these cases we still claim that the natural maps

k[x1, . . . , xj+1] → E[0, j], k[xi, . . . , xk] → E[i, k]

are quasi-isomorphisms. Namely, in the case of E[0, j] we skip the first step and just deal with
this complex exactly as with the complexes E[i, j](0), considering the subcomplexes analogous to
C(0) and C(1). In the case of E[i, k], we repeat exactly the same steps as for E[i, j], considering
first the subcomplexes E[i, k](n) and using the induction assumption to see that the maps

xni · k[xi+1, . . . , xk] → E[i, k](n)

are quasi-isomorphisms.

1325

https://doi.org/10.1112/S0010437X20007150 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007150


Y. Lekili and A. Polishchuk

Now for S = [i1, j1]t [i2, j2]t · · · t [ir, jr] with js + 1 < is+1, we have a natural identification

end(LS) ' end(L[i1,j1])⊗ · · · ⊗ end(L[ir,jr]),

and so we have a similar decomposition of End(LS).
(ii) Now let us compute Hom(LS , LS′) for a pair of subsets S, S′ ⊂ [0, k] of size n. If S and

S′ are not close then we have hom(LS , LS′) = 0. Otherwise, we have a decomposition

hom(LS , LS′) ' end(L([0,k]\taIattbJb)∩S)⊗
r⊗

a=1

hom(LIa∩S , LIa∩S′)⊗
s⊗
b=1

hom(LJb∩S , LJb∩S′),

(3.7)

where we use the subintervals (Ia), (Jb) from Corollary 3.2.4.
It remains to identify the complexes hom(LIa∩S , LIa∩S′) and hom(LJb∩S , LJb∩S′). First, let

I = Ia = [i, j], so that I ∩ S = [i, j − 1] and I ∩ S′ = [i+ 1, j]. We have

hom(L[i,j−1], L[i+1,j]) =
⊗

p∈[i,j−1]

hom(Lp, Lp+1),

with the basis given by

ui+1(vi+1ui+1)m1 ⊗ · · · ⊗uj(vjuj)mj−i , m1 > 0, . . . ,mj−i > 0.

It is easy to check that we have

ui+1(vi+1ui+1)m1 ⊗ · · · ⊗uj(vjuj)mj−i = (xm1
i+1 . . . x

mj−i

j )u[i,j] = u[i,j](x
m1
i+1 . . . x

mj−i

j ),

where we view the monomial in x1, . . . , xk as an endomorphism of L[i,j−1] or of L[i+1,j]. In
particular, the differential on hom(L[i,j−1], L[i+1,j]) is zero.

Similarly, we see that for J = Jb = [i, j], the space hom(L[i+1,j], L[i,j−1]) is spanned by

(xm1
i+1 . . . x

mj−i

j )v[i,j] = v[i,j](x
m1
i+1 . . . x

mj−i

j ),

and has zero differential.
(iii) Formula (3.5) can be checked directly. To compose arbitrary elements in Hom(LS , LS′)

and Hom(LS′ , LS′′) we can use (ii) to write them in the form fS,S′p(x) and q(x)fS′,S′′ , with p(x)
and q(x) some polynomials in x1, . . . , xk, and then use (3.5).

(iv) The first assertion is clear from our previous computations: the subalgebra in question
is generated by fS,S′ and by xi ∈ end(LS).

By (i), we know that for each choice deg(xi) = di ∈ Z, there exists a Z-grading on A◦◦ coming
from a grading structure on Mn,k. Thus, it is enough to prove uniqueness of (dS,S′) up to adding
dS′−dS (for given di ∈ D). The numbers dS,S′ are constrained by equations (3.5), corresponding
to triples (S, S′, S′′) of pairwise close subsets. Thus, a difference between two systems (dS,S′)
is a 1-cocycle for the following simplicial complex X. The set of vertices, X0, is the set of all
subsets in [0, k] of size n. The set of edges, X1, is given by pairs (S, S′) of subsets which are
close, and the set of 2-simplexes, X2, is the set of triples (S, S′, S′′) of pairwise close subsets. Our
uniqueness statement would follow from the vanishing of H1(X,D). We claim that in fact the
geometric realization |X|real is simply connected. The proof is by induction on k. The case k = 1
is straightforward (for n = 0 we get a point and for n = 1 we get a segment). Another special
case we have to include to make our proof work is n = k + 1, when X reduces to a point.
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Let us write X = X(n, k). We have natural embeddings as simplicial subcomplexes,

ik : X(n, k − 1) ↪→ X(n, k) : S ⊂ [0, k − 1] 7→ S,

jk : X(n− 1, k − 1) ↪→ X(n, k) : S ⊂ [0, k − 1] 7→ S t {k},

so that every vertex of X(n, k) is either in the image of ik or in the image of jk.
Let us in addition consider the subcomplex Y ⊂ X(n, k) spanned by all vertices of the form

S t {k− 1} and S t {k}, with S ⊂ [0, k− 2], |S| = n− 1. Note that whenever S and S′ are close
subsets of [0, k − 2], all four subsets

S t {k − 1}, S t {k}, S′ t {k − 1}, S′ t {k}

are pairwise close. This implies that |Y |real can be identified with the 2-skeleton of |X(n − 1,
k− 2)|real× I, where I is a segment. In particular, by the induction assumption, |Y |real is simply
connected.

Now assume that we have an edge e between a vertex S in ik(X(n, k−1)), where S ⊂ [0, k−1],
and a vertex S′ t {k} in jk(X(n − 1, k − 1)). This means that S and S′ t {k} are close, which
can happen only if S = T t {k − 1}, with T and S′ close. In this case the triangle

(S = T t {k − 1}, T t {k}, S′ t {k})

gives a homotopy between e and a segment (T t {k − 1}, T t {k}) in Y , followed by a segment
in jk(X(n − 1, k − 1)). Since ik(X(n, k − 1)), jk(X(n − 1, k − 1)) and Y are simply connected,
this implies that X(n, k) is also simply connected. 2

Corollary 3.2.6. The algebra A◦◦ has the structure of a k[x1, . . . , xk]-algebra. In the case
n < k, it has the structure of an algebra over R = k[x1, . . . , xk]/(x1 . . . xk).

Remark 3.2.7. Comparing our description of the algebraA◦◦ in Theorem 3.2.5 with the definition
of Ozsváth and Szabó’s bordered algebras B(m, k) in [OS18, § 3.2], we see that there is an
isomorphism

A◦◦ ' B(k, n),

which is analogous to Auroux’s identifications in [Aur10a] in the case of surfaces with one
boundary component. This raises a natural question of interpreting the bimodules defined in
[OS18] in terms of Lagrangian correspondences.

3.3 Localization by stops
By the general stop removal theorem [GPS18a, Theorem 1.16], removing a stop corresponds
to localizing by the subcategory of Lagrangians supported near the image of the stop. In
our case the stops Λ1 and Λ2 are neighborhoods of the symplectic submanifolds Mn−1,k and,
using the generators of the partially wrapped Fukaya category of Mn−1,k, we obtain that these
subcategories are given by

D1 = 〈T1 ×X : X = Li1 × · · · × Lin−1〉,
D2 = 〈T2 ×X : X = Li1 × · · · × Lin−1〉,

where {i1, . . . , in−1} runs through subsets of [0, k] of size n − 1. Thus, we have the following
result.
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Theorem 3.3.1. We have equivalences of pre-triangulated categories

W(Mn,k,Λ1) ' W(Mn,k,Λ)/D2,

W(Mn,k) ' W(Mn,k,Λ)/〈D1,D2〉.

Remark 3.3.2. If we only consider one stop, say q1, then the partially wrapped Fukaya category
W(Σ, q1) is generated by the Lagrangians L1, . . . , Lk (i.e. we do not need L0), as in this case the
complement of L1, . . . , Lk is a disk which contains at most one stop in its boundary. Furthermore,
by Auroux’s theorem [Aur10b, Theorem 1], the category W(Mn−1,k,Λ1) is generated by Li1 ×
· · · × Lin−1 with {i1, . . . , in−1} ⊂ [1, k]. This allows us to reduce the number of generators in
the definition of D1 and D2 above. For the same reason, it is enough to use only products of
L1, . . . , Lk when generating the fully wrapped Fukaya category of Mn,k.

We next give an explicit description of the objects in D1 and D2 in terms of the generators
of W(Mn,k,ΛZ).

Proposition 3.3.3. Let X = Li1 × · · · × Lin−1 and let j1 < j2 · · · < jk−n+2 be the complement
of {i1, . . . , in−1} in [0, k]. Then in W(Mn,k,ΛZ) we have the equivalences

T1 ×X' {Lj1 ×X
u[j1,j2]−−−−→ Lj2 ×X → · · ·

u[jk−n+1,jk−n+2]−−−−−−−−−−−→ Ljk−n+2
×X},

T2 ×X' {Ljk−n+2
×X

v[jk−n+1,jk−n+2]−−−−−−−−−−→ Ljk−n+1
×X → · · ·

v[j1,j2]−−−−→ Lj1 ×X}.

The first equivalence also holds in W(Mn,k,Λ1).

Proof. This is obtained by repeatedly applying the exact triangle given by (2.5). More precisely,
first, as in Figure 8, we slide Ljk+1

along the components of X until one of its legs is next to Ljk .
This gives an isomorphism

Ljk+1
×X ' L̃jk+1

×X.
Next, let us consider

C := cone(L̃jk+1
×X → Ljk ×X).

Because of the above isomorphism we also have an exact triangle

Ljk+1
×X → Ljk ×X → C → · · ·

which is shown in Figure 9.
Thus, applying this kind of triangle repeatedly, we can express T̃2 ×X, shown in Figure 10,

as

T̃2 ×X ' {Ljk−n+2
×X → Ljk−n+1

×X → · · ·→ Lj1 ×X},

where T̃2 has the property that all the objects L0, . . . , Li to the left of the left leg of T̃2 are in X
and all the objects Lj , . . . , Lk to the right of the right leg of T̃2 are in X. Therefore, sliding T̃2

over these Lagrangians, we exhibit a Hamiltonian isotopy between T̃2 × X and T2 × X, which
completes the proof of the proposition for T2×X. The case of T1×X is considered similarly. 2

4. B-side

4.1 Two categorical resolutions on the B-side
Recall that we work over a base commutative ring k. Let R = R[1,k] denote the ring k[x1, . . . ,
xk]/(x1 . . . xk). Here we define two categorical resolutions of the category Perf(R). Both are given
using modules over certain finite R-algebras.
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Figure 8. Hamiltonian isotopy of Ljk+1
×X → L̃jk+1

×X.

Figure 9. Exact triangle.

Figure 10. Hamiltonian isotopy T2 ×X → T̃2 ×X.

For every subset I ⊂ [1, k], let us set xI :=
∏
i∈I xi. We consider two R-algebras,

B◦ = B◦[1,k] := EndR(R/(x1)⊕R/(x[1,2])⊕ · · · ⊕R/(x[1,k−1])⊕R),

B◦◦ = B◦◦[1,k] := EndR

( ⊕
I⊂[1,k],I 6=∅

R/(xI)

)
,

where the summation is over all non-empty subintervals of [1, k]. Note that both B◦ and B◦◦ are

finitely generated as R-modules (in particular, they are Noetherian when k is Noetherian).
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For each non-empty subinterval I ⊂ [1, k] (respectively, for I = [1,m]) we denote by PI the
natural projective B◦◦-module (respectively, B◦-module) corresponding to the summand R/(xI).
When we need to distinguish the B◦-module P[1,m] from the B◦◦-module with the same name,
we will write P ◦[1,m] (respectively, P ◦◦[1,m]) to denote the B◦-module (respectively, B◦◦-module).

Note that every B◦◦-module M , viewed as an R-module, has a decomposition

M =
⊕

I⊂[1,k],I 6=∅

MI ,

with MI = HomB◦◦(PI ,M), corresponding to the natural idempotents in B◦◦.
It is easy to see that we have natural identifications

Hom(PI , PJ) ' HomR(R/(xJ), R/(xI)),

compatible with composition. In particular, End(PI) = R/(xI) and

(B◦)op = EndB◦◦

( k⊕
m=1

P[1,m]

)
.

Thus, if we set P = P[1,k], then we get natural faithful functors

iB
◦

R : Perf(R) → Perf(B◦) : M 7→ P ⊗RM,

iB
◦◦
B◦ : Perf(B◦) → Perf(B◦◦) : M 7→

( k⊕
m=1

P[1,m]

)
⊗B◦ M,

which are left adjoint to the restriction functors

rB
◦

R : D(B◦) → D(R) : M 7→ HomB◦(P,M),

rB
◦◦
B◦ : D(B◦◦) → D(B◦) : M 7→ HomB◦◦

( k⊕
m=1

P[1,m],M

)
. (4.1)

Here we denote by D(A) the bounded derived category of A-modules, while Perf(A) is the full
subcategory of bounded complexes of finitely generated projective modules. We also consider
composed functors iB

◦◦
R = iB

◦◦
B◦ ◦ iB

◦
R and

rB
◦◦

R = rB
◦

R ◦ rB
◦◦
B◦ . (4.2)

We will show that the algebras B◦◦ and B◦ are homologically smooth over k and that the
restriction functors rB

◦◦
B◦ and rB

◦◦
R are localization functors with respect to explicit subcategories

of Db(B◦◦) (provided k is regular), whereas iB
◦

R and iB
◦◦

R are fully faithful, so that B◦◦ and B◦
provide categorical resolutions of R.

For a subinterval I ⊂ [1, k], let us denote by RI , B◦◦I and B◦I the algebras defined in the same
way as R[1,k], B◦◦[1,k] and B◦[1,k], but with the variables x1, . . . , xk replaced by (xi)i∈I .

We will need to use some other induction functors, in addition to iB
◦◦
B◦ and iB

◦
R . Let us consider

the natural (exact) restriction functors

rB
◦◦

B◦◦
[1,k−1]

[xk] : B◦◦ −mod → B◦◦[1,k−1][xk]−mod : M 7→ HomB◦◦

( ⊕
J⊂[1,k−1],J 6=∅

PJ ,M

)
,

rB
◦◦

B◦◦
[2,k]

[x1] : B◦◦ −mod → B◦◦[2,k][x1]−mod : M 7→ HomB◦◦

( ⊕
J⊂[2,k],J 6=∅

PJ ,M

)
,
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where we use the identifications

R[1,k]/x[1,k−1] = R[1,k−1][xk], R[1,k]/x[2,k] = R[2,k][x1].

It is easy to see that in both cases the restricted module has the decomposition into components
(which are R-modules) of the form

rB
◦◦
B◦◦I

(M) =
⊕

J⊂I,J 6=∅

MJ .

Lemma 4.1.1. (i) One has natural isomorphisms

iB
◦◦
B◦ (P ◦[1,i]) ' P

◦◦
[1,i], iB

◦
R (R) ' P = P[1,k],

where 1 6 i 6 k. The canonical adjunction maps

Id → rB
◦◦
B◦ ◦ iB

◦◦
B◦ , Id → rB

◦
R ◦ iB

◦
R

are isomorphisms on perfect derived categories and on abelian categories.
(ii) The restriction functor rB

◦◦

B◦◦
[2,k]

[x1] has a left adjoint functor

iB
◦◦

B◦◦
[2,k]

[x1] : B◦◦[2,k] −mod → B◦◦ −mod

such that rB
◦◦

B◦◦
[2,k]

[x1] ◦ i
B◦◦
B◦◦
[2,k]

[x1] ' Id and

iB
◦◦

B◦◦
[2,k]

[x1](M)I =

{
MI∩[2,k] I 6= [1],

0 I = [1].

In particular, the functor iB
◦◦

B◦◦
[2,k]

[x1] is exact and rB
◦◦

B◦◦
[2,k]

[x1] ◦ i
B◦◦
B◦◦
[2,k]

[x1] = Id. For I ⊂ [2, k], one has

iB
◦◦

B◦◦
[2,k]

[x1](P[2,k][x1]) ' P[2,k].

(iii) The restriction functor rB
◦

B◦
[1,k−1]

[xk] : B◦ − mod → B◦[1,k−1][xk] − mod has a left adjoint

functor

iB
◦

B◦
[1,k−1]

[xk] : B◦[1,k−1][xk]−mod → B◦ −mod,

which is exact and satisfies rB
◦

B◦
[1,k−1]

[xk] ◦ i
B◦
B◦
[1,k−1]

[xk] = Id. Furthermore, for 1 6 i 6 k− 1, we have

iB
◦

B◦
[1,k−1]

[xk](P[1,i][xk]) ' P[1,i].

Proof. (i) For any B◦◦-module M , we have

HomB◦◦(P
◦◦
[1,i],M) 'M[1,i] = rB

◦◦
B◦ (M)[1,i] ' HomB◦(P

◦
[1,i], r

B◦◦
B◦ (M)),

which gives an isomorphism iB
◦◦
B◦ (P ◦[1,i]) ' P ◦◦[1,i]. The proof of the isomorphism iB

◦
R (R) ' P is

similar.
This implies that our two adjunction maps are isomorphisms on all projective modules, hence

on the perfect derived subcategories. It is also easy to see that these maps are isomorphisms on
the abelian categories (since the induction functors on the abelian categories can be explicitly
described).

(ii), (iii). The proofs are straightforward and similar to (i). 2
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For a pair of disjoint subintervals I, J ⊂ [1, k], such that I t J is again an interval, let us
denote by

α{I, J} ∈ HomB◦◦(PI , PItJ) = HomR(R/xItJ , R/xI)

the generator corresponding to the natural projection R/xItJ → R/xI , and let

β{I, J} ∈ HomB◦◦(PItJ , PJ) = HomR(R/xJ , R/xItJ)

be the generator corresponding to the map R/xJ
xI−→ R/xItJ . When this makes sense we use

the same notation for the similar morphisms in the category of B◦-modules.

Proposition 4.1.2. For every i = 2, . . . , k let us define a B◦-module P i from the exact sequence

0 → P[1,i−1]
α{[1,i−1],[i]}
−−−−−−−−→ P[1,i] → P i → 0,

and let P 1 = P[1]. Then

ExtmB◦(P i, P i) '

{
R/(xi) m = 0,

0 m 6= 0,
(4.3)

and one has a semiorthogonal decomposition,

Perf(B◦) = 〈〈P k〉, . . . , 〈P 2〉, 〈P 1〉〉,

where 〈P i〉 ' Perf(R/(xi)).

Proof. The surjectivity of the map R/(x[1,i]) → R/(x[1,i−1]) implies that the map α{[1, i−1], [i]}
is an embedding. Furthermore, it is easy to see that

(P i)[1,j] =

{
R/(xi), j > i,

0, j < i.

In particular, Ext∗(P[1,j], P i) = 0 for j < i and Ext∗(Pi, P i) = R/(xi). This immediately implies
the required semiorthogonalities and equality (4.3).

Now let us consider the restriction and induction functors

rB
◦

B◦
[1,k−1]

[xk] : Perf(B◦) → Db(B◦[1,k−1][xk]), iB
◦

B◦
[1,k−1]

[xk] : Db(B◦[1,k−1][xk]) → Db(B◦).

We have rB
◦

B◦
[1,k−1]

[xk]◦ i
B◦
B◦
[1,k−1]

[xk] = Id, so the functor iB
◦

B◦
[1,k−1]

[xk] is fully faithful. Since for i 6 k−1

one has

iB
◦

B◦
[1,k−1]

[xk](P[1,i][xk]) = P[1,i], (4.4)

we deduce that this induction functor sends perfect complexes to perfect complexes and

iB
◦

B◦
[1,k−1]

[xk](P i[xk]) ' P i,

for i 6 k − 1. Using the induction on k, we see that all that remains is to prove that there is a
semiorthogonal decomposition

Perf(B◦) = 〈〈P k〉, iB
◦

B◦
[1,k−1]

[xk] Perf(B◦[1,k−1][xk])〉. (4.5)

Since we already proved the semiorthogonality, by [BLL04, Lemma 1.20], it is enough to check
that the two subcategories on the right generate Perf(B◦). In view of (4.4), all that remains is
to see that they generate the module P[1,k]. But this follows from the exact sequence defining

P k. 2
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Remark 4.1.3. It is easy to see that for every i one has an isomorphism of B◦-modules

P i ' rB
◦◦

B◦ (P ◦◦[i] ).

We now introduce a certain family of B◦◦-modules which will play an important role for us.

Lemma 4.1.4. For a pair of non-empty disjoint subintervals I, J ⊂ [1, k], such that I t J is still
an interval, the sequence

0 → PI
α{I,J}
−−−−→ PItJ

β{I,J}
−−−−→ PJ

is exact. We define the module M{I, J} as the cokernel of the last arrow, so that we have an
exact sequence

0 → PI → PItJ → PJ → M{I, J}→ 0.

Proof. We just need to show that the kernel of the morphism PItJ → PJ is isomorphic to PI .
But this immediately follows from the exact sequence

0 → R/(xJ)
xI−→ R/(xItJ) → R/(xI) → 0. 2

For every j ∈ [2, k], we have a natural exact functor of ‘extending by zero’,

i!{j} : B◦◦[j,k][x1, . . . , xj−2]−mod → B◦◦ −mod.

It is given by

(i!{j}M)I =

{
MI I ⊂ [j, k],

0 otherwise.

It is easy to see that there is a natural structure of a B◦◦-module on i!{j}M .
We will also use the notation i!{1} = Id : B◦◦ −mod → B◦◦ −mod.

Lemma 4.1.5. For every m > j > 2, one has an isomorphism of B◦◦-modules,

M{[j − 1], [j,m]} ' i!{j}(P[j,m][x1, . . . , xj−2]).

Proof. We need to compute the cokernel C of the map β{[j − 1], [j,m]} : P[j−1,m] → P[j,m]. We
have

(P[j,m])I = Hom(R/(x[j,m]), R/(xI)) = (xI\[j,m])/(xI), (P[j−1,m])I = (xI\[j−1,m])/(xI),

and our map is given by multiplication by xj−1.
Assume first that j − 1 6∈ I. Then I \ [j,m] = I \ [j − 1,m], so we get

CI = (P[j,m])I ⊗R/(xi).

Note that in this case we have either I ⊂ [1, j−1] or I ⊂ [j, k], and in the former case, (P[j,m])I = 0,
so CI = 0.

On the other hand, if j − 1 ∈ I then, setting I ′ = I \ [j − 1,m], we have

(P[j,m])I = (xj−1xI′)/(xI), (P[j−1,m])I = xI′/(xI),

so in this case the map (P[j−1,m])I
xj−1−→ (P[j,m])I is surjective, so CI = 0.

This easily leads to the identification C ' i!{j}(P[j,m][x1, . . . , xj−2]). 2
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Theorem 4.1.6. For every j = 1, . . . , k, the composed functor

Φj = i!{j}i
B◦◦
[j,k]

B◦
[j,k]

: Perf(B◦[j,k][x1, . . . , xj−2]) → Db(B◦◦) (4.6)

is fully faithful, takes values in Perf(B◦◦), and we have a semiorthogonal decomposition

Perf(B◦◦) = 〈Φk Perf(B◦[k][x1, . . . , xk−2]), . . . ,Φ3 Perf(B◦[3,k][x1]),Φ2 Perf(B◦[2,k]),Φ1 Perf(B◦[1,k])〉.

Proof. Recall that by Lemma 4.1.1(i), the functor iB
◦◦
B◦ : Perf(B◦) → Perf(B◦◦) is fully faithful.

Thus, the functor Φ1 is fully faithful.
To check that the functor Φj , for j > 2, is fully faithful and takes values in Perf(B◦◦), we

observe that by Lemma 4.1.5 together with Lemma 4.1.1(i), we have

Φj(P
◦
[j,m][x1, . . . , xj−2]) = M{[j − 1], [j,m]}. (4.7)

By definition, the latter module is perfect. Also, for any B◦◦[j,k][x1, . . . , xj−2]-module M one has

Hom(P[j−1,m], i!{j}M) = 0 for any m > j−1. Hence, using (4.7) and the defining exact sequence

for M{[j − 1], [j,m]}, we get an identification

Hom(Φj(P
◦
[j,m][x1, . . . , xj−2]), i!{j}M) ' Hom(P[j,m], i!{j}M) ' (i!{j}M)[j,m]

= M[j,m] ' Hom(P[j,m][x1, . . . , xj−2],M).

Applying this to M = i
B◦◦
[j,k]

B◦
[j,k]

(P ◦[j,m′][x1, . . . , xj−2]), we derive that Φj is fully faithful.

For j 6 k, let us denote by Pj ⊂ Perf(B◦◦) the subcategory generated by the projective
modules P[j′,m] with j′ 6 j, so that P1 = Φ1 Perf(B◦[1,k]). Let us prove by induction on j that we
have a semiorthogonal decomposition

Pj = 〈im Φj ,Pj−1〉 (4.8)

(for j = k this will give the theorem). Note that (4.7) and the defining exact sequence for
M{[j − 1], [j,m]} together imply that im Φj ⊂ Pj . The semiorthogonality immediately follows
from the fact that the image of i!{j} (and hence of Φj) is right orthogonal to Pj−1. Finally,
the defining exact sequence for M{[j − 1], [j,m]} shows that P[j,m] belongs to the subcategory
generated by im Φj and Pj−1. Hence, our assertion follows from [BLL04, Lemma 1.20]. 2

Remark 4.1.7. Non-commutative resolutions similar to B◦ and B◦◦ were considered in [DFI15]
and in [KL15].

4.2 Homological smoothness
Recall that a k-algebra B, flat over k, is called homologically smooth if the diagonal bimodule
B is perfect as an object of D(B ⊗k B

op). In the case where k is a field, this implies that B has
finite homological dimension [Lun10, Lemma 3.6(b)]. A similar argument proves the following
result.

Lemma 4.2.1. Let B be a homologically smooth k-algebra, flat over k. Assume also that B is left
Noetherian. Then every finitely generated B-module M , which has finite projective dimension
as a k-module, is perfect as a B-module.
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Proof. We use the fact that the diagonal bimodule is perfect, so it is a homotopy direct summand
of a bounded complex of free B ⊗k B

op-modules of finite rank. Applying the corresponding
functors D(B) → D(B) to M , we get that M is a homotopy direct summand in a bounded
complex of B-modules whose terms are finite direct sums of B ⊗k M . By assumption, these
terms have finite projective dimension over B, so M also has finite projective dimension over B.
Since M is finitely generated, this implies that it is perfect. 2

Proposition 4.2.2. Assume that k is Noetherian. Then the algebras B◦ and B◦◦ are homologically
smooth over k.

Note that wrapped Fukaya categories are always homologically smooth. This can be seen by
combining [GPS19, Theorem 1.2] and [Gan12, Theorem 1.2]. Thus, Proposition 4.2.2 will follow
from Theorem 5.2.1 below. However, it is also not hard to give a direct proof. The idea of such a
proof is to use semiorthogonal decompositions (4.5) and (4.8), together with the following fact.
Here we use the notion of gluing of dg-categories along a bimodule, which reflects the situation
of a semiorthogonal decomposition at the dg-level (see [KL15, § 4]).

Lemma 4.2.3 [KL15, Proposition 4.9]. Let D1 and D2 be smooth dg-categories, flat over k, and
let D = D1 ×ϕ D2 be a dg-category obtained by gluing D1 and D2 along a bimodule ϕ in
Perf(Dop

2 ⊗k D1). Then D is smooth over k.

The more concrete situation in which we will apply this is described in the following lemma.

Lemma 4.2.4. Let D be a dg-category over k equipped with a semiorthogonal decomposition

Perf(D) = 〈〈M1〉, 〈M2〉〉,

where for i = 1, 2, Ext6=0(Mi,Mi) = 0, while Bi := End(Mi) is a homologically smooth k-algebra
Bi, flat over k. Assume in addition that B1 is Noetherian and the complex hom(M1,M2) has
bounded cohomology, finitely generated as B1-modules and of finite projective dimension as
k-modules. Then D is homologically smooth.

Proof. To apply Lemma 4.2.3 we need to check that the B1 − B2-bimodule hom(M1,M2) is
perfect. Since B2 is smooth, it is enough to check that it is perfect as a B1-module (see [Toë07,
Lemma 2.8.2]). By Lemma 4.2.1, this follows from our assumptions. 2

Proof of Proposition 4.2.2. To prove that B◦ is smooth we apply Lemma 4.2.4 iteratively to
semiorthogonal decompositions (4.5). Since the algebras R/(xi) are homologically smooth, it
suffices to check that the R-modules Ext∗(P k, P[1,i]), for i < k, are finitely generated and are

free as k-modules. Computing these using the projective resolution of P k, we realize them as
cohomology of the complex (in degrees [0, 1])

R/(x[1,i])
x[i+1,k]−−−−→ R/x[1,i].

Thus, we only have non-trivial Ext1 isomorphic to R/(x[1,i], x[i+1,k]), and the assertion follows.
Similarly, to prove that B◦◦ is smooth we apply Lemma 4.2.4 iteratively to semiorthogonal

decompositions (4.8). It suffices to prove that the R-modules Ext∗(M{[j − 1], [j,m]}, PI), where
I = [j′,m′] with j′ < j, are finitely generated and are free as k-modules. Using the defining
projective resolution of M{[j − 1], [j,m]}, we get the complex (in degrees [0, 2]) that computes
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this Ext∗. If m′ < j − 1 then this complex is zero. For m′ > j − 1 it has the form

R/(x[j,m]∩I)
xj−1−→ R/(x[j−1,m]∩I)

x[j,m]\I−−−−→ R/(xj−1),

Thus, only Ext2 is non-trivial and it is isomorphic to R/(xj−1, x[j,m]\I), which is free over k. 2

4.3 Localization on the B-side
We say that a collection of objects (Xi)i∈I in an abelian category C generates C if the minimal
abelian subcategory of C closed under extensions and containing all Xi is the entire C.

We want to describe the restriction functors rB
◦◦
B◦ and rB

◦◦
R (see (4.1) and (4.2)) as localizations

with respect to some subcategories.

Theorem 4.3.1. (i) The functor rB
◦◦
B◦ induces an equivalence of enhanced triangulated categories

Perf(B◦◦)/ker(rB
◦◦
B◦ ) ' Perf(B◦).

For every 1 6 i 6 j < m 6 k, the module M{[i, j], [j + 1,m]} belongs to the subcategory
ker(rB

◦◦
B◦ ) ⊂ Perf(B◦◦). Furthermore, ker(rB

◦◦
B◦ ) is generated by the modules (M{[i], [i+ 1, j]})i<j .

(ii) Assume that k is regular. Then the functor rB
◦◦

R induces an equivalence of enhanced
triangulated categories

Db(B◦◦)/ker(rB
◦◦

R ) ' Db(R),

where Db(·) denotes the bounded derived category of finitely generated modules.
For every pair of disjoint intervals I, J ⊂ [1, k], such that I t J is an interval, the modules

M{I, J} belong to the subcategory ker(rB
◦◦

R ). Furthermore, ker(rB
◦◦

R ) is generated by the modules
(M{[i], [i+ 1, j]},M{[j], [i, j − 1]})i<j as a triangulated category.

Proof. (i) The first assertion follows immediately from the semiorthogonal decomposition of
Theorem 4.1.6 together with the adjunction of the induction and restriction functors (iB

◦◦
B◦ , r

B◦◦
B◦ ).

To check that M{[i, j], [j + 1,m]} belongs to ker(rB
◦◦
B◦ ), we need to prove the surjectivity of

the map

(P[i,m])[1,r] → (P[j+1,m])[1,r]

induced by x[i,j]. In other words, we need to check that the map

(x[1,r]\[i,m])/(x[1,r])
x[i,j]−→ (x[1,r]\[j+1,m])/(x[1,r])

is surjective for every m. Indeed, if j > r then the target is zero. Otherwise j < r and the
assertion follows from the equality x[1,r]\[j+1,m] = x[i,j]x[1,r]\[i,m].

By Theorem 4.1.6, the subcategory ker(rB
◦◦
B◦ ) is generated by the images of Φ2, . . . ,Φn. Hence,

it is generated by the images of projective modules under Φ2, . . . ,Φn. Since these images are given
by formula (4.7), the last assertion follows.

(ii) The restriction functor between abelian categories

rB
◦◦

R : B◦◦ −mod → R−mod

is exact. Furthermore, by Lemma 4.1.1(i) the induction functor iB
◦◦

R provides a cosection, so the
category R−mod is a colocalization of B◦◦ −mod, which gives an equivalence

R−mod ' B◦◦ −mod /(ker(rB
◦◦

R ) ∩ B◦◦ −mod).

The similar equivalence with derived categories follows from the work [Miy91].
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As in (i), the assertion that M{I, J} belongs to ker(rB
◦◦

R ) amounts to the surjectivity of the
map

(x[1,k]\(ItJ))
xI−→ (x[1,k]\J),

which follows from the equality x[1,k]\J = xIx[1,k]\(ItJ).

Let C ⊂ B◦ − mod denote the kernel of rB
◦

R , that is, the full subcategory consisting of B◦-
modules M such that M[1,k] = 0. It is enough to prove that the modules rB

◦◦
B◦ (M{[j], [i, j − 1]})

generate C as an abelian category. We will use induction on k. In the case k = 1, we have C = 0
so there is nothing to prove.

Let D ⊂ B◦ −mod denote the full subcategory of B◦-modules M such that M1 = 0. Let us
set B◦◦ = B◦◦[2,k][x1], B◦ = B◦[2,k][x1]. Note that the restriction functor rB

◦

B◦ : B◦−mod → B◦−mod
induces an equivalence

Φ : D ' B◦ −mod.

Furthermore, as we have seen in Lemma 4.1.1(ii), we have rB
◦◦
B◦ i

B◦◦
B◦◦(M) ∈ D and

Φ(rB
◦◦
B◦ i

B◦◦
B◦◦(M)) = rB

◦◦

B◦ (M).

Let C′ ⊂ B◦−mod denote the kernel of rB
◦

R[x1]. By induction assumption, C′ is generated by the

modules rB
◦◦

B◦ (M{[j], [i, j−1]}), where 2 6 i < j 6 k, and M{[j], [i, j−1]} are B◦◦-modules defined

similarly to M{[j], [i, j − 1]}. We have iB
◦◦

B◦◦M{[j], [i, j − 1]} = M{[j], [i, j − 1]} for 2 6 i < j 6 k,
so

Φ−1(rB
◦◦

B◦ (M{[j], [i, j − 1]})) = rB
◦◦
B◦ i

B◦◦
B◦◦(M{[j], [i, j − 1]}) = rB

◦◦
B◦ (M{[j], [i, j − 1]}).

Thus, the subcategory Φ−1(C′) = C ∩ D belongs to the subcategory generated by the modules
rB
◦◦
B◦ (M{[j], [i, j − 1]}), with 2 6 i < j 6 k.

It remains to check that C is generated by C ∩D and by the modules rB
◦◦
B◦ (M{[j], [1, j− 1]}).

Note that C ∩ D is precisely the kernel of the functor

r : C → R/(x1, x2 . . . xk)−mod : M 7→ M1.

Now for 2 6 j 6 k, let us define the functor

i∗(j) : R/(x1, xj) → C

sending N to the B◦-module M such that

M[1,m] =

{
N m < j,

0 m > j,

with the maps M[1,m−1] → M[1,m] (respectively, M[1,m] → M[1,m−1]) being the identity maps
(respectively, multiplication by xm) for m < j.

For 2 6 j 6 k, let Cj ⊂ C denote the full subcategory of M ∈ C such that xjM1 = 0. Since
for every M ∈ C one has x2 . . . xkM1 = 0, it is easy to see that the subcategories Cj generate C
as an abelian category. Now for every M ∈ Cj , there is a natural morphism

i∗(j)(M1) → M

inducing the identity map i∗(j)(M1)1 →M1. Hence, the kernel and the cokernel of the morphism
i∗(j)(M1) → M are in C ∩D. It follows that the images of the functors i∗(j) together with C ∩D
generate C.
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It remains to observe that for each j > 2, there is an exact sequence

0 → i∗(j)(R/(x1, xj)) → rB
◦◦
B◦ M{[j], [1, j − 1]}→ rB

◦◦
B◦ M{[j], [2, j − 1]}→ 0

(where for j = 2 the last term is zero). This implies that the image of i∗(j) is contained in the
subcategory generated by rB

◦◦
B◦ M{[j], [1, j − 1]} and rB

◦◦
B◦ M{[j], [2, j − 1]}. 2

4.4 Cases k = 2 and k = 3
Consider first the case k = 2. We have R[1,2] = k[x1, x2]/(x1x2),

B◦◦[1,2] = EndR(R⊕R/(x1)⊕R/(x2)), B◦[1,2] = EndR(R⊕R/(x1)).

Note that we have an isomorphism

R/(x1)⊕R/(x2) ' I,

where I = (x, y) ⊂ R is the ideal corresponding to the node. Thus, B◦◦[1,2] is isomorphic to the

Auslander order over the affine nodal curve Spec(R[1,2]). We can also think of B◦◦[1,2] as the algebra

of the quiver with relations given in Figure 2, where the vertex L0 (respectively, L2) corresponds
to [2] (respectively, [1]).

The semiorthogonal decomposition of Proposition 4.1.2 becomes

Perf(B◦[1,2]) = 〈〈P 2〉, 〈P1〉〉,

where 〈P2〉 ' Perf(k[x1]), 〈P1〉 ' Perf(k[x2]). Furthermore, Ext∗(P 2, P1) ' k[−1].
The semiorthogonal decomposition of Theorem 4.1.6 becomes

Perf(B◦◦[1,2]) = 〈〈M{[1][2]}〉, iB◦◦B◦ Perf(B◦[1,2])〉,

where 〈M{[1][2]}〉 ' Perf(k). Furthermore, it is easy to see that M{[1][2]} corresponds to the
simple module over the quiver in Figure 2 at the vertex L0.

The localization functor Db(B◦◦[1,2]) → Db(R[1,2]) takes P[1,2] to R and P[i] to R/(xi). The

kernel of the functor is generated by the modules M{[1][2]} and M{[2][1]}, which are precisely
the simple modules at vertices L0 and L2 of the quiver in Figure 2.

Next, let us consider the case k = 3. We have R = R[1,3] = k[x1, x2, x3]/(x1x2x3),

B◦[1,3] = EndR(R⊕R/(x1x2)⊕R/(x1)),

while the algebra B◦◦[1,3] can be described by the quiver with relations over R given in Figure 7,

where the vertices L2 × L3, L0 × L3 and L0 × L1 correspond to [1], [2] and [3], L1 × L3 and
L0 × L2 correspond to [1, 2] and [2, 3], and L1 × L2 corresponds to [1, 3]. The algebra B◦[1,3] is

described by the subquiver with vertices [1], [1, 2] and [1, 3].
The semiorthogonal decomposition of Proposition 4.1.2 becomes

Perf(B◦[1,3]) = 〈Perf(k[x2, x3]),Perf(k[x1, x3]),Perf(k[x2, x3])〉.

The semiorthogonal decomposition of Theorem 4.1.6 becomes

Perf(B◦◦[1,2]) = 〈〈M{[2][3]}〉, 〈M{[1][2, 3]},M{[1][2]}〉, iB◦◦B◦ Perf(B◦[1,3])〉,

where 〈M{[2][3]}〉 ' Perf(k[x1]) and 〈M{[1][2, 3]},M{[1][2]}〉 ' Perf(B◦[2,3]). The kernel of the

localization Db(B◦[1,3]) → Db(R[1,3]) is generated by the modules i∗(2)(R/(x1, x2)), i∗(3)(R/(x1,

x3)) and rB
◦◦
B◦ M{[3][2]}, where the first module is R/(x1, x2) supported at the vertex [1], and

the last is R/(x2, x3) supported at the vertex [1, 2]. The module i∗(3)(R/(x1, x3)) is supported
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at vertices [1] and [1, 2], with both components given by R/(x1, x3), the identity map from [1, 2]
to [1], and the multiplication by x2 map from [1] to [1, 2].

5. Homological mirror symmetry

5.1 Isomorphism of algebras corresponding to two stops
We now specialize to the case n = k−1 on the A-side and the Z-grading on the Fukaya category
such that deg(xi) = 0 (see Theorem 3.2.5). The main observation is that in this case the algebra
A◦◦ on the A-side is isomorphic to the algebra (B◦◦)op.

First, we observe that there is the following bijection between the Lagrangians (LS) in this
case and the subsegments I ⊂ [1, k]:

L[0,k]\{i,j} ↔ [i+ 1, j], (5.1)

where 0 6 i < j 6 k.

Lemma 5.1.1. For n = k − 1 one has an isomorphism of R-algebras

A◦◦ ' B◦◦ ' (B◦◦)op =
⊕

I,J⊂[1,k]

HomB◦◦(PI , PJ),

compatible with the correspondence (5.1).

Proof. We have

HomB◦◦(PI , PJ) ' HomR(R/(xJ), R/(xI)) ' (xI\J)/(xI) = xI\J ·R/(xI∩J).

It is easy to see that mapping HomB◦◦(PI , PJ) to HomB◦◦(PJ , PI) using these identifications gives
an isomorphism of the algebra B◦◦ with its opposite algebra (see below for the computation of
compositions).

On the other hand, for S = [0, k] \ {a, b} and S′ = [0, k] \ {a′, b′} we have the following four
possibilities, and we can calculate the subintervals I•, J• of Corollary 3.2.4 in each of them.

Case 1: a < a′, b < b′. If a′ > b then S and S′ are not close, so we can assume that a′ < b. In
this case we have J1 = [a, a′] and J2 = [b, b′], so, using Theorem 3.2.5(ii), we get

A(S, S′) = k[x1, . . . , xa]⊗k[xa+1, . . . , xa′ ]⊗k[xa′+1, . . . , xb]/(x[a′+1,b])

⊗ k[xb+1, . . . , x
′
b]⊗k[xb′+1, . . . , xk] · fS,S′ = R/(x[a′+1,xb]) · fS,S′ .

Case 2: a < a′, b > b′. In this case we have J1 = [a, a′] and I1 = [b′, b] (I1 should be omitted if
b = b′), so by Theorem 3.2.5(ii) we get

A(S, S′) = k[x1, . . . , xa]⊗k[xa+1, . . . , xa′ ]⊗k[xa′+1, . . . , xb′ ]/(x[a′+1,b′])

⊗ k[xb′+1, . . . , xb]⊗k[xb+1, . . . , xk] · fS,S′ = R/(x[a′+1,xb′ ]
) · fS,S′ .

Case 3: a > a′, b < b′. In this case we have I1 = [a′, a] and J1 = [b, b′] (I1 should be omitted if
a = a′), so by Theorem 3.2.5(ii) we get

A(S, S′) = k[x1, . . . , xa′ ]⊗k[xa′+1, . . . , xa]⊗k[xa+1, . . . , xb]/(x[a+1,b])

⊗ k[xb+1, . . . , xb′ ]⊗k[xb′+1, . . . , xk] · fS,S′ = R/(x[a+1,xb]) · fS,S′ .
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Case 4: a > a′, b > b′. If a > b′ then S and S′ are not close, so we can assume that a < b′. In
this case we have I1 = [a′, a] and I2 = [b′, b] (where I1 is omitted if a = a′ and I2 is omitted if
b = b′). By Theorem 3.2.5(ii) we get

A(S, S′) = k[x1, . . . , xa′ ]⊗k[xa′+1, . . . , xa]⊗k[xa+1, . . . , xb′ ]/(x[a+1,b′])

⊗ k[xb′+1, . . . , xb]⊗k[xb+1, . . . , xk] · fS,S′ = R/(x[a+1,xb′ ]
) · fS,S′ .

In all of these cases we deduce that

A(S, S′) ' R/(xI∩J) · fS,S′ ,

where I = [a+ 1, b] and J = [a′ + 1, b′]. So we get an identification of R-modules

A(S, S′) ' Hom(PI , PJ)

sending fS,S′ to xI\J .
To check the compatibility with the composition, we note that for three intervals I, J,K ⊂

[1, k] one has

xI\J · xJ\K = xI\K ·
∏

i∈(J\(I∪K))∪(I∩K\J)

xi.

Thus, the assertion follows from Theorem 3.2.5(iii) and the equality

{i : | [i− 1, i] ⊂ T (S, S′, S′′)} = (J \ (I ∪K)) ∪ (I ∩K \ J), (5.2)

where LS , LS′ and LS′′ correspond to I, J and K under (5.1). The proof of (5.2) is a
straightforward but tedious check, so we will consider only one of the cases. Let

S = [0, k] \ {a, b}, S′ = [0, k] \ {a′, b′}, S′′ = [0, k] \ {a′′, b′′},
I = [a+ 1, b], J = [a′ + 1, b′], K = [a′′ + 1, b′′].

Assume that a < a′, b < b′, a′′ < a′, b′′ < b′. Then we have J1 = [a, a′], J2 = [b, b′], I ′1 = [a′′, a′]
and I ′2 = [b′′, b′], hence

T (S, S′, S′′) = [max(a, a′′), a′] ∪ [max(b, b′′), b′].

On the other hand,

I ∩K \ J = [max(a+ 1, a′′ + 1), a′], J \ (I ∪K) = [max(b, b′′) + 1, b′],

so equality (5.2) follows in this case. The other cases are considered similarly. 2

5.2 Equivalences of categories
Theorem 5.2.1. There are equivalences of enhanced triangulated categories over k,

W(Pk−1,ΛZ) ' Perf(B◦◦[1,k]), (5.3)

W(Pk−1,Λ1) ' Perf(B◦[1,k]), (5.4)

Assume that the base ring k is regular. Then we also have an equivalence

W(Pk−1) ' Db(R[1,k]). (5.5)

The above equivalences are compatible with localization functors on the A-side and the restriction
functors rB

◦◦
B◦ and rB

◦
R . Furthermore, the first equivalence sends the Lagrangian LS =

∏
a∈S La

for S = [0, k] \ {i, j}, where i < j, to the projective module P[i+1,j]. Here the Fukaya categories
are equipped with the Z-grading coming from a unique grading structure on Pk−1 = Mk−1,k such
that deg(xi) = 0 for i = 1, . . . , k (see Theorem 3.2.5).
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Proof. Note that by Theorem 3.2.5(iv), shifting the graded structures on each LS if needed,
we can achieve that the algebra A◦◦ is concentrated in degree 0. Since the Lagrangians (LS)
generate the wrapped Fukaya category, the first equivalence is an immediate consequence of the
isomorphism of algebras proved in Lemma 5.1.1.

The second and third equivalences are obtained from the first by localization, using Theorem
3.3.1 on the A-side and Theorem 4.3.1 on the B-side. Namely, we observe that under the
equivalence (5.3), the resolutions of objects T2 × X (respectively, of T1 × X) from Proposition
3.3.3 (in the case n = k − 1) correspond to the complexes defining modules M{[i, j], [j + 1,
m]} (respectively, M{[j + 1,m], [i, j]}). Thus, under (5.3) the subcategory D2 ⊂ W(Mk−1,k)
(respectively, 〈D1,D2〉) corresponds to the subcategory ker(rB

◦◦
B◦ ) ⊂ Db(B◦◦) generated by all

the modules M{[i, j], [j+ 1,m]} (respectively, ker(rB
◦◦

R ) generated by all M{I, J}). Hence, using
Theorems 3.3.1 and 4.3.1, we derive the equivalences (5.4) and (5.5). 2

Remark 5.2.2. It follows from Remark 4.1.3 that under equivalence (5.4) of Theorem 5.2.1, the
object P i defined in Proposition 4.1.2 (involved in a semiorthogonal decomposition of Db(B◦[1,k]))

corresponds to LS =
∏
a∈S La with S = [0, k] \ {i− 1, i}.

Remark 5.2.3. The semiorthogonal decomposition

Db(B◦◦) = 〈im(Φk), . . . , im(Φ2), im(Φ1)〉

constructed in Theorem 4.1.6 has a natural geometric meaning on the A-side. Namely, let
Ci ⊂ W(Mk−1,k,ΛZ) be the subcategory corresponding to im(Φi). Then C1 is generated by the
Lagrangians LS with S ⊂ [1, k], and for each i = 2, . . . , k, the subcategory Ci is generated
by the Lagrangians of the form T2 × L[0,i−3]tS′ with S′ ⊂ [i, k], |S′| = k − i. The required
semiorthogonalities can be easily seen on the A-side. Also, the natural functor

C1 →W(Mk−1,k,Λ1)

is an equivalence, which corresponds to the equivalence of im(Φ1) with Db(B◦). On the other
hand, for each i = 2, . . . , k, there is an equivalence

C′i
∼−→ Ci : L 7→ T2 × L

from the subcategory C′i ⊂ W(Mk−2,k,ΛZ) generated by all L[0,i−3]tS′ with S′ ⊂ [i, k].
Furthermore, since End(L[0,i−3]) ' k[x1, . . . , xi−2], one can see that there is an equivalence

C′′i ⊗k k[x1, . . . , xi−2]
∼−→ C′i : L 7→ L[0,i−3] × L,

where C′′i ⊂ W(Mk−i,k,ΛZ) is generated by LS′ with S′ ⊂ [i, k]. Finally, we have a natural
equivalence

C′′i
∼−→W(Mk−i,k−i+1,Λ1)

induced by filling in the first i− 1 interior holes and removing one of the stops.

5.3 Homological mirror symmetry for abelian covers
We will deduce from Theorem 5.2.1 a similar equivalence involving wrapped Fukaya categories
of finite abelian covers of Mk−1,k = Pk−1.

Namely, as is well known, for k > 2, there is a natural isomorphism π1(Pk−1) ' Zk, where
as generators we can take products of loops γi = uivi, i = 1, . . . , k, in Σ with k − 2 points in Σ.
We denote these generators by (γ̂i).
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Now let us fix a homomorphism

φ : π1(Pk−1) ' Zk → Γ,

where Γ is a finite abelian group. It is determined by the k elements

φi := φ(γ̂i) ∈ Γ, i = 1, . . . , k.

Let

π : M → Pk−1

be the finite covering associated with φ, so that Γ acts on M as a group of deck transformations.
Then M has the induced symplectic structure, the induced stops π−1(Λ) and the induced

grading structure, so we can consider the category W(M,π−1(Λ)).
Note that each of the Lagrangians LS ⊂ Pk−1, for S = [0, k] \ {i, j}, can be lifted to a

connected Lagrangian L̃S ⊂M (since it is simply connected). Let us fix one such lift L̃S for each
S (we will have to adjust it later). Note that all other connected lifts of LS are of the form γL̃S
for some γ ∈ Γ, where Γ acts on M by deck transformations.

As explained in [Sei15, § 8b], a choice of liftings (L̃S) defines a Γ-grading on each space
hom(LS , LS′). Namely, a Reeb chord x : [0, 1] → Pk−1 with x(0) ∈ LS , x(1) ∈ LS′ lifts to a path
x̃ : [0, 1] → M , such that x̃(0) ∈ L̃S and x̃(1) ∈ γL̃S′ , for some γ ∈ Γ, and we set degAΓ (x) = γ.

This gives a certain Γ-grading on the algebra A◦◦. Note that Γ-degrees of the elements
xi ∈ end(LS) are just given by

degAΓ (xi) = φi.

Note that endomorphism algebra of the objects (γL̃S) is obtained from the Γ-grading on A◦◦
by the following formal construction: it is given by⊕

γ,γ′∈Γ

A◦◦γ′−γ , (5.6)

with the natural product.
Let

G := Γ∗

be the finite commutative group scheme dual to Γ (so if Γ =
∏

Z/diZ then G =
∏
µdi). Then Γ

can be identified with the set of all algebraic characters of G. Suppose A is an associative algebra
with a Γ-grading. Then we can form a new associative algebra similarly to (5.6) by setting

AΓ :=
⊕
γ,γ′∈Γ

Aγ′−γ .

On the other hand, we can use the Γ-grading to define an algebraic action of G on A and consider
the category of A-modules with compatible G-action, or equivalently, Γ-graded A-modules. For
every γ ∈ Γ we have a natural such module A⊗ γ, and we have an identification

AΓ '
⊕
γ,γ′

HomA(A⊗ γ,A⊗ γ′)G.

Thus, the category described by the algebra AΓ is equivalent to the perfect derived category
of A-modules with G-action (one can also explicitly identify AΓ with the crossed product ring
A[G]).

Proposition 5.3.1. The collection of Lagrangians γL̃S for γ ∈ Γ and S = [0, k] \ {i, j}, i < j,
generates the wrapped Fukaya category W(M,π−1(ΛZ)).
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Proof. The proof follows along the lines of [Aur10b], where Auroux proves generation ofW(Pk−1,
ΛZ) by the Lagrangians LS . Namely, one first constructs a simple branched m-fold covering of
the unit disk, a Lefschetz fibration with zero-dimensional fibers, $ : Σ → D for some m > k and
such that the collection of Lagrangians Li for i = 0, . . . , k is a subset of a distinguished set of
thimbles {∆i}mi=0 for $ and Z is a subset of $−1(−1). Note that, by re-indexing if necessary, we
can assume that Li = ∆i for i = 0, . . . , k. The fact that such a simple branched covering exists
is elementary (see [Aur10b, § 3.3.4]). A useful observation here is that the number of stops in
$−1(−1)\Z is the same asm−k. Furthermore, localizing along points in$−1(−1)\Z corresponds
to removing extra objects in the collection {∆i}mi=0 to finally reduce it to the collection {Li}ki=0.

Next, Auroux associates a Lefschetz fibration $n : Symn(Σ) → D whose thimbles are given
by the collection of products Lagrangians ∆S where S runs through subsets of [0,m] of size
n, and applies a celebrated result of Seidel [Sei08, Theorem 18.24] to show that this collection
generates the wrapped Fukaya categoryW(Symn(Σ),Λ$−1(−1)). Finally, to deduce generation of
W(Symn(Σ),ΛZ) by the collection of products of Lagrangian LS where S runs through subsets
of [0, k] of size n, Auroux applies the localization functors associated to removing the extra stops
in Λ$−1(−1) \ ΛZ . Namely, localizing along the extra stops Λ$−1(−1)\Z corresponds to removing
extra objects in the collection {∆S} for S ⊂ [0,m] to finally reduce it to the collection LS for
S ⊂ [0, k]. This is thanks to the existence of basic exact triangles recalled in equation (2.5)
associated to exact triangles in W(Σ, Z).

The key observation that allows us to apply the same strategy to generate W(M,π−1(ΛZ))
is that the composition

$k−1 ◦ π : M → D

is again a Lefschetz fibration and the stops π−1(ΛZ) are a subset of ($k−1 ◦π)−1(−1). Moreover,
the thimbles of $k−1 ◦ π are given by lifts {γ∆̃S}γ,S of thimbles ∆S after fixing connected lifts

∆̃S of ∆S . Thus, again by Seidel’s theorem, the set of these lifted thimbles generates the partially
wrapped Fukaya category W(M, ($k−1 ◦ π)−1(−1)).

Finally, removing stops in $−1
k−1(−1) \ Z corresponds to localization of lifts of the extra

thimbles {∆S} that are not in the collection {LS}. To justify this we apply Lemma 5.3.2, which
completes the proof. 2

Lemma 5.3.2. Suppose that we have L1, L
′
1, L

′′
1 ⊂ Σ such that L′′1 is the arc obtained by sliding

L1 along L′1, avoiding a set of stops Z, so that we have an exact triangle

L1 → L′1 → L′′1 → L1[1]

in W(Σ, Z). Let L2, . . . , Lk−1 be disjoint arcs in Σ and let LS = L1 × L2 × · · · × Lk−1, L′S =
L′1 × L2 × · · · × Lk−1 and L′′S = L′′1 × L2 × · · · × Lk−1 be Lagrangians in Pk−1 so that we have
the corresponding exact triangle

LS → L′S → L′′S → LS [1] (5.7)

in W(Σ,ΛZ). Let π : M → Pk−1 be a covering and let L̃S , L̃′S and L̃′′S be connected lifts of these
Lagrangians to M . Then, in W(M,π−1(ΛZ)), the Lagrangian L̃S is generated by the collection
{γL̃′S}γ∈Γ ∪ {γL̃

′′
S}γ∈Γ.

Proof. As we explained before, we can describe the subcategory ofW(M,π−1(ΛZ)), generated by
(γL̃S), by the algebra (5.6), and hence identify it with the perfect derived category of Γ-graded
A◦◦-modules, such that γL̃S corresponds to PS ⊗ γ, for the natural projective A◦◦-modules PS
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Now we observe that all the morphisms in the exact triangle (5.7) are homogeneous with
respect to the Γ-grading (i.e. they all have some degree in Γ). This implies that this exact triangle
can be viewed as an exact triangle of Γ-graded A◦◦-modules of the form

PS → PS′ ⊗ γ′ → PS′′ ⊗ γ′′ → PS [1].

The corresponding exact triangle in W(M,π−1(ΛZ)) proves our assertion. 2

On the B-side, we can consider the homomorphism

G → Gk
m,

dual to the homomorphism Zk → Γ. The group Gk
m acts on the ring R = R[1,k] = k[x1, . . . ,

xk]/(x1 . . . xk) by rescaling the coordinates, and on the R-modules R/(xI), so we get the induced
action on the algebras B◦ = B◦[1,k] and B◦◦ = B◦◦[1,k]. Via the homomorphism G → Gk

m we get
algebraic G-actions on R, B◦ and B◦◦.

Let PerfG(B) (respectively, Db
G(R)) denote the perfect derived category of G-equivariant B-

modules (respectively, bounded derived category of finitely generated G-equivariant R-modules).

Theorem 5.3.3. We have equivalences of enhanced triangulated categories over k,

W(M,π−1(Λ)) ' PerfG(B◦◦[1,k]), (5.8)

W(M,π−1(Λ1)) ' PerfG(B◦[1,k]). (5.9)

Assume that k is a regular ring. Then we have an equivalence

W(M) ' Db
G(R[1,k]), (5.10)

where the Fukaya categories are equipped with the Z-grading induced by the grading structure
on Pk−1 considered in Theorem 5.2.1.

Proof. The action of G on B◦◦ can also be viewed as a Γ-grading on it, degBΓ , which satisfies

degBΓ (xi) = φi.

By the isomorphism of Lemma 5.1.1, it can be viewed as another Γ-grading on A◦◦. Applying
Theorem 3.2.5(iv), we deduce the existence of (γS) such that

degBΓ (fS,S′) = degAΓ (fS,S′) + γS′ − γS .

This means that by adjusting the choices of lifts L̃S (by the action of γS), we can achieve that
the gradings degBΓ and degAΓ are the same.

Now, as we have observed before, the category PerfG(B◦◦[1,k]) is equivalent to the perfect
derived category of the algebra

B◦◦Γ =
⊕
γ,γ′∈Γ

B◦◦γ′−γ .

Since the isomorphism between A◦◦ and B◦◦ is compatible with the Γ-gradings, the latter algebra
is isomorphic to (5.6), which implies the equivalence (5.8).

To deduce equivalences (5.9) and (5.10) we first observe that an analog of Theorem 4.3.1 holds
for equivariant categories, where the modules M{I, J} are equipped with natural G-equivariant
structure, and to generate the kernels of rB

◦◦
B◦ and rB

◦◦
R we use appropriate modules twisted by all

possible elements of Γ. Thus, we derive these equivalences as in Theorem 5.2.1 using localization
on both sides. 2
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As an application we deduce a version of homological mirror symmetry for invertible
polynomials (see the recent paper [LU18] for background on this topic). Let

w =
k∑
i=1

k∏
j=1

x
aij
j (5.11)

be an invertible polynomial, which is a weighted homogeneous polynomial that has an isolated
critical point at the origin and is described by some integer matrix A = (aij)

k
i,j=1 with non-zero

determinant.
Let

Mw := {(x1, . . . , xk) ∈ (C∗)×k | w(x1, . . . , xk) = 1}

be the ‘punctured’ Milnor fiber. We have a covering map

π : Mw → Pk−1

given by (x1, x2, . . . , xk) → (
∏k
j=1 x

a1j
j ,

∏k
j=1 x

a2j
j , . . . ,

∏k
j=1 x

akj
j ) where we view Pk−1 as a

hypersurface in (C∗)×k via the identification

Pk−1 = {(x1, . . . , xk) ∈ (C∗)×k : x1 + x2 + · · ·+ xk = 1}.

The group of deck transformations of this covering map is

Γ = {(t1, t2, . . . , tk) ∈ G×km : ∀i, tai11 tai22 . . . taikk = 1},

which is exactly the group of diagonal symmetries of w.
Let G = Hom(Γ,Gm) be the dual group. As an immediate corollary to Theorem 5.3.3, we

get the following homological mirror symmetry statement for Mw.

Corollary 5.3.4. Assume k is regular. Then W(Mw) ' Db
G(R[1,k]).

Remark 5.3.5. There is also an analog of Theorem 5.3.3 for arbitrary finite connected coverings
of the three-punctured sphere Σ = P1. Namely, we have an identification of π1(Σ) with the free
group with two generators γ1, γ2, so such a covering π : M → Σ corresponds to a finite set S
with a pair of permutations σ1, σ2 ∈ Aut(S), generating a transitive action of π1(Σ) on S (so
that γi acts as σi). Choosing a lifting of the Lagrangians L0, L1, L2 to the universal covering
of Σ, we get, as above, a π1(Σ)-grading on the endomorphism algebra A of (L0, L1, L2) in the
partially wrapped Fukaya category W(Σ, Z, η) where Z = q1 ∪ q2 (see Figure 1). Now a similar
reasoning to Theorem 5.3.3 shows that W(M,π−1(Z), η) is equivalent to the perfect derived
category of S-graded modules over A (where the S-grading on a module is compatible with the
π1(Σ)-grading on A). Furthermore, we can choose liftings of the Lagrangians in such a way that
the π1(Σ)-grading on A, which is identified with the Auslander order over k[x1, x2]/(x1x2), is
induced by the grading deg(xi) = γi, i = 1, 2. Localizing, we get a similar connection between
the fully wrapped Fukaya category of M and S-graded modules over k[x1, x2]/(x1x2).

For example, taking Γ = Z/d (for d > 0) and the homomorphism γ1 7→ 1 mod(d), γ2 7→
−1 mod(d), corresponds to the d : 1 covering Σ̃ → Σ, which can be identified with the (d + 2)-
punctured sphere. Namely, if we realize Σ with P1 \ {0, 1,∞} in such a way that the puncture
with stops corresponds to 1, then we can take the covering π : P1

→ P1 : z 7→ zd, ramified at 0
and ∞, and identify Σ̃ with

P1 \ π−1({0, 1,∞}) = P1 \ {0,∞, (exp(2πim/d))m=0,...,d−1}.
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The above equivalence relates the partially wrapped Fukaya category of Σ̃ (with respect to the
preimages of two stops) to modules over the Auslander order on the corresponding stacky curve,
the quotient of Spec(k[x1, x2]/(x1x2)) by the action of µd, the group of dth roots of unity, where
ζ acts on (x1, x2) by (ζx1, ζ

−1x2). This equivalence is a particular case of [LP18, Theorem A].
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