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Wetting front dynamics in an isotropic porous
medium
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A new approach to the modelling of wetting fronts in porous media on the Darcy
scale is developed, based on considering the types (modes) of motion the menisci
go through on the pore scale. This approach is illustrated using a simple model case
of imbibition of a viscous incompressible liquid into an isotropic porous matrix with
two modes of motion for the menisci, the wetting mode and the threshold mode.
The latter makes it necessary to introduce an essentially new technique of conjugate
problems that allows one to link threshold phenomena on the pore scale with the
motion on the Darcy scale. The developed approach (a) makes room for incorporating
the actual physics of wetting on the pore scale, (b) brings in the physics associated
with pore-scale thresholds, which determine when sections of the wetting front will
be brought to a halt (pinned), and, importantly, (c) provides a regular framework for
constructing models of increasing complexity.
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1. Introduction
The dynamics of wetting fronts in porous media remains the subject of intensive

research (Adler & Brenner 1988; Olbricht 1996; Alava, Dubé & Rost 2004). Its
main motivation comes, first of all, from a host of important applications, notably
in oil recovery, hydrogeology and more recently also in carbon dioxide sequestration,
microfluidics and fuel cells. This topic also poses some fundamental questions about
the modelling of evolutionary processes in systems with complex topology. In a
practically relevant case where the scales of the pore-level and the global flow are
well separated, one can use an intermediate scale to introduce averaged macroscopic
quantities and apply the modelling approach of continuum mechanics. In this case, for
an incompressible viscous liquid invading an isotropic porous medium, the averaged
flow velocity u and pressure p, both functions of the position vector r and time t,
satisfy the equation of motion in the form of Darcy’s law

u=−(κ/µ)∇p, (r ∈Ω), (1.1)

where κ and µ are the permeability of the porous matrix and the fluid’s viscosity,
respectively, and Ω is part of the porous medium occupied by the fluid. Darcy’s
law together with the continuity equation ∇ · u = 0 form a closed system adequately
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describing, on the macroscopic level (‘Darcy scale’), the bulk distributions of p and u.
Combining these two equations, one has that the pressure in the flow domain Ω is
harmonic,

∇2p= 0, (r ∈Ω), (1.2)

so that, to determine p, one has to specify two boundary conditions on the part of the
boundary of Ω whose location is unknown (i.e. the wetting front, hereafter ∂Ω1) and
one boundary condition on the part whose position is known (hereafter ∂Ω2, so that
∂Ω1 ∪ ∂Ω2 = ∂Ω is the boundary of Ω). Hence, on the wetting front, in addition to
the kinematic condition

∂f

∂t
+ u ·∇f = 0, (r ∈ ∂Ω1), (1.3)

which specifies the evolution of ∂Ω1 in terms of its a priori unknown location
f (r, t) = 0, we need to formulate an appropriate dynamic boundary condition for p.
If the dynamics of the displaced fluid also needs to be considered, as, for example,
in the case of one viscous liquid displacing another, one will still need a dynamic
boundary condition relating the two fluids’ pressures at the interface.

The main issue in determining the dynamic boundary condition is to what extent the
actual physics of wetting on the pore scale is accounted for, and how it is represented,
on the Darcy-scale level. In particular, as has been known for a long time (Huh
& Scriven 1971; Dussan & Davis 1974; Dussan 1979), the classical model of fluid
mechanics does not allow viscous fluids to spread over a solid surface with a contact
angle less than 180◦, whereas numerous experiments show that they do (e.g. see Ch. 3
of Shikhmurzaev 2007). The way one chooses to overcome this (‘moving contact-line’)
problem for the menisci that collectively form the wetting front in a porous medium
is one of the factors determining how realistic the resulting model will be. At present,
this aspect of the wetting front dynamics modelling receives almost no attention,
even in the approach which considers the porous medium as a network of capillaries
and hence is potentially capable of capturing exactly the details of the pore-scale
physics (Lenormand, Touboul & Zarcone 1988; Aker & Måløy 2000; Joekar-Niasar,
Hassanizadeh & Dahle 2010).

An alternative to the topologically transparent sharp-interface approach outlined
above is to consider the wetting front as a transition zone where the volumetric
concentration of the displaced and displacing fluid change, with no distinction between
continuous and discrete phases, and treat this, essentially multiphase, system as a
multicomponent one (Richards 1931; Leverett 1941), using a thermodynamic closure
to relate the pressure difference between the two fluid phases with saturations and,
possibly, other variables (Hassanizadeh & Gray 1993; Mitkov, Tartakovsky & Winter
1998; Deinert et al. 2008). A difficulty in this approach is that, as experiments aimed
at determining the closing thermodynamic relationships indicate the need to bring in
more and more parameters of state, it is not clear whether or not thermodynamics is
an adequate tool to describe this, essentially mechanical, system.

2. The model
In this paper, we introduce a new approach to formulating models describing the

propagation of liquid–fluid interfaces across porous media based on considering the
types (modes) of motion which the menisci that collectively form the free surface
go through as they advance across the porous matrix. This approach offers a regular
way of building models of increasing complexity accounting for the topological and
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(a)

(b)

FIGURE 1. Schematic illustration of the meniscus motion in the wetting mode (a) and one of
scenarios associated with the threshold mode (b).

geometric features of the porous medium. It is worth noting that Darcy’s equation (1.1)
in the bulk is itself essentially a consequence of the flow profile being approximately
parabolic on the pore scale, i.e. it can also be seen as based on a particular type
of flow. In this sense, the approach we are developing here considers the boundary
conditions conceptually in the same way as the bulk equations.

We will illustrate the new approach using the simple case of a viscous
incompressible liquid displacing an inviscid dynamically passive gas from an isotropic
homogeneous porous medium. On the pore scale, each meniscus intersects the pore
boundary at a ‘contact line’, forming a certain ‘contact angle’ with the solid. We
can schematically represent the motion of the meniscus on the pore scale as having
two principal modes: (i) the wetting mode, where the contact line moves across the
pore boundary with negligible variation in the meniscus shape, and (ii) the threshold
mode, where the contact line becomes pinned, whereas the meniscus deforms until the
contact angle it forms with the solid reaches a critical value at which the contact line
can move again (figure 1). These two modes control the motion, as each of them is
capable of bringing individual menisci, and hence the wetting front as a whole, to a
halt. In the wetting mode this can happen when the contact angle becomes equal to the
equilibrium one, so that the meniscus no longer needs to move to reach an equilibrium
state, whereas in the threshold mode, where the contact line is pinned, the flow stops
when the pressure building on the meniscus (later referred to as p̄|∂Ω1

) is insufficient to
break through the threshold.

Macroscopically, for the pressure on the wetting front measured with respect to the
(presumed constant) pressure in the displaced gas, one has

p|∂Ω1
= A1p1 + A2p2, (2.1)

where p1, p2 are the averaged pressures and A1, A2 are the spatio-temporally averaged
fractions of the unit area of the free surface corresponding to the two types of motion
(A1 + A2 = 1). Importantly, A1 and A2 do not have to remain constant as the wetting
front propagates, and they are yet to be specified.

We will begin by considering the wetting mode. For simplicity, we will represent
the pore where the wetting motion takes place as having a circular cross-section. Then,
for low capillary and pore-scale Bond numbers, the meniscus will have the shape of a
spherical cap and

p1 =−2σ cos θd/a, (2.2)
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where σ is the liquid–gas surface tension, a is the effective radius of the pore and θd

is the dynamic contact angle that the meniscus forms with the solid wall. As shown by
experiments on dynamic wetting, in a general case θd depends on, and hence should
be regarded as a functional of, the flow field in the vicinity of the moving contact
line (Blake, Bracke & Shikhmurzaev 1999; Clarke & Stattersfield 2006). For flow in
a porous medium, the contact angle’s dependence on the flow field reduces to its
dependence only on the contact-line speed u1, which is the leading factor determining
the flow field in the vicinity of the contact line. Then, θd can be described just as a
function of the contact-line speed:

θd = F(u1/Ucl), (2.3)

where Ucl is an appropriate scale for the velocity. In principle, this dependence, where,
for the wetting mode, u1 coincides with the speed of the meniscus as a whole, could
be determined empirically. The theory of flows with forming interfaces (Shikhmurzaev
2007) specifies the inverse of F(u1/U) as

u1

Ucl
=
(
(1+ (1− ρs

1e) cos θs) (cos θs − cos θd)
2

4(cos θs + B)(cos θd + B)

)1/2

, (2.4)

where B= (1− ρs
1e)
−1(1+ ρs

1eu0(θd)), θs is the static contact angle,

u0(θd)= sin θd − θd cos θd

sin θd cos θd − θd
, Ucl =

(
γρs

0(1+ 4αβ)
τβ

)1/2

(2.5)

is the characteristic speed associated with the parameters that the ‘additional’ physics
of wetting brings in to resolve the moving contact-line problem, and ρs

0, ρs
1e, α, β,

γ , τ are material constants characterizing the contacting media whose values can be
found elsewhere (Blake & Shikhmurzaev 2002; Shikhmurzaev 2007). The comparison
of (2.4) with experimental data published in the literature has shown very good
agreement (Shikhmurzaev 2007), so (2.4) can be regarded as a reliable representation
of the dynamic contact angle behaviour.

An implicit assumption we made above, namely that in the wetting mode the
contact-line speed u1 is equal to the cross-sectionally averaged flow velocity u1,flow

associated with the motion of the meniscus as a whole, is not immediately obvious,
especially given that, as the meniscus breaks through the threshold and goes into the
wetting mode, initially, one has both the moving contact line and the varying shape of
the meniscus. In other words, in general one has

u1,flow = u1 + a

(1+ sin θd)
2

dθd

dt
, (2.6)

where, as before, we used that the meniscus has the shape of a spherical cap, albeit
with a time-dependent radius of curvature. Formally, one can add this equation to
the model together with an extra variable u1,flow, which should replace u1 in the text
below, but this generalization would be beyond the accuracy of the model. Indeed,
if L, U and T = L/U are the length, velocity and time scales for the macroscopic
(Darcy-level) motion for which we are deriving the boundary conditions, then one
has that the difference between u1,flow and u1 is of O(a/L) and hence negligible in
the continuum limit a/L→ 0. The possible deviation of the meniscus shape from a
spherical cap takes place also on a vanishing scale. Therefore, within the accuracy of
O(1) as a/L→ 0, in what follows we use that in the wetting mode u1,flow = u1. It is
worth pointing out here that the pores (i.e. capillaries) where the meniscus propagates
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in the wetting mode are assumed to be long compared to a, so that there is room for
the meniscus to propagate in the wetting mode, as described above.

The speed u1 at which individual menisci propagate in the wetting mode is not equal
to the normal component of the velocity of the wetting front as a whole, un = n · u|∂Ω1
(n is an outward normal), since the menisci intermittently go through both modes
of motion and hence, on the Darcy scale, un must have contributions from both u1

and the flow speed u2 associated with the threshold mode. Then, for un one has an
equation

un = A1u1 + A2u2, (2.7)

which is similar to (2.1), with the contribution of the ith mode proportional to its
‘weight’ Ai. In an isotropic porous medium, the ‘weight’ Ai of each mode of motion
is essentially the relative time the meniscus spends in this mode. If si is the fraction
of the length on the pore scale corresponding to the ith mode of motion (s1 + s2 = 1),
then the normalized time that the meniscus spends in this mode is si/ui and hence,
given that 1/un = s1/u1 + s2/u2 and A1 + A2 = 1, one has

A1 = s1u2

s2u1 + s1u2
, A2 = s2u1

s2u1 + s1u2
. (2.8)

Then, as one would expect, the slowest (controlling) mode of motion tends to make a
greater contribution to the pressure at the wetting front and the front’s velocity.

Now, consider the threshold mode. When the moving meniscus runs into a barrier
associated with the threshold mode, such as the edge at the end of a capillary or
an asperity, the contact line gets pinned and the meniscus begins to deform until the
contact angle reaches a certain value θ∗ at which the contact line can move forward
again (figure 1). This is the essence of the threshold mode, and it comes into play only
when θd, at which the meniscus arrives at a barrier, is less than θ∗. In other words,

s1(θd, θ∗)=
{

1 θd − θ∗ > 0
s10 θd − θ∗ < 0

s2 = 1− s1, (2.9)

where s10 (<1) is a characteristic of the porous matrix. To find the functional
dependence of parameters in the threshold mode, consider the dynamics of an
individual meniscus. Assume that, at a distance l upstream from the meniscus that
has just run into a barrier and got its contact line pinned, there is a (constant
throughout the process) pressure p̄ greater than −2σ cos θd/a. Then, the meniscus,
with the contact line which is now unable to move, will give in to this pressure
and deform (figure 1). We need to find the flow velocity u2 as an average over the
cross-section and over the time required for the contact angle to vary from θd, at
which the meniscus arrived at the barrier, to θ∗, at which the contact line can advance
again, and the pressure p2 as an average over the time of this process.

Neglecting the contribution to the pressure drop due to the deviation from parabolic
of the velocity profile, on the pore scale in the immediate neighbourhood of the
meniscus, and calculating the flow rate in the capillary on the assumption that the
meniscus retains the shape of a spherical cap (with a varying radius of curvature)
throughout the process of its deformation, from the Stokes equation on the pore scale
one has that the contact angle θ satisfies the equation

1

(1+ sin θ)2
dθ
dt
= σ

4µl

(
p̄a

2σ
+ cos θ

)
. (2.10)
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If multiplied by a, this essentially equates the flow velocity averaged over a cross-
section to the pressure gradient, with a coefficient of proportionality corresponding
to the parabolic profile in the pipe flow. Given that there is no discontinuity in the
average flow velocity when the contact line becomes instantly pinned and the meniscus
starts going from the wetting into the threshold mode, we have the equation

σa

4µl

(
p̄a

2σ
+ cos θd

)
= u1, (2.11)

which can be used to eliminate l. Now, for p2, i.e. the pressure −2σ cos θ(t)/a
averaged over a time interval

T = au−1
1

(
p̄a

2σ
+ cos θd

)
I

(
θd, θ∗; p̄a

2σ

)
, (2.12)

I

(
θd, θ∗; p̄a

2σ

)
=
∫ θ∗

θd

dθ

(1+ sin θ)2(p̄a/(2σ)+ cos θ)
, (2.13)

which is needed for θ to vary from θd to θ∗, one has

p2 = p̄− 2σJ(θd, θ∗)
aI(θd, θ∗; p̄a/(2σ))

, (2.14)

where

J(θd, θ∗)=
[

1
2

tan
(
θ

2
− π

4

)
+ 1

6
tan3

(
θ

2
− π

4

)]θ∗
θd

, (2.15)

and [f ]ba ≡ f (b) − f (a). A similar procedure yields the velocity in the threshold mode
averaged over T as

u2 = u1J(θd, θ∗)(
p̄a

2σ
+ cos θd

)
I

(
θd, θ∗; p̄a

2σ

) . (2.16)

Now, the quantity p̄ in (2.14) and (2.16) must be specified in macroscopic terms.
On the pore scale, it is the excess of p̄ over the threshold capillary pressure
p∗ = −2σ cos θ∗/a that allows the meniscus to break through the barrier and go into
the wetting regime again, with the contact line moving. If p̄ reduces to p∗, then the
meniscus comes to a halt, and, given that all menisci are modelled similarly, each of
them will meet a similar barrier within a time negligible on the macroscopic scale, and
the wetting front as a whole will come to a stop. Formally, we have that, if p̄↘ p∗,
then I→∞ and hence, according to (2.14) and (2.16), p2 → p̄ and u2 → 0. Then,
we have from (2.8) that A1 → 0, A2 → 1, so that (2.7) and (2.1) yield that on the
Darcy scale un→ 0 and p→ p̄. Thus, macroscopically (i.e. on the Darcy scale) p̄ is
the stagnation pressure, i.e. the pressure that one would have if the wetting front were
at rest in its current position. In other words, macroscopically, we need to solve a
conjugate problem,

∇2p̄= 0, (r ∈Ω); n ·∇p̄|∂Ω1
= 0, (2.17)

with the boundary condition for p̄ on ∂Ω2 being the same as for p. Then, the value
p̄|∂Ω1

is the one we need to use in (2.14) and (2.16), i.e. it is the pressure that builds
on a meniscus whose contact line has been pinned. The conjugate problem must be
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solved in parallel with the main one, as the latter requires the value of p̄|∂Ω1
at the

wetting front throughout its movement.
Now, we can summarize the model as follows. In order to describe the propagation

of the wetting front, one has to consider the bulk equations (1.1) and (1.2) in the
domain Ω with some boundary condition on ∂Ω2 that specifies a particular problem,
with the kinematic boundary condition at the wetting front ∂Ω1 given by (1.3) and the
dynamic one by (2.1). The pressures p1 and p2 that feature in (2.1) are determined
from (2.2) and (2.14), with the coefficients A1, A2 specified by (2.8), (2.9). For the
three variables θd, u1 and u2 appearing in (2.2), (2.8), (2.9) and (2.14), one has
three equations, (2.3) (in particular (2.4)), (2.7) and (2.16), whereas the pressure p̄|∂Ω1
featuring in (2.14) and (2.16) has to be found from the conjugate problem (2.17)
with the same boundary condition for p̄ on ∂Ω2 as for p. If gravity is to be taken
into account, one has to replace p and p̄ in (1.1) and (2.17) with (p + ρgz) and
(p̄ + ρgz), respectively (ρ is the fluid’s density, g is the gravitational acceleration,
z is the coordinate directed against gravity). Besides the bulk permeability κ , the
geometry of the porous matrix enters the model via three effective parameters, s10,
a and θ∗. The above model can be generalized by incorporating threshold modes
associated with different values of θ∗, replacing the step-function (2.9) for each
of them by a more complex one to account for the types of thresholds and the
corresponding generalization of (2.8) to incorporate various possibilities for the pore
network topology.

3. An illustrative example
Consider the unsteady one-dimensional imbibition against gravity, with z = h(t) as

the position of the wetting front (∂Ω1), p and p̄ in (1.1) and (2.17) replaced with
p + ρgz and p̄ + ρgz respectively, and p= p̄= p0 at z= 0 as a boundary condition on
∂Ω2. Then, Laplace’s equations (1.2) and (2.17) for p and p̄ in the one-dimensional
case yield that both p and p̄ are linear functions of z, and from the conjugate problem
(2.17) with the condition p̄ = p0 at z = 0 we have that p̄(z, t) = p0 − ρgz. Then, using
for p its linear dependence on z and the same condition on ∂Ω2, i.e. p = p0 at z = 0,
we can express the pressure gradient dp/dz at z = h in terms of the current position
of the wetting front: dp(h, t)/dz = (p(h, t) − p0)/h. Using this expression in Darcy’s
equation (1.1), where, as mentioned above, p is replaced with p+ ρgz, and substituting
the latter into the kinematic condition (1.3), which can now be written down simply as
dh/dt = un(h, t), we arrive at

dh

dt
= κ

µ

(
p0 − p(h, t)

h
− ρg

)
. (3.1)

This equation together with algebraic equations (2.1), where p|∂Ω1
≡ p(h, t), (2.2), (2.4)

and (2.7), where un = dh/dt, (2.8), (2.9) and (2.14), where we now use the solution
of the conjugate problem p̄|∂Ω1

= p0 − ρgh, and (2.16) form a closed system for h,
p(h, t), p1, θd, u1, A1, A2, s1, s2, p2 and u2. Typical curves representing the dependence
of h, scaled with h0 = 2σ/(ρga) and rising from the initial position h(0) = 0, on
time t, scaled with T0 = 2σµ/((ρg)2 aκ), are shown in figure 2 with the values of
parameters given in the figure caption. Comparing these dependencies (curves 2–5)
with Washburn’s (Washburn 1921) curves for a meniscus propagating with θd ≡ θs in a
capillary (curve 0, no gravity; curve 1, gravity included), we can see that the present
model, besides realistically giving a finite speed of rise at the onset of imbibition,
predicts a slightly lower rate of propagation of the wetting front as it is slowed down
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FIGURE 2. Time-dependence of one-dimensional imbibition calculated using the derived
model. 0: Washburn, no gravity; 1: Washburn, gravity included; 2: s10 = 1; 3: s10 = 0.1,
θ∗ = 30◦; 4: s10 = 0.9, θ∗ = 60◦; 5: s10 = 0.1, θ∗ = 60◦. For all curves θs = 0◦, p0 = 0, and
µUcl/(κρg)= 102, ρs

1e = 0.6 for curves 2–5.

by both the velocity-dependence of the contact angle and the presence of the threshold
mode. The latter comes into play once θd < θ∗, and dictates that the wetting front
will come to a halt before it reaches the maximum possible height of imbibition
hmax = 2σ cos θs/(ρga) and, importantly, contrary to how curves 1 and 2 approach
hmax asymptotically, this coming to a halt occurs in a finite time. In this position,
which is determined only by θ∗ (see curves 4 and 5), the wetting front still has
the capacity to propagate provided that some other physical mechanism helps it to
break through the threshold. In this connection, it is worth pointing out that, as has
been observed experimentally, for some systems there is a change of regime from an
essentially Washburn type to a completely different one halfway between the onset of
the process and the maximum imbibition height (Delker, Pengra & Wong 1996; Lago
& Araujo 2001). Thus the present example, considered here as an illustration of how
the developed approach works, provides a ‘building block’ for the modelling of this, as
yet unexplained, phenomenon.

4. Concluding remarks
The developed approach and, in particular, the technique of conjugate problems it

uses to incorporate the threshold mode of motion provide a transparent framework
for building models of increased complexity. The threshold mode is the key to
describing such effects as formation of trapped pockets of the displaced fluid that
can be left behind the wetting front and their subsequent dynamics, without resorting
to thermodynamic arguments and the need to specify increasingly multi-parametric
thermodynamic dependencies for this basically mechanical system. It should be
noted, however, that the next step in the development of the model towards greater
complexity, sketched at the end of § 2, is non-trivial as, for different values of the
threshold angle θ∗, it becomes necessary to bring in and specify the topology of the
porous matrix with respect to the connectivity of the wetting front.
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