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In this paper, we study some stochastic comparisons of the maxima in two multiple-
outlier geometric samples based on the likelihood ratio order, hazard rate order, and
usual stochastic order. We establish a sufficient condition on parameter vectors for
the likelihood ratio ordering to hold. For the special case when n = 2, it is proved
that the p-larger order between the two parameter vectors is equivalent to the hazard
rate order as well as usual stochastic order between the two maxima. Some numerical
examples are presented for illustrating the established results.

1. INTRODUCTION

Order statistics have received considerable attention in the literature since they are
very useful in statistical inference, goodness-of-fit tests, reliability theory, operations
research, applied probability, and many other areas. Let X1, . . . , Xn be independent
random variables having possibly different probability distributions. Denote by Xi:n
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the ith order statistic among X1, . . . , Xn. Then, the lifetime of a k-out-of-n system is
given by Xn−k+1:n, with Xn:n and X1:n corresponding to the lifetimes of parallel and
series systems, respectively. Majority of the work on order statistics have been on the
case when the underlying variables are independent and identically distributed (i.i.d.).
The case when samples are non-i.i.d., however, often arises in a natural way in many
practical situations; see, for example, Andrews et al. [1], Tiku, Tan, and Balakrishnan
[25], and Barnett and Lewis [5]. Due to the complexity of the distribution theory in this
case, only limited results are available in this direction; see, for example, Balakrishnan
and Rao [3,4] and David and Nagaraja [9] for a comprehensive discussion on this
aspect, and Balakrishnan [2] for an elaborate review of recent developments on order
statistics arising from independent and non-identically distributed (i.ni.d.) random
variables.

In life-testing and reliability analysis, the exponential distribution has been
widely applied since it possesses the unique memoryless property and has the
constant failure rate. Stochastic comparison of order statistics from heteroge-
neous exponential variables was first discussed by Pledger and Proschan [22].
Since then, many researchers have worked on this topic, including Proschan
and Sethuraman [23], Kochar and Rojo [16], Dykstra [10], Khaledi and Kochar
[14], Bon and Pǎltǎnea [8], Kochar and Xu [17], Pǎltǎnea [21], Zhao and Bala-
krishnan [28–30], Zhao, Li, and Balakrishnan [31,32], Joo and Mi [13], and Mao and
Hu [19]. More recently, stochastic comparison results for order statistics and spacings
from single- and multiple-outlier exponential models; see, for example, Khaledi and
Kochar [15], Hu, Wang, and Zhu [12], Wen, Lu, and Hu [26], Xu et al. [27], Hu, Lu,
and Wen [11], Kochar and Xu [18], and the references therein.

Suppose X1, . . . , Xn are independent exponential random variables with hazard
rates λ1, . . . , λn, respectively. Similarly, let X∗

1 , . . . , X∗
n be another set of independent

exponential random variables with respective hazard rates λ∗
1, . . . , λ∗

n. Then, Pledger
and Proschan [22] showed, for 1 ≤ k ≤ n, that

(λ1, . . . , λn)
m� (λ∗

1, . . . , λ∗
n) =⇒ Xk:n ≥st X∗

k:n. (1.1)

Formal definitions of this and other stochastic orderings pertinent to the developments
here will all be presented in the next section. Proschan and Sethuraman [23] strength-
ened this result from componentwise stochastic order to multivariate stochastic order,
while Khaledi and Kochar [14] partially improved (1.1) as

(λ1, . . . , λn)
p� (λ∗

1, . . . , λ∗
n) =⇒ Xn:n ≥st X∗

n:n. (1.2)

Boland, EL-Neweihi, and Proschan [6] showed by a counterexample that (1.1) cannot
be strengthened from stochastic order to hazard rate order even for parallel systems
with three independent exponential components; they established, however, for the
case when n = 2 that

(λ1, λ2)
m� (λ∗

1, λ∗
2) =⇒ X2:2 ≥hr X∗

2:2. (1.3)
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Dykstra et al. [10] further improved (1.3) from the hazard rate order to likelihood ratio
order as

(λ1, λ2)
m� (λ∗

1, λ∗
2) =⇒ X2:2 ≥lr X∗

2:2. (1.4)

Joo and Mi [13] gave some conditions under which the hazard rate order in (1.3)
holds. Specially, they proved, under the condition λ1 ≤ λ∗

1 ≤ λ∗
2 ≤ λ2, that

(λ1, λ2)
w� (λ∗

1, λ∗
2) =⇒ X2:2 ≥hr X∗

2:2. (1.5)

Recently, Zhao and Balakrishnan [29] strengthened the result in (1.5) and established
the following two equivalent characterizations, under the condition λ1 ≤ λ∗

1 ≤ λ∗
2 ≤

λ2:

(λ1, λ2)
w� (λ∗

1, λ∗
2) ⇐⇒ X2:2 ≥lr [≥rh] X∗

2:2 (1.6)

and

(λ1, λ2)
p� (λ∗

1, λ∗
2) ⇐⇒ X2:2 ≥hr [≥st] X∗

2:2. (1.7)

In the robustness literature, several robust estimators have been proposed
including trimmed estimators, winsorized estimators, linearly weighted means, and
Gastwirth means. Though the robustness feature of these estimators are often intu-
itively clear, its demonstration in the presence of outliers is often difficult due to the
complicated form of density functions of order statistics arising from a sample con-
taining outliers. For this reason, this has been done in the outlier literature mostly only
for the case when there is only one outlier in the sample; see, for example, the book
by Barnett and Lewis [5]. However, the necessity for the consideration of a multiple-
outlier model (i.e., a sample containing n − p i.i.d. observations from a distribution
F and the remaining p i.i.d. observations from yet another distribution G) is clear
in order to study the performance of the robust estimators when there are multiple
outliers present in the sample. But, due to the extremely complicated form of the dis-
tribution and joint distribution of order statistics arising from such a multiple-outlier
model, limited studies have been done in this regard.

Zhao and Balakrishnan [30] further extended the results in (1.6) and (1.7) to
the case of multiple-outlier exponential samples. To be specific, let X1, . . . , Xn be
independent exponential variables with parameters

(λ∗
1, . . . , λ∗

1︸ ︷︷ ︸
p

, λ1, . . . , λ1︸ ︷︷ ︸
q

),

where p + q = n, and Y1, . . . , Yn be another set of independent exponential variables
with parameters

(λ∗
2, . . . , λ∗

2︸ ︷︷ ︸
p

, λ2, . . . , λ2︸ ︷︷ ︸
q

).
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Then, under the conditionλ∗
1 ≤ λ∗

2 ≤ λ2 ≤ λ1, Zhao and Balakrishnan [30] established
that

(λ∗
1, . . . , λ∗

1︸ ︷︷ ︸
p

, λ1, . . . , λ1︸ ︷︷ ︸
q

)
w� (λ∗

2, . . . , λ∗
2︸ ︷︷ ︸

p

, λ2, . . . , λ2︸ ︷︷ ︸
q

) ⇐⇒ Xn:n ≥lr [≥rh]Yn:n (1.8)

and

(λ∗
1, . . . , λ∗

1︸ ︷︷ ︸
p

, λ1, . . . , λ1︸ ︷︷ ︸
q

)
p� (λ∗

2, . . . , λ∗
2︸ ︷︷ ︸

p

, λ2, . . . , λ2︸ ︷︷ ︸
q

) ⇐⇒ Xn:n ≥hr [≥st]Yn:n. (1.9)

It is well known that the geometric distribution can be regarded as the discrete
counterpart of the exponential distribution as they both possess lack of memory prop-
erty and constant hazard rates. The geometric distribution is one of the fundamental
distributions in statistics, and has wide applications in reliability theory, engineering,
game theory, quality control, and communication theory. For a geometric random
variable X with parameter p ∈ (0, 1), we have the probability mass function as

P(X = k) = p(1 − p)k , k ∈ N0 = {0, 1, 2, . . .}.

Let X1, . . . , Xn be independent geometric random variables with parameters p1, . . . , pn,
respectively, and X∗

1 , . . . , X∗
n be another set of independent geometric random variables

with respective parameters p∗
1, . . . , p∗

n. Then, Mao and Hu [19] showed that

(p1, . . . , pn)
p� (p∗

1, . . . , p∗
n) =⇒ Xn:n ≥st X∗

n:n, (1.10)

which can be seen to be an analog of (1.2) for the geometric case. Let Y1, . . . , Yn

be i.i.d. geometric random variables with common parameter p. Denote by pcg =
1 − {∏n

i=1(1 − pi)}1/n the complementary geometric mean of the pi’s and by p̄ =
1
n

∑n
i=1 pi the arithmetic mean of the pi’s. Mao and Hu [19] then showed that

p ≥ pcg =⇒ Xn:n ≥lr Yn:n, (1.11)

and they also pointed out that the reversed hazard rate order (and hence the likelihood
ratio order) does not hold between Xn:n and Yn:n under the condition p ≥ p̄ even though
it does hold for the corresponding exponential case; see Kochar and Xu [17]. Moreover,
they left the question whether the hazard rate order holds between Xn:n and Yn:n under
the condition p ≥ p̄ as an open problem.

In this paper, we compare stochastically the maxima from two multiple-outlier
geometric samples through the likelihood ratio order and hazard rate order (usual
stochastic order). In this regard, let X1, . . . , Xn be independent geometric variables

https://doi.org/10.1017/S026996481200006X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481200006X


LIKELIHOOD RATIO AND HAZARD RATE ORDERINGS 379

with parameters

(p∗
1, . . . , p∗

1︸ ︷︷ ︸
r

, p1, . . . , p1︸ ︷︷ ︸
q

),

where r + q = n, and Y1, . . . , Yn be another set of independent geometric variables
with parameters

(p∗
2, . . . , p∗

2︸ ︷︷ ︸
r

, p2, . . . , p2︸ ︷︷ ︸
q

),

respectively. Then, we establish that, if p∗
1 ≤ p∗

2 ≤ p2 ≤ p1 and

(− log(1 − p∗
1), . . . , − log(1 − p∗

1)︸ ︷︷ ︸
r

, − log(1 − p1), . . . , − log(1 − p1)︸ ︷︷ ︸
q

)

w� (− log(1 − p∗
2), . . . , − log(1 − p∗

2)︸ ︷︷ ︸
r

, − log(1 − p2), . . . , − log(1 − p2)︸ ︷︷ ︸
q

),

we have

Xn:n ≥lr Yn:n.

For the special case when n = 2, we have

(p1, p2)
p� (p∗

1, p∗
2) ⇐⇒ X2:2 ≥hr [≥st] Y2:2, (1.12)

which is an analog of the result in (1.7) for the geometric case. Incidentally, it provides
a partial answer to the open problem posed by Mao and Hu [19]. We also show with
the help of a counterexample that an analog of (1.6) does not hold. Finally, we provide
some numerical examples for illustrating the established results.

2. DEFINITIONS AND NOTATION

In this section, we recall some notions of stochastic orders, and majorization and
related orders which are most pertinent to the developments in the subsequent sections.
Throughout this paper, the term increasing is used for monotone non-decreasing and
decreasing is used for monotone non-increasing.

2.1. Stochastic Orders

Here, we are concerned with non-negative random variables that are either absolutely
continuous or discrete with support on integers N0.

Definition 2.1: For two absolutely continuous [discrete] random variables V1 and
V2 with their density [probability mass] functions g1[p1] and g2[p2], distribution
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functions G1 and G2, survival functions G1 and G2, as the ratios in the statements
below are well-defined, V1 is said to be smaller than V2 in the

(i) likelihood ratio order (denoted by V1 ≤lr V2) if g2(t)/g1(t) [p2(k)/p1(k)] is
increasing in t [k ∈ N0];

(ii) hazard rate order (denoted by V1 ≤hr V2) if G2(t)/G1(t) [G2(k)/G1(k)] is
increasing in t [k ∈ N0];

(iii) reversed hazard rate order (denoted by V1 ≤rh V2) if G2(t)/G1(t) [G2(k)/

G1(k)] is increasing in t [k ∈ N0];
(iv) stochastic order (denoted by V1 ≤st V2) if G2(t) [G2(k)] ≥ G1(t) [G1(k)] for

all x [k ∈ N0].
The following implications among these stochastic orders is well known (see

Shaked and Shanthikumar, [24]):

V1 ≤lr V2 =⇒ V1 ≤hr [≤rh]V2 =⇒ V1 ≤st V2.

2.2. Majorization and Related Orders

We will use the notion of majorization extensively in this paper as it is quite useful in
establishing various inequalities. Let x(1) ≤ · · · ≤ x(n) be the increasing arrangement
of the components of the vector x = (x1, . . . , xn).

Definition 2.2: (i) A vector x = (x1, . . . , xn) ∈ 	n is said to majorize another vector

y = (y1, . . . , yn) ∈ 	n (written as x
m� y) if

j∑
i=1

x(i) ≤
j∑

i=1

y(i) for j = 1, . . . , n − 1,

and
∑n

i=1 x(i) = ∑n
i=1 y(i).

(ii) A vector x ∈ 	n is said to weakly supmajorize another vector y ∈ 	n (written

as x
w� y) if

j∑
i=1

x(i) ≤
j∑

i=1

y(i) for j = 1, . . . , n.

(iii) A vector x ∈ 	n is said to weakly submajorize another vector y ∈ 	n (written
as x �w y) if

n∑
i=j

x(i) ≥
m∑

i=j

y(i) for j = 1, . . . , n.

(iv) A vector x ∈ 	n+ is said to be p-larger than another vector y ∈ 	n+ (written

as x
p� y) if

j∏
i=1

x(i) ≤
j∏

i=1

y(i) for j = 1, . . . , n.
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It is clear that x
m� y implies x

w� y, and x
p� y is equivalent to log(x)

w� log(y),

where log(x) is the vector of componentwise logarithms of x. It is known that x
m� y

implies x
p� y for any x, y ∈ 	n+. The converse is, however, not true. For more details

on majorization and p-larger orders and their applications, one may refer to Marshall
and Olkin [20] and Bon and Pǎltǎnea [7].

3. LIKELIHOOD RATIO ORDERING OFTHE MAXIMA INTWO
MULTIPLE-OUTLIER GEOMETRIC SAMPLES

In this section, we examine the likelihood ratio order of the maxima in two multiple-
outlier geometric samples.

Theorem 3.1: Let X1, . . . , Xn be independent geometric variables with parameters

(p∗
1, . . . , p∗

1︸ ︷︷ ︸
r

, p1, . . . , p1︸ ︷︷ ︸
q

),

where r + q = n, and Y1, . . . , Yn be another set of independent geometric variables
with parameters

(p∗
2, . . . , p∗

2︸ ︷︷ ︸
r

, p2, . . . , p2︸ ︷︷ ︸
q

),

respectively. Then, if p∗
1 ≤ p∗

2 ≤ p2 ≤ p1 and

(− log(1 − p∗
1), . . . , − log(1 − p∗

1)︸ ︷︷ ︸
r

, − log(1 − p1), . . . , − log(1 − p1)︸ ︷︷ ︸
q

)

w� (− log(1 − p∗
2), . . . , − log(1 − p∗

2)︸ ︷︷ ︸
r

, − log(1 − p2), . . . , − log(1 − p2)︸ ︷︷ ︸
q

), (3.1)

we have

Xn:n ≥lr Yn:n.

Proof: Let S1, . . . , Sn be independent exponential variables with respective parame-
ters

(λ∗
1, . . . , λ∗

1︸ ︷︷ ︸
r

, λ1, . . . , λ1︸ ︷︷ ︸
q

),

where r + q = n, and T1, . . . , Tn be another set of independent exponential variables
with respective parameters

(λ∗
2, . . . , λ∗

2︸ ︷︷ ︸
r

, λ2, . . . , λ2︸ ︷︷ ︸
q

),
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where λi = − log(1 − pi) and λ∗
i = − log(1 − p∗

i ), i = 1, 2. We then have

(λ∗
1, . . . , λ∗

1︸ ︷︷ ︸
r

, λ1, . . . , λ1︸ ︷︷ ︸
q

)
w� (λ∗

2, . . . , λ∗
2︸ ︷︷ ︸

r

, λ2, . . . , λ2︸ ︷︷ ︸
q

).

Let us denote by fSn:n and fTn:n the density functions of Sn:n and Tn:n, respectively. Then,
for t ∈ 	+, we have

fSn:n(t) =
{

rλ∗
1e−λ∗

1 t

1 − e−λ∗
1 t

+ qλ1e−λ1t

1 − e−λ1t

}
(1 − e−λ∗

1 t)r(1 − e−λ1t)q

= −
{

r(1 − p∗
1)

t log(1 − p∗
1)

1 − (1 − p∗
1)

t
+ q(1 − p1)

t log(1 − p1)

1 − (1 − p1)t

}
× [1 − (1 − p∗

1)
t]r[1 − (1 − p1)

t]q

= d

dt
{[1 − (1 − p∗

1)
t]r[1 − (1 − p1)

t]q}.

Similarly, we have

fTn:n(t) = d

dt
{[1 − (1 − p∗

2)
t]r[1 − (1 − p2)

t]q},

which means, for k ∈ N0, that

P(Xn:n = k)

P(Yn:n = k)

= [1 − (1 − p∗
1)

k+1]r[1 − (1 − p1)
k+1]q − [1 − (1 − p∗

1)
k]r[1 − (1 − p1)

k]q

[1 − (1 − p∗
2)

k+1]r[1 − (1 − p2)
k+1]q − [1 − (1 − p∗

2)
k]r[1 − (1 − p2)

k]q

=

∫ k+1

k
fSn:n(u) du∫ k+1

k
fTn:n(u) du

.

From Theorem 3.6 in Zhao and Balakrishnan [30], we then have Sn:n ≥lr Tn:n; that is,

fSn:n(u)fTn:n(v) ≤ fSn:n(v)fTn:n(u), 0 < u ≤ v.

Upon integrating both sides with respect to u and v over (u, v) ∈ [k, k + 1] × [k +
1, k + 2], we obtain∫ k+1

k
fSn:n(u) du

∫ k+2

k+1
fTn:n(v) dv ≤

∫ k+1

k
fTn:n(u) du

∫ k+2

k+1
fSn:n(v) dv, k ∈ N0.

From here, we can conclude that P(Xn:n = k)/P(Yn:n = k) is increasing in k ∈ N0,
and the required result then follows immediately. �
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FIGURE 1. Plots of the hazard rate functions of the maxima of geometric variables
with parameter vector

(
1
6 , 1

2

)
and

(
1
4 , 2

5

)
.

Since the likelihood ratio order implies the hazard rate order, the result in
Theorem 3.1 can be used to compare the hazard rate functions of the maxima from two
multiple-outlier geometric samples. To illustrate this fact, we present the following
numerical example.

Example 3.2: Let (X1, X2, X3) be a vector of independent geometric random variables
with parameter vector (p∗

1, p∗
1, p1) = (

1
6 , 1

6 , 2
7

)
, and let h

(
k; 1

6 , 1
6 , 2

7

)
be the correspond-

ing hazard rate function of X3:3. Let (Y1, Y2, Y3) be another vector of independent
geometric random variables with parameter vector (p∗

2, p∗
2, p2) = (

1
5 , 1

5 , 1
4

)
, and let

h
(
k; 1

5 , 1
5 , 1

4

)
be the corresponding hazard rate function of Y3:3. It can be readily ver-

ified that condition (3.1) in Theorem 3.1 is satisfied in this case. Figure 1 presents
plots of the hazard rate functions of these two maxima which are readily seen to be
in accordance with the result of Theorem 3.1.

As immediate consequences of Theorem 3.1, we obtain the following corollaries.

Corollary 3.3: Let X1, . . . , Xn be independent geometric variables with parameters

(p1, . . . , p1︸ ︷︷ ︸
r

, p2, . . . , p2︸ ︷︷ ︸
q

),

where r + q = n, and Y1, . . . , Yn be another set of i.i.d. geometric variables with a
common parameter p. Then, the necessary and sufficient condition for Xn:n ≥lr Yn:n is

p ≥ 1 − {(1 − p1)
r(1 − p2)

q}1/n.
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Corollary 3.4: Under the same setup as in Theorem 3.1, if

(log(1 − p∗
1), . . . , log(1 − p∗

1)︸ ︷︷ ︸
r

, log(1 − p1), . . . , log(1 − p1)︸ ︷︷ ︸
q

)

�w (log(1 − p∗
2), . . . , log(1 − p∗

2)︸ ︷︷ ︸
r

, log(1 − p2), . . . , log(1 − p2)︸ ︷︷ ︸
q

),

then

Xn:n ≥lr Yn:n.

Corollary 3.5: Let X1, . . . , Xn be independent geometric variables with parameters

(p1, . . . , p1︸ ︷︷ ︸
r

, p, . . . , p︸ ︷︷ ︸
q

),

where r + q = n, and Y1, . . . , Yn be another set of independent geometric variables
with parameters

(p2, . . . , p2︸ ︷︷ ︸
r

, p, . . . , p︸ ︷︷ ︸
q

),

respectively. Further, suppose p ≥ max{p1, p2}. Then, the necessary and sufficient
condition for Xn:n ≥lr Yn:n is p1 ≤ p2.

Proof: The sufficiency can be directly obtained from Theorem 3.1, and so we only
need to show the necessity. Suppose Xn:n ≥lr Yn:n, we then have Xn:n ≥st Yn:n; that is,

{1 − (1 − p1)
k}r{1 − (1 − p)k}q ≤ {1 − (1 − p2)

k}r{1 − (1 − p)k}q, k ∈ N0,

which in turn implies p1 ≤ p2, as required. �

4. HAZARD RATE ORDERING OFTHE MAXIMA INTHE
TWO-DIMENSIONAL CASE

In this section, we discuss the hazard rate ordering of the maxima for the special case
when n = 2.

Lemma 4.1 (Marshall and Olkin [20] p. 57): Let I ⊂ 	 be an open interval, and let
φ : In → 	 be continuously differentiable. Then, φ is Schur-convex (Schur-concave)
on In if and only if φ is symmetric on In and for all i �= j,

(zi − zj)

[
∂

∂zi
φ(z) − ∂

∂zj
φ(z)

]
≥ [≤]0 for all z ∈ In,

where (∂/∂zi)φ(z) denotes the partial derivative of φ(z) with respect to its i-th
argument.
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Theorem 4.2: Let X1, X2 be independent geometric variables with respective param-
eters p∗

1, p1, and Y1, Y2 be another set of independent geometric variables with
respective parameters p∗

2, p2. Then, if p∗
1 ≤ p∗

2 ≤ p2 ≤ p1 and p∗
1p1 = p∗

2p2, we have

X2:2 ≥hr Y2:2.

Proof: The hazard rate function of X2:2 is given by

hX2:2(k) = [1 − (1 − p∗
1)

k+1][1 − (1 − p1)
k+1] − [1 − (1 − p∗

1)
k][1 − (1 − p1)

k]
1 − [1 − (1 − p∗

1)
k][1 − (1 − p1)

k]

=
p∗

1(1 − p∗
1)

k[1 − (1 − p1)
k] + p1(1 − p1)

k[1 − (1 − p∗
1)

k]
+p∗

1p1(1 − p∗
1)

k(1 − p1)
k

1 − [1 − (1 − p∗
1)

k][1 − (1 − p1)
k]

for k ∈ N0. Similarly, the hazard rate function of Y2:2 is given by

hY2:2(k) =
p∗

2(1 − p∗
2)

k[1 − (1 − p2)
k] + p2(1 − p2)

k[1 − (1 − p∗
2)

k]
+p∗

2p2(1 − p∗
2)

k(1 − p2)
k

1 − [1 − (1 − p∗
2)

k][1 − (1 − p2)
k] .

To establish that X2:2 ≥hr Y2:2, it suffices to show that

hX2:2(k) ≤ hY2:2(k), k ∈ N0. (4.1)

The inequality in (4.1) is trivially true for the case k = 0 upon noting that

hX2:2(0) = p∗
1p1 = p∗

2p2 = hY2:2(0),

and so in what follows we shall assume k ≥ 1.
For simplicity, let us denote x∗

1 = log p∗
1, x1 = log p1, x∗

2 = log p∗
2 and x2 = log p2.

We then observe that

(x∗
1 , x1)

m� (x∗
2 , x2).

It is then easy to see that it suffices to show that the symmetric differentiable function
H : (−∞, 0)2 → (0, ∞) given by

H(x∗
1 , x1) =

ex∗
1 (1 − ex∗

1 )k[1 − (1 − ex1)k] + ex1(1 − ex1)k[1 − (1 − ex∗
1 )k]

+ex∗
1 ex1(1 − ex∗

1 )k(1 − ex1)k

1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k]

= H1(x
∗
1 , x1) + H2(x

∗
1 , x1)

is Schur-concave, where

H1(x
∗
1 , x1) = ex∗

1 (1 − ex∗
1 )k[1 − (1 − ex1)k] + ex1(1 − ex1)k[1 − (1 − ex∗

1 )k]
1 − [1 − (1 − ex∗

1 )k][1 − (1 − ex1)k]
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and

H2(x
∗
1 , x1) = ex∗

1 ex1(1 − ex∗
1 )k(1 − ex1)k

1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k] .

We shall now show that H1(x∗
1 , x1) and H2(x∗

1 , x1) are both Schur-concave. For
H1(x∗

1 , x1), we have

∂

∂x1
H1(x

∗
1 , x1){1 − [1 − (1 − ex∗

1 )k][1 − (1 − ex1)k]}2

= {kex∗
1 ex1(1 − ex∗

1 )k(1 − ex1)k−1 − ke2x1(1 − ex∗
1 )k(1 − ex1)k−1[1 − (1 − ex∗

1 )k]}
+ ex1(1 − ex1)k[1 − (1 − ex∗

1 )k]{1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k]}

= kex∗
1 ex1(1 − ex∗

1 )k(1 − ex1)k

{
1 − ex1

1 − ex1

k−1∑
i=1

(1 − ex∗
1 )i

}

+ ex1(1 − ex1)k[1 − (1 − ex∗
1 )k]{1 − [1 − (1 − ex∗

1 )k][1 − (1 − ex1)k]}.
We then have

∂

∂x1
H1(x

∗
1 , x1) − ∂

∂x∗
1

H1(x
∗
1 , x1)

sgn= kex∗
1 ex1(1 − ex∗

1 )k(1 − ex1)k

{
ex∗

1

1 − ex∗
1

k−1∑
i=1

(1 − ex1)i − ex1

1 − ex1

k−1∑
i=1

(1 − ex∗
1 )i

}

+ {ex1(1 − ex1)k[1 − (1 − ex∗
1 )k] − ex∗

1 (1 − ex∗
1 )k[1 − (1 − ex1)k]}

× {1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k]}

= α + β, say,

where

α = kex∗
1 ex1(1 − ex∗

1 )k(1 − ex1)k

{
ex∗

1

1 − ex∗
1

k−1∑
i=1

(1 − ex1)i − ex1

1 − ex1

k−1∑
i=1

(1 − ex∗
1 )i

}

and

β = {ex1(1 − ex1)k[1 − (1 − ex∗
1 )k] − ex∗

1 (1 − ex∗
1 )k[1 − (1 − ex1)k]}

× {1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k]}.

It is easy to check that

α
sgn= ex∗

1

1 − ex∗
1

k−1∑
i=1

(1 − ex1)i − ex1

1 − ex1

k−1∑
i=1

(1 − ex∗
1 )i

sgn= x∗
1 − x1

https://doi.org/10.1017/S026996481200006X Published online by Cambridge University Press

https://doi.org/10.1017/S026996481200006X


LIKELIHOOD RATIO AND HAZARD RATE ORDERINGS 387

and

β
sgn= ex1(1 − ex1)k[1 − (1 − ex∗

1 )k] − ex∗
1 (1 − ex∗

1 )k[1 − (1 − ex1)k]
sgn= 1∑k

i=1
[1/(1 − ex1)i]

− 1∑k

i=1
[1/(1 − ex∗

1 )i]
sgn= x∗

1 − x1.

Thus, we have

(x1 − x∗
1)

(
∂

∂x1
H1(x

∗
1 , x1) − ∂

∂x∗
1

H1(x
∗
1 , x1)

)
≤ 0,

which means, from Lemma 4.1, that H1(x∗
1 , x1) is Schur-concave.

For H2(x∗
1 , x1), we similarly have

∂

∂x1
H2(x

∗
1 , x1){1 − [1 − (1 − ex∗

1 )k][1 − (1 − ex1)k]}2

= {ex∗
1 ex1(1 − ex∗

1 )k(1 − ex1)k − ke2x1 ex∗
1 (1 − ex∗

1 )k(1 − ex1)k−1[1 − (1 − ex∗
1 )k]}

× {1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k]}

+ kex∗
1 e2x1(1 − ex∗

1 )k(1 − ex1)2k−1[1 − (1 − ex∗
1 )k].

We then have

∂

∂x1
H2(x

∗
1 , x1) − ∂

∂x∗
1

H2(x
∗
1 , x1)

sgn= k(1 − ex∗
1 )k−1(1 − ex1)k−1{ex∗

1 (1 − ex1) − ex1(1 − ex∗
1 )}

× {1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k]}

+ kex∗
1 ex1(1 − ex∗

1 )k(1 − ex1)k

× {ex1(1 − ex1)k−1[1 − (1 − ex∗
1 )k] − ex∗

1 (1 − ex∗
1 )k−1[1 − (1 − ex1)k]}

= γ + δ, say,

where

γ = k(1 − ex∗
1 )k−1(1 − ex1)k−1{ex∗

1 (1 − ex1) − ex1(1 − ex∗
1 )}

× {1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k]}

and

δ = {ex1(1 − ex1)k[1 − (1 − ex∗
1 )k] − ex∗

1 (1 − ex∗
1 )k[1 − (1 − ex1)k]}

× {1 − [1 − (1 − ex∗
1 )k][1 − (1 − ex1)k]}.
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Note that

γ
sgn= ex∗

1 (1 − ex1) − ex1(1 − ex∗
1 )

sgn= x∗
1 − x1

and

δ
sgn= ex1(1 − ex1)k[1 − (1 − ex∗

1 )k] − ex∗
1 (1 − ex∗

1 )k[1 − (1 − ex1)k]
sgn= 1∑k−1

i=0
[1/(1 − ex1)i]

− 1∑k−1

i=0
[1/(1 − ex∗

1 )i]
sgn= x∗

1 − x1;

that is,

(x1 − x∗
1)

(
∂

∂x1
H2(x

∗
1 , x1) − ∂

∂x∗
1

H2(x
∗
1 , x1)

)
≤ 0.

Upon using Lemma 4.1 once again, we have H2(x∗
1 , x1) also to be Schur-concave, and

that completes the proof of the theorem. �

Theorem 4.3: Let X1, X2 be independent geometric variables with respective param-
eters p∗

1, p1, and Y1, Y2 be another set of independent geometric variables with
respective parameters p∗

2, p2. Suppose p∗
1 ≤ p∗

2 ≤ p2 ≤ p1. Then, the following three
statements are equivalent:

(a) (p∗
1, p1)

p� (p∗
2, p2);

(b) X2:2 ≥hr Y2:2;

(c) X2:2 ≥st Y2:2.

Proof: Since the hazard rate order implies the usual stochastic order, it is sufficient
to prove that (a) ⇒ (b) and (c) ⇒ (a).

(a) ⇒ (b) Suppose (p∗
1, p1)

p� (p∗
2, p2). Clearly, we have p∗

1 ≤ p∗
2 ≤ p2 ≤ p1 and

p∗
1p1 ≤ p∗

2p2. The result for the case when p∗
1p1 = p∗

2p2 follows immediately from
Theorem 4.2. Next, let us assume that p∗

1p1 < p∗
2p2, and let p′ = p∗

2p2/p1. We then
have p′p1 = p∗

2p2 and p∗
1 < p′ ≤ p∗

2. Let Z2:2 be the maximum among two independent
geometric variables with respective parameters p′ and p1. Then, from Theorem 4.2,
it follows that Z2:2 ≥hr Y2:2. Also, we have X2:2 ≥hr Z2:2 from Corollary 3.5, and we
thus obtain the desired result that X2:2 ≥hr Y2:2.
(c) ⇒ (a) Suppose X2:2 ≥st Y2:2, that is, FX2:2(k) ≤ FY2:2(k) for all k ∈ N0. It then
follows that

FX2:2(1) = p∗
1p1 ≤ p∗

2p2 = FY2:2(1),

from which the desired result follows. �
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Remark 4.4: The result in Theorem 4.3 is an analog of (1.7) for the hazard rate order
[usual stochastic order]. It is, therefore, natural to ask the question whether an ana-
log of (1.6) for the likelihood ratio order [reversed hazard rate order] also holds.
Unfortunately, the answer is negative. To see this, let us take (X1, X2) to be a vec-
tor of independent geometric variables with parameter vector (p∗

1, p1) = (
1
6 , 1

2

)
, and

(Y1, Y2) to be another vector of independent geometric variables with parameter vector
(p∗

2, p2) = (
1
5 , 5

11

)
. Denote by FX2:2 and FY2:2 the corresponding distribution functions

of X2:2 and Y2:2, respectively. Clearly, we have (p∗
1, p1)

p� (p∗
2, p2). However,

FX2:2(2)

FY2:2(2)
≈ 0.906 ≥ 0.902 ≈ FX2:2(3)

FY2:2(3)
,

which implies that X2:2 �rh Y2:2. This shows that some differences do exist between
ordering properties of maxima from geometric variables and from exponential
variables even though there are similarities in many cases.

Next, we present a numerical example to illustrate the results established in
Theorem 4.3.

Example 4.5: Let (X1, X2) be a vector of independent geometric variables with param-
eter vector (p∗

1, p1) = (
1
6 , 1

2

)
, and let h

(
k; 1

6 , 1
2

)
be the corresponding hazard rate

function of X2:2. Let (Y1, Y2) be another vector of independent geometric variables with
parameter vector (p∗

2, p2) = (
1
4 , 1

5

)
, and let h

(
k; 1

4 , 2
5

)
be the corresponding hazard rate

function of Y2:2. It can be readily seen that (p∗
1, p1)

p� (p∗
2, p2). Figure 2 presents plots

of the hazard rate functions of these two maxima, which are in accordance with the
result in Theorem 4.3.

FIGURE 2. Plot of the hazard rate functions of maxima from two geometric samples
parameter vectors as

(
1
6 , 1

6 , 2
7

)
and

(
1
5 , 1

5 , 1
4

)
.
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The following corollary is a direct consequence of Theorem 4.3.

Corollary 4.6: Let X1, X2 be independent geometric variables with respective
parameters p1, p2, and Y1, Y2 be another pair of i.i.d. geometric variables with com-
mon parameter p. Let p ≤ max( p1, p2). Then, the following three statements are
equivalent:

(a) p ≥ √
p1p2;

(b) X2:2 ≥hr Y2:2;
(c) X2:2 ≥st Y2:2.

Remark 4.7: It is worth mentioning that the result in Corollary 4.6 is actually valid
even without the condition p ≤ max(p1, p2). Let Zp [Zq] be the maximum from a
random sample of size 2 from a geometric distribution with common hazard rate
p [q]. Let p < q. We then have Zp ≥lr Zq. Based on this fact, we can conclude that the
result of Corollary 4.6 is also valid for the case when p > max(p1, p2).
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