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SUMMARY

Identification of high-risk regions of schistosomiasis is important for rational resource allocation and effective control
strategies. We conducted the first study to apply the newly developed method of adaptive kernel density estimation (KDE)-
based spatial relative risk function (sSRRF) to detect the high-risk regions of schistosomiasis in the Guichi region of China
and compared it with the fixed KDE-based sRRF. We found that the adaptive KDE-based sRRF had a better ability to
depict the heterogeneity of risk regions, but was more sensitive to altering the user-defined smoothing parameters.
Specifically, the impact of bandwidths on the estimated risk value and risk significance (P value) was higher for the adaptive
KDE-based sRRF, but lower on the estimated risk variation standard error (s.E.) compared with the fixed KDE-based
sRRF. Based on this application the adaptive and fixed KDE-based sRRF have their respective advantages and
disadvantages and the joint application of the two approaches can warrant the best possible identification of high-risk

subregions of diseases.
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INTRODUCTION

Schistosomiasis japonica is a snail-transmitted para-
sitic disease that has existed in mainland China for
over 2000 years (Zhang et al. 2009b; Zhou et al. 2010).
It remains a major public health problem in China
(Peng et al. 2010; Zhou et al. 2010) and the total
number of infected people in 2004 was still around
726000 (Zhou et al. 2007). The extensive habitat of
Oncomelania hupensis (the sole intermediate host of
Schistosoma japonicum), decreased compliance rate,
and the unsustainable effects of chemotherapy, re-
duced financial supports, frequent floods and climate
change have resulted in the rebound of epidemics in
many areas of China, even in the places where it met
the criteria of transmission interruption (Zhang et al.
2008, 2009a). Hence, the importance of a sustainable
control strategy for schistosomiasis has been fre-
quently emphasized (Utzinger et al. 2003, 2009),
which is a great challenge for China’s current
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schistosomiasis control. The identification of high-
risk regions of schistosomiasis is always an important
first step for an effective and sustainable strategy
(Zhang et al. 2009a,b) and many spatial statistical
methods have been explored with this objective in
mind. Among others, the approach of kernel density
estimation (KDE) has attracted much attention
because of its minimal assumptions on the under-
lying data structure and flexibility of application
(Bithell, 1990, 1991; Kelsall and Diggle, 1995a, b). As
an example, Galvao and coworkers used the tech-
nique of KDE to compare the spatial pattern of
Schistosoma mansoni before and after treatment with
different doses of praziquantel (Galvao et al. 2010).
However, understanding the spatial variation of
disease risk per se requires the researcher(s) to not
only examine the spatial distribution of disease
‘cases’, but also the distribution of the at-risk
individuals (the ‘controls’) in order to adjust for any
natural non-homogeneity in the underlying popu-
lation (Zhang et al. 2009a; Davies and Hazelton,
2010). This motivated the development of the KDE-
based spatial relative risk function (sRRF) for spatial
case-control designed studies (Bithell, 1990, 1991).
Many successful applications in spatial epidemiology
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of KDE-based sRRF have been reported, e.g. motor
neurone disease (Sabel et al. 2000), biliary cirrhosis
(Prince et al. 2001), childhood leukaemia (Wheeler,
2007) and Aujeszky’s disease (Berke and Grosse
Beilage, 2003). In the field of schistosomiasis, Zhang
et al. were the first to apply the KDE-based sRRF to
assess the risk of S. japonica in the Guichi region of
Anhui province in China (Zhang et al. 2009a).

Historically, most implementations of the sRRF
have made use of a fixed bandwidth or smoothing
parameter in kernel estimation of the densities, where
the amount of smoothing applied to the estimator is
constant, regardless of location. It is generally well
understood that spatial distributions of human popu-
lations tend to be quite heterogeneous due to com-
mon geographical features (towns, rivers, etc.). This
spatial variation means that it is worth utilizing a
potentially beneficial adaptive approach. One such
adaptive KDE approach, first discussed in depth by
Abramson (1982), assigns less smoothing to densely
clustered observations in order to preserve spatial
detail where there is an abundance of data, and
allocates more smoothing to isolated observations in
an effort to avoid assigning undue density ‘height’ to
areas where we do not have as much information. The
adaptive KDE-based sRRF was first investigated by
Davies and Hazelton (2010), who found both
theoretical and practical advantages over the fixed
KDE-based sRRF, and has found a successful
application in a study about subclinical Salmonella
infection in finisher pig herds (Benschop et al. 2008).

The present study aims to apply this novel ap-
proach of adaptive KDE-based sRRF to detect high-
risk regions of schistosomiasis in the Guichi region
of China, and compare it with the method of fixed
KDE-based sRRF. Generally, the obtained results
can shed lighton rational applications of adaptive
KDE-based sRRF to identify disease-risk regions.
Specifically, the results can aid in the design of more
efficient schistosomiasis control strategies in the local
region.

MATERIALS AND METHODS
Data sources

The study site was the Guichi region of Anhui
province in eastern China and the study design was
spatial case-control. Acute schistosomiasis cases from
permanent residents between 1 January 2001 and
31 December 2006 were retrospectively collected
from local schistosomiasis-specific hospitals and
village-level clinics. The same number of controls
was randomly chosen to represent the background at-
risk population pattern using the sampling approach
of the probability proportion to size. All the spatial
coordinates of cases and controls were first obtained
in the field using the hand-held global positioning
system (GPS) (MobileMapper, Thales Navigation,
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Inc., USA) and then the spatial analysis database
for schistosomiasis was created using the ArcGI159.2
software  (Environmental = Systems  Research
Institute, Redlands, CA, USA). See our previous
reports for detailed descriptions of the study area and

the database (Zhang et al. 2008, 2009a).

Statistical analysis

Let x{, x5,..., x,; denote the coordinates of
schistosomiasis cases in Guichi region. The (bivari-
ate) kernel density estimate thereof is written as
(Davies and Hazelton, 2010),

. 1< 1 x — x;
f(x)zzz—h(xi)2K< . ) (1)

=1

where K is a radially symmetrical probability density
function (the kernel) and h(:) is the bandwidth or
smoothing parameter controlling the smoothness of
the density estimator.

The bivariate Gaussian kernel is implemented for
the current analysis, as the infinite tails of this func-
tion are useful in areas with sparse data. For the fixed-
bandwidth approach, A(:) =hg, (i.e. simply a scalar
constant). We defined the bandwidth function of the
adaptive kernel estimator as (Terrell, 1990; Davies
and Hazelton, 2010),

n 1/m
h(w) = ho{ f @)/ (]‘[ f(x,»r”) )
=1

where A is the global bandwidth. In practice we must
replace the unknown density function f in equation
(2) with a pilot estimate f, which is itself a fixed-
bandwidth kernel estimate of the observed data with
smoothing parameter A, = ﬁ; referred to as the pilot
bandwidth.

Now let yq, ¥s,..., ¥,» denote the coordinates of n,
sampled controls. Conditional on the sample sizes of
ny cases and 7, controls, the sSRRF is defined as the
density ratio of cases and controls (Bithell, 1990),

f(x)
8(x)

where, f and ¢ are the kernel estimates from equation

3)

#(x) = log

(1) of the case and control data, respectively (either
fixed or adaptive). The density ratio is transformed to
the log scale in order to make symmetrical the
treatment of the two estimates and stabilize numeri-
cal results (Kelsall and Diggle, 19954, b). Owing to
the fact that the data have been collected with respect
to a finite geographical region, we also employ edge-
correction techniques described by Diggle (1985)
(fixed) and Marshall and Hazelton (2010) (adaptive)
for f and ¢ to reduce the boundary biases.

In terms of assigning the bandwidths, we use a
common fixed bandwidth (i.e. hﬁx,(f) = hix, () = Miix)
for the fixed KDE-based sRRF, and a common
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global bandwidth A ;) = ho g = ho for the adaptive
KDE-based sRRF. This is due to a resulting first-
order bias cancellation in areas where f = g (Kelsall
and Diggle, 1995a). The pilot bandwidths in the
adaptive KDE-based sRRF, however, are computed
separately for the case and control data in order to
assist in preserving any specific detail of use for the
pilot densities and variable bandwidth calculations.

In the examination of the adaptive KDE-based
sRRF, Davies and Hazelton (2010) made use of 2
data-driven bandwidth selection methods for esti-
mation of the fixed, global and pilot bandwidths. The
first, based on an ‘oversmoothing’ principle de-
scribed by Terrell (1990), was elected due to its
potential to control excess variability in the estimated
densities. We refer to it as ‘OS’. The second is the
least-squares cross-validation (LSCV) approach as
described by Bowman and Azzalini (1997). We
repeated these calculation methods for analysis of
the schistosomiasis data, with /g, < OS in the fixed
KDE-based sRRF (based on the pooled case-control
coordinates), and %y < OS (again based on the pooled
case-control data) and }_z(f) «~ LSCV, }_1@ «~ LSCV
(based on the case and control data, separately) in the
adaptive KDE-based sRRF.

The risk functions estimated by equation (3) are
simply point estimates of the observed (log-)
risks. Naturally, it is of interest to be able to dis-
tinguish any statistically significant risk regions
from non-significant risk regions. To avoid an over-
interpretation of the results, tolerance contours based
on a pointwise p-value surface (and drawn at a
significance level of a=0-05) were applied from the
statistical test searching for elevated risk (i.e. with
respect to the hypotheses Hy=7(x)=0; Hy:7(x)>0,
where 7 denotes the ‘true’ log-risk surface).

Two different approaches were used to obtain the
p values in each point. The first method is the Monte-
Carlo (MC) randomization test based on permu-
tations of the case-control labels in each point
(Kelsall and Diggle, 1995a, b). First, the case and
control location data are pooled; then n; points were
re-sampled without replacement to represent the
simulated cases and the remaining n, points were
used as the simulated controls. The fixed and adap-
tive KDE-based sRRF was then repeatedly applied
on these simulated datasets. The whole process was
replicated 999 times to obtain the simulated risk
values (r](x), 75(x),. . ., ro00(x)). For each point, we get
1 observed #(x) and 999 simulated 7(x), so the
p-value at each point based on MC method was
obtained by the formula,

=1

999
p= <1 + Zl(f(x) > rf(x)))/lOOO “

where, I( ) is the indicator function. The second
method is the z-test statistic-based asymptotic
normality test (ASYN) introduced by Hazelton and
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Davies (2009) for the fixed KDE-based sRRF and
Davies and Hazelton (2010) for the adaptive KDE-
based sRRF. In this approach, the authors exploited
approximations to the variances of the fixed and
adaptive KDE-based sRRF in order to construct test
statistics 2(x) at each location x. The p-value surface is
then computed easily with respect to the aforemen-
tioned hypotheses, as under the asymptotic theory of
the kernel estimator z(x) ~ N(0,1), where N(0,1) de-
notes the standard normal distribution. The authors
found this technique to be significantly computa-
tionally cheaper than the MC method (especially for
large datasets), and it also seemed to avoid some
instability in the resulting tolerance contours.

To further investigate the variation of estimated
risks, the point-wise standard error (s.E.) surfaces was
generated for both MC and ASYN approaches,
empirically over the iterated results for the former
and via the asymptotic variance for the latter.

For the sensitivity analysis, different bandwidths
(based on halving and doubling the appropriate OS
or LSCV bandwidths) for adaptive and fixed KDE-
based sRRF were also used and are displayed in the
Supplementary appendix (online version only) as laid
out in Table 1. For each of the various bandwidth
combinations, MC and ASYN tests were applied to
obtain the corresponding p-value and s.E. surfaces
for delineating the significant schistosomiasis risk
subregions and associated variation.

All computations and images were produced in the
R software (Davies et al. 2011).

RESULTS

In total, 83 acute schistosomiasis cases were collected
and 83 controls were sampled for the schistosomiasis
dataset, which is described elsewhere (Zhang et al.
2008, 2009a). Here, only the results from adaptive
KDE-based sRRF and its comparisons with fixed
KDE-based sRRF are reported.

Figure 1 shows the estimated values of adaptive
and fixed KDE-based sRRF using the automatically
determined optimum bandwidths, and the significant
tolerance contours from asymptotic normality and
MC tests were superimposed upon the density maps.
The adaptive KDE-based sRRF estimated higher
risks on the high-risk regions (e.g. significant risk
regions) and lower risks on the low-risk regions
(e.g. nonsignificant risk regions) than the fixed
KDE-based sRRF.

For the fixed bandwidth contours, we observed
little difference for the contours corresponding to the
ASYN and MC methods of computation. T'wo clear
subregions of interest were identified, one on the
northern border where the Qiupu River feeds into the
Yangtze River, and the other in the southeastern
corner. The ASYN and MC contour methods for the
adaptive KDE-based sRRF, however, are more
distinct. The adaptive-surface ASYN contours
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Table 1. Different bandwidths used for the sensitivity analysis

Adaptive KDE

No Fixed KDE Pilot (case) Pilot (control) Global
S1 0-5xX0S 0-5XLSCV 0-5xLSCV 0-5X0S
S2 0-5x0S 0-5XLSCV 0-5xXLSCV 2X0S
S3 0-5xX0S 2XLSCV 2xLSCV 0-5x0S
S4 0-5xX0S 2XLSCV 2XLSCV 2X0S
S5 2X0S 0-5XLSCV 0-5xXLSCV 0-5x0S
S6 2xX0S 0-5XLSCV 0-5xLSCV 2x0S
S7 2X0S 2XLSCV 2XLSCV 0-5X0S
S8 2X0S 2xLSCV 2XLSCV 2x0S

Fixed, ASYN contours

Fixed, MC contours

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 1. Spatial relative risk functions of schistosomiasis using fixed and adaptive KDE, and with 5% significant tolerance
contours computed using the MC and ASYN methods. The cases and controls are displayed as dots and triangles,

respectively.

track the cases falling along the Qiupu River for a con-
siderable distance. In addition to this, the contours
seem to highlight 3 other areas. One, in the south-
eastern region, approximately matches the location of
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the southeastern significant region on the fixed KDE-
based sRRF plots. The other two, initiatedin one
instance by a single case of schistosomiasis, should be
interpreted with caution. It must be kept in mind that
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Fixed, ASYN contours

872

Fixed, MC contours

25

2.0

— 0.5

Fig. 2. Point-wise s.E. surfaces of the spatial relative risk functions in Fig. 1 (data and contours contained). MC s.E.s are

empirical, ASYN s.E.s are theoretical.

the ASYN method relies on asymptotic properties,
and the sample size in this application may need to be
increased in order to confirm the existence of the
additional ‘hotspots’. This view is supported by MC
contours for the adaptive KDE-based sRRF — they
are less sensitive to isolated case observations for the
relatively small sample size.

These interpretations warrant the inspection of the
variability observed in the risk surfaces with respect
to the tests of significance. Figure 2 depicts the
pointwise S.E. surfaces of the sSRRF obtained during
the tests for significance of risk for the adaptive and
fixed KDE-based smoothing approaches. Compar-
ing the fixed and adaptive variation surfaces for the
ASYN test, we note a similar pattern in that the
lowest variation occurs in the interior of the region,
with variation increasing near the border. This can
be expected, as edge-correction can affect the per-
formance of the risk estimator in these areas. We also

https://doi.org/10.1017/50031182013000048 Published online by Cambridge University Press

note that the fixed ASYN variation reaches larger
values than the adaptive ASYN variation. This can,
at least in part, be attributable to the asymptotic
variance stabilization for the adaptive KDE-based
sRRF; this does not occur for the fixed KDE-based
sRRF. This is encouraging, as it indicates that the
asymptotic properties seem to be realized to at least a
minimal degree for even the relatively small sample
size in this application. The fixed and adaptive
surface variations for the MC tests are a different
story. While in both cases the MC variation is larger
than the variation in their ASYN counterparts, here
the adaptive MC s.E.s are much larger than the fixed
MC values. A possible explanation is that the
adaptive KDE-based sRRF generates higher peaks
and lower troughs in the case/control density
estimates than the fixed KDE-based sRRF, and
when the random case/control permutations are
performed for the MC tests, it is these higher peaks
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and lower troughs that drive the variation up in the
adaptive KDE-based sRRF.

The results of sensitivity analysis using different
bandwidths (as given in Table 1) (images given in the
Supplementary appendix, Online version only) show
that the fixed and adaptive KDE-based sRRF
significance tests were both affected by the band-
widths. Examination of the differences in contour
appearance between the bandwidths for the fixed
KDE-based sRRF (Supplementary appendix Figs
S1-S8 and Figs S9-S16, Online version only) shows
that even halving and doubling the OS bandwidth
had only a minimal impact on the identified signifi-
cant regions. The impact of varying the pilot and
global bandwidths for the adaptive KDE-based
sRRF is more pronounced, although this is to be ex-
pected given the small sample size. Overall, the adap-
tive MC contours were more resistant to bandwidth
change than the ASYN contours. Again, the small
sample sizes could well be affecting the validity of the
asymptotics here. For both adaptive ASYN and MC
contours, altering the global bandwidth was more
important than changing the pilots (e.g. Supplemen-
tary appendix Figs S1-S2 and Figs S3-S4, Online
version only). However, in the event of a small global
bandwidth for example, large pilots can help stabilize
the surface and contours (e.g. comparing the adaptive
surfaces in Supplementary appendix Figs S1-S2 and
Figs S5-S6, Online version only). The variation of
the tests was consistently higher for the MC test
compared with the ASYN test for both smoothing
regimens. For the ASYN tests only, the s.E.s reached
markedly higher values for the fixed surfaces in
Supplementary appendix Figs S1-S10 (Online ver-
sion only); these maximums were only slightly lower
for the fixed surfaces in Supplementary appendix
Figs S11-S16 (Online version only). This means that
even with excessive over-smoothing in the fixed
surfaces to minimize variability, the adaptive surfaces
(with less smoothing and hence less bias) still appear
to provide competitive values of variability.

DISCUSSION

Kernel density estimation is a nonparametric and
popular approach to identify high-risk regions of
disease (Zhang et al. 2009a; Davies and Hazelton,
2010). This technique has been explored in the field
of schistosomiasis (Zhang et al. 2009a; Galvao et al.
2010). This study was the first to apply the newly
developed adaptive KDE-based sRRF to identify
and highlight areas of elevated schistosomiasis risk,
which is helpful in guiding rational disease control
strategies and in allocating resources effectively
(Brooker et al. 2006; Zhang et al. 2009a). The results
also provide some useful guidance on using this
approach effectively in a wider sense.

It is generally accepted that the amount of
smoothing (for either fixed or adaptive KDE) is of
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paramount importance in the ‘quality’ of our estimate
in terms of its proximity to true (unknown) density.
While it has been observed that benefits such as
reduced bias and variance stabilization for the
adaptive version of the relative risk estimator can be
realized in practice (Davies and Hazelton, 2010),
there are difficulties in terms of now needing to
choose multiple ‘initial’ values in the form of
pilot and global bandwidths. Also, as many of the
theoretical properties have been examined by
large-sample approximations, small sample sizes
can have the potential for an obviously detrimental
effect on estimate and testing quality. While we note
that the adaptive KDE-based sRRF has a better
ability than the fixed KDE-based sRRF to depict the
heterogeneity of risk regions, due to the apparent
instability of the adaptive risk function for small
‘case’ sample sizes observed in the sensitivity
imagery, we do not recommend its use for numerator
sample sizes of less than, say, 100. It would be
interesting to investigate further, with the help of
pre-defined problem scenarios, how varying the pilot
and global bandwidth impacts ‘performance’ stat-
istics such as integrated square errors with respect to
spatial relative risk surfaces.

Two methods of testing were used to identify the
significant high-risk regions of schistosomiasis. The
ASYN test was better than the MC test in terms of
generally lower variation for both adaptive and fixed
KDE-based sRRF. The result of the ASYN test of
adaptive KDE-based sRRF seemed to be more
rational considering the detected high-risk regions
of schistosomiasis. For example, schistosomiasis is a
waterborne disease, so the shape for schistosomiasis
risk regions close to the Qiupu River should be along
the direction of water flows, which is clearer for the
detected Northern risk region of schistosomiasis (see
Fig. 1). However, the adaptive surfaces and corre-
sponding tolerance contours appeared more sensitive
to varying the originally defined OS and LSCV
bandwidths due to the relatively small samples (refer
to the imagery in the Supplementary appendix,
Online version only). So, we suggested combining
the results of the ASYN test from fixed and adaptive
KDE-based sRRF to draw a conclusion. The idea
that different spatial statistical methods should be
used to identify disease-risk regions was previously
suggested by Ward and Carpenter (2000) and Zhang
et al. (2008) for the reason that the spatial pattern of
disease risk may be very complicated in reality. We
may conclude that 2 common risk regions in the
Northern and Southeast parts were ‘true’ risk regions
of Guichi region and effective measures should be
taken immediately to control schistosomiasis there;
while 2 different risk regions in the Northeast and
West could be regarded as ‘potential’ risk regions of
schistosomiasis that should be monitored closely,
which is consistent with previous reports (Zhang
et al. 2008, 2009a, b).
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Adaptive KDE-based sRRF is, in essence, an
approach of KDE, so kernel function is not so
important based on previous studies (Kelsall and
Diggle, 1998; Davies et al. 2010) and the conven-
tional bivariate Gaussian kernel was used in this
study. But, bandwidth selection and edge effects are
two critical issues that were always discussed. A larger
bandwidth tends to result in a smoother surface, and
thus certain features in the data may not be captured;
while a smaller bandwidth will get more local peaks
and troughs, which is also not helpful for detecting
the spatial variation in risk as a whole (Vieira et al.
2002; Zhang et al. 2009a). Edge effects are caused by
the unrecorded cases outside the studied region, so
bias is possible and sometimes serious for the places
close to the boundaries. Interested readers are
encouraged to see the discussions in our previous
reports (Zhang et al. 2009a). Here, we just point out
two future research questions related to the adaptive
KDE-based sRRF. One question concerns the
impact of bandwidths on the adaptive KDE-based
sRRF. It has three different bandwidths and is more
complicated than the fixed KDE-based sRRF
(1 bandwidth), so determining their relative impact
on the adaptive KDE-based sRRF is useful for better
understanding its performance caused by band-
widths and applying it more effectively. A series of
well-designed simulations is needed to illuminate this
issue. Another question is about the method used to
correct the edge effects of adaptive KDE-based
sRRF. This study used the newly developed edge cor-
rection method, which is the only available approach
that can be used for the adaptive KDE-based sRRF.
Some new methods to correct the edge effects for the
adaptive KDE-based sRRF need to be developed and
an evaluation of the effectiveness of these edge
correction methods should be conducted.

In summary, we have conducted the first study
applying the adaptive KDE-based sRRF to identify
high-risk regions of schistosomiasis, and compari-
sons of the results between it and the fixed KDE-
based sRRF were performed. Our application of
adaptive kernel estimation of relative risk and associ-
ated significance tests has shed new light not only on
the ‘hotspots’ for schistosomiasis in Guichi region,
but also where we expect the novel statistical metho-
dology to perform well and where it may struggle.
While both fixed and adaptive KDE-based sRRF
were shown in this example to possess advantages and
disadvantages, we conclude that simultaneous appli-
cation of the two approaches could warrant the best
possible identification of high-risk regions of disease.
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