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Abstract

In this work the �q-norms of points chosen uniformly at random in a centered regular
simplex in high dimensions are studied. Berry–Esseen bounds in the regime 1 ≤ q < ∞
are derived and complemented by a non-central limit theorem together with moderate
and large deviations in the case where q = ∞. An application to the intersection volume
of a regular simplex with an �n

p-ball is also carried out.
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1. Introduction and main results

One of the central aspects of high-dimensional probability theory is the study of random
geometric quantities and the phenomena that occur as the dimension of the ambient space
tends to infinity. The field is intimately connected to geometric functional analysis as well
as convex and discrete geometry, and has attracted considerable attention in the last decade.
This is in part because of numerous applications that can be found in the statistics and machine
learning literature related to high-dimensional data, e.g. in the form of dimensionality reduction
in information retrieval, clustering, principal component regression, community detection, or
covariance estimation; see [28] as well as the references provided therein. A famous example of
a high-dimensional limit theorem is the Maxwell–Poincaré–Borel lemma (see, e.g., [8]) stating
that, for fixed k ∈N, the distribution of the first k coordinates of a point chosen uniformly at
random from the n-dimensional Euclidean ball or sphere of radius one converges weakly to a
k-dimensional Gaussian distribution as the space dimension n tends to infinity.

Received 11 May 2020; revision received 29 August 2021.
∗ Postal address: Faculty of Mathematics, Ruhr University Bochum, 44780 Bochum, Germany.
∗∗ Email address: anastas.baci@rub.de
∗∗∗ Postal address: Faculty of Mathematics, University of Münster, 48149 Münster, Germany. Email:
zakhar.kabluchko@uni-muenster.de
∗∗∗∗ Postal address: Institute of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria.
∗∗∗∗∗ Postal address: Faculty of Computer Science and Faculty of Computer Science and Mathematics, University of
Passau, 94032 Passau, Germany.
∗∗∗∗∗∗ Email address: joscha.prochno@uni-graz.at
∗∗∗∗∗∗∗ Email address: mathias.sonnleitner@uni-graz.at
∗∗∗∗∗∗∗∗ Email address: christoph.thaele@rub.de

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

685

https://doi.org/10.1017/jpr.2021.77 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.77
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2021.77&domain=pdf
https://doi.org/10.1017/jpr.2021.77


686 A. BACI ET AL.

Today, there is a vast literature on high-dimensional central limit theorems, which describe
the Gaussian fluctuations for various random geometric quantities in different contexts, for
instance the famous central limit theorem for convex bodies [20], a central limit theorem for
the volume of random projections of the cube [24], or a central limit theorem for the q-norm
(Euclidean norm) of (projections of) points chosen randomly from �n

p-balls [2, 15, 17], to
mention just a few. Other limit theorems, such as moderate deviations principles and large
deviations principles, have only been studied in high-dimensional probability related to the
geometry of convex bodies since their introduction in [1, 11, 15, 17]. In fact, those kinds
of limit theorems are more sensitive to the randomness involved and display a non-universal
behavior in their speed and/or rate function. The latter fact makes the subject particularly inter-
esting as, contrary to a central limit theorem which implies the somewhat negative result that
fluctuations do not provide much information because of universality, the moderate and large
deviations limit theorems are distribution dependent and encode subtle geometric information
about the underlying structure. In the past three years a number of interesting results in this
direction have been obtained, and we refer the reader to [10, 16, 18, 19, 21]. A link between the
study of moderate and large deviations and the famous Kannan–Lovász–Simonovits conjecture
has recently been discovered [3].

In this work we study limit theorems for (suitably normalized) �q-norms of points cho-
sen uniformly at random in a centered and regular simplex. When 1 ≤ q < ∞, we provide a
Berry–Esseen-type rate of convergence to a standard Gaussian distribution. For the case where
q = +∞, we complement this result with a non-central limit theorem, establishing the weak
convergence to a Gumbel distribution, and provide both moderate and large deviations prin-
ciples. Moreover, as an application of our central limit theorem, we present a version of the
Schechtman–Schmuckenschläger result [25] and compute the volume of the intersection of an
�p-ball with a regular simplex. We note that the method of proof in the Berry–Esseen-type
central limit theorem differs from the previously mentioned ones in the sense that here we
use a connection to the asymptotic theory of sums of random spacings and do not rely on a
Schechtman–Zinn-type probabilistic representation.

In order to be more precise, let n ∈N and consider the (n − 1)-dimensional simplex
�n−1 := {x ∈R

n : xi ≥ 0,
∑n

i=1 xi = 1
}= conv{e1, . . . , en}, where conv(A) denotes the con-

vex hull of a set A and e1, . . . , en represent the unit vectors of the standard orthonormal basis
of Rn. Consider a sequence (Ei)i∈N of independent random variables with an exponential dis-
tribution of mean 1 and, for each n ∈N, let Sn := ∑n

i=1 Ei denote the nth partial sum. We study
the sequence of random vectors

Zn :=
(

E1

Sn
− 1

n
, . . . ,

En

Sn
− 1

n

)
∈ �n−1 − 1

n
(e1 + · · · + en), n ∈N.

In fact, uniformly distributed points in the standard centered simplex in R
n, �n−1 −

1
n (e1 + · · · + en), have the same distribution as Zn (see, e.g., [22]). A different method to
generate uniform random vectors in the simplex is by letting U1, . . . , Un−1 be independent
and identically distributed random variables with a uniform distribution on [0,1] and consid-
ering Gn,i := U(i) − U(i−1), i = 1, . . . , n, where U(i) is the ith order statistic of U1, . . . , Un−1,
with the convention that U(0) := 0, U(n) := 1. Then the vector Gn := (Gn,1, . . . , Gn,n

)
is uni-

formly distributed in �n−1 and Zn
d= Gn − 1

n (e1 + · · · + en). A proof of this fact can be found,
for instance, in [5, Section 6.4].

The first main result of this paper is the following Berry–Esseen-type theorem for the
�q-norm ‖ · ‖q (1 ≤ q < ∞) of uniform random points in �n−1 − 1

n (e1 + · · · + en). Define
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Limit theorems for random points in a simplex 687

μq :=E
[|E1 − 1|q] and σ 2

q := q−2μ−2
q

(
μ2q − (q2 + 2q + 2

)
μ2

q + 2(q + 1)μq − 1
)
. For exam-

ple, μ1 = 2e−1, σ1 = 2e − 5, and μ2 = σ2 = 1.

Theorem 1.1 Let 1 ≤ q < ∞. There exists some constant cq > 0 depending only on q such that,
for all n ∈N,

sup
x∈R

∣∣∣∣∣P
[
√

n

(
n1−1/q‖Zn‖q μ

−1/q
q − 1

σq

)
≤ x

]
− P[N ≤ x]

∣∣∣∣∣≤ cq
log n√

n
,

where N ∼N (0, 1) is a standard Gaussian random variable.

In the proof of this result we use a connection to the asymptotic theory of sums of random
spacings. This allows us to use a Berry–Esseen result of Mirakhmedov [23], who improved a
theorem due to Does and Klaassen [9].

As a direct corollary of Theorem 1.1, we obtain the following central limit theorem, which
is the analogue for the regular simplex of the corresponding central limit theorems in [15, 17]
for �n

p-balls. It will find an application in Section 4.

Corollary 1.1 For all 1 ≤ q < ∞,

√
n
(

n1−1/q‖Zn‖q μ−1/q
q − 1

)
d−−−→

n→∞ Z ∼N (0, σ 2
q ).

When the parameter q satisfies q = ∞, we cannot expect convergence in distribution of
‖Zn‖∞ to a Gaussian random variable. However, we establish a non-central limit theorem with
a double exponential (also known as Gumbel) distribution in the limit. The result in this case
reads as follows.

Theorem 1.2 We have
n‖Zn‖∞ − ( log n − 1)

d−−−→
n→∞ G,

where G has a standard Gumbel distribution, i.e. P[G ≤ x] = exp (− e−x) for x ∈R.

The next result describes the upper and lower deviations on a moderate scale, which lies
between the Gaussian fluctuations of a central limit theorem and the large deviations which
occur on the scale of a law of large numbers. For a formal definition of a large deviations
principle (LDP), see Section 2.2.

Theorem 1.3 Let (sn)n∈N be a positive sequence with sn → ∞ and sn/ log n → 0. Then, the

sequence
(

log n
sn

(
n

log n‖Zn‖∞ − 1
))

n∈N satisfies an LDP with speed sn and rate function

I(z) :=
{

z, z ≥ 0,

+∞, z < 0.

As a last result, we establish the following large deviations principle for the �∞-norm, which
we compare in Section 4 to the LDP for random points in the n-dimensional crosspolytope, i.e.
the �1-ball in R

n.

Theorem 1.4 The sequence
(

n
log n‖Zn‖∞

)
n∈N satisfies an LDP with speed sn = log n and rate

function

I(z) :=
{

z − 1, z ≥ 1,

+∞, z < 1.
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The rest of the paper is organized as follows. In Section 2 we collect some background
material on large deviations and introduce the notation we use throughout the paper. Section 3
is then devoted to the proofs of Theorems 1.1, 1.2, 1.3, and 1.4. In Section 4 we compare
the LDP for the simplex with the one for �n

p-balls, in particular the one for the crosspoly-
tope, and present an application of the central limit theorem to high-dimensional intersection
volumes.

2. Preliminaries

2.1. General notation

Let n ∈N. Given 1 ≤ q ≤ ∞ and a vector x = (x1, . . . , xn) ∈R
n, we write

‖x‖q =

⎧⎪⎨
⎪⎩
(∑n

i=1 |xi|q
)1/q

, q < ∞,

max1≤i≤n |xi| , q = ∞.

We will assume that all random quantities are defined on a common probability space
(�, �, P) and we write P [ · ] and E [ · ] for the probability of an event and the expectation
of an (integrable) random variable, respectively. For a sequence of independent and identically
distributed (i.i.d.) random vectors (Xi)i∈N we denote by X̄n = 1

n

∑n
i=1 Xi the empirical average.

Throughout, E, E1, E2, . . . will be independent exponential random variables having rate 1 and
Ēn = 1

n

∑n
i=1 Ei. Note that P

[
Ēn = 0
]= 0 and thus we can ignore this event in our analysis.

By N (μ, �) we denote the (multivariate) Gaussian distribution with mean μ and covariance
matrix �. If a random variable N is distributed according to N (μ, �), we write N ∼N (μ, �).

With
d−→ and

P−→ we indicate convergence in distribution and in probability, respectively. We say
that a sequence of real-valued random variables (Xn)n∈N satisfies a central limit theorem (CLT)

if there exists a sequence (an)n∈N of real numbers such that
√

n(anXn − 1)
d−→ N ∼N (0, 1)

as n → ∞. For further background material on asymptotic probability theory consult, for
example, [4].

2.2. Large and moderate deviations

In the following, we recall facts from the theory of large deviations as developed, for
example, in [6].

A sequence (Xn)n∈N of real-valued random variables is said to satisfy an LDP with speed
(sn)n∈N ⊂ (0, ∞) and rate function I : R→ [0, ∞] if I is lower semi-continuous, has compact
level sets {z ∈R : I(z) ≤ α}, α ∈R, and if, for all Borel sets A ⊂R,

− inf
z∈A◦ I(z) ≤ lim inf

n→∞ s−1
n log P [Xn ∈ A] ≤ lim sup

n→∞
s−1

n log P [Xn ∈ A] ≤ − inf
z∈Ā

I(z).

Here, A◦ denotes the interior and Ā the closure of A. For the empirical average of i.i.d.
(real-valued) random variables an LDP holds according to Cramér’s theorem, which we
state next.

Lemma 2.1 (Cramérs theorem [6, Theorem 2.2.3]) Let X, X1, X2, . . . be i.i.d. real-valued
random variables. Assume that the origin is an interior point of the domain of the
cumulant-generating function �(u) = log E[exp (uX)]. Then the sequence of partial sums
X̄n = 1

n

∑n
i=1 Xi, n ∈N, satisfies an LDP on R with speed n and rate function �∗, where

�∗(z) = supu∈R (uz − �(u)) for all z ∈R.
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It is often useful to transfer an LDP for a sequence of random variables to another such
sequence when they do not differ too much from each other. The following lemma provides a
condition (called exponential equivalence) under which such an attempt is possible.

Lemma 2.2 (Exponential equivalence[6, Theorem 4.2.13]) Let (Xn)n∈N and (Yn)n∈N be two
sequences of real-valued random variables, and assume that (Xn)n∈N satisfies an LDP with
speed sn and rate function I. If (Xn)n∈N and (Yn)n∈N are exponentially equivalent at speed
sn, i.e. we have, for any δ > 0, lim supn→∞ s−1

n log P [|Xn − Yn| > δ] = −∞, then (Yn)n∈N
satisfies an LDP with the same speed and rate function as (Xn)n∈N.

We shall need the following result for moderate deviations of the empirical average of i.i.d.
random variables.

Lemma 2.3 (Moderate deviations [6, Theorem 3.7.1]) Let X, X1, X2, . . . be i.i.d. real-valued
random variables with E [X] = μ and VarX = σ 2 > 0. Assume that the origin is an interior
point of the domain of the cumulant-generating function �(u) = log E exp (uX). Fix a sequence
(an)n∈N with an → 0 and nan → ∞. Then, the sequence

√
nan
(
X̄n − μ

)
satisfies an LDP on R

with speed a−1
n and rate function I(z) = z2/2σ 2.

3. The proofs

We now present the proofs of Theorems 1.1, 1.2, 1.3, and 1.4, and start with the Berry–
Esseen-type central limit theorem followed by the non-central limit theorem together with the
moderate and large deviations principles when q = ∞.

3.1. Proof of the Berry–Esseen CLT

The general philosophy of the proof is similar to that in [14]. However, as already explained,
we shall use a connection to the asymptotic theory of sums of spacings. The following lemma
is a version of [2, Lemma 4.1] (see also [14, Lemma 2.8]).

Lemma 3.1 For any real-valued random variables X, Y and any ε > 0,

sup
x∈R

∣∣P[Y ≤ x] − P[N ≤ x]
∣∣≤ sup

x∈R
|P[X ≤ x] − P[N ≤ x]| + P[|X − Y| > ε] + ε√

2π
,

where N is a standard Gaussian random variable.

Proof. Let x ∈R and ε > 0. Then,

P[Y ≤ x] − P[N ≤ x] ≤ P[Y ≤ x, |X − Y| ≤ ε] + P[|X − Y| > ε] − P[N ≤ x]

≤ P[X ≤ x + ε] + P[|X − Y| > ε] − P[N ≤ x]

= P[X ≤ x + ε] − P[N ≤ x + ε] + P[|X − Y| > ε]

+ P[N ≤ x + ε] − P[N ≤ x].

Using that P[N ≤ x + ε] − P[N ≤ x] ≤ ε/
√

2π for all x ∈R, taking absolute values, and
forming the supremum completes the proof. �

The next lemma shows that, similar to CLTs, Berry–Esseen-type bounds can also be
transferred by “nice” functions.
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Lemma 3.2 Let (Xn)n∈N be a sequence of real-valued random variables. Suppose that there
exist constants μ ∈R and σ > 0 such that the Berry–Esseen-type bound

sup
x∈R

∣∣∣∣P
[√

n

(
Xn − μ

σ

)
≤ x

]
− P[N ≤ x]

∣∣∣∣≤ an

holds for some sequence (an)n∈N and all n ∈N, where N is a standard Gaussian random
variable. If g : R→R is twice continuously differentiable at μ with g′(μ) > 0 then, for some
constant C > 0 and all n ∈N,

sup
x∈R

∣∣∣∣P
[√

n

(
g(Xn) − g(μ)

g′(μ)σ

)
≤ x

]
− P[N ≤ x]

∣∣∣∣≤ C max

{
an,

log n√
n

}
.

Proof. Set ξn := √
n(Xn − μ)/σ and ζn := √

n(g(Xn) − g(μ))/g′(μ)σ . We use Lemma 3.1 to
infer, for each n ∈N and every ε > 0, that

sup
x∈R

∣∣P[ζn ≤ x] − P[N ≤ x]
∣∣≤ sup

x∈R

∣∣P[ξn ≤ x] − P[N ≤ x]
∣∣+ P[|ξn − ζn| > ε] + ε√

2π
. (3.1)

Fix n ∈N. We will estimate P[|ξn − ζn| > ε] and choose ε suitably.
Making use of the Taylor expansion of g at μ yields that there exists some

δ > 0 such that, for all x ∈ (μ − δ, μ + δ), g(x) − g(μ) = g′(μ)(x − μ) + �(x − μ), where
� : R→R is a function such that, for all x ∈ (μ − δ, μ + δ), |�(x)| ≤ Mg|x − μ|2 for
Mg = supx∈(μ−δ,μ+δ) |g′′(x)|/2. Thus, if |Xn − μ| < δ,

∣∣g(Xn) − g(μ) − g′(μ)(Xn − μ)
∣∣≤

Mg |Xn − μ|2. We get, after division by g′(μ)σ and multiplication by
√

n,

|ξn − ζn| ≤ Mg

g′(μ)σ

√
n|Xn − μ|2.

Therefore, for every n ∈N,

P[|ξn − ζn| > ε] ≤ P

[∣∣√n(Xn − μ)
∣∣∣>
√

εg′(μ)σ
√

n

Mg

]
+ P

[∣∣√n(Xn − μ)
∣∣> δ

√
n
]
. (3.2)

If Mg = 0, the first summand disappears and we can set ε = an. By the assumed Berry–Esseen
bound and the symmetry of a Gaussian random variable, for each n ∈N and every x ∈R,

P
[∣∣√n(Xn − μ)

∣∣> σx
]= P
[√

n(Xn − μ) < −σx
]+ P
[√

n(Xn − μ) > σx
]

≤ 2
(
P [N ≥ x] + an

)
.

Together with the bound P [N ≥ x] ≤ e−x2/2, the second summand in (3.2) is

P
[∣∣√n(Xn − μ)

∣∣> δ
√

n
]≤ 2

(
exp

{
− δ2

2σ 2
n

}
+ an

)
≤ c max

{
an,

log n√
n

}

for some c > 0 independent of n ∈N. If Mg > 0, by setting ε = σMgg′(μ)−1n−1/2 log n for
each n ∈N, the first summand is

P

[∣∣√n(Xn − μ)
∣∣> σ
√

log n
]
≤ 2(n−1/2 + an) ≤ c′ max

{
an,

log n√
n

}
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for some constant c′ > 0 independent of n. This choice of ε yields

P[|ξn − ζn| > σMgg′(μ)−1n−1/2 log n] ≤ (c + c′) max

{
an,

log n√
n

}
.

Together with inequality (3.1) we have, for all n ∈N,

sup
x∈R

∣∣P[ζn ≤ x] − P[N ≤ x]
∣∣≤ an + (c + c′) max

{
an,

log n√
n

}
+ σMg√

2πg′(μ)

log n√
n

,

whereupon choosing C > 0 suitably completes the proof. �

Remark 3.1 There exist results in the literature which are similar to Lemma 3.2. For example,
[4, Theorem 11.6] deals with the case of Xn being empirical averages and g a function with
Hölder-continuous derivative. In this case we have an = n−1/2 and the guaranteed bound for
the modified sequence is of order log n/

√
n. We do not know if this rate in Lemma 3.2 can be

improved in general.

Recall the definition of the spacings in the introduction by Gn,i = U(i) − U(i−1),
i = 1, . . . , n, where U(i) is the ith order statistic of U1, . . . , Un−1, sampled independently and
uniformly from the unit interval, with the convention that U(0) = 0, U(n) = 1. Also recall that E
denotes an exponential random variable with rate 1.

We deduce the following theorem from [23] which refined a Berry–Esseen theorem
from [9].

Theorem 3.1 Let Gn,1, . . . , Gn,n be as above. Suppose f : R→R is measurable with
E
[
f (E)3
]
< ∞ and σ 2 := Varf (E) − Cov (E, f (E))2 > 0. Then there exists a constant C > 0

such that, for all n ∈N,

sup
x∈R

∣∣∣∣∣P
[
√

n

(
1
n

∑n
i=1 f (nGn,i) −E[f (E)]

σ

)
≤ x

]
− P[N ≤ x]

∣∣∣∣∣≤ C√
n

,

where N is a standard Gaussian random variable.

The following result will be used for the proof of Theorem 1.1 and we skip its elementary
proof. Again, E stands for a standard exponential random variable.

Lemma 3.3 Let 1 ≤ q < ∞. Then Cov (E, |E − 1|q ) = (q + 1)E
[|E − 1|q]− 1, where

E
[|E − 1|q]= e−1

(
�(q + 1) + ∫ 1

0 xqexdx
)

.

Proof of Theorem 1.1. Using the connection to the spacings Gn,1, . . . , Gn,n we have

‖Zn‖q
q =

n∑
i=1

∣∣∣∣Zn,i − 1

n

∣∣∣∣
q

d=
n∑

i=1

∣∣∣∣Gn,i − 1

n

∣∣∣∣
q

= n−q
n∑

i=1

|nGn,i − 1|q.

Thus, writing nq−1‖Zn‖q
q

d= 1
n

∑n
i=1 f (nGn,i), we are in the situation of Theorem 3.1 with f (x) =

|x − 1|q, which is not of the form x �→ ax + b for any a, b ∈R and all x ∈R. Because of this
and the fact that the exponential distribution has finite moments of all orders, the assumptions
of Theorem 3.1 are satisfied and there exists a constant cq > 0 depending only on q such that,
for all n ∈N,

sup
x∈R

∣∣∣∣∣P
[
√

n

(
nq−1‖Zn‖q

q − μq

dq

)
≤ x

]
− P[N ≤ x]

∣∣∣∣∣≤ cq√
n

,
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with
d2

q = Var|E − 1|q − Cov
(
E, |E − 1|q)2 = μ2q − μ2

q − ((q + 1)μq − 1
)2

and μq = E [|E − 1|q] according to Lemma 3.3. Note that d2
q > 0 due to the Cauchy–Schwarz

inequality and the fact that E and |E − 1|q are linearly independent. Applying Lemma 3.2 with
g(x) = x1/q and g′(μq) = q−1μ

1/q−1
q , and rearranging terms, concludes the proof. �

Remark 3.2 Using the so-called delta method, we can alternatively derive the central limit
theorem stated as Corollary 1.1 from a CLT for sum-functions of spacings [13].

Remark 3.3 We briefly want to put μq in a more accessible form and compare it to the center-
ing constant in the central limit theorem [15, Theorem 1.1], stating for 1 < q ≤ ∞ and random
vectors Yn, which are uniformly distributed in the �n

1-ball, that

√
n
(

n1−1/q ‖Yn‖q M1(q)−1/q − 1
)

d−−−→
n→∞ Z ∼N (0, C1(q, q)

)
,

where M1(q) := �(q + 1) and

C1(q, q) = q−2
(

�(2q + 1)

�(q + 1)2
− 1

)
− 1.

As can be seen from Corollary 1.1, the same rate of n1−1/q appears. With repeated partial
integration we can derive, for q ∈N,

μq =E
[|E − 1|q]=

⎧⎨
⎩
E [(E − 1)q] , q even,

2e−1q! −E [(E − 1)q] , q odd,

where E [(E − 1)q] equals the subfactorial !q = q!∑q
i=0 (− 1)i/i!, which is also the nearest

integer to e−1q!. This is smaller than M1(q) = q! by roughly a factor of e.

3.2. Proof of the non-central limit theorem

In the following, we give a proof of Theorem 1.2 and analyze the limiting distribution of

n‖Zn‖∞ = n max
1≤i≤n

|Zn,i| = n max
1≤i≤n

∣∣∣∣Ei

Sn
− 1

n

∣∣∣∣.
Set Mn := max1≤i≤n Ei and let us recall the well-known fact that Mn − log n =: Gn

d−−−→
n→∞ G,

where G is standard Gumbel distributed. First, we prove that ‖Zn‖∞ and

Tn := max
1≤i≤n

(
Ei

Sn
− 1

n

)
= Mn

Sn
− 1

n

are exponentially equivalent in the following sense.

Lemma 3.4 limn→∞ n−1 log P
[‖Zn‖∞ �= Tn

]
< 0.

Proof. We first prove that everywhere except for {Sn = 0} we have the implication
‖Zn‖∞ �= Tn =⇒ Mn/Sn < 2/n. Note that ‖Zn‖∞ ≥ Tn, and if ‖Zn‖∞ �= Tn there must be some
index i0 ∈ {1, . . . , n} such that ∣∣∣∣Ei0

Sn
− 1

n

∣∣∣∣> Tn = Mn

Sn
− 1

n
.
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This can only occur if Ei0/Sn − 1/n is negative (otherwise we would have equality), i.e.

1

n
− Ei0

Sn
=
∣∣∣∣Ei0

Sn
− 1

n

∣∣∣∣> Mn

Sn
− 1

n
.

Since Ei0/Sn ≥ 0, this gives the desired implication. Therefore,

P
[‖Zn‖∞ �= Tn

]≤ P

[
Mn < 2

Sn

n

]
≤ P[Mn < 4] + P

[
Sn

n
> 2

]
.

By means of the inequality 1 + x ≤ ex, the first summand evaluates to P[Mn < 4] = (1 −
e−4)n ≤ e−e−4n and, by Cramér’s theorem, Lemma 2.1, limn→∞ n−1 log P

[
Sn/n > 2

]
< 0.

This completes the proof of the lemma. �

We return to the proof of Theorem 1.2. The previous lemma implies that n‖Zn‖∞ − nTn
P−→

0, and to establish Theorem 1.2 it suffices to prove that nTn − ( log n − 1)
d−→ G.

The connection to the spacings Gn = (Gn,1, . . . , Gn,n) gives nTn
d= n max1≤i≤n Gn,i − 1. A

classical result [7, Lemma 2.4] states that n max1≤i≤n Gn,i − log n
d−−−→

n→∞ G, which was orig-

inally derived by Lévy. Rewriting this for nTn gives nTn − log n + 1
d−−−→

n→∞ G and completes

the proof. �
Remark 3.4 We can read off from Theorem 1.2 that the maximum norm of random points in
the shifted simplex converges to zero at the rate log n/n with fluctuations of order ( log n)−1.
Uniformly distributed random vectors Yn in the �n

1-ball exhibit similar behavior, as can be read

off from [15, Theorem 1.1(c)]. Namely, n‖Yn‖∞ − log n
d−−−→

n→∞ G.

3.3. Proof of the moderate deviations principle

We derive the proof of Theorem 1.3 from [7, Lemma 3.2], which we rephrase in our
notation.

Lemma 3.5 Let (an)n∈N be a sequence of positive numbers satisfying an → 0 and an log n →
∞ as n → ∞. Then

lim
n→∞ nanP

[
n

log n

Mn

Sn
− 1 > an

]
= 1, lim

n→∞ exp (nan )P

[
n

log n

Mn

Sn
− 1 < −an

]
= 1.

In order to prove Theorem 1.3, we restate this result in the following form.

Lemma 3.6 Let (sn)n∈N be a positive sequence with sn → ∞ and sn/ log n → 0 as n → ∞.
Then, for any x > 0,

lim
n→∞

1

sn
log P

[
log n

sn

(
n

log n
‖Zn‖∞ − 1

)
> x

]
= −x,

lim
n→∞

1

sn
log P

[
log n

sn

(
n

log n
‖Zn‖∞ − 1

)
< −x

]
= −∞.
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Proof. Using the continuity of the logarithm and inserting Tn = Mn/Sn − 1/n, we can deduce
from Lemma 3.5 that

lim
n→∞ an log n + log P

[
n

log n
Tn − 1 > an − 1

log n

]
= 0, (3.3)

lim
n→∞ nan + log P

[
n

log n
Tn − 1 < −an − 1

log n

]
= 0 (3.4)

for any such sequence (an)n∈N.
In the following, let x > 0 be arbitrary. First, set an = (sn/ log n)x + 1/ log n = (snx +

1)/ log n, where (sn)n∈N is any sequence with sn → ∞ and sn/ log n → 0. This choice of
(an)n∈N meets the assumptions of Lemma 3.5. Then, inserting into (3.3) gives

lim
n→∞ snx + 1 + log P

[
n

log n
Tn − 1 >

sn

log n
x

]
= 0,

which, by considering the limit of the sequence divided by sn, implies that

x + lim
n→∞

1

sn
log P

[
n

log n
Tn − 1 >

sn

log n
x

]
= 0.

For (3.4) we choose an = (sn/ log n)x − 1/ log n = (snx − 1)/ log n for all n ∈N such that
snx − 1 > 0 and set an = 1 for all other n ∈N. Since sn → ∞, we have snx − 1 > 0 for all
n ≥ n0, where n0 ∈N may depend on x, and only need to set finitely many terms an = 1. This
choice of (an)n∈N satisfies the assumptions of Lemma 3.5. Therefore,

lim
n→∞ n(snx−1)/ log n + log P

[
n

log n
Tn − 1 < − sn

log n
x

]
= 0.

Proceeding as before,

lim
n→∞

1

sn
n(snx−1)/ log n + 1

sn
log P

[
n

log n
Tn − 1 < − sn

log n
x

]
= 0.

Noting that n(snx−1)/ log n/sn = exp (snx − 1)/sn → ∞, we have

lim
n→∞

1

sn
log P

[
n

log n
Tn − 1 < − sn

log n
x

]
= −∞.

Since sn/n → 0 as n → ∞, we can apply Lemma 3.4 and rearrange terms to complete the proof
of Lemma 3.6. �

We now deduce Theorem 1.3 using a standard technique in large deviations theory.

Proof of Theorem 1.3. Let (sn)n∈N be an arbitrary positive sequence with sn → ∞ and
sn/ log n → 0. Theorem 1.3 follows if we can show for arbitrary open U ⊂R and closed C ⊂R

the bounds
lim inf
n→∞ s−1

n log P [Xn ∈ U] ≥ − inf
z∈U

I(z),

lim sup
n→∞

s−1
n log P [Xn ∈ C] ≤ − inf

z∈C
I(z),

(3.5)
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where we used the notation Xn := log n
sn

(
n

log n‖Zn‖∞ − 1
)

. Recall that

I(z) :=
⎧⎨
⎩

z, z ≥ 0,

+∞, z < 0.

If A ⊂R, we use the notation A− := A ∩ (− ∞, 0] and A+ := A ∩ [0, ∞) as well as
a− := sup A− and a+ = inf A+ such that infz∈A I(z) = a+.

We first prove the upper bound in (3.5) and choose a closed set C ⊂R. If C is
empty, the upper bound is trivial as the probability of Xn being in an empty set is
zero. On the other hand, if 0 ∈ C, the infimum is zero and the upper bound is satisfied
due to P [Xn ∈ C] ≤ 1. Therefore, assume without loss of generality that at least one
of C− and C+ is not empty and that 0 �∈ C. If both are non-empty, then c− < 0 < c+
and C = C− ∪ C+ ⊂ (− ∞, c−] ∪ [c+, ∞), and P [Xn ∈ C] ≤ P

[
Xn < c−

]+ P
[
Xn > c+

]
for n ∈N. This also makes sense if C− is empty, i.e. c− = −∞ or if C+ is empty, i.e.
c+ = ∞, if we interpret P [Xn < −∞] = P [Xn > ∞] = 0. Because of the monotonicity of
the logarithm and [6, Lemma 1.2.15], lim supn→∞ s−1

n log P [Xn ∈ C] ≤ max{M−, M+}
with M− := lim supn→∞ s−1

n log P
[
Xn < c−

]
and M+ := lim supn→∞ s−1

n log P
[
Xn > c+

]
.

Now the upper bound follows from Lemma 3.6 since M− = −∞ and max{M−, M+} = M+ =
−c+ = − infz∈C I(z).

We now prove the lower bound and choose an open set U ⊂R. If U+ is empty, the infimum
is ∞ and the lower bound is trivially satisfied. Assume therefore, without loss of generality,
that U+ is not empty. Take any z ∈ U+. We will show that

lim inf
n→∞ s−1

n log P [Xn ∈ U] ≥ −I(z). (3.6)

This will conclude the proof of the lower bound in (3.5), since then

lim inf
n→∞ s−1

n log P [Xn ∈ U] ≥ − inf
z∈U+

I(z) = − inf
z∈U

I(z).

The openness of U yields that, for all ε ≥ 0 small enough, (z + ε, z + 2ε] ⊂ U. Therefore,

lim inf
n→∞ s−1

n log P [Xn ∈ U] ≥ lim inf
n→∞ s−1

n log P [Xn ∈ (z + ε, z + 2ε]]

= lim inf
n→∞ s−1

n log
(
P [Xn ≥ z + ε] − P [Xn ≥ z + 2ε]

)
≥ lim inf

n→∞ s−1
n log P [Xn ≥ z + ε]

+ lim inf
n→∞ s−1

n log

(
1 − P [Xn ≥ z + 2ε]

P [Xn ≥ z + ε]

)
(3.7)

by the superadditivity of lim inf. We use Lemma 3.6 to conclude the proof. The first sum-
mand in (3.7) satisfies lim infn→∞ s−1

n log P [Xn > z + ε] = −z − ε = −I(z) − ε. Let δ > 0 be
small. For the second summand in (3.7) we choose n0 ∈N large enough such that both
P [Xn > z + 2ε] ≤ e(−(z+2ε)+δ)sn and P [Xn > z + ε] ≥ e(−(z+ε)−δ)sn for n ≥ n0. This shows that
the fraction in the second summand satisfies, for every n ≥ n0,

0 ≤ P [Xn > z + 2ε]

P [Xn > z + ε]
≤ e(2δ−ε)sn ,
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which tends to zero for n → ∞ if δ < 1
2ε. Thus, the second summand in (3.7) is equal to zero

and, after letting ε → 0, the inequality (3.6) is established for any z ∈ U+, which proves the
lower bound in (3.5) and thus Theorem 1.3. �

3.4. Proof of the LDP

For the proof of Theorem 1.4 we use a rather general result on large deviations for maxima
and minima [12, Proposition 3.1]. Recall that a function H : R→R is said to be regularly
varying at ∞ of index α ∈R if, for all u > 0, limt→∞ [H(ut)/H(t)] = uα .

Lemma 3.7 Let X, X1, X2, . . . be i.i.d. real-valued random variables with P [X ≤ x] < 1 for all
x > 0 such that − log P [X > x] is regularly varying at ∞ of index α > 0 as a function of x ∈R.

Choose mn ∈R such that P [X > mn] = 1
n and set Mn = max1≤i≤n Xi. Then

(
Mn
mn

)
n≥1

satisfies

an LDP with speed sn = log n and good rate function

I(z) :=
{

zα − 1, z ≥ 1,

+∞, z < 1.

In order to prove Theorem 1.4 we make use of this result, Lemma 2.2, and the next lemma,
which states the exponential equivalence of the sequences in question.

Lemma 3.8 Set Mn = max1≤i≤n Ei. The sequences
(

n
log n‖Zn‖∞

)
n∈N and

(
Mn

log n

)
n∈N are

exponentially equivalent at speed log n.

Proof. This amounts to showing that, for every δ > 0,

lim sup
n→∞

1

log n
log P
[∣∣n‖Zn‖∞ − Mn

∣∣> δ log n
]= −∞.

Fix δ > 0. Then, for every n ∈N,

P
[∣∣n‖Zn‖∞ − Mn

∣∣> δ log n
]≤ P
[∣∣nTn − Mn

∣∣> δ log n
]+ P
[‖Zn‖∞ �= Tn

]
.

By Lemma 3.4 the second summand satisfies 1
log n log P

[‖Zn‖∞ �= Tn
]→ −∞ as

n → ∞. Recall the notation Ēn = Sn
n . For the first summand we compute nTn − Mn =

MnĒ−1
n − 1 − Mn = −(Mn

(
Ēn − 1
)
Ē−1

n + 1
)
. Setting An := Mn(Ēn − 1)Ē−1

n , it follows
that P

[∣∣nTn − Mn
∣∣> δ log n

]= P
[|An + 1| > δ log n

]
. Whenever n is large enough

log n > 2δ−1 holds, and thus P
[|An + 1| > δ log n

]≤ P
[|An + 1| > 2

]≤ P
[|An| > 1

]
.

Introducing Bn := n−1/4Mn and Cn := n1/4(Ēn − 1)Ē−1
n , such that An = BnCn, gives

P
[∣∣nTn − Mn

∣∣> δ log n
]≤ P
[|Bn| > 1/2

]+ P
[|Cn| > 2

]
. By the union bound, the first

summand satisfies

P
[|Bn| > 1/2

]= P

[
Mn > n1/4/2

]
≤ nP
[
E1 > n1/4/2

]
= ne−n1/4/2,

and thus
1

log n
log P
[|Bn| > 1/2

]≤ 1 − n1/4

2 log n
n→∞−−−→ −∞.

The other summand can be estimated by means of P
[|Cn| > 2

]≤ P
[
Ēn < 1/2

]+
P
[
n1/4|Ēn − 1| > 1

]
. Cramér’s theorem (Lemma 2.1) implies that

1

log n
log P
[
Ēn < 1/2

] n→∞−−−→ −∞.
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After splitting the second summand into

P

[
n1/4
∣∣Ēn − 1

∣∣> 1
]
= P

[
n1/4(Ēn − 1

)
> 1
]
+ P

[
n1/4(Ēn − 1

)
< −1
]
,

we apply the moderate deviations principle (Lemma 2.3) with an = n−1/2, n ∈N, giving

lim
n→∞ n−1/2 log P

[
n1/4(Ēn − 1

)
> 1
]
= −1

2
,

lim
n→∞ n−1/2 log P

[
n1/4(Ēn − 1

)
< −1
]
= −1

2
.

Consequently,
1

log n
log P

[
n1/4|Ēn − 1| > 1

]
n→∞−−−→ −∞,

and thus
1

log n
log P
[|Cn| > 2

] n→∞−−−→ −∞,

completing the proof. �

Remark 3.5 The choice of the sequence n1/4 was arbitrary; any sequence growing faster than
log n and slower than

( n
log n

)1/2 would have done the job.

Proof of Theorem 1.4. We apply Lemma 3.7 to the case of standard exponential random
variables and verify the assumptions. We have P [X ≤ x] = 1 − e−x < 1 for all x ∈R and
− log P [X > x] = x, which is regularly varying at ∞ of index α = 1. We choose mn = log n
and thus obtain an LDP of speed log n and rate function as in Lemma 3.7 with α = 1. By
Lemma 2.2 the just-proven Lemma 3.8 implies Theorem 1.4. �

4. Comparison with and application to �n
p-balls

4.1. An LDP for �n
p-balls

In [15] LDPs for the �q-norm of uniformly distributed points in �n
p-balls were proven for

the cases 1 ≤ p < ∞, 1 ≤ q < ∞ and p = ∞, 1 ≤ q ≤ ∞. In order to compare the LDP for
the simplex with the one for the crosspolytope (i.e. the unit ball in �n

1), we complete the pic-
ture presented in [15] by deriving, without making the argument more complicated, a slightly
more general LDP covering all possible values 1 ≤ p < ∞ and put q = ∞. Let 1 ≤ p < ∞ and
B

n
p := {x ∈R

n : ‖x‖p ≤ 1} be the �n
p-unit ball. Further, let Z′

n be uniformly distributed in B
n
p for

all n ∈N.

Theorem 4.1 Let 1 ≤ p < ∞. The sequence
(
(n/p log n)1/p‖Z′

n‖∞
)

n∈N satisfies an LDP with
speed log n and rate function

I(z) :=
{

zp − 1, z ≥ 1,

∞, z < 1.

In particular, taking p = 1 and comparing the result to Theorem 1.4 we see that the LDPs for
the �∞-norm of uniformly distributed random points in a crosspolytope and a regular simplex
are identical.
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The proof of Theorem 4.1 is based on the Schechtman–Zinn probabilistic representation,
saying that for any n ∈N the distributional identity

Z′
n

d= U1/n Y ′
n

‖Y ′
n‖p

holds, where U is uniformly distributed on [0,1] and independent of Y ′
n := (Y1, . . . , Yn)

which has i.i.d. p-generalized Gaussian distributed entries; see [26]. We recall that if a
random variable Y is distributed according to the p-generalized Gaussian distribution its
Lebesgue density fp is given by cpe−|y|p/p, x ∈R, with the normalization constant given by
cp := (2p1/p�(1 + 1/p))−1.

Next, we define for each n ∈N the number mn(p) > 0 by P[|Y| > mn(p)] = 1
n , where Y is a

p-generalized Gaussian random variable. From lemma 3.7 we can deduce the following result
for Mn(p) := max1≤i≤n |Yi|.
Lemma 4.1 Let 1 ≤ p < ∞. The sequence (Mn(p)mn(p)−1)n∈N satisfies an LDP with speed
log n and rate function I as in Theorem 4.1.

Proof. We check the assumptions of Lemma 3.7, and note that by the symmetry of the gener-
alized Gaussian distribution, P

[|Y| > x
]= 2P [Y > x] > 0 for every x > 0. In order to check if

− log P [|Y| > x] is regularly varying at ∞, we compute, for every u > 0,

lim
t→∞

log P
[|Y| > ut

]
log P
[|Y| > t

] = lim
t→∞

log 2 + log P [Y > ut]

log 2 + log P [Y > t]
= lim

t→∞
(ut)p

tp
= up.

Here, we used that according to the inequality

x

xp + p − 1
e−xp/p ≤

∫ ∞

x
e−yp/p dy ≤ 1

xp−1
e−xp/p, (4.1)

which is valid for all 1 ≤ p < ∞ and x > 0, log P
[|Y| > x

]
is asymptotically equivalent to

−xp/p as x → ∞. Thus, the assumptions of Lemma 3.7 are satisfied with α = αp := p > 0,
and we can complete the proof. �

Lemma 4.2 The two sequences
(
Mn(p)mn(p)−1

)
n∈N and

(
n1/p‖Z′

n‖∞mn(p)−1
)

n∈N are expo-
nentially equivalent at speed log n for 1 ≤ p < ∞.

Proof. Note that

n1/p‖Z′
n‖∞mn(p)−1 d= U1/n Mn(p)mn(p)−1(

1
n

∑n
i=1 |Yi|p

)1/p
,

with the Y ′
i being independent and p-generalized Gaussians. Then, the exponential equivalence

is proved using Cramér’s theorem as in the proof of [15, Theorem 1.3]. It remains to note that,
for 0 < ε ≤ δ, we have, by Lemma 4.1,

lim sup
n→∞

1

log n
log P

[
Mn(p)mn(p)−1 >

δ

ε

]
= −
((δ

ε

)p − 1

)
,

which tends to −∞ as ε → 0. �

After these preparations, we can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.1 the sequence
(
Mn(p)mn(p)−1

)
n∈N satisfies the

required LDP, and so does
(
n1/p‖Z′

n‖∞mn(p)−1
)

n∈N by Lemma 4.2. Using (4.1), we
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can see that mn(p)(p log n)−1/p tends to 1 as n → ∞. Consequently, the sequences(
n1/p‖Z′

n‖∞mn(p)−1
)

n∈N and
(
(n/p log n)1/p‖Z′

n‖∞
)

n∈N satisfy the same LDP. �

4.2. Intersection with �n
p-balls

As an application of our central limit theorem, we sketch here a geometric application in the
spirit of classical results of [26, 27] on the intersection of two different �n

p-balls. In our case,
we consider the intersection volume of an �p-ball and a regular simplex. To be precise, we
denote by D

n
p :=B

n
p/|Bn

p|n the normalized �n
p-ball, where | · |n is a shorthand notation for the

n-dimensional Lebesgue measure. Similarly, we define the normalized (n − 1)-dimensional
regular simplex �n−1 := �̃n−1/|�̃n−1|n−1, where �̃n−1 := �n−1 − 1

n (e1 + · · · + en) is the
centered (n − 1)-dimensional regular simplex (note that |�̃n−1|n−1 = |�n−1|n−1).

Theorem 4.2 Let s > 0, 1 ≤ p < ∞, and define Ap := 2e−1μ
1/p
p �
(

1 + 1
p

)
(pe)1/p. Then

lim
n→∞
∣∣�n−1 ∩ sDn

p

∣∣
n−1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, sA−1
p > 1,

1

2
, sA−1

p = 1,

0, sA−1
p < 1.

Proof. We start by introducing some notation. For each n ∈N we put

Ap,n := μ1/p
p

n1/p
∣∣Bn

p

∣∣1/n
n

n|�̃n−1|1/(n−1)
n−1

and let sn be such that sn(Ap,n/Ap) = s. Using Stirling’s formula repeatedly, we can verify that
Ap,n = Ap

(
1 + O(n−1 log n)

)
. Indeed,

Ap,n = 2μ1/p
p �

(
1 + 1

p

){
n1/p(√

2πn/p(n/(ep))n/p
(
1 + O
(
n−1
)))1/n

}

×
{

n

( √
n√

2π (n − 1)((n − 1)/e)n−1
(
1 + O
(
n−1
)))1/(n−1)}−1

= 2μ1/p
p �

(
1 + 1

p

)
(ep)1/p

e

(
1 + O
(
n−1
))1/n

(n/p)1/(2n)
(
1 + O
(
n−1
))1/n

= Ap
(
1 + O
(
n−1 log n

))
,

where we used that (n/p)1/(2n) = 1 + O
(
n−1 log n

)
in the last step.

Next, we rewrite
∣∣�n−1 ∩ sDn

p

∣∣
n−1 in probabilistic terms by using the definition of sn:∣∣�n−1 ∩ sDn

p

∣∣
n−1

=
∣∣∣∣
{

z ∈ �n−1 : z ∈ sn
Ap,n

Ap
D

n
p

}∣∣∣∣
n−1

=
∣∣∣∣∣
{

z ∈ �n−1 : z ∈ snn
1
p −1

μ1/p
p A−1

p

|Bn
p|1/n

n∣∣�n−1
∣∣1/(n−1)
n−1

D
n
p

}∣∣∣∣∣
n−1

=
∣∣∣{z ∈ ∣∣�̃n−1

∣∣−1/(n−1)
n−1 �̃n−1 : z ∈ snn

1
p −1

μ1/p
p A−1

p

∣∣�̃n−1
∣∣−1/(n−1)
n−1 B

n
p

}∣∣∣
n−1
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=
∣∣∣{z ∈ �̃n−1 : z ∈ snn

1
p −1

μ
1/p
p A−1

p B
n
p

}∣∣∣
n−1∣∣�̃n−1

∣∣
n−1

= P
(‖Zn‖p ≤ snn

1
p −1

μ1/p
p A−1

p

)
,

where Zn is uniformly distributed in �̃n−1. Now, we observe that

P

(
‖Zn‖p ≤ snn

1
p −1

μ1/p
p A−1

p

)
= P

(√
n
(
n1− 1

p ‖Zn‖pμ
−1/p
p − 1

)≤ √
n
(
snA−1

p − 1
))

.

This allows us to apply the central limit theorem from Corollary 1.1. Indeed, if sA−1
p > 1

or sA−1
p < 1, then

√
n
(
snA−1

p − 1
)→ +∞ or −∞ respectively as n → ∞. In the equal-

ity case sA−1
p = 1, since sn = s

(
1 + O(n−1 log n)

)
for arbitrary ε > 0, we have

√
n
(
snA−1

p −
1
)= √

n
(
sA−1

p (1 + O(n−1 log n)) − 1
)= O
(
n−1/2 log n

)→ 0 as n → ∞. The proof is thus
complete. �

It is interesting to know the value of s in the critical case, i.e. s = Ap, for different choices
of p. For example, if p = 1, which corresponds to the intersection of the simplex with the
crosspolytope, we have that s = A1 = 2μ1 = 4/e ≈ 1.4715. For p = 2, which corresponds to
the intersection of the simplex with the Euclidean ball, we obtain s = A2 = √

2π/e ≈ 1.5203.

Remark 4.1 As in the case of �p-balls (see [15, Corollary 2.2]) one can show that for any

r ∈ (0, 1) there exists a sequence
(
s(r)

n
)

n∈N for which
∣∣�n−1 ∩ s(r)

n D
n
p

∣∣
n−1 → r as n → ∞.
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