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Abstract. Let F be a holomorphic foliation by curves defined in a neighborhood of 0 in
C2 having 0 as a hyperbolic singularity. Let T be a harmonic current directed by F which
does not give mass to any of the two separatrices. We show that the Lelong number of T at
0 vanishes. Then we apply this local result to investigate the global mass distribution for
directed harmonic currents on singular holomorphic foliations living on compact complex
surfaces. Finally, we apply this global result to study the recurrence phenomenon of a
generic leaf.

1. Introduction
While investigating the unique ergodicity of harmonic currents on singular holomorphic
foliations in P2, Fornæss and Sibony in [7, Corollary 2] established, among other things,
the following remarkable result.

THEOREM 1.1. (Fornæss and Sibony [7]) Let (M,F , E) be a hyperbolic foliation with
the set of singularities E in a compact complex surface M. Assume that all the singularities
are hyperbolic and that the foliation has no invariant analytic curve. Then for every
harmonic current T directed by F , its transverse measure is diffuse, that is, T gives no
mass to each single leaf.

In fact, the original version of the Fornæss–Sibony theorem was only formulated for the
case M = P2. However, their argument still goes through (at least) in the above general
context. On the other hand, a convenient way to quantify the density of harmonic currents
is to use the notion of the Lelong number introduced by Skoda [12]. Indeed, Theorem 1.1
is equivalent to the assertion that the Lelong number of T vanishes everywhere outside E .
Complementarily to this theorem, the main purpose of the present work is to investigate
the mass-clustering phenomenon of T near the set of singularities E . Here is our main
result, which is of local nature.
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THEOREM 1.2. (Main theorem) Let (D2,F , {0}) be a holomorphic foliation on the unit
bidisc D2 associated to the linear vector field 8(z, w)= µz∂/(∂z)+ λw∂/(∂w), where
λ, µ are non-zero complex numbers such that λ/µ 6∈ R. Then for every harmonic current
T directed by F which does not give mass to any of the two separatrices (z = 0) and
(w = 0), the Lelong number of T at 0 vanishes.

Note that the hypothesis on the linear vector field means that 0 is an isolated hyperbolic
singularity of the foliation (see, for example, the recent survey [6]). Our proof of Theorem
1.2 is inspired by the approach of Fornæss and Sibony in [6, 7] which is based on integral
formulas. Indeed, the nature of the holonomy maps associated to a hyperbolic singularity
allows us to use the Poisson representation formula for harmonic functions on leaves
associated to a given harmonic current near the singularity. Therefore, we are led to
analyze the behavior of some singular integrals at infinity, that is, when the leaves get
close to the separatrices. Using delicate Poisson kernel estimates, we are able to handle
these singular integrals.

Combining Theorems 1.1 and 1.2, we obtain the following result which gives a rather
complete picture of the mass distribution of directed harmonic currents in dimension 2.

THEOREM 1.3. Let (M,F , E) be a hyperbolic foliation with the set of singularities E in
a compact complex surface M. Assume that all the singularities are hyperbolic and that
the foliation has no invariant analytic curve. Then for every harmonic current T directed
by F , the Lelong number of T vanishes everywhere in M.

The above theorem and a result by Glutsyuk [8] and Lins Neto [9] gives us the following
corollary. It can be applied to every generic foliation in P2 with given degree d > 1
(see [10]).

COROLLARY 1.4. Let (P2,F , E) be a singular foliation by Riemann surfaces on the
complex projective plane P2. Assume that all the singularities are hyperbolic and that F

has no invariant algebraic curve. Then for every harmonic current T directed by F , the
Lelong number of T vanishes everywhere in P2.

It is worth noting that under the hypothesis of Corollary 1.4 there is a unique harmonic
current T of mass 1 directed by F . Indeed, this is a consequence of the Fornæss–Sibony
theorem on the unique ergodicity of harmonic currents (see [7, Theorem 4]).

As an application of our results we will study the problem of leaf recurrence. This
problem asks how often the leaf La of a point a, which is generic with respect to a
directed harmonic current T, visits the neighborhood of a given point x . Our approach
to this question is to apply a geometric Birkhoff ergodic theorem which has recently been
obtained in our joint work with Dinh and Sibony [2]. The theorem permits us to define,
using the leafwise Poincaré metric, an indicator which measures the frequency of a generic
leaf visiting a small ball near a given point in terms of the radius of the ball. This, combined
Theorem 1.3, gives us an upper estimate on the frequency outside and near singularities
(see Theorem 5.2 below).

This paper is organized as follows. In §2 we set up the background for the paper. Next,
we develop our main estimates in §3, which are the core of the work. The proof of Theorem
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1.2 and Theorem 1.3 is provided in §4. The recurrence phenomenon of a generic leaf is
studied in §5. The paper concludes with some remarks and open questions.
Note added in proof. If, in Theorem 1.3, we assume in addition that M is a projective
surface, then our recent work [11, integrability condition (1.1)] provides the following
estimate: ∫

X

T ∧ ω(x)
(dist(x, E))2 log∗ dist(x, E)

<∞.

Here ω is a Hermitian metric on X and dist is the distance on M induced by ω, and
log∗(·) := 1+ | log(·)| is a log-type function. This inequality is much more difficult
to obtain than the vanishing of the Lelong number of T at singularities established in
Theorem 1.3.

2. Background
Let M be a complex surface. A holomorphic foliation (by Riemann surfaces) (M,F ) on
M is the data of a foliation atlas with charts

8p : Up→ Bp × Tp.

Here, Tp and Bp are domains in C, Up is a domain in M, and 8p is biholomorphic, and
all the changes of coordinates 8p ◦8

−1
q are of the form

x = (y, t) 7→ x ′ = (y′, t ′), y′ =9(y, t), t ′ =3(t).

The open set Up is called a flow box and the Riemann surface 8−1
p {t = c} in Up with

c ∈ Tp is a plaque. The property of the above coordinate changes ensures that the plaques
in different flow boxes are compatible in the intersection of the boxes. Two plaques are
adjacent if they have non-empty intersection.

A leaf L is a minimal connected subset of M such that if L intersects a plaque, it
contains that plaque. So a leaf L is a Riemann surface immersed in M which is a union of
plaques. A leaf through a point x of this foliation is often denoted by Lx . A transversal is
a Riemann surface immersed in X which is transverse to the leaves of F .

A holomorphic foliation with singularities is the data (M,F , E), where M is a
complex surface, E a closed subset of M and (M \ E,F ) is a holomorphic foliation.
Each point in E is said to be a singular point, and E is said to be the set of singularities
of the foliation. We always assume that M \ E = M ; see, for example, [2, 5, 6] for more
details. A leaf L of the foliation is said to be hyperbolic if it is a hyperbolic Riemann
surface, that is, it is uniformized by the unit disc D. The foliation is said to be hyperbolic
if its leaves are all hyperbolic.

Consider a holomorphic foliation (M,F , E) with a discrete set of singularities E on a
complex surface M. We say that a singular point x ∈ E is linearizable if there is a (local)
holomorphic coordinate system of M on an open neighborhood Ux of x on which (Ux , x)
is identified with (D2, 0) and the leaves of (M,F , E) are, under this identification,
integral curves of a linear vector field 8(z, w)= µz∂/(∂z)+ λw∂/(∂w) with non-zero
complex numbers λ, µ. Such a neighborhood Ux is called a singular flow box of x .
Moreover, we say that a linearizable singular point x ∈ E is hyperbolic if λ/µ 6∈ R.

Let CF (respectively, C 1,1
F ) denote the space of functions (respectively, forms of

bidegree (1, 1)) defined on leaves of the foliations and compactly supported on M \ E
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which are leafwise smooth and transversally continuous. A form α ∈ C 1,1
F is said to be

positive if its restriction to every plaque is a positive (1, 1)-form in the usual sense.

Definition 2.1. A harmonic current T directed by the foliation F (or equivalently, a
directed harmonic current T on F ) is a linear continuous form on C 1,1

F which satisfies
the following two conditions:
(i) i∂∂T = 0 in the weak sense, that is, T (i∂∂ f )= 0 for all f ∈ CF , where in the

expression i∂∂ f, we only consider ∂∂ along the leaves;
(ii) T is positive, that is, T (α)≥ 0 for all positive forms α ∈ C 1,1

F .

Let U' B× T be a flow box. By identifying T with a fiber of the natural projection
of U onto B, we may regard T as a transversal. Then a harmonic current T in U can be
decomposed as

T =
∫
α∈T

hα[Pα] dν(α), (1)

where ν is a positive measure on T, and, for ν-almost every α ∈ T, Pα is the plaque in U
passing through α and hα denotes the harmonic function associated to the current T on
Pα.

Recall from Skoda [12] that the Lelong number of T at a point x ∈ M is

L(T, x) := lim
r→0+

1
πr2

∫
B(x,r)

T ∧ i∂∂‖y‖2, (2)

where we identify, through a biholomorphic change of coordinates, a neighborhood of x in
M with an open neighborhood of 0 in C2, and B(x, r) is thus identified with the Euclidean
ball with center 0 and radius r. In fact, the Lelong number L(T, x) is independent of the
choice of local coordinates. The reader can find a more general notion (Dinh–Sibony
cohomology classes) recently introduced and studied in [4].

In this work the letters c, c′, c′′, c0, c1, c2, etc. denote positive constants, not
necessarily the same at each occurrence. The symbols & and . denote inequalities up
to a multiplicative constant, whereas we write ≈ when both inequalities are satisfied.

3. Main estimates
We retain the hypotheses of Theorem 1.2. Suppose without loss of generality that the
foliation F is defined on the bidisc of radius 2, that is, (2D)2 in place of D2, and that
the constant µ is equal to 1. Let L be the foliation in C2 associated to the vector field
8(z, w)= z∂/(∂z)+ λw∂/(∂w) with some complex number λ= a + ib, b 6= 0. So L =

F on (2D)2. Note that if we flip z and w, we replace λ by 1/λ= λ̄/|λ|2 = a/(a2
+ b2)−

ib/(a2
+ b2). Therefore, we may assume without loss of generality that b > 0. We now

describe a general leaf of L . There are two separatrices, (w = 0), (z = 0). Other than
that, a leaf L of L is equal to L(1,α) =: Lα for some α ∈ C \ {0}. Following [7, §2], Lα
can be parametrized by

(z, w)= ψα(ζ ), z = ei(ζ+(log |α|)/b), ζ = u + iv, w = αeiλ(ζ+(log |α|)/b), (3)

because ψα(−log |α|/b)= (1, α). Setting t := bu + av, we have that

|z| = e−v, |w| = e−bu−av
= e−t . (4)
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Observe that as we follow z once counterclockwise around the origin, u increases by 2π ,
so the absolute value of |w| decreases by the multiplicative factor of e−2πb. Hence, we
cover all leaves of F |D2 by restricting the values of α so that e−2πb

= |α|< 1. We notice
that with the above parametrization, the intersection with the unit bidisc D2 of the leaf is
given by the domain {(u, v) ∈ R2

: v > 0, u >−av/b}. The main point of this special
parametrization is that the above domain is independent of α. In the (u, v)-plane this
domain corresponds to a sector Sλ with corner at 0 and given by 0< θ < arctan(−b/a)
where the arctan is chosen to have values in (0, π). Let γ := π/ arctan(−b/a). It is
important to note that γ > 1. Then the map

φ : τ = u + iv 7→ τ γ = (u + iv)γ =:U + iV (5)

maps this sector to the upper half plane with coordinates (U, V ).
The local leaf clusters on both separatrices. To investigate the clustering on the z-

axis, we use a transversal Tz0 := {(z0, w) : |w|< 1} for some |z0| = 1. We can normalize
so that hα(z0, w)= 1 where (z0, w) is the point on the local leaf with e−2πb

≤ |w|<

1. So (z0, w)= ψα(ζ0)= ψα(u0 + iv0) with v0 = 0 and 0< u0 ≤ 2π determined by the
equations |z0| = e−v0 = 1 and e−2πb

≤ |w| = e−bu0−av0 < 1. Let T be a harmonic current
of mass 1 directed by F . Let U be a flow box which admits Tz0 as a transversal. Then by
(1) we can write in U,

T =
∫

hα[Pα] dν(α), (6)

where, for ν-almost every α satisfying e−2πb
≤ |α| ≤ 1, hα denotes the harmonic

function associated to the current T on the plaque Pα which is contained in the
leaf Lα. We still denote by hα its harmonic continuation along Lα. Define h̃α(ζ ) :=
hα(ei(ζ+(log |α|)/b), αeiλ(ζ+(log |α|)/b)) on Sλ. Consider the harmonic function H̃α := h̃α ◦
φ−1 defined in the upper half plane {U + iV : V > 0}, where φ is given in (5). Recall the
following result from [7].

LEMMA 3.1. The harmonic function H̃α is the Poisson integral of its boundary values. So
in the upper half plane {U + iV : V > 0},

H̃α(U + iV )=
1
π

∫
∞

−∞

H̃α(y)
V

V 2 + (y −U )2
dy

for ν-almost every α. Moreover,∫
e−2πb≤|α|≤1

∫
∞

−∞

H̃α(y)(1+ |y|)1/γ−1dy dν(α) <∞.

Proof. The lemma follows from [7, Proposition 1 and Remark 1]. The finiteness of the
integral follows from the finiteness of the total mass of the harmonic currents on the
disjoint flow boxes crossed when we follow a path around the two separatrices, but away
from the singularity 0. �

For 0< r < 1, let

F(r) :=
∫

Br

T ∧ i∂∂‖x‖2, (7)
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where Br denotes the ball centered at 0 with radius r in C2. Consider also the function

G(r) :=
1
r2 F(r). (8)

By Skoda [12], G(r) decreases as r ↘ 0, and limr→0 G(r) is the Lelong number L(T, 0)
of T at 0. On the other hand, for each s > 0, consider two domains

D∗s := {(u, v) ∈ Sλ :min{v, bu + av} ≥ s} and Ds := {(t, v) ∈ R2
: min{t, v} ≥ s},

and the function Ks : R→ R+ given by

Ks(y) :=
∫

D∗s

e2s−2 min{v,bu+av}V
V 2 + (y −U )2

du dv =
1
b

∫
Ds

e2s−2 min{v,t}V
V 2 + (y −U )2

dt dv, y ∈ R. (9)

Here the last equality holds since t = bu + av by (4).
In what follows the letters c, c′, c1, c2, etc. denote positive constants, not necessarily

the same at each occurrence. For two positive-valued functions A and B, we write A ≈ B
if there is a constant c such that c−1 A ≤ B ≤ cA.

LEMMA 3.2. There is a constant c > 0 such that, for every 0< r < 1,

G(r)≤ c
∫

e−2πb≤|α|≤1

( ∫
∞

−∞

K−log r (y)H̃α(y) dy
)

dν(α).

Proof. Using (6), (7) and the parametrization (3), and the assumption that T does not give
mass to any of the two separatrices (z = 0) and (w = 0), we have, for 0< r < 1, that

F(r)=
∫

e−2πb≤|α|≤1

∫
ζ∈Sλ: ‖ψα(ζ )‖≤r

hα(ψα(ζ ))‖ψ ′α(ζ )‖
2i dζ ∧ d ζ̄dν(α).

On the other hand, we infer from (4) that ‖(z, w)‖ = ‖ψα(ζ )‖ ≤ r implies min{v, bu +
av} ≥ −log r. Moreover, using (3) and (4) again, we get that

‖ψ ′α(ζ )‖ =

√
|z|2 + |λw|2 ≤ (1+ |λ|)e−min{v,bu+av}.

Consequently,

F(r)≤ c
∫

e−2πb≤|α|≤1

∫
(u,v)∈D∗

−log r

hα(ψα(u + iv))e−2 min{v,bu+av} du dv dν(α).

Writing U + iV = (u + iv)γ as in (5), an application of Lemma 3.1 yields that

hα(ψα(u + iv))=
1
π

∫
∞

−∞

H̃α(y)
V

V 2 + (y −U )2
dy

for ν-almost every α. Substituting this into the last estimate for F(r), taking (8) into
account and writing r−2

= e−2 log r , the lemma follows. �

The next lemma studies the behavior of the Poisson kernel V/(V 2
+ (y −U )2) in terms

of u and v.
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LEMMA 3.3. There are constants c1, c2, c3 > 1 large enough, with c3 > c2, such that the
following properties hold for all (u, v) ∈ R2 with min{v, bu + av} ≥ 1.

(1)
1
c1
≤
(max{v, bu + av})γ
√

V 2 +U 2
≤ c1 and

1
c1
≤
(max{v, bu + av})γ−1 min{v, bu + av}

V
≤ c1.

(2) If max{v, bu + av} ≥ c2(1+ |y|)1/γ , then

1
c1

min{v, bu + av}
(max{v, bu + av})γ+1 ≤

V
V 2 + (y −U )2

≤ c1
min{v, bu + av}

(max{v, bu + av})γ+1 .

(3) If max{v, bu + av} ≤ c−1
2 (1+ |y|)1/γ , then

1
c1

V
(1+ |y|)2

≤
V

V 2 + (y −U )2
≤ c1

V
(1+ |y|)2

.

(4) If c−1
2 (1+ |y|)1/γ ≤ v, bu + av ≤ c2(1+ |y|)1/γ , then

1
c1

1
(1+ |y|)

≤
V

V 2 + (y −U )2
≤ c1

1
(1+ |y|)

.

(5) If min{v, bu + av} ≤ c−1
3 (1+ |y|)1/γ and c−1

2 (1+ |y|)1/γ ≤max{v, bu + av} ≤
c2(1+ |y|)1/γ , then

1
c1
≤

V
V 2 + (y −U )2

:
(1+ |y|)1/γ−1 min{v, bu + av}

(min{v, bu + av})2 + (max{v, bu + av} − ρ)2
≤ c1,

where ρ is a real number which depends only on y and min{v, bu + av}, and which
satisfies c−1

2 (1+ |y|)1/γ ≤ ρ ≤ c2(1+ |y|)1/γ .

Proof. (1) The first inequality of part (1) follows from the equality |U + iV | = |u +
iv|γ . To prove the second inequality of part (1) we use some elementary trigonometric
arguments. Let O denote the origin in the (u, v)-plane and let M denote the point
u + iv. Recall that the sector Sλ is delimited by two rays emanating from O which
correspond to two lines v = 0 and bu + av = 0. Let A (respectively, B) be the unique
point lying on the ray corresponding to v = 0 (respectively, bu + av = 0) such that
O A = 1 (respectively, O B = 1). Let θ := ] ÂO M and ϑ := ]M̂ O B. Then θ, ϑ ≥ 0 and
θ + ϑ = arctan(−b/a) ∈ (0, π). A geometric argument gives that

sin θ = v/O M and sin ϑ = (bu + av)/O M.

Moreover,

max{v, bu + av} ≤ O M ≤ |u| + |v| ≤ (1+ (1+ |a|)b−1)max{v, bu + av}.

Consequently,

sin θ ≈
v

max{v, bu + av}
and sin ϑ ≈

bu + av
max{v, bu + av}

. (10)

Let N be the point U + iV in the (U, V )-plane. Let C (respectively, D) be the image
of A (respectively, B) by the map φ : τ 7→ τ γ given in (5). Clearly, ]Ĉ O N = γ θ
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and ]N̂ O D = γϑ and ]Ĉ O N + ]N̂ O D = γ θ + γϑ = π. Suppose without loss of
generality that θ ≤ ϑ, or equivalently v ≤ bu + av. Then 0≤ θ ≤ π/2 and ]Ĉ O N =
γ θ ≤ π/2. Combining this with the well-known estimate 2/π ≤ (sin t)/t ≤ 1 for 0< t ≤
π/2, we get that

sin(γ θ)≈ γ θ ≈ γ sin θ ≈ sin θ ≈
v

max{v, bu + av}
,

where the last estimate holds by (10). On the other hand, a geometric argument shows that

V =
√

U 2 + V 2 · sin ]Ĉ O N =
√

U 2 + V 2 · sin(γ θ).

This, coupled with the last estimate for sin(γ θ) and the first estimate (for
√

U 2 + V 2) in
part (1), implies the second estimate of this part.

(2) We will show that there is a constant c > 1 such that

c−1(U 2
+ V 2)≤ V 2

+ (y −U )2 ≤ c(U 2
+ V 2). (11)

Taking (11) for granted, part (2) follows from combining (11) with part (1).
Now we turn to the proof of (11). Using the first estimate of part (1) and the assumption

of part (2), we have that√
U 2 + V 2 ≥ c−1

1 (max{v, bu + av})γ ≥ c−1
1 cγ2 (1+ |y|). (12)

Therefore,

V 2
+ (y −U )2 ≤ V 2

+ 2U 2
+ 2y2

≤ (2+ 2c2
1c−2γ

2 )(U 2
+ V 2),

which proves the right-hand-side estimate of (11) for c := 2+ 2c2
1c−2γ

2 .

To prove the left-hand-side estimate of (11), consider two cases. If V ≥ |U | then V 2
+

(y −U )2 ≥ V 2
≥

1
2 (U

2
+ V 2). If V < |U | then for c2 > 1 large enough, (12) yields that

|U | ≥ 2|y|, which in turn implies that V 2
+ (y −U )2 ≥ V 2

+
1
4U 2
≥

1
4 (U

2
+ V 2). This

completes the proof of (11).
(3) Using the first estimate of part (1) and the assumption of part (3), we have that√

U 2 + V 2 ≤ c1(max{v, bu + av})γ ≤ c1c−γ2 (1+ |y|).

We fix c2 > 1 large enough so that the last line gives |y| ≥ 2c1 ·max{|U |, V }. This gives,
using the first estimate of part (1),

|y| ≥ c1

√
U 2 + V 2 ≥ (max{v, bu + av})γ ≥ 1.

Consequently, we get, using |y|> 2|U |, that

1
12 (1+ |y|)

2
≤

1
4 y2
≤ V 2

+ (y −U )2 ≤ V 2
+ 2U 2

+ 2y2
≤ 4(1+ |y|)2,

which completes part (3).
(4) By the assumption of part (4), v ≈ bu + av. Consequently, we deduce from (10)

that θ, ϑ ≈ 1, which in turn implies that V,U ≈
√

U 2 + V 2. This, combined with the
assumption of part (4) and the first estimate of part (1), yields that

V,U,
√

U 2 + V 2 ≈ 1+ |y|.
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Using this and the inequalities

(1+ |y|)2 ≈ V 2
≤ V 2

+ (y −U )2 ≤ V 2
+ 2U 2

+ 2y2
≈ (1+ |y|)2,

part (4) follows.
(5) Let (u, v) as in the assumption of part (5) and let c1, c2 > 1 be constants given

by part (1). Suppose without loss of generality that v ≤ t, where t := bu + av as usual.
Fix c3 ≥ c2 large enough so that for every 1≤ v ≤ c−1

3 (1+ |y|)1/γ , there exists a solution
u := u(y, v) of the equation

U = y where U + iV ′ = (u + iv)γ ,

which satisfies

c−1
2 (1+ |y|)1/γ ≤ u(y, v), ρ(y, v)≤ c2(1+ |y|)1/γ ,

where ρ(y, v) := bu(y, v)+ av. Let ρ = ρ(y, v). Note that

min{v, t} ≈min{v, ρ} and max{v, t} ≈max{v, ρ} ≈ (1+ |y|)1/γ .

Therefore, we deduce from the second inequality of part (1) that

V ≈ V ′. (13)

Note also that for c3 ≥ c2 large enough, u = b−1(ρ − av)≈ (1+ |y|)1/γ and v� (1+
|y|)1/γ . In particular, we get that

0< arg(u + iv), arg(u(y, v)+ iv) <
π

2γ
, (14)

where arg denotes the argument of a non-zero complex number. We need the following
elementary fact.

LEMMA 3.4. Let c′, γ > 1 be two constants. Then there is a constant c′′ such that, for all
w, w′ ∈ C \ {0} satisfying

c′−1
≤ |w′|/|w| ≤ c′ and 0≤ arg w, arg w′ <

π

2γ
,

we have that

c′′−1
|w − w′|(|w| + |w′|)γ−1

≤ |wγ − w′γ | ≤ c′′|w − w′|(|w| + |w′|)γ−1.

Proof. Suppose without loss of generality that 0< arg w ≤ arg w′ < π/2γ . We consider
two cases.

Case 1. |w − w′| ≥ 1
2 min{|w|, |w′|}. In this case it is easy to show that |wγ − w′γ | ≈

(|w| + |w′|)γ−1.

Case 2. |w − w′| ≤ 1
2 min{|w|, |w′|}. Let w′′ be the complex number such that |w′′| =

|w| and arg w′′ = arg w′, that is, w′′ := |w|ei arg w′ . It is not difficult to show in this case
that |wγ − w′γ | ≈ |w′′γ − w′γ |. So it remains to estimate |w′′γ − w′γ |. Since arg w′ =
arg w′′, we can reduce the estimate to the case where w′, w′′ > 0 by multiplying both
w′ and w′′ by e−i arg w′ . The lemma is then an immediate consequence of the elementary
inequality

γ |w′ − w′′|(min{w′, w′′})γ−1
≤ |w′γ − w′′γ | ≤ γ |w′ − w′′|(max{w′, w′′})γ−1,

w′, w′′ > 0. �
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We now return the proof of part (5). Recall estimate (14) and the equations

U + iV = (u + iv)γ and y + iV ′ = (u(y, v)+ iv)γ .

Next, we deduce from (13) that V & |V − V ′|. Consequently, applying Lemma 3.4 to
w := u + iv and w′ := u(y, v)+ iv yields that

|V | + |U − y| ≈ V + |(U + iV )− (y + iV ′)|

= V + |(u + iv)γ − (u(y, v)+ iv)γ |

≈ V + |u − u(y, v)|(u + u(y, v))γ−1

≈ V + |u − u(y, v)|(1+ |y|)1−1/γ

≈ V + |(bu + av)− (bu(y, v)+ av)|(1+ |y|)1−1/γ

= V + |t − ρ(y, v)|(1+ |y|)1−1/γ .

This, combined with the second inequality of part (1), implies part (5). �

The following elementary estimate is needed.

LEMMA 3.5. For every s0 ≥ 1,
∫
∞

s0
se2s0−2s ds = s0/2+ 1/4.

Proof. Integration by parts gives

1/2=
∫
∞

s0

e2s0−2s ds = [se2s0−2s
]
s=∞
s=s0
+ 2

∫
∞

s0

se2s0−2s ds = 2
∫
∞

s0

se2s0−2s ds − s0.

�

We now come to the main estimate of this section, concerning the precise behavior of
Ks(y) when the leaves get close to the separatrices.

PROPOSITION 3.6. There is a constant c > 0 such that, for all s > 0 and y ∈ R,

Ks(y)
(1+ |y|)1/γ−1 ≤ c min

{
1,
[
(1+ |y|)1/γ

s

]γ−1}
.

Proof. Let c2, c3 be the constants with c3 > c2 > 1 given by Lemma 3.3. We consider
three cases.

Case 1. s ≥ c2(1+ |y|)1/γ . By part (2) of Lemma 3.3 and by formula (9), we have that

Ks(y)≤ c
∫

Ds

e2s−2 min{v,t} min{v, t}
(max{v, t})γ+1 dt dv ≤ c′

( ∫
∞

t=s

dt
tγ+1

)( ∫
∞

v=s
ve2s−2vdv

)
.

The first integral on the right-hand side is equal to γ−1s−γ , while the second one is, by
Lemma 3.5, equal to s/2+ 1/4. Hence, Ks(y)≤ cs1−γ . This completes case 1.

Case 2. c−1
2 ≤ s/(1+ |y|)1/γ ≤ c2. Write Ds = D′s ∪ D′′s , where

D′s := {(t, v) ∈ Ds : max{t, v} ≤ c2(1+ |y|)1/γ },

D′′s := {(t, v) : s ≤min{t, v} and c2(1+ |y|)1/γ ≤max{t, v}}.
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Consequently, formula (9) gives that

Ks(y)=
1
b

( ∫
D′s
+

∫
D′′s

)
e2s−2 min{v,t}V
V 2 + (y −U )2

dt dv =: I + II. (15)

To estimate I , we apply part (4) of Lemma 3.3 and obtain

I ≤ c
∫

D′s
e2s−2 min{v,t} dt dv

(1+ |y|)
.

The integral is bounded by a constant times( ∫ c2(1+|y|)1/γ

c−1
2 (1+|y|)1/γ

dt
(1+ |y|)

)( ∫
∞

v=c−1
2 (1+|y|)1/γ

e2s−2v dv
)
.

The left integral is equal to (c2 + c−1
2 )(1+ |y|)1/γ−1, while the right integral is bounded

by 1/2. Hence, I ≤ c(1+ |y|)1/γ−1.

To estimate II, we apply part (2) of Lemma 3.3 and obtain

II ≤ c
∫

D′′s
e2s−2 min{v,t}min{t, v} dt dv

(max{t, v})γ+1 .

The integral in the last line is smaller than a constant times( ∫
∞

t=c−1
2 (1+|y|)1/γ

dt
tγ+1

)( ∫
∞

v=c−1
2 (1+|y|)1/γ

ve2s−2vdv
)
.

The left integral is equal to γ−1c−γ2 (1+ |y|)−1, while the right integral is, by Lemma 3.5,
equal to (c−1

2 /2)(1+ |y|)1/γ + 1/4. Hence, II ≤ c(1+ |y|)1/γ−1.

Substituting the above estimates for I and II into (15), we obtain the desired estimate
for Ks(y) in the second case.

Case 3. s ≤ c−1
2 (1+ |y|)1/γ . Write Ds = D1

s ∪ D2
s ∪ D3

s , where

D1
s := {(t, v) : s ≤ t, v ≤ c−1

2 (1+ |y|)1/γ },

D2
s := {(t, v) : s ≤min{t, v} and c2(1+ |y|)1/γ ≤max{t, v}},

D3
s := {(t, v) : max{s, c−1

3 (1+ |y|)1/γ } ≤min{t, v}

and c−1
2 (1+ |y|)1/γ ≤max{t, v} ≤ c2(1+ |y|)1/γ },

D4
s := {(t, v) : s ≤min{t, v} ≤ c−1

3 (1+ |y|)1/γ

and c−1
2 (1+ |y|)1/γ ≤max{t, v} ≤ c2(1+ |y|)1/γ }.

Consequently, we get, similarly to (15), that

Ks(y)=
1
b

( ∫
D1

s

+

∫
D2

s

+

∫
D3

s

+

∫
D4

s

)
e2s−2 min{v,t}V
V 2 + (y −U )2

dt dv =: I + II + III + IV.

To estimate I, we apply parts (1) and (3) of Lemma 3.3. Consequently, we obtain that

I ≤ c
∫

D1
s

(max{v, t})γ−1 min{v, t}e2s−2 min{v,t} dt dv
(1+ |y|)2

.
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The integral is bounded by a constant times( ∫ c−1
2 (1+|y|)1/γ

t=s

tγ−1dt
(1+ |y|)2

)( ∫ c−1
2 (1+|y|)1/γ

v=s
ve2s−2vdv

)
.

The left integral is bounded by γ−1c−γ2 (1+ |y|)−1, while the right integral is, by Lemma
3.5, bounded by s/2+ 1/4. Hence, I ≤ cs(1+ |y|)−1.

To estimate II, we apply part (2) of Lemma 3.3 and obtain

II ≤ c
∫

D2
s

e2s−2 min{v,t}min{t, v} dt dv
(max{t, v})γ+1 .

The integral in the last line is smaller than a constant times( ∫
∞

t=c2(1+|y|)1/γ

dt
tγ+1

)( ∫
∞

v=s
ve2s−2vdv

)
.

The left integral is equal to γ−1c−γ2 (1+ |y|)−1, while the right integral is, by Lemma 3.5,
equal to s/2+ 1/4. Hence, II ≤ cs(1+ |y|)−1.

To estimate III, we apply part (4) of Lemma 3.3 and argue as in case 2. Consequently,
we can show that III ≤ c(1+ |y|)1/γ−1.

To estimate IV , we apply part (5) of Lemma 3.3 and obtain

IV ≤ c
∫

D4
s

e2s−2 min{v,t} (1+ |y|)1/γ−1 min{v, bu + av} dt dv
(min{v, bu + av})2 + (max{v, bu + av} − ρ)2

.

We infer from this estimate that

IV ≤ c
∫
∞

v=s

( ∫ c2(1+|y|)1/γ

t=c−1
2 (1+|y|)1/γ

(1+ |y|)1/γ−1v dt
v2 + (t − ρ(y, v))2

)
e2s−2v dv,

where ρ(y, v) satisfies c−1
2 (1+ |y|)1/γ ≤ ρ(y, v)≤ c2(1+ |y|)1/γ . The inner integral is

bounded by IV1 + IV2, where

IV1 =

∫
|t−ρ(y,v)|≤v

(1+ |y|)1/γ−1v dt
v2 + (t − ρ(y, v))2

≤

∫
|t−ρ(y,v)|≤v

(1+ |y|)1/γ−1 dt
v

≤ c(1+ |y|)1/γ−1,

and

IV2 ≤

∫
(1+ |y|)1/γ−1v dt
v2 + (t − ρ(y, v))2

≤

∫
(1+ |y|)1/γ−1v dt
(t − ρ(y, v))2

≤ c(1+ |y|)1/γ−1.

Here the integrals in the last line are taken over the region

{t ∈ R : c−1
2 (1+ |y|)1/γ ≤ t ≤ c2(1+ |y|)1/γ and |t − ρ(y, v)| ≥ v}.

So the inner integral is less than or equal to c(1+ |y|)1/γ−1. Hence, IV ≤ c(1+ |y|)1/γ−1.

Combining the estimates for I, II, III and IV, and using the assumption s ≤ c−1
2 (1+

|y|)1/γ , we infer that

Ks(y)= I + II + III + IV ≤ c′s(1+ |y|)−1
+ c′(1+ |y|)1/γ−1

≤ c(1+ |y|)1/γ−1.

The proof of case 3, and hence the proposition, is thus complete. �
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4. Proofs of the main results
End of the proof of Theorem 1.2. By Proposition 3.6 the family of functions (gs)s>0 :

R→ R+, where gs is given by

gs(y) :=
Ks(y)

(1+ |y|)1/γ−1 , y ∈ R,

is uniformly bounded. Moreover, lims→∞ gs(y)= 0 for y ∈ R.
On the other hand, consider the measure χ on R, given by∫

R
ϕdχ =

∫
e−2πb≤|α|≤1

( ∫
∞

−∞

ϕ(y)H̃α(y)(1+ |y|)1/γ−1dy
)

dν(α)

for every continuous bounded test function ϕ on R. By Lemma 3.1, χ is a finite positive
measure. Consequently, we get, by dominated convergence, that lims→∞

∫
R gsdχ = 0.

This, combined with Lemma 3.2, implies that

0≤ lim
r→0+

G(r)≤ c · lim
s→∞

∫
R

gsdχ = 0,

which, coupled with (7)–(8), gives that L(T, 0)= 0, as desired. �

End of the proof of Theorem 1.3. Let x ∈ M be a point. Consider two cases.

Case 1. x 6∈ E . Let U be a regular flow box with transversal T which contains x . By (1)
we can write in U,

T =
∫

hα[Vα] dν(α),

where, for ν-almost every α ∈ T, hα denotes the positive harmonic function associated
to the current T on the plaque Vα. By Harnack’s inequality, there is a constant c > 0
independent of α such that

c−1hα(z)≤ hα(w)≤ chα(z), z, w ∈ Vα.

Using this and the above local description of T on U and formula (2), we infer easily
that L(T, x)≤ cν({x}). On the other hand, by Theorem 1.1, ν({x})= 0. Consequently,
L(T, x)= 0.

Case 2. x ∈ E . Fix a (local) holomorphic coordinate system of M on a singular flow
box Ux of x such that (Ux , x) is identified with (D2, 0) and the leaves of (M,F , E) are
integral curves of the linear vector field 8(z, w)= µz∂/(∂z)+ λw∂/(∂w) with non-zero
complex numbers λ, µ such that λ/µ 6∈ R. On the other hand, it follows from Theorem
1.1 that T gives no mass to each single leaf. In particular, T does not give mass to any
of the two separatrices (z = 0) and (w = 0). Consequently, we are able to apply Theorem
1.2. Hence, L(T, x)= 0. �

5. Application: recurrence of generic leaves
Let (M,F , E) be a hyperbolic foliation with the set of singularities E in a Hermitian
compact complex surface (M, ω). Let dist be the distance on M induced by the Hermitian
metric. Assume that all the singularities are hyperbolic and that the foliation has no
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invariant analytic curve. Let T be a non-zero directed harmonic current on (X,L , E).
The existence of such a current has been established by Berndtsson and Sibony in [1,
Theorem 1.4], and Fornæss and Sibony in [6, Corollary 3]. Assume, in addition, that T
is extremal (in the convex set of all directed harmonic currents). Let ωP be the Poincaré
metric on D, given by

ωP (ζ ) :=
2

(1− |ζ |2)2
i dζ ∧ dζ , ζ ∈ D.

For any point a ∈ M \ E consider a universal covering map φa : D→ La such that φa(0)=
a. This map is uniquely defined by a up to a rotation on D. Then, by pushing forward the
Poincaré metric ωP on D via φa, we obtain the so-called Poincaré metric on La which
depends only on the leaf. The latter metric is given by a positive (1, 1)-form on La that we
also denote by ωP for the sake of simplicity. Since the measure m P := T ∧ ωP is, by [2],
of finite mass, we may assume without loss of generality that m P is a probability measure.
So, m P is a harmonic measure on X with respect to ωP .

In this section we study the following problem. Given a point x ∈ M and an m P -generic
point a ∈ M \ E, how often does the leaf La visit the ball B(x, r) as r ↘ 0 ? Here B(x, r)
(respectively, B(x, r)) denotes the open (respectively, closed) ball with center x and radius
r with respect to the metric dist. The purpose of this section is to apply Theorem 1.3 in
order to obtain a partial answer to this question.

Let us introduce some more notation and terminology. Denote by rD the disc of center
0 and of radius r with 0< r < 1. In the Poincaré disc (D, ωP ), rD is also the disc of center
0 and of radius

R := log
1+ r
1− r

·

So, we will also denote this disc by DR and its boundary by ∂DR .
Together with Dinh and Sibony, we introduce the following indicator.

Definition 5.1. For each r > 0, the visibility of a point a ∈ M \ E within distance r from
a point x ∈ M is the number

N (a, x, r)= lim sup
R→∞

1
R

∫ R

0

( ∫ 1

θ=0
1B(x,r)(φa(st e2π iθ )) dθ

)
dt ∈ [0, 1],

where 1B(x,r) is the characteristic function associated to the set B(x, r), and st is defined
by the relation t = log (1+ st )/(1− st ), that is, stD= Dt .

Geometrically, N (a, x, r) is the average, as R→∞, over the hyperbolic time t ∈
[0, R] of the Lebesgue measure of the set {θ ∈ [0, 1] : φa(st e2π iθ ) ∈ B(x, r)}. The last
quantity may be interpreted as the portion which hits B(x, r) of the Poincaré circle of
radius t with center a spanned on the leaf La .

We will see in Lemma 5.4 that the lim sup in Definition 5.1 above can be replaced by a
true limit for m P -almost every a ∈ M \ E .Moreover, Definition 5.1 can also be applied to
singular holomorphic foliations (by hyperbolic Riemann surfaces) in arbitrary dimensions.

We are now in a position to state the main result of this section.
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THEOREM 5.2. We retain the above hypothesis and notation. Then for m P -almost every
point a ∈ M \ E and for every point x ∈ M,

N (a, x, r)=

{
o(r2), x ∈ M \ E,

o(| log r |−1), x ∈ E .

For the proof of this theorem we need some more preparatory results. For all 0< R <
∞, consider the following measure on M :

ma,R :=
1

MR
(φa)∗

((
log

1
|ζ |
ωP

)∣∣∣∣
DR

)
,

where ωP denotes also the Poincaré metric on D and

MR :=

∫
DR

log
1
|ζ |
ωP =

∫
ζ∈DR

log
1
|ζ |

2
(1− |ζ |2)2

i dζ ∧ dζ .

So, ma,R is a probability measure which depends on a and R but does not depend on the
choice of φa . Recall the following geometric Birkhoff ergodic theorem.

THEOREM 5.3. (Dinh, Nguyen and Sibony [2]) Under the above hypothesis and notation,
for almost every point a ∈ X with respect to the measure m P , the measure ma,R defined
above converges to m P when R→∞.

The above theorem gives the following connection between N (a, x, r) and m P .

LEMMA 5.4. For m P -almost every a ∈ M \ E and for all x ∈ M, the lim sup in Definition
5.1 is in fact a true limit. Moreover, if m P (∂B(x, r))= 0, then

N (a, x, r)= lim
R→∞

ma,R(B(x, r))= m P (B(x, r)).

Notice that there is a number r0 > 0 small enough such that for every x ∈ M and every
0< r < r0, we have that m P (∂B(x, r))= 0.

Proof. Let lR be the length in the Poincaré metric of the circle ∂DR . For a continuous test
function ϕ on M,

1
R

∫ R

0

( ∫ 1

θ=0
ϕ(φa(st e2π iθ )) dθ

)
dt =

1
R

∫ R

0

( ∫
(φa)∗[∂Dt ]

ϕ · d
√
ωP

lt

)
dt,

where d
√
ωP is the length element associated to the metric ωP . Moreover, using polar

coordinates, we get that∣∣∣∣ 1
R

∫ R

0

( ∫
(φa)∗[∂Dt ]

ϕ · d
√
ωP

lt

)
dt −

∫
ϕ ·

1
2πR

(φa)∗

((
log

1
|ζ |
ωP

)∣∣∣∣
DR

)∣∣∣∣
≤
‖ϕ‖∞

R

∫ R

t=0
|lt (2π)−1 log(1/st )− 1| dt.

Since |lt (2π)−1 log(1/st )− 1| ≈ e−t , the right-hand side tends to 0 as R→∞.
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Next, a direct computation shows that |MR − 2πR| is bounded by a constant.
Consequently, ∫

ϕ ·
1

2πR
(φa)∗

((
log

1
|ζ |
ωP

)∣∣∣∣
DR

)
−

∫
M
ϕma,R

tends to 0 as R→∞. On the other hand, we infer from Theorem 5.3 that
limR→∞

∫
ϕma,R =

∫
ϕm P for m P -almost every a ∈ M \ E . Putting these estimates

altogether, we obtain that

lim
R→∞

1
R

∫ R

0

( ∫ 1

θ=0
ϕ(φa(st e2π iθ )) dθ

)
dt =

∫
M
ϕm P .

Writing 1B(x,r) (respectively, 1B(x,r)) as the limit of an increasing (respectively,
decreasing) sequence of continuous test functions ϕ and using that m P (∂B(x, r))= 0,
the lemma follows from the last equality. �

For simplicity we still denote by ω the Hermitian metric on leaves of the foliation (M \
E,F ) induced by the ambient Hermitian metric ω. Consider the function η : M \ E→
[0,∞] defined by

η(x) := sup{‖Dφ(0)‖ : φ : D→ Lx holomorphic such that φ(0)= x}.

Here, for the norm of the differential Dφ we use the Poincaré metric on D and the
Hermitian metric ω on Lx . We obtain the following relation between ω and the Poincaré
metric ωP on leaves:

ω = η2ωP . (16)

We record here the following precise estimate on the function η.

LEMMA 5.5. We keep the above hypotheses and notation. Then there exists a constant
c > 1 such that η ≤ c on M, η ≥ c−1 outside the singular flow boxes

⋃
x∈E

1
4Ux and

c−1s log? s ≤ η(x)≤ cs log? s

for x ∈ M \ E and s := dist(x, E).Here log?(·) := 1+ | log(·)| is a log-type function, and
1
4Ux := (

1
4D)

2 for Ux = D2.

Proof. Since there exists no holomorphic non-constant map C→ M such that out of E
the image of C is locally contained in leaves, it follows from [6, Theorem 15] that there
is a constant c > 0 such that η(x)≤ c for all x ∈ M \ E . In other words, the foliation is
Brody hyperbolic following the terminology of our joint work with Dinh and Sibony [3].
Therefore, the lemma is a direct consequence of [3, Proposition 3.3]. �

End of the proof of Theorem 5.2. Let x ∈ M be a point. Consider two cases.

Case 1. x 6∈ E . Let U be a regular flow box with transversal T which contains x . By (1)
we can write in U,

T =
∫

hα[Pα] dν(α),

where, for ν-almost every α ∈ T, hα denotes the positive harmonic function associated
to the current T on the plaque Pα. On the other hand, since U is away from the set of
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singularities E, we deduce from Lemma 5.5 that c−1
≤ η(y)≤ c for y ∈ U. Using this and

(16) and the above expression for T, we infer easily that

m P (y)= (T ∧ ωP )(y)= η(y)(T ∧ ω)(y)≈ (T ∧ ω)(y)≈ T ∧ i∂∂‖y‖2, y ∈ U.

This, combined with formula (2), implies that

lim
r→0

r−2m P (B(x, r))≤ lim
r→0

cr−2
∫

B(x,r)
T ∧ i∂∂‖y‖2 = cL(T, x).

By Theorem 1.1, L(T, x)= 0. On the other hand, we know from Lemma 5.4 that

lim
r→0

r−2 N (a, x, r)= lim
r→0

r−2m P (B(x, r))

for m P -almost every a ∈ M \ E . Putting the last three estimates together, we obtain that
N (a, x, r)= o(r2).

Case 2. x ∈ E . Fix a (local) holomorphic coordinate system of M on a singular flow
box Ux of x such that (Ux , x) is identified with (D2, 0) and the leaves of (M,F , E) are
integral curves of the linear vector field 8(z, w)= µz∂/(∂z)+ λw∂/(∂w) with non-zero
complex numbers λ, µ such that λ/µ 6∈ R.

Suppose without loss of generality that the metric ω coincides with the standard metric
i∂∂‖y‖2 on D2. Next, recall from (16) that

i∂∂‖y‖2 = η2(y)gP (y)≈ ‖y‖2(log ‖y‖)2gP (y) for 0< ‖y‖< 1/2.

where the estimate ≈ holds by Lemma 5.5. Therefore, we infer that

m P (y) := (T ∧ ωP )(y)≈
T ∧ i∂∂‖y‖2

‖y‖2(log ‖y‖)2
on B1/2.

Consequently, for 0< r < 1/2,∫
Br

m P (y)≈
∫

Br

T ∧ i∂∂‖y‖2

‖y‖2(log ‖y‖)2
=

∫ r

0

F ′(s) ds
s2(log s)2

,

where the last equality follows from (7). So case 2 will follow if we can show that∫ r
0 (F

′(s) ds/s2(log s)2)= o(| log r |−1) as r→ 0. Since we know from (7) to (8) that
(s2G(s))′ = F ′(s), integration by parts on the last expression yields that∫ r

0

F ′(s) ds
s2(log s)2

=

∫ r

0

d(s2G(s))
s2(log s)2

=

[
G(s)
(log s)2

]r

0
+ 2

∫ r

0

G(s) ds
s(log s)2

+ 2
∫ r

0

G(s) ds
s(log s)3

.

On the other hand, we know from (7)–(8) that G(r) decreases, as r ↘ 0, to L(T, x),which
is equal to 0 by Theorem 1.3. Therefore, a straightforward computation shows that all three
terms on the right-hand side of the last line areof order o(| log r |−1) as r→ 0, as desired.
This completes the proof of case 2, and hence of the theorem. �

Remark 5.6. We conclude this paper with some remarks and open questions.
(1) It seems to be of interest to investigate the main theorem in the case where the

singularity 0 is only linearizable (see [2]).
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(2) A natural question arises whether the main results of this paper can be generalized to
higher dimensions. We postpone this issue to forthcoming work.

(3) Now let (M,F , E) be a hyperbolic foliation with the set of singularities E in a
Hermitian compact complex manifold (M, ω) of arbitrary dimension. Assume that
all the singularities are linearizable. Using the finiteness of the Lelong number of
a positive harmonic current [12], and applying [2] and arguing as at the end of the
proof of Theorem 5.2, we can show the following weak form of this theorem (but
in higher dimension). For m P -almost every point a ∈ M \ E and for every point
x ∈ M, we have that

N (a, x, r)=

{
O(r2), x ∈ M \ E,

O(| log r |−1), x ∈ E .
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