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The Green function of singular limit-circle problems is constructed directly for the
problem, not as a limit of sequences of regular Green’s functions. This construction is
used to obtain adjointness and self-adjointness conditions which are entirely
analogous to the regular case. As an application, a new and explicit formula for the
Green function of the classical Legendre problem is found.

1. Introduction

In this paper we construct the Green function of singular boundary-value problems
(BVPs) consisting of general quasi-differential equations on an open, bounded or
unbounded interval (a, b) of the real line and singular boundary conditions (BCs)
at the end points. This applies for self-adjoint and non-self-adjoint problems. In
contrast to the usual construction as, for example, in the well-known book by
Coddington and Levinson [1], which involves a selection theorem to select a sequence
of regular Green’s functions on truncated intervals whose limit as the truncated
end points approach the singular end points is the Green function of the singular
problem, our construction is direct, elementary and explicit in terms of solutions.
Our method is based on a simple transformation of the dependent variable which
leaves the underlying interval unchanged and transforms the singular problem with
limit-circle end points into a regular one. As an illustration we obtain a new and
explicit formula for the Green function of the classical Legendre equation with
arbitrary separated or coupled self-adjoint boundary conditions.
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Necessary and sufficient conditions for two singular problems to be adjoint to
each other and, in particular, self-adjoint then follow from the regular case.

Throughout this paper n > 1 is a positive integer, J denotes an open, bounded
or unbounded interval of the real line

J = (a, b), −∞ � a < b � ∞;

where R denotes the real numbers, C the complex numbers, L(J) = L1(J) is the set
of complex-valued functions from J to C which are Lebesgue integrable, Lloc(J) =
L1

loc(J) is the set of complex functions from J to C which are Lebesgue integrable
on all compact subintervals of J and Mn(S) denotes the n×n matrices with entries
from an arbitrary set S. For A ∈ Mn(C), A∗ denotes the complex conjugate of A.
For a vector or matrix function we write F ∈ L(J) to mean that every component
of F is in L(J).

The paper is organized as follows: adjoint and self-adjoint Green’s functions are
discussed in § 2 for regular systems and in § 3 for regular scalar equations. The
transformation from singular to regular problems is given in § 4 and is applied
in § 5. The adjointness conditions are discussed in § 6 and illustrated for the second
and fourth-order cases. In § 7 the Green function for the classical Legendre equation
is constructed using the method of § 5. We believe this formula for the Legendre
Green function is new.

2. Adjoint matrices and Green’s functions for regular systems

In this section we define the concept of ‘Lagrange adjoint’ for first-order systems
and establish the corresponding ‘Lagrange Hermitian’ properties of their Green
matrices. Fundamental to this analysis is the ‘adjointness lemma’ (see below) and
the above-mentioned construction of the Green matrices. The next section will
contain applications of these results to scalar problems, and the following sections
will discuss singular systems and singular scalar problems.

Let
E := ((−1)iδi,n+1−j)1�i,j�n, (2.1)

where δ is the Kronecker symbol, and note that

E−1 = E∗ = (−1)n+1E. (2.2)

We first establish some general properties for singular systems before specializing
to the regular case.

Definition 2.1. For P ∈ Lloc(J) we define

P+ := −E−1P ∗E. (2.3)

We call P+ the Lagrange adjoint matrix of P ; note that P+ ∈ Lloc(J) and

(P+)+ = P,

(P + Q)+ = P+ + Q+,

(PQ)+ = −Q+P+,

(cP )+ = c̄P+, c ∈ C.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.4)
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The terminology ‘Lagrange adjoint’ is introduced due to its relationship to bound-
ary-value problems which are adjoint in the sense of Lagrange, as we will see below.
An important special case arises when P+ = P : this is the Lagrange Hermitian
case which, as we will see below, generates symmetric differential operators.

Remark 2.2. The relationship (2.3) can be described as follows: P+ is obtained
from P by performing the following three commutative operations.

(i) ‘Flip’ the components pi,j across the secondary diagonal:

pi,j → pn+1−j,n+1−i.

(ii) Take conjugates:
pi,j → p̄i,j .

(iii) Change the sign for all the even positions:

pi,j → (−1)i+j+1pi,j .

Definition 2.3 (primary fundamental matrix). Let P ∈ Mn(Lloc(J)). For each
u ∈ J , let Φ(t, u) = Φ(t, u, P ) denote the unique n × n matrix solution of the
initial-value problem

Y ′ = PY, Y (u) = I, (2.5)

where I is the identity. Then Φ(t, s) is defined for all t, s ∈ J and is called the
primary fundamental matrix of the system Y ′ = PY [11], or just the primary
fundamental matrix of P .

Lemma 2.4. Let P ∈ Mn(Lloc(J)) and let Φ(t, s) be the primary fundamental
matrix of P . Then for any t, s, u ∈ J we have

Φ(t, u)Φ(u, s) = Φ(t, s). (2.6)

Furthermore, if P ∈ L(J), then (2.6) also holds when t, s, u are equal to a or b.
Here a = −∞ and b = ∞ are allowed.

Proof. This follows from the well-known representation

Φ(t, s) = Y (t)Y −1(s),

where Y is any fundamental matrix of Y ′ = PY . For the ‘furthermore’ statement
see [11, theorem 1.5.2].

Lemma 2.5. Let P ∈ Mn(Lloc(J)) and let Φ(t, s) be the primary fundamental
matrix of P . Suppose trP (t) = 0 for t ∈ J . Then

det(Φ(t, s)) = 1, t, s ∈ J.

Proof. Fix s ∈ J . It is well known that detΦ(t, s)′ = tr(P (t)) det(Φ(t, s)) and the
result follows.

Next we establish a basic relationship between the primary fundamental matrices
of P and P+.
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Lemma 2.6 (adjointness lemma). Suppose that P ∈ Mn(Lloc(J)). Then we have
P+ ∈ Mn(Lloc(J)). If Φ(t, s) = Φ(t, s, P ) and Ψ(t, s) = Φ(t, s, P+) are the primary
fundamental matrices of P and P+, respectively, then

Ψ(t, s) = E−1Φ∗(s, t)E, Φ(t, s) = E−1Ψ∗(s, t)E, t, s ∈ J. (2.7)

Furthermore, if P ∈ L(J), then P+ ∈ L(J) and (2.6), (2.7) hold for a � s, t � b,
even when a = −∞ or b = +∞.

Proof. Fix s ∈ J and let X(t) = E−1∗Φ∗(t, s)E∗Ψ(t, s) for t ∈ J . Then X(s) = I
and

X ′(t) = E(Φ∗)′(t, s)E∗Ψ(t, s) + EΦ∗(t, s)E∗Ψ ′(t, s)

= E(P (t)Φ(t, s))∗E∗Ψ(t, s) + EΦ∗(t, s)E∗P+(t)Ψ(t, s)

= EΦ∗(t, s)P ∗(t)E∗Ψ(t, s) + EΦ∗(t, s)E∗(−E−1P ∗(t)E)Ψ(t, s)

= EΦ∗(t, s)P ∗(t)E∗Ψ(t, s) − EΦ∗(t, s)(−1)n+1EE−1P ∗(t)(−1)n+1E∗Ψ(t, s)
= 0 for all t ∈ J.

Hence, for all t ∈ J , X(t) = I and

Ψ(t, s) = E−1(Φ∗)−1(t, s)E = E−1(Φ−1)∗(t, s)E = E−1Φ∗(s, t)E.

In the last step we used Φ−1(t, s) = Φ(s, t) which follows from (2.6). This completes
the proof of the first part of the Lemma and the second part follows from the first
and (2.2). The ‘furthermore’ statement follows by taking limits as t and s approach
a or b. These limits exist and are finite by [11, theorem 1.5.2, p. 11].

For λ ∈ C, consider the following vector matrix boundary-value problem:

Y ′ = (P − λW )Y, AY (a) + BY (b) = 0, A, B ∈ Mn(C). (2.8)

We now construct the Green matrix for regular systems (2.8).

Theorem 2.7. Assume that P, W ∈ Mn(L(J)). Let λ ∈ C and let Φ(t, s, λ) be the
primary fundamental matrix of P − λW .

(i) The homogeneous boundary-value problem (2.8) has a non-trivial solution if
and only if

det[A + BΦ(b, a, λ)] = 0. (2.9)

(ii) If det[A + BΦ(b, a, λ)] �= 0, then for every F ∈ L(J) the inhomogeneous
problem

Y ′ = (P − λW )Y + F, AY (a) + BY (b) = 0 (2.10)

has a unique solution Y given by

Y (t) =
∫ b

a

K(t, s, λ)F (s) ds, a � t � b, (2.11)

where

K(t, s, λ) =

⎧⎪⎨
⎪⎩

Φ(t, a, λ)UΦ(a, s, λ), a � t < s � b,

Φ(t, a, λ)UΦ(a, s, λ) + Φ(t, s, λ), a � s < t � b,

Φ(t, a, λ)UΦ(a, s, λ) + 1
2Φ(t, s, λ), a � s = t � b,

(2.12)
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with
U = −[A + BΦ(b, a, λ)]−1BΦ(b, a, λ). (2.13)

We call K(t, s, λ) = K(t, s, λ, P, W, A, B) the Green matrix of the boundary-
value problem (2.8).

Proof. See [11, ch. 3]. Although formula (2.12) is a slightly modified version of
the corresponding formula in [11], the construction given there applies here. See
also [2, 9, 10], where special cases of this construction are given.

Consider the boundary-value problem

Z ′ = (P − λW )+Z, CZ(a) + DZ(b) = 0, C, D ∈ Mn(C), (2.14)

and its Green matrix L(t, s, λ̄) = L(t, s, λ̄, P+, W+, C, D) given by

L(t, s, λ̄) =

⎧⎪⎨
⎪⎩

Ψ(t, a, λ̄)V Ψ(a, s, λ̄), a � t < s � b,

Ψ(t, a, λ̄)V Ψ(a, s, λ̄) + Ψ(t, s, λ̄), a � s < t � b,

Ψ(t, a, λ̄)V Ψ(a, s, λ̄) + 1
2Ψ(t, s, λ̄), a � s = t � b,

(2.15)

with
V = −[C + DΨ(b, a, λ̄)]−1DΨ(b, a, λ̄). (2.16)

Lemma 2.8. Let λ ∈ C. Suppose that P, W ∈ Mn(L(J)). Let Φ(t, s, λ), Ψ(t, s, λ̄)
be the primary fundamental matrices of (P − λW ) and (P − λW )+, respectively.
Let K(t, s, λ) = K(t, s, λ, P, W, A, B) be the Green matrix of the boundary-value
problem (2.8) and let L(t, s, λ̄) = L(t, s, λ̄, P+, W+, C, D) be the Green matrix of
the boundary-value problem (2.14). Assume that

det[A + BΦ(b, a, λ)] �= 0 �= det[C + DΨ(b, a, λ̄)]. (2.17)

Then the Green matrices K(t, s, λ) of (2.8) and L(t, s, λ̄) of (2.14) exist by theo-
rem 2.7 and we have

K(t, s, λ) + E−1L∗(s, t, λ̄)E = Φ(t, a, λ)ΓΦ(a, s, λ), a � s, t � b, (2.18)

with
Γ = U + E−1V ∗E + I. (2.19)

Proof. This follows from the construction (2.12), (2.13), (2.15), (2.16) using (2.6),
(2.7) and (2.2) as follows.

K(t, s, λ) + E−1L∗(s, t, λ̄)E − Φ(t, a, λ)UΦ(a, s, λ)

= E−1[Ψ(s, a, λ̄)V Ψ(a, t, λ̄)]∗E + E−1Ψ∗(s, t, λ̄)E

= E−1[Ψ∗(a, t, λ̄)V ∗Ψ∗(s, a, λ̄)]E + Φ(t, s, λ)

= Φ(t, a, λ)E−1V ∗EΦ(a, s, λ) + Φ(t, a, λ)Φ(a, s, λ). (2.20)

Similarly, (2.20) also holds for the cases a � s < t � b and a � t = s � b. (The
fraction 1

2 in the constructions (2.12), (2.15) is used when s = t.) Clearly, (2.18),
(2.19) follow from (2.20) and this completes the proof.
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Lemma 2.9. Let the hypotheses and notation of lemma 2.8 hold. Then

K(t, s, λ) = −E−1L∗(s, t, λ̄)E for all a � s, t � b (2.21)

if and only if
U = −[E−1V ∗E + I]. (2.22)

Proof. This follows from lemma 2.8 by noting that (2.21) holds if and only if Γ = 0
and Γ = 0 is equivalent to (2.22).

Lemma 2.10. Let the hypotheses and notation of lemma 2.8 hold. Then

K(t, s, λ) = +E−1L∗(s, t, λ̄)E for all a � s, t � b, (2.23)

if and only if
U = +[E−1V ∗E + I]. (2.24)

Proof. The proofs of lemmas 2.8 and 2.9 can be easily adapted to prove this lemma.

Theorem 2.11. Let the hypotheses and notation of lemma 2.8 hold. Then the Green
matrices K(t, s, λ) of (2.8) and L(t, s, λ̄) of (2.14) exist by theorem 2.7, and (2.21)
holds if and only if

AEC∗ = BED∗. (2.25)

Proof. By lemma 2.9 we only need to show that (2.22) holds. From (2.13) and (2.16)
we have

−I = U + E−1V ∗E

= −[A + BΦ(b, a, λ)]−1BΦ(b, a, λ) − E−1Ψ∗(b, a, λ̄)D∗[C + DΨ(b, a, λ̄)]−1∗E.
(2.26)

Multiplying equation (2.26) on the left by −[A + BΦ(b, a, λ)] and on the right by
E−1[C + DΨ(b, a, λ̄)]∗, we obtain the equivalent identity

[A + BΦ(b, a, λ)]E−1[C + DΨ(b, a, λ̄)]∗

= BΦ(b, a, λ)E−1[C + DΨ(b, a, λ̄)]∗ + [A + BΦ(b, a, λ)]E−1Ψ∗(b, a, λ̄)D∗.

This simplifies to

AE−1C∗ = BΦ(b, a, λ)E−1Ψ∗(b, a, λ̄)EE−1D∗

= BΦ(b, a, λ)Φ(a, b, λ)E−1D∗

= BE−1D∗,

which is equivalent to (2.25) using (2.2). In the previous two steps we used (2.6)
and (2.7). This completes the proof. Special cases of this theorem were obtained
in [2, 9, 10].

Theorem 2.12. Let the hypotheses and notation of lemma 2.8 hold. If U = V ,
then, for each λ satisfying (2.17), there exist s, t, a � s, t � b, such that

K(t, s, λ) �= +E−1L∗(s, t, λ̄)E. (2.27)

https://doi.org/10.1017/S0308210510001630 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001630


Construction of regular and singular Green’s functions 177

In particular, (2.27) holds if P = P+, W = W+, A = C, B = D, and λ = λ̄
satisfies (2.17).

Proof. By lemma 2.10 we only need to show that (2.24) does not hold. In this case
U = V . Assume (2.24) holds with U = (uij) = V . Then (see remark 2.2) we have
u11 = ūnn + 1 and unn = ū11 + 1. Hence, 1 = u11 − ūnn = ū11 − unn = −1. This
contradiction completes the proof.

3. Green’s functions of regular scalar boundary-value problems

Although in this paper our primary focus is on singular problems, we now discuss
regular problems and their Green functions. The traditional construction of the
Green function K(t, s, λ) of regular ordinary boundary-value problems involves a
recipe which, among other things, prescribes a jump discontinuity of the derivative
with respect to t for fixed s when t = s (see, for example, [1]). Here we construct
K(t, s, λ) directly in such a way that this jump discontinuity does not have to be
prescribed a priori but occurs naturally. This is accomplished by converting the
scalar problem to a system, constructing a Green matrix for the system as in § 2,
then extracting the scalar Green function from the Green matrix. The jump discon-
tinuities along the diagonal t = s are clearly apparent from this construction. This
and a number of other features make this construction more direct and, we believe,
more ‘natural’ than the traditional one found in textbooks. This construction is a
modification of a construction used previously by Neuberger [8] for the second-order
case and by Zettl [9,10] and Coddington and Zettl [2] for higher orders. It seems not
to be widely known, and most current textbooks still use the ‘recipe’ construction
mentioned above. Our construction of singular Green’s functions in § 5 is based on
our construction of regular Green’s functions; thus, we give it here.

We now specialize to a subset of the matrices P and W which generate the scalar
quasi-differential equations studied here. As in [6], let

Zn(J) := {P = (prs) ∈ Mn(Lloc(J)),
pr,r+1 �= 0 a.e. on J for 1 � r � n − 1,

prs = 0 a.e. for 2 � r + 1 < s � n}. (3.1)

For P ∈ Zn(J) we define quasi-derivatives y[r] as follows:

V0 := {y : J → C, y measurable} and y[0] := y for y ∈ V0.

Inductively, for r = 1, . . . , n, we define Vr := {y ∈ Vr−1 : y[r−1] ∈ ACloc(J)} and

y[r] := p−1
r,r+1

{
(y[r−1])′ −

r∑
s=1

prsy
[s−1]

}
for y ∈ Vr, (3.2)

where pn,n+1 := 1, and ACloc(J) denotes the set of complex-valued functions which
are absolutely continuous on all compact subintervals of J . For Vn we also use the
notation Vn = D(P ) to indicate its dependence on P . Finally, we set

My := MP y := iny[n] for y ∈ Vn. (3.3)
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The expression M = MP is the quasi-differential expression generated by P , the
function y[r] = y

[r]
P for 0 � r � n is called the rth quasi-derivative of y with respect

to P and D(P ) is called the expression domain of M . To simplify the notation we
omit the subscript P on y[r] and M when this is clear from the context. Clearly,
these quasi-differential expressions include the classical expressions

Ly = y(n) + pn−1y
(n−1) + · · · + p1y

′ + p0y,

where y(r) denotes the classical derivative as a very special case. They also are much
more general than the quasi-differential expressions discussed in [7]. For a more
detailed discussion of the expressions MP y and their relationship to the classical
expressions, the reader is referred to [2, 4, 6, 7].

Note that the operator M from D(P ) to Lloc(J) is linear. Next we discuss the
system formulation of the scalar equation y

[n]
P = f .

Lemma 3.1. Let P ∈ Zn(J), f ∈ Lloc(J) and set

Y =

⎡
⎢⎢⎢⎣

y

y[1]

...
y[n−1]

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎣

0
0
...
f

⎤
⎥⎥⎥⎦ . (3.4)

Then the scalar equation
y
[n]
P = f (3.5)

is equivalent to the first-order system

Y ′ = PY + F (3.6)

in the sense that if y is a solution of (3.5) and Y , F are defined by (3.4), then (3.6)
holds. Conversely, if Y is a solution vector of (3.6), then its first component y is a
solution of (3.5).

Proof. This can be checked by a direct computation. For details, see [6, proposi-
tion 2.2].

Throughout the remainder of this section we assume that P = (pij) ∈ Zn(J)
satisfies

pij ∈ L(J), 1 � i � j, j = 1, 2, . . . , n; p−1
j,j+1 ∈ L(J), j = 1, 2, . . . , n − 1.

(3.7)
Let w ∈ L(J) and let W be the n × n matrix

W :=

⎛
⎜⎜⎜⎝

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
w 0 · · · 0

⎞
⎟⎟⎟⎠ . (3.8)

For any λ ∈ C and f ∈ L(J) we now consider the equation

My = λwy + f (3.9)
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and its equivalent systems formulation

Y ′ = (P − λW )Y + F, (3.10)

where Y and F are given by (3.4). For A, B ∈ Mn(C), consider the two-point
boundary-value problem consisting of (3.9) and the boundary conditions

AY (a) + BY (b) = 0. (3.11)

Note that this is a well-defined problem since the quasi-derivatives y[r] exist as finite
limits at both end points [11].

Theorem 3.2. Let λ ∈ C, let W be given by (3.8) with w ∈ L(J). Assume that
P = (pij) ∈ Zn(J) satisfies (3.7). Let Φ(t, s, λ) be the primary fundamental matrix
of P − λW . Then we have the following.

(i) The homogeneous boundary-value problem

Y ′ = (P − λW )Y, AY (a) + BY (b) = 0, A, B ∈ Mn(C), (3.12)

has a non-trivial solution if and only if

det[A + BΦ(b, a, λ)] = 0. (3.13)

(ii) The homogeneous boundary-value problem

My = λwy, AY (a) + BY (b) = 0, M = MP (3.14)

has a non-trivial solution if and only if

det[A + BΦ(b, a, λ)] = 0. (3.15)

(iii) If det[A + BΦ(b, a, λ)] �= 0, then for every F ∈ L(J) the inhomogeneous
problem

Y ′ = (P − λW )Y + F, AY (a) + BY (b) = 0, (3.16)

has a unique solution Y given by

Y (t) =
∫ b

a

K(t, s, λ)F (s) ds, a � t � b, (3.17)

where K(t, s, λ) is given by (2.12), (2.13).

(iv) Let K(t, s, λ) = Kij(t, s, λ), 1 � i, j � n. If det[A + BΦ(b, a, λ)] �= 0, then for
every f ∈ L(J) the inhomogeneous problem

My = λwy + f, AY (a) + BY (b) = 0, (3.18)

has a unique solution y given by

y(t) =
∫ b

a

K1n(t, s, λ)f(s) ds, a � t � b. (3.19)

Furthermore, K1n is continuous on [a, b] × [a, b] and is unique.
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Proof. All four parts follow from theorem 2.7. The continuity of K1n is clear
from (2.12) since n > 1 and the jump discontinuities of K occur only on the
diagonal s = t. The proof of the uniqueness of K1n is standard by using compact
support function for f .

Next we consider boundary-value problems for the system

Z ′ = (P − λW )+Z + F = (P+ − λ̄W+)Z + F = (P+ − (−1)nλW )Z + F (3.20)

and its equivalent scalar equation

M+z = (−1)nλ̄w̄z + f, M+ = MP+ , (3.21)

both with boundary condition

CZ(a) + DZ(b) = 0, C, D ∈ Mn(C). (3.22)

Theorem 3.3. Let λ ∈ C. Let A, B, C, D ∈ Mn(C). Assume that P = (pij) ∈
Zn(J) satisfies (3.7) and W is given by (3.8) with w ∈ L(J). Let E be given
by (2.1). Then P+ ∈ Zn(J) and satisfies (3.7). Let Φ(t, s, λ) and Ψ(t, s, λ̄) be the
primary fundamental matrices of P − λW and (P − λW )+, respectively. If

det[A + BΦ(b, a, λ)] �= 0 �= det[C + DΨ(b, a, λ̄)]. (3.23)

Then the Green matrices K(t, s, λ)=(Kij(t, s, λ)) of problem (3.12) and L(t, s, λ̄) =
(Lij(t, s, λ̄)) of problem (3.20) exist by theorem 2.7 and the following three state-
ments are equivalent:

(i)
K(t, s, λ) = −E−1L∗(s, t, λ̄)E, a � s, t � b; (3.24)

(ii)
K1,n(t, s, λ) = (−1)nL̄1,n(s, t, λ̄), a � s, t � b; (3.25)

(iii)
AEC∗ = BED∗. (3.26)

Proof. From (2.18) and the non-singularity of the primary fundamental matrix Φ
it follows that (3.24) holds if and only if Γ = 0. By theorem 2.11, (i) and (iii) are
equivalent. Clearly, (i) implies (ii). To show that (ii) implies (i) we show that Γ = 0.
This follows from (2.18) and the linear independence of φ1j(t, a, λ), j = 1, . . . , n, as
functions of t and the linear independence of φjn(a, s, λ), j = 1, . . . , n, as functions
of s. Fix s and let C(s) = ΓΦ(a, s, λ). By (2.18) we have

n∑
j=1

φ1j(t, a, λ)Cjn(s) = 0, a � t � b.

Hence, Cjn(s) = 0, j = 1, . . . , n, by the linear independence of φ1j(t, a, λ), j =
1, . . . , n. Thus, we have

Cjn(s) =
n∑

k=1

ΓjkΦkn(a, s, λ) = 0, a � s � b,
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and from the linear independence of Φkn(a, s, λ̄), k = 1, . . . , n, as functions of s (see
lemma 2.6) we conclude that Γjk = 0, for k = 1, . . . , n. Since this holds for each j,
we may conclude that Γjk = 0, for j, k = 1, . . . , n, and this completes the proof of
theorem 3.3. Special cases of this theorem were proved in [2, 9, 10].

Theorem 3.4. Let A, B, C, D ∈ Mn(C). Assume that P ∈ Zn(J) satisfies (3.7)
and W is given by (3.8) with w ∈ L(J) and real valued. Suppose P = P+, W = W+,
A = C, B = D and λ ∈ R. If det[A + BΦ(b, a, λ)] �= 0, then there exist t and s,
a � t, s � b, such that

K1,n(t, s, λ) �= (−1)n+1K̄1,n(s, t, λ). (3.27)

Proof. Note that (P −λW )+ = P −λW and thus (3.27) follows from theorem 2.12.

Remark 3.5. Together, theorems 3.3 and 3.4 say that for scalar problems when
(P − λW )+ = P − λW , λ ∈ R, the Green function cannot be symmetric when n is
odd and it cannot be antisymmetric when n is even.

4. Regularization of singular problems

In this section we show that singular scalar equations with limit-circle end points can
be ‘regularized’ in the sense that they can be transformed to regular problems. The
end points may be finite or infinite and no oscillatory restrictions on the coefficients
or solutions are assumed. Here the components of P and w are in Lloc(J) but not
necessarily in L(J). This transformation transforms the dependent variable and
leaves the independent variable and the domain interval unchanged.

Let P ∈ Zn(J), let W be given by (3.8) with w ∈ Lloc(J) and let λ ∈ C. Then
P+ ∈ Zn(J). Let M = MP , M+ = MP+ and consider the scalar equations

My = λwy on J, (4.1)

M+z = (−1)nλ̄w̄z on J, (4.2)

and their system formulations

Y ′ = (P − λW )Y on J, (4.3)

Z ′ = (P − λW )+Z on J. (4.4)

Let Φ, Ψ be the primary fundamental matrices of (P − λW ) and (P − λW )+,
respectively. Fix c ∈ J and choose r ∈ R (this r can be chosen arbitrarily but, once
chosen, it remains fixed). Then

U = Φ(·, c, r), V = Ψ(·, c, r) = (vij),

U = (uij) = (u[j−1]
i )T, U−1 = (Uij).

}
(4.5)

Theorem 4.1. Assume that tr(P ) = 0. Suppose that for λ = r all solutions of (4.1)
and (4.2) are in L2(J, |w|). For any λ ∈ C and any vector solution Y = Y (·, λ) of
the system (4.3) let X = X(·, λ) be defined by

X(t) = U−1(t)Y (t), t ∈ J. (4.6)
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Then

(i)
X ′ = (r − λ)wQX on J, (4.7)

where

Q =

⎛
⎜⎜⎜⎝

u1U1n u2U1n · · · unU1n

u1U2n u2U2n · · · unU2n
...

...
. . .

...
u1Unn u2Unn · · · unUnn

⎞
⎟⎟⎟⎠ , (4.8)

(ii) wQ ∈ L1(J),

(iii) both limits
X(a) = lim

t→a+
X(t), X(b) = lim

t→b−
X(t) (4.9)

exist and are finite.

Proof.

X ′ = −U−1U ′U−1Y + U−1Y ′

= U−1[−(P − rW )UU−1Y + (P − λW )Y ]

= (r − λ)(U−1WU)X on J.

Now observe that
U−1WU = wQ (4.10)

and the proof of (i) is complete. For the proof of (ii) the critical observation is to
note that Ūjn is a solution of the adjoint equation (4.2) for each j = 1, 2, . . . , n.
Using the adjointness lemma, the fact that Φ(c, t) = Φ−1(t, c), which follows from
the representation Φ(c, t) = Y (c)Y −1(t) for any fundamental matrix Y of (4.3), and
the hypothesis that tr(P ) = 0, which implies that detΦ(c, t) = 1 for all t ∈ J , we
have

Ψ(t, c) = E−1Φ∗(c, t)E = E−1Φ−1∗(t, c)E = E−1(U−1)∗E. (4.11)

Therefore,
Ψ1,n+1−j(t, c) = ±Ūj,n, j = 1, 2, . . . , n. (4.12)

From the hypothesis that all solutions of (4.1) and (4.2) are in L2(J, |w|) and the
Schwarz inequality we get that( ∫

J

|wujUkn|
)2

�
∫

J

|w||uj |2
∫

J

|w||Ukn|2 < ∞, j, k = 1, 2, . . . , n. (4.13)

This completes the proof of (ii). Part (iii) follows from (ii) (see [11]) and the proof
of the theorem is complete.

Corollary 4.2. Let the hypotheses and notation of theorem 4.1 hold. Then all
solutions of (4.1) and (4.2) are in L2(J, |w|) for every λ ∈ C.
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Proof. By (4.6), Y (t, λ) = U(t)X(t, λ). By hypothesis, u1,j ∈ L2(J, |w|) for j =
1, . . . , n. By theorem 4.1(iii), each component of X(t, λ) has a finite limit at each
end point and is therefore bounded in a neighbourhood of each end point and
therefore the conclusion follows for equation (4.1). Since (P+)+ = P this argu-
ment is symmetric with respect to P and P+ and the conclusion follows also for
equation (4.2).

5. Green’s functions of singular boundary-value problems

In this section we construct Green’s functions for singular boundary-value problems
on J = (a, b) for the case when each end point is either a regular or singular limit-
circle. The end points may be finite or infinite and no oscillatory restrictions on
the coefficients or solutions are assumed. Here the components of P and w are in
Lloc(J) but not necessarily in L(J).

Theorem 5.1. Let w ∈ Lloc(J). Suppose P ∈ Zn(J), tr(P ) = 0. Let M = MP

and M+ = MP+ be the scalar nth-order differential expressions generated by P
and P+, respectively. Let U , V be determined by (4.5), X be determined by (4.6)
and let Q be given by (4.8). Let A, B, C, D ∈ Mn(C). We consider the following
boundary-value problems:

MP y = λwy on J, λ ∈ C, AX(a) + BX(b) = 0, where X = U−1Y ;
(5.1)

MP+z = (−1)nλ̄w̄z on J, λ̄ ∈ C, CΞ(a) + DΞ(b) = 0, where Ξ = V −1Z,
(5.2)

and

Y ′ = (P − λW )Y + F on J, AX(a) + BX(b) = 0, (5.3)

Z ′ = (P+ − (−1)nλ̄W̄ )Z + G on J, CΞ(a) + DΞ(b) = 0, (5.4)

X ′ = (r − λ)wQX + U−1F on J, AX(a) + BX(b) = 0, (5.5)

Ξ ′ = (r − λ̄)w̄Q+Ξ + V −1G on J, AΞ(a) + BΞ(b) = 0. (5.6)

Note that if Y ′ = (P − λW )Y + F and X = U−1Y , then from (5.3) we have

U ′X + UX ′ = (P − λW )UX + F,

UX ′ = [(P − λW )U − U ′]X + F,

X ′ = U−1[(P − λW )U − U ′]X + U−1F = (r − λ)wQX + U−1F.

Similarly, (5.6) follows from (5.4) and the transformation Ξ = V −1Z.
Assume that r − λ is not an eigenvalue of the BVP (5.5) and r − λ̄ is not an

eigenvalue of the BVP (5.6). Then the Green matrices of the regular systems (5.5),
(5.6)

K(t, s, r − λ, Q, W ), K(t, s, r − λ̄, Q+, W̄ )

exist by theorem 2.7. Define

G(t, s, λ, P, W, A, B) = U(t)K(t, s, r − λ, Q, W, A, B)U−1(s), s, t ∈ J,

G(t, s, λ̄, P+, W̄ , C, D) = V (t)K(t, s, r − λ̄, Q+, W̄ , C, D)V −1(s), s, t ∈ J,
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where Q+ is defined as Q but with P replaced by P+. Then for each U−1F ∈ L(J)
the regular boundary-value problem (5.5) has a unique solution X given by

X(t) =
∫ b

a

K(t, s, r − λ, Q, W )U−1(s)F (s) ds, a < t < b,

and hence

U−1(t)Y (t) =
∫ b

a

U−1(t)G(t, s, λ, P, W, A, B)U(s)U−1(s)F (s) ds, a < t < b.

Therefore,

Y (t) =
∫ b

a

G(t, s, λ, P, W, A, B)F (s) ds, a < t < b.

Similar solutions arise for (5.4) and (5.6). Then for each V −1G ∈ L(J) the
regular boundary-value problem (5.4) has a unique solution Z given by

Z(t) =
∫ b

a

G(t, s, λ̄, P+, W̄ , C, D)G(s) ds, a < t < b.

Given the above, we prove that the following statements are equivalent:

(i) AEC∗ = BED∗;

(ii) K(t, s, Q, r − λ, A, B) = E−1K∗(s, t, Q+, r − λ̄, C, D)E, s, t ∈ J ;

(iii) G(t, s, λ, P, W, A, B) = −E−1G∗(s, t, λ̄, P+, W̄ , C, D)E, s, t ∈ J ;

(iv) K1n(t, s, λ, P, W, A, B) = (−1)nK̄1n(s, t, λ̄, P+, W̄ , C, D), s, t ∈ J .

In particular, each of (i)–(iv) implies that

G1n(t, s, λ, P, W, A, B) = (−1)nḠ1n(s, t, λ̄, P+, W̄ , C, D), s, t ∈ J.

Proof. Parts (i) and (ii) are equivalent by theorem 2.11. To show that (iii) is equiv-
alent to (ii) we proceed as follows:

− E−1G∗(s, t, λ̄, P+, W̄ , C, D)E

= −E−1[V (s)K(s, t, r − λ̄, Q+, W̄ , C, D)V −1(t)]∗E

= −E−1V −1∗(t)EE−1K∗(s, t, r − λ̄, Q+, W̄ , C, D)EE−1V ∗(s)E

= U(t)K(t, s, r − λ, Q, W, A, B)U−1(s)
= G(t, s, λ, P, W, A, B).

In the last step we used the identities:

U(t) = E−1V −1∗(t)E, V (s) = E−1U−1∗(s)E.

These can be established by showing that both sides satisfy the same initial-value
problem. The equivalence of (iii) and (iv) is established similarly to the correspond-
ing result of theorem 3.3.
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6. Construction of adjoint and self-adjoint boundary conditions

In this section we comment on the adjointness and self-adjointness conditions of
theorem 3.3:

AEC∗ = BED∗, (6.1)
AEA∗ = BEB∗. (6.2)

and discuss a construction for these conditions for the cases n = 2 and n = 4. This
construction is based on the method used in [1] but is more explicit because our
Lagrange bracket is much simpler than the classical one used in [1]. In particular,
it does not depend on the coefficients of the equation.

But first we review the Lagrange identity, which is fundamental to the study of
boundary-value problems. Let P ∈ Zn(J), M = MP , let Q = P+, M+ = MQ (this
Q is not related to the Q used in § 4). For y ∈ D(P ), z ∈ D(Q), define the Lagrange
bracket [·, ·] by

[y, z] = (−1)k
n−1∑
r=0

(−1)n+1−r z̄[n−r−1]y[r]. (6.3)

Here we have omitted the subscript P on the quasi-derivatives of y and the
subscript Q on the quasi-derivatives of z.

Lemma 6.1 (Lagrange identity). For any y ∈ D(P ) and z ∈ D(Q) we have

z̄My − y(M+z) = [y, z]′.

Proof. This is a special case of [6, lemma 3.3].

Assume that P = (pij) ∈ Zn(J) and pij , w satisfy

w, pij ∈ L(J), 1 � i � j, j = 1, . . . , n; p−1
j,j+1 ∈ L(J), j = 1, . . . , n − 1.

(6.4)
Then equations (4.1) and (4.2) are regular and therefore y[r] and z[r] are well defined
at both end points a and b as finite limits [11].

Lemma 6.2. Assume that (6.4) holds. For any y ∈ D(P ) and z ∈ D(Q) we have∫ b

a

{z̄My − y(M+z)} = [y, z](b) − [y, z](a). (6.5)

Proof. This follows from lemma 6.1 by integration.

Remark 6.3. We comment on the difference between this Lagrange identity and
the classical one as found, for example, in the well-known books by Coddington and
Levinson [1] and Dunford and Schwartz [3]: the fundamental differences are that

(i) the matrix E is a simple constant matrix, whereas in the classical case it is a
complicated non-constant function depending on the coefficients,

(ii) we assume only that the coefficients are locally Lebesgue integrable in contrast
to [1, 3], where strong smoothness conditions are required.
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The price we pay for this generalization and simplification is the use of ‘messy’
quasi-derivatives y[r], which depend on the coefficients, in place of the classical
derivatives y(r).

Definition 6.4. Given matrices A, B ∈ Mn(C) satisfying rank(A, B) = n and the
boundary condition

AY (a) + BY (b) = 0 (6.6)

and matrices C, D ∈ Mn(C) satisfying rank(C, D) = n and boundary condition

CZ(a) + DZ(b) = 0, (6.7)

we say that the boundary condition (6.7) is adjoint to (6.6) if [y, z](b)− [y, z](a) = 0
for all y ∈ D(P ) and z ∈ D(Q). Note that (6.7) is adjoint to (6.6) if and only if
(6.6) is adjoint to (6.7).

Example 6.5. Let n = 2. Consider the Sturm–Liouville equation

My = −(py′)′ + qy = λwy on J = (a, b), −∞ � a < b � ∞,

and its adjoint equation

M+z = −(p̄z′)′ + q̄z = λ̄w̄z on J

with
1
p
, q, w ∈ L1(J, C), λ ∈ C.

Here

P =
[
0 1/p

q 0

]
, P+ =

[
0 1/p̄

q̄ 0

]
, E =

[
0 −1
1 0

]

and the Lagrange identity is

z̄My − yM+z = [y, z]′, where [y, z] = y(pz̄′) − z̄(py′)

for all y ∈ D(M), z ∈ D(M+).

The next lemma yields a construction for adjoint and, as we will see below, also
self-adjoint boundary conditions.

Lemma 6.6. Let A, B ∈ M2(C), the set of 2×2 matrices over the complex numbers,
with

rank(A, B) = 2

and let

Y =
[

y

py′

]
.

Choose any matrices α, β such that the block matrix[
A B

α β

]
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is non-singular; then choose 2 × 2 matrices F , G, H, K such that[
F G

H K

] [
A B

α β

]
=

[
−E 0
0 E

]
, E =

[
0 −1
1 0

]
. (6.8)

Then the boundary conditions

G∗Z(a) + K∗Z(b) = 0, with Z =
[

z

p̄z′

]
,

are adjoint to the conditions

AY (a) + BY (b) = 0.

Proof. Let y ∈ D(M), z ∈ D(M+). Then

z̄My − yM+z = z̄[−(py′)′ + qy] − y[−(p̄z′)′ + q̄z] = [ypz̄′ − z̄py′]′.

Note that

ypz̄′ − z̄py′ = [z̄, pz̄′]
[
0 −1
1 0

] [
y

py′

]
.

Hence, ∫ b

a

{z̄My − yM+z} = [ypz̄′ − z̄py′](b) − [ypz̄′ − z̄py′](a)

= Z∗(b)EY (b) − Z∗(a)EY (a)

= [Z∗(a), Z∗(b)]
[
−E 0
0 E

] [
Y (a)
Y (b)

]

= [Z∗(a), Z∗(b)]
[
F G

H K

] [
A B

α β

] [
Y (a)
Y (b)

]

= [Z∗(a)F + Z∗(b)H][AY (a) + BY (b)]
+ [Z∗(a)G + Z∗(b)K][αY (a) + βY (b)],

and Z∗(a)G+Z∗(b)K = 0 if and only if G∗Z(a)+K∗Z(b) = 0. This completes the
proof.

Illustration. Let B = −I, α = −I and β = 0. Then the following equations hold:

(i) FA + Gα = −E;

(ii) FB + Gβ = 0;

(iii) HA + Kα = 0;

(iv) HB + Kβ = E.

Hence,

C = G∗ = E∗ = −E, D = K∗ = (−EA)∗ = −A∗E∗ = A∗E.
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Checking the ‘Green function identities’ condition we have

AEC∗ = AE(−E)∗ = AEE = −A,

BED∗ = BE(A∗E)∗ = BEE∗A = −IE(−E)A = −A.

Thus, we have constructed adjoint boundary conditions. Next we show that this
construction produces all the self-adjoint conditions

1
p
, q, w ∈ L1(J, R), λ ∈ C.

Case 1 (all real coupled self-adjoint BCs). Let A = (aij), aij ∈ R, det A = 1;
B = −I, α = 0, β = −E. From[

F G

H K

] [
A B

α β

]
=

[
−E 0
0 E

]
,

we have

F = −EA−1, G = −EA−1E, H = 0, K = −I.

Hence,

AEC∗ = AEG = AE(−EA−1E) = E,

BED∗ = BEK = −IEK = −E(−I) = E.

Note that
G = −EA−1E = A∗, K = B∗,

so
AEA∗ = BEB∗.

Case 2 (all complex coupled self-adjoint BCs). Set A = eiγT , where T satisfies
T = (tij), tij ∈ R, det T = 1 and −π < γ < 0 or 0 < γ < π; B = −I; α = 0;
β = −E. By [

F G

H K

] [
A B

α β

]
=

[
−E 0
0 E

]
,

we have F = −EA−1, G = −EA−1E, H = 0, K = −I. Hence,

AEC∗ = AEG = AE(−EA−1E) = E,

BED∗ = BEK = −IE(−I) = E.

So AEC∗ = BED∗. Note that

G = −EA−1E = e−iγT ∗ = A∗, K = B∗,

Hence,
AEA∗ = BEB∗.
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Case 3 (separated self-adjoint BCs). Set

A =
(

a1 a2

0 0

)
, a1, a2 ∈ R, a1 �= 0;

B =
(

0 0
b1 b2

)
, b1, b2 ∈ R, b1 �= 0;

α =

⎛
⎝−a1

1
a1

− a2

0 0

⎞
⎠ ;

β =

⎛
⎝ 0 0

−b1 − 1
b1

− b2

⎞
⎠ .

From (6.8), we obtain that

F =

⎛
⎝ a1 0

a2 − 1
a1

0

⎞
⎠ , G =

(
a1 0
a2 0

)
, H =

⎛
⎝0 b1

0
1
b1

+ b2

⎞
⎠ , K =

(
0 b1

0 b2

)
.

By a computation we then obtain

AEC∗ = AEG = 0, BED∗ = BEK = 0.

Note that G = A∗, K = B∗, so

AEA∗ = BEB∗.

The other cases, a1 = 0, a2 �= 0, b1 = 0, b2 �= 0, are similar and hence omitted.
The three cases combined show that the construction of this lemma generates all
self-adjoint boundary conditions [11].

Example 6.7. Let n = 4. Consider the equation

My = [(p2y
′′)′ + p1y

′]′ + qy = λwy on J = (a, b), −∞ � a < b � ∞,

and its adjoint equation

M+z = [(p̄2z
′′)′ + p̄1z

′]′ + q̄z = λ̄w̄z on J,

with
1
p2

, p1, q, w ∈ L1(J, C), λ ∈ C.

Lemma 6.8. Let A, B ∈ M4(C), the set of 4×4 matrices over the complex numbers,
with

rank(A, B) = 4

and let

Y =

⎡
⎢⎢⎣

y

y′

p2y
′′

(p2y
′′)′ + p1y

′

⎤
⎥⎥⎦ , Z =

⎡
⎢⎢⎣

z

z′

p̄2z
′′

(p̄2z
′′)′ + p̄1z

′

⎤
⎥⎥⎦ .
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Choose any 4 × 4 matrices α, β such that the block matrix[
A B

α β

]

is non-singular; then choose 4 × 4 matrices F , G, H, K such that

[
F G

H K

] [
A B

α β

]
=

[
E4 0
0 −E4

]
, E4 =

⎡
⎢⎢⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤
⎥⎥⎦ . (6.9)

Then the boundary conditions

G∗Z(a) + K∗Z(b) = 0,

are adjoint to the conditions

AY (a) + BY (b) = 0.

Proof. Let y ∈ D(M), z ∈ D(M+). Then

z̄My − yM+z = z̄{[(p2y
′′)′ + p1y

′]′ + qy} − y{[(p̄2z′′)′ + p̄1z′]′ + q̄z}
= {z̄[(p2y

′′)′ + p1y
′] − y[(p2z̄

′′)′ + p1z̄
′] − (p2y

′′)z̄′ + p2z̄
′′y′}′.

However,

z̄[(p2y
′′)′ + p1y

′] − y[(p2z̄
′′)′ + p1z̄

′] − (p2y
′′)z̄′ + p2z̄

′′y′

= (z̄z̄′p2z̄
′′(p2z̄

′′)′ + p1z̄
′)

⎡
⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤
⎥⎥⎦

⎛
⎜⎜⎝

y

y′

p2y
′′

(p2y
′′)′ + p1y

′

⎞
⎟⎟⎠

= −Z∗E4Y.

Hence,∫ b

a

{z̄My − yM+z}

= {z̄[(p2y
′′)′ + p1y

′] − y[(p2z̄
′′)′ + p1z̄

′] − (p2y
′′)z̄′ + p2z̄

′′y′}(b)
− {z̄[(p2y

′′)′ + p1y
′] − y[(p2z̄

′′)′ + p1z̄
′] − (p2y

′′)z̄′ + p2z̄
′′y′}(a)

= Z∗(a)E4Y (a) − Z∗(b)E4Y (b)

= [Z∗(a), Z∗(b)]
[
E4 0
0 −E4

] [
Y (a)
Y (b)

]

= [Z∗(a), Z∗(b)]
[
F G

H K

] [
A B

α β

] [
Y (a)
Y (b)

]
= [Z∗(a)F + Z∗(b)H][AY (a) + BY (b)]

+ [Z∗(a)G + Z∗(b)K][αY (a) + βY (b)],

and Z∗(a)G + Z∗(b)K = 0 if and only if G∗Z(a) + K∗Z(b) = 0.
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Illustration. By (6.9) we have

FA + Gα = E4, FB + Gβ = 0,

HA + Kα = 0, HB + Kβ = −E4.

}
(6.10)

Case 1. Set A = A, B = −I, α = −E4, β = 0. Then, by (6.10), we have

G = −I, F = 0, K = −E4AE4, H = E4.

Hence,

AE4C
∗ = AE4G = AE4(−I) = −AE4,

BE4D
∗ = BE4K = −IE4(−E4AE4) = −AE4.

So

AE4C
∗ = BE4D

∗.

In the following, we let
1
p2

, p1, q, w ∈ L1(J, R).

Case 2 (self-adjoint BCs). Set

A =
(

I2 γ

0 I2

)
, γ =

(
γ11 γ12

γ21 γ22

)
,

where γij satisfy γ11 = −γ̄22 and γ12, γ21 are real numbers. Note that γ = E2γ
∗E2,

and set B = I4, α = 04, β = −E4. By (6.10) we have

F = E4A
−1, G = −E4A

−1E4, H = 0, K = I.

In terms of γ = E2γ
∗E2, we can easily obtain that AE4A

∗ = E4.
Note that

G = −E4A
−1E4 = −E4A

−1AE4A
∗ = A∗, C = G∗ = A, D = K∗ = B.

So

AE4C
∗ = AE4A

∗ = E4,

BE4D
∗ = BE4B

∗ = IE4I = E4.

Therefore,

AE4A
∗ = BE4B

∗.

Case 3 (separated self-adjoint BCs). Set

A =
(

I A1

0 0

)
, B =

(
0 0

B1 I

)
,

where I is the 2 × 2 unit matrix, 0 is the 2 × 2 zero matrix and

A1 =
(

a1 a2

a3 a4

)
, B1 =

(
b1 b2

b3 b4

)
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satisfy
A1 = E2A

∗
1E2, B1 = E2B

∗
1E2,

i.e. a2, a3, b2, b3 are real numbers and a1 = −ā4, b1 = −b̄4. In addition, set

α =
(

0 E2

E2 E2A1

)
, β =

(
E2B1 E2

−E2 0

)
.

Then, by (6.10), we have

C = G∗ = A, D = K∗ = B.

So

AE4C
∗ = AE4A

∗ = 0,

BE4D
∗ = BE4B

∗ = 0.

Hence,

AE4A
∗ = BE4B

∗.

7. The Legendre Green function

As an illustration of some of the above results we construct the singular Legendre
Green function in this section. This seems to be new even though the Legendre
equation

−(py′)′ = λy, p(t) = 1 − t2 on J = (−1, 1), (7.1)

is one of the simplest singular differential equations and there is a voluminous
literature associated with it in pure and applied mathematics. Its potential function
q is zero, its weight function w is the constant 1 and its leading coefficient p is a
simple quadratic. It is singular at both end points −1 and +1. The singularities are
due to the fact that 1/p is not Lebesgue integrable in left and right neighbourhoods
of these points. In spite of its simple appearance, (7.1) and its associated self-adjoint
operators exhibit a surprisingly wide variety of interesting phenomena.

The above construction of singular Green’s functions is a five-step procedure.

1. Formulate the singular second-order scalar equation (7.1) as a first-order sin-
gular system.

2. ‘Regularize’ this singular system by constructing regular systems which are
equivalent to it.

3. Construct the Green matrix for boundary-value problems of the regular sys-
tem.

4. Construct the singular Green matrix for the equivalent singular system from
the regular one.

5. Extract the upper right corner element from the singular Green matrix. This
is the Green function for singular scalar boundary-value problems for equa-
tion (7.1).
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For λ = 0, two linearly independent solutions of (7.1) are given by

u(t) = 1, v(t) = − 1
2 ln

(∣∣∣∣1 − t

t + 1

∣∣∣∣
)

. (7.2)

The standard system formulation of (7.1) has the form

Y ′ = (P − λW )Y on (−1, 1), (7.3)

where

Y =
(

y

py′

)
, P =

(
0 1/p

0 0

)
, W =

(
0 0
1 0

)
. (7.4)

Let u and v be given by (7.2) and let

U =
(

u v

pu′ pv′

)
=

(
1 v

0 1

)
. (7.5)

Note that det U(t) = 1 for t ∈ J = (−1, 1), and set

Z = U−1Y. (7.6)

Then

Z ′ = (U−1)′Y + U−1Y ′

= −U−1U ′U−1Y + (U−1)(P − λW )Y = −U−1U ′Z + (U−1)(P − λW )UZ

= −U−1(PU)Z + U−1(PU)Z − λ(U−1WU)Z

= −λ(U−1WU)Z.

Letting G = (U−1WU), we may conclude that

Z ′ = −λGZ, (7.7)

where

G = U−1WU =
(

−v −v2

1 v

)
. (7.8)

Definition 7.1. We call (7.7) a ‘regularized’ Legendre system.

The next theorem justifies this definition and gives the relationship between this
‘regularized’ system and equation (7.1).

Theorem 7.2. Let λ ∈ C and let G be given by (7.8).

(i) Every component of G is in L1(−1, 1) and therefore (7.7) is a regular system.

(ii) For any c1, c2 ∈ C the initial-value problem

Z ′ = −λGZ, Z(−1) =
(

c1

c2

)
(7.9)

has a unique solution Z defined on the closed interval [−1, 1].
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(iii) If

Y =
(

y(t, λ)
(py′)(t, λ)

)

is a solution of (7.3) and

Z = U−1Y =
(

z1(t, λ)
z2(t, λ)

)
,

then Z is a solution of (7.7), and for all t ∈ (−1, 1) we have

y(t, λ) = uz1(t, λ) + v(t)z2(t, λ) = z1(t, λ) + v(t)z2(t, λ), (7.10)

(py′)(t, λ) = (pu′)z1(t, λ) + (pv′)(t)z2(t, λ) = z2(t, λ). (7.11)

(iv) For every solution y(t, λ) of the singular scalar Legendre equation (7.1) the
quasi-derivative (py′)(t, λ) is continuous on the compact interval [−1, 1]. More
specifically, we have

lim
t→−1+

(py′)(t, λ) = z2(−1, λ), lim
t→1−

(py′)(t, λ) = z2(1, λ). (7.12)

Thus, the quasi-derivative is a continuous function on the closed interval
[−1, 1] for every λ ∈ C.

(v) Let y(t, λ) be given by (7.10). If z2(1, λ) �= 0, then y(t, λ) is unbounded at 1.
If z2(−1, λ) �= 0, then y(t, λ) is unbounded at −1.

(vi) Fix t ∈ [−1, 1] and let c1, c2 ∈ C. If

Z =
(

z1(t, λ)
z2(t, λ)

)

is the solution of (7.7) determined by the initial conditions z1(−1, λ) = c1,
z2(−1, λ) = c2, then zi(t, λ) is an entire function of λ, i = 1, 2. A similar
solution can be obtained for the initial conditions z1(1, λ) = c1, z2(1, λ) = c2.

(vii) For each λ ∈ C there is a non-trivial solution which is bounded in a (two-sided)
neighbourhood of 1, and there is a (generally different) non-trivial solution
which is bounded in a (two-sided) neighbourhood of −1.

(viii) A non-trivial solution y(t, λ) of the singular scalar Legendre equation (7.1)
is bounded at 1 if and only if z2(1, λ) = 0. A non-trivial solution y(t, λ) of
the singular scalar Legendre equation (7.1) is bounded at −1 if and only if
z2(−1, λ) = 0.

Proof. Part (i) follows from (7.8), part (ii) is a direct consequence of (i) and the
theory of regular systems, Y = UZ implies (iii) =⇒ (iv) and (v); part (vi) follows
from (ii) and the basic theory of regular systems. For part (vii), determine solutions
y1(t, λ), y−1(t, λ) by applying the Frobenius method to obtain power series solutions
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of (7.1) in the form [5, p. 5, with different notation]:

y1(t, λ) = 1 +
∞∑

n=1

an(λ)(t − 1)n, |t − 1| < 2; (7.13)

y−1(t, λ) = 1 +
∞∑

n=1

bn(λ)(t + 1)n, |t + 1| < 2. (7.14)

To prove (viii) it follows from (7.10) that if z2(1, λ) �= 0, then y(t, λ) is not
bounded at 1. Suppose z2(1, λ) = 0. If the corresponding y(t, λ) is not bounded
at 1, then there are two linearly unbounded solutions at 1 and hence all non-trivial
solutions are unbounded at 1. This contradiction establishes (viii) and completes
the proof of the theorem.

Remark 7.3. From theorem 7.2 we see that, for every λ ∈ C, (7.1) has a solution
y1 which is bounded at 1 and has a solution y−1 which is bounded at −1.

It is well known that for λn = n(n + 1): n ∈ N0 = {0, 1, 2, . . . } the Legendre
polynomials Pn are solutions on (−1, 1) and hence are bounded at −1 and at +1.

For later reference we introduce the primary fundamental matrix of the sys-
tem (7.7).

Definition 7.4. Fix λ ∈ C. Let Φ(·, ·, λ) be the primary fundamental matrix
of (7.7); i.e. for each s ∈ [−1, 1], Φ(·, s, λ) is the unique matrix solution of the
initial-value problem:

Φ(s, s, λ) = I, (7.15)

where I is the 2 × 2 identity matrix. Since (7.7) is regular, Φ(t, s, λ) is defined for
all t, s ∈ [−1, 1] and, for each fixed t, s, Φ(t, s, λ) is an entire function of λ.

We now consider two-point boundary conditions for (7.7); later we will relate
these to singular boundary conditions for (7.1).

Let A, B ∈ M2(C), the set of 2×2 complex matrices, and consider the boundary-
value problem

Z ′ = −λGZ, AZ(−1) + BZ(1) = 0. (7.16)

Lemma 7.5. A complex number −λ is an eigenvalue of (7.16) if and only if

∆(λ) = det[A + BΦ(1,−1,−λ)] = 0. (7.17)

Furthermore, a complex number −λ is an eigenvalue of geometric multiplicity 2
if and only if

A + BΦ(1,−1,−λ) = 0. (7.18)

Proof. Note that a solution for the initial condition Z(−1) = C is given by

Z(t) = Φ(t, −1,−λ)C, t ∈ [−1, 1]. (7.19)

The boundary-value problem (7.16) has a non-trivial solution for Z if and only
if the algebraic system

[A + BΦ(1,−1,−λ)]Z(−1) = 0 (7.20)

has a non-trivial solution for Z(−1).
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To prove the ‘furthermore’ part, observe that two linearly independent solutions
of the algebraic system (7.20) for Z(−1) yield two linearly independent solutions
Z(t) of the differential system and vice versa.

Given any λ ∈ R and any solutions y, z of (7.1), the Lagrange form [y, z](t) is
defined by

[y, z](t) = y(t)(pz̄′)(t) − z̄(t)(py′)(t).

So, in particular, we have

[u, v](t) = +1, [v, u](t) = −1, [y, u](t) = −(py′)(t), t ∈ R,

[y, v](t) = y(t) − v(t)(py′)(t), t ∈ R, t �= ±1.

We will see below that, although v blows up at ±1, the form [y, v](t) is well
defined at −1 and +1 since the limits

lim
t→−1

[y, v](t), lim
t→+1

[y, v](t)

exist and are finite from both sides. This holds for any solution y of (7.1) for any
λ ∈ R. Note that, since v blows up at 1, this means that y must blow up at 1
except, possibly, when (py′)(1) = 0.

We are now ready to construct the Green function of the singular scalar Legendre
problem consisting of the equation

My = −(py′)′ = λy + h on J = (−1, 1), p(t) = 1 − t2, − 1 < t < 1, (7.21)

together with two-point boundary conditions

A

[
(−py′)(−1)

(ypv′ − v(py′))(−1)

]
+ B

[
(−py′)(1)

(ypv′ − v(py′))(1)

]
=

[
0
0

]
, (7.22)

where u, v are given by (7.2) and A, B are 2×2 complex matrices. This construction
is based on the system regularization discussed above and we will use the notation
from above. Consider the regular non-homogeneous system

Z ′ = −λGZ + F, AZ(−1) + BZ(1) = 0, (7.23)

where

F =
(

f1

f2

)
, fj ∈ L1(J, C), j = 1, 2. (7.24)

Theorem 7.6. Let −λ ∈ C and let ∆(−λ) = [A + BΦ(1,−1,−λ)]. Then the fol-
lowing statements are equivalent.

(i) For F = 0 on J = (−1, 1), the homogeneous problem (7.23) has only the
trivial solution.

(ii) ∆(−λ) is non-singular.

(iii) For every F ∈ L1(−1, 1) the non-homogeneous problem (7.23) has a unique
solution Z and this solution is given by

Z(t, −λ) =
∫ 1

−1
K(t, s,−λ)F (s) ds, −1 � t � 1, (7.25)
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where

K(t, s,−λ)

=

⎧⎪⎨
⎪⎩

Φ(t, −1,−λ)∆−1(−λ)(−B)Φ(1, s,−λ), −1 � t < s � 1,

Φ(t, −1,−λ)∆−1(−λ)(−B)Φ(1, s,−λ) + φ(t, s − λ), −1 � s < t � 1,

Φ(t, −1,−λ)∆−1(−λ)(−B)Φ(1, s,−λ) + 1
2φ(t, s − λ), −1 � s = t � 1.

(7.26)

Proof. See theorem 2.7.

Definition 7.7. Let

L(t, s, λ) = U(t)K(t, s,−λ)U−1(s), −1 � t, s � 1. (7.27)

The next theorem shows that L12, the upper right component of L, is the Green
function of the singular scalar Legendre problem (7.21), (7.22).

Theorem 7.8. Assume that [A + BΦ(1,−1,−λ)] is non-singular. Then, for every
function h satisfying

h, vh ∈ L1(J, C), (7.28)

the singular scalar Legendre problem (7.21), (7.22) has a unique solution y(·, λ)
given by

y(t, λ) =
∫ 1

−1
L12(t, s)h(s) ds, −1 < t < 1. (7.29)

Proof. Let

F =
(

f1

f2

)
= U−1H, H =

(
0

−h

)
. (7.30)

Then fj ∈ L1(J2, C), j = 1, 2. Since Y (t, λ) = U(t)Z(t, −λ) we get from (7.25)

Y (t, λ) = U(t)Z(t, −λ)

= U(t)
∫ 1

−1
K(t, s,−λ)F (s) ds

=
∫ 1

−1
U(t)K(t, s,−λ)U−1(s)H(s) ds

=
∫ 1

−1
L(t, s, λ)H(s) ds, −1 < t < 1, (7.31)

and therefore

y(t, λ) = −
∫ 1

−1
L12(t, s, λ)h(s) ds, −1 < t < 1. (7.32)
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