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Logic Colloquium 2018, the annual European Summer Meeting of the Association of
Symbolic Logic, was hosted by the University of Udine. The meeting took place from July 23
to July 28, 2018. It was organised bymembers of the Department ofMathematics, Computer
Science, and Physics of theUniversity ofUdine andwas held in theDepartment of Economics
and Statistics.
Funding for the conference was provided by Association for Symbolic Logic (ASL); the

US National Science Foundation; Università degli Studi di Udine; Dipartimento di Scienze
Matematiche, Informatiche e Fisiche, Università degli Studi di Udine; Istituto Nazionale
di Alta Matematica—GNSAGA; Associazione Italiana di Logica e sue Applicazioni; So-
cietà Italiana di Logica e Filosofia delle Scienze; Italian Chapter of the European Asso-
ciation for Theoretical Computer Science; and the sponsor AMGA Gruppo Energia &
Servizi.
The success of the meeting owes a great deal to the enthusiasm and hard work of the

Local Organizing Committee under the leadership of its cochairs, Giovanna D’Agostino
and Angelo Montanari (University of Udine). The other members were Vincenzo Dimonte,
Guido Gherardi, Alberto Marcone, Franco Parlamento, Carla Piazza, Dario Delle Monica,
Marta Fiori Carones, Emanuele Frittaion, Nicola Gigante, Alberto Molinari, and Manlio
Valenti.
The Program Committee consisted of Dugald Macpherson (University of Leeds, Chair),

Stéphane Demri (CNRS), Alexander S. Kechris (California Institute of Technology), Chris
Laskowski (University of Maryland), Alberto Marcone (Università degli Studi di Udine),
Antonio Montalban (UC Berkeley), Pavel Pudlák (Czech Academy of Sciences), Gila Sher
(UC San Diego), and Dima Sinapova (University of Illinois at Chicago).
The program included two tutorial courses, twelve invited lectures, including the Twenty-

ninth Annual Gödel Lecture, twenty-four invited lectures in six special sessions (on com-
putability theory, descriptive set theory and dynamical systems, model theory, philosophy
of logic and mathematics, proof theory and constructivism, and temporal and multivalued
logics), and 87 contributed talks. There were about 190 participants, and ASL travel grants
were awarded to 33 students and recent Ph.D’s.
The following tutorial courses were given:
Ulrike Sattler (University of Manchester), Description logics, ontologies, and automated

reasoning: An introduction.
Katrin Tent (WWUMünster),Model-theoretic ampleness.
The following invited plenary lectures were presented:
Rod Downey (Victoria University, Wellington), (the Gödel Lecture),Algorithmic random-

ness.
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Marianna Antonutti Marfori (LMUMünchen), On the significance of mathematical hier-
archies.
Albert Atserias (Universitat Politècnica de Catalunya), What can not be solved by the

ellipsoid method.
Vasco Brattka (Universität der Bundeswehr München), On the computational content of

theorems.
Agata Ciabattoni (TUWien), Analytic calculi for substructural logics: Theory and applica-

tions.
Paola D’Aquino (Università degli Studi della Campania), Complex exponential field.
Paolo Oliva (Queen Mary University of London), Relational proof interpretations.
Ludovic Patey (Institut Camille Jordan, Lyon), Ramsey’s Theorem from a computable

perspective.
Anush Tserunyan (University of Illinois at Urbana-Champaign), Ergodic theorems and

descriptive combinatorics.
Spencer Unger (Tel Aviv University), Stationary reflection.
Matteo Viale (Università degli Studi di Torino), Forcing as a tool to prove theorems.
Dag Westerstahl (Stockholm University), Logical constants and logical consequence.
More information about the meeting can be found at the conference website,

https://lc18.uniud.it/.
Abstracts of invited and contributed talks given in person or by title by members of the

Association follow.

For the Program Committee
Dugald Macpherson

Abstracts of Invited Tutorials

� ULI SATTLER, Description logics, ontologies, and automated reasoning: An introduction.
School of Computer Science, University of Manchester, Manchester, UK.
E-mail: uli.sattler@manchester.ac.uk.
Description logics (DL) [1, 2] form the logical basis of state-of-the-art ontology languages,

in particular the Semantic Web Ontology language OWL [3]. They have been first developed
as the formalisation of semantic networks and frames, and are “coincidental” cousins of
modal logic and the guarded fragment, and hence decidable fragments of first-order logic.
In the last three decades, we have seen a wide range of contributions and applications, due

to mutually beneficial interactions between the following areas of activity:

• variants, extensions, and combinations of description logics being investigated with re-
spect to their decidability, computational complexity, model theory, and other relevant
properties;

• automated reasoners being developed, constantly optimised to cater for ever more
demanding application scenarios, extended to cater for a wide range of reasoning
tasks, and supported by other tools;

• tools such as editors, integrated development environments, and programmatic APIs
being developed and constantly improved that integratewell with reasoners and support
domain experts in modelling;

• applications—inparticular frombio-health applications but also fromother knowledge-
heavy domains—that benefit from the “semantic lense” that description logic theories
provide and the reasoning services offered via DL reasoners, and that require novel,
nonstandard reasoning services such as module extraction or entailment explanations.

This development was helped by the standardisation of the syntax and extensions to this
syntax to annotate/comment logical theories and axioms with relevant book-keeping infor-
mation.
In this tutorial, I will give an introduction to description logics, their relationship to modal

and first-order logics, and the four areas highlighted above. This introduction is aimed at
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anybody with a general background in logic and an interest in learning more about the field
of description logics, knowledge representation, and ontology engineering.
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,

TheDescription Logic Handbook: Theory, Implementation, and Applications, Cambridge Uni-
versity Press, 2003.
[2] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, Introduction to Description Logic,

Cambridge University Press, 2017.
[3] B.C.Grau, I.Horrocks, B.Motik,B. Parsia, P. F. Patel-Schneider, andU.Sattler,

OWL 2: The next step for OWL. Journal of Web Semantics, vol. 6 (2008), no. 4, pp. 309–322.

� KATRIN TENT,Model theoretic ampleness.
Mathematisches Institut, Universität Münster, Einsteinstrasse 62, 48149Münster, Germany.
E-mail: tent@wwu.de.
The notion of ampleness originates in algebraic geometry and characterizes an embed-

dability property into projective spaces.
This notion turned out to be crucial in the characterization of Zariski geometrie due to

Hrushovski and Zilber.
Pillay subsequently introduced a model theoretic version of ampleness. His definition can

be seen as an attempt to characterize projective spaces just using model theoretic indepen-
dence. It remained an open question whether ampleness might be sufficient to characterize a
strongly minimal structure as being an algebraic curve.
In this series of lectures, I will give an introduction to model theoretic independence and

explain the definition of ampleness. I will then go on to explain a number of different examples
of ample structures, starting with projective spaces and other kinds of buildings, sketching
ampleness in the free group. Finally, I will explain recent constructions of ample strongly
minimal structures not arising as an algebraic curve.

Abstract of the invited Gödel Lecture

� RODDOWNEY, Algorithmic randomness.
Victoria University, Wellington, New Zealand.
E-mail: rod.downey@vuw.ac.nz.
In spite of the fact that elementary probability theory tells us that all sequences of n tosses

of a fair coin are equally likely, our intuition tells us that some sequences are more random
than others. Is there a reasonable mathematical theory of randomness of individual objects
rather than one of expected behavior of distributions? In this talk I will discuss work in the
area of mathematics devoted to interpreting randomness through computation. I will begin
with Borel, vonMises, and Turing and finish discussing some things we have learned in recent
years. The lecture should be accessible to graduate students.

Abstracts of invited Plenary talks

� MARIANNA ANTONUTTI-MARFORI,On the significance of mathematical hierarchies.
Ludwig-Maximilians-Universität München, München, Germany.
E-mail: marianna.antonutti@gmail.com.
The study of hierarchies in mathematics has been a very active field of research since the

1940s. Hierarchies are usually taken to classify objects (or collections thereof) according
to a measure of complexity along some dimension, such that the level at which a given
object appears in the hierarchy measures the degree of difficulty of constructing the object
in question, or equivalently, the difficulty of verifying its existence. Theories considered
mathematically “natural” often occupy special places in these hierarchies and can sometimes
be put into interesting correspondences with foundational or philosophical approaches to
mathematics, according to the strength of their existential assumptions.
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In this talk, I will propose a different, complementary view of the lessons we can draw
from the study of mathematical hierarchies. According to this view, hierarchies measure
the relative distance from the axiomatic assumptions that we make on the basis of our
pretheoretical understanding of a certain domain of mathematical objects, by means of
countable or uncountable iterations of inference patterns that we recognise as correct.
In outlining this view, I will consider how the study of hierarchies developed from the
new formal analyses of concepts such as computation, consistency, interpretation, and
model, that emerged in the early 20th century, and I will suggest that a deeper under-
standing of the historical development of mathematical hierarchies can help illuminate their
significance.

� ALBERT ATSERIAS,What can not be solved by the ellipsoid method?
Computer Science Department, Universitat Politècnica de Catalunya, Barcelona, Spain.
E-mail: atserias@cs.upc.edu.
The ellipsoid method, developed in the 1960s for nonlinear programming, and rigorously

analyzed by Khachiyan in the 1970s for linear programming, is a powerful algorithm for
solving linear optimization problems over convex sets that are given by a separation oracle.
One of the important features of the method is that it gives a polynomial-time algorithm for
solving not only explicitly given linear programs but also certain implicitly given exponentially
big linear or semidefinite programs that arise in combinatorial contexts.Themassive flexibility
of this method turns the following question into a challenge: what are the limits of the
ellipsoid method? In other words, what are the combinatorial problems that the ellipsoid
method can provably *not* solve in polynomial time? In this talk, we will show how the
methods of mathematical logic, concretely, the methods of descriptive complexity and finite
model theory, provide good answers to some of these questions.

� VASCO BRATTKA, On the computational content of theorems.
Department of Computer Science, Universität der Bundeswehr München, 85577 Neubiberg,
Germany and Department of Mathematics and Applied Mathematics, University of Cape
Town, Rondebosch 7700, South Africa.
E-mail: Vasco.Brattka@cca-net.de.
To analyze the computational content of theorems is a research topic at least since Turing’s

seminal work on computable numbers in which he started the investigation of computable
versions of theorems in analysis. In the sequel, this topic was taken up by many other re-
searchers such as Specker, Lacombe, Shore and Nerode, Pour-El and Richards [2], and
Weihrauch [4]. A related but formally different approach has been started by Friedman and
Simpson [3], who have characterized axioms that are sufficient and often necessary to prove
certain theorems in second-order arithmetic. This approach is best known under the name
reverse mathematics. In recent years, the interaction between these two research trends has
been intensified and overlaps in what is called Weihrauch complexity. Weihrauch complexity
is a computability theoretic approach to the classification of the computational content of
theorems that yields results that can be seen as a uniform and resource-sensitive version of
reverse mathematics. The benefit of this theory is that it yields fine grained computational
results that answer typical questions from the computable analysis perspective, while be-
ing compatible with reverse mathematics. Sometimes results can be imported from reverse
mathematics and computable analysis, but often completely newmethods and techniques are
required. We will present a survey on this approach that is based on a recent survey article [1]
on this topic.
[1] V.Brattka, G.Gherardi, andA.Pauly,Weihrauch complexity in computable analysis,

2017, arXiv:1707.03202.
[2]M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Springer,

Berlin, 1989.
[3] S. G. Simpson, Subsystems of Second Order Arithmetic, second ed., Cambridge Uni-

versity Press, Poughkeepsie, 2009.
[4]K. Weihrauch, Computable Analysis, Springer, Berlin, 2000.
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� AGATA CIABATTONI, Analytic calculi for substructural logics: Theory and applications.
Department of Logic and Computation, Theory and Logic group, Vienna University of
Technology, Favoritenstrasse 9-11, Austria.
E-mail: agata@logic.at.
Substructural logics are axiomatic extensions of full Lambek calculus. They encompass,

among many others, classical, intuitionistic, intermediate, fuzzy, and relevant logics. In my
talk, I will outline some results towards a uniform and systematic introduction of cut-free
sequent and hypersequent calculi for substructural logics.
The calculi are defined by integrating proof theoretic and algebraic techniques, starting

from Hilbert systems [4, 5, 6].
The hypersequent calculi are used to provide a concurrent computational interpretation

for many intermediate logics, classical logic included. This solves Avron’s conjecture [3]. We
use indeed the Curry–Howard correspondence to obtain new typed concurrent �-calculi,
each of which features a specific communication mechanism and implements forms of code
mobility [1, 2].
[1] F. Aschieri, A. Ciabattoni, and F. A. Genco, Gödel logic: From natural deduction to

parallel computation, Proceedings of Logic in Computer Science (LICS 2017), 2017, pp. 1–12.
[2] , Classical proofs and parallel programs, submitted, 2018.
[3] A. Avron,Hypersequents, logical consequence and intermediate logics for concurrency.

Annals of Mathematics and Artificial Intelligence, vol. 4 (1991), pp. 225–248.
[4] A. Ciabattoni, N. Galatos, and K. Terui, Algebraic proof theory: Hypersequents and

hypercompletions. Annals of Pure and Applied Logic, vol. 168 (2017), no. 3, pp. 693–737.
[5] , Algebraic proof theory for substructural logics: Cut-elimination and comple-

tions. Annals of Pure and Applied Logic, vol. 163 (2012), no. 3, pp. 266–290.
[6] , From axioms to analytic rules in nonclassical logics, Proceedings of Logic in

Computer Science (LICS 2008), 2008, pp. 229–240.

� PAOLAD’AQUINO, Complex exponential field.
Dipartimento di Matematica e Fisica, Università della Campania “L. Vanvitelli”, viale Lin-
coln 5, Caserta 81100, Italy.
E-mail: paola.daquino@unicampania.it.
In his article [2], Zilber identifies a new class of exponential fields (pseudo-exponential

fields), proves a categoricity result in every uncountable cardinality, and puts forward the
dramatic conjecture that the classical complex exponential field is the unique model of power
continuum. The huge importance of this conjecture for the classical case is that Zilber has,
unconditionally, established, for the pseudo-exponential fields, geometrically natural criteria
for solvability of systems of exponential equations, whereas in the classical case, only a
very few such criteria have been established by using hard complex analysis, for example,
Nevanlinna Theory. In the last 15 years, much attention has been given to extend classical
results for the complex exponential field to the pseudo-exponential fields, and vice versamuch
effort has been put in proving forC properties of solutions of exponential polynomials which
follow from the axioms of Zilber. The analytic methods have been substituted by algebraic
and diophantine-geometrical arguments. I will review some of the first results on this and
I will present some more recent achievements obtained in collaboration with A. Fornasiero
and G. Terzo.
[1] P.D’Aquino,A.Fornasiero, andG.Terzo,Generic solutions of equations with iterated

exponentials. Transactions of the American Mathematical Society, vol. 370 (2018), no. 2,
pp. 1393–1407.
[2] B. Zilber, Pseudo-exponentiation on algebraically closed fields of characteristic zero.

Annals of Pure and Applied Logic, vol. 132 (2004), no. 1, pp. 67–95.

� YAIR HAYUT AND SPENCER UNGER, Stationary reflection.
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
E-mail: yair.hayut@mail.tau.ac.il.
E-mail: spencerunger@mail.tau.ac.il.
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Stationary reflection is an important notion in the study of compactness principles in set
theory. The existence of a nonreflecting stationary set is enough to construct many objects
which witness the noncompactness of various properties, examples include noncompactness
of the chromatic number of graphs and the extent of freeness of abelian groups. In the other
direction, stationary reflection (the assertion that every stationary set reflects) is consistent
relative to the existence of large cardinals.
At the successor of a singular cardinal, the previous known upperbound was infinitely

many supercompact cardinals. In particular, Magidor showed that stationary reflection at
ℵ�+1 is consistent from this hypothesis. We improve this upperbound by showing that sta-
tionary reflection at ℵ�+1 is consistent relative to the existence of a cardinal κ which is κ+-Π11-
subcompact. Under GCH this large cardinal assumption follows from κ+-supercompactness.

� PAULO OLIVA, Relational proof interpretations.
School of Electronic Engineering and Computer Science, London, UK.
E-mail: p.oliva@qmul.ac.uk.
URL: http://www.eecs.qmul.ac.uk/∼pbo/.
Functional interpretations come in two flavours: one either interprets formulas as sets of

realisers or as relations between potential realisers and counter-realisers. In the first group,
we have the various realizability interpretations, such as Kleene’s original numerical re-
alizability, or Kreisel’s modified realizability. In the second class, we have Dialectica-like
interpretations, such as Gödel’s functional interpretation or its Diller-Nahm variant. In this
talk, we review the observation of [2] that a relational version of modified realizability also
exists, and that its set-based definition can be derived from the relational one. We stress
the advantages of this (more general) relational approach: it allows for a unification of
realizability and Dialectica interpretations, enabling a modified realizability of linear logic
[3], and a hybrid interpretation that combines various interpretations [4]. Surprisingly, this
even includes truth-variants of these interpretations [1] and explains these in terms of the
linear logic exponentials. We conclude by discussing recent work on a similar (relational)
generalisation and unification for type-free (partial) interpretations such as Kleene’s original
realizability.
[1] J.Gaspar andP.Oliva,Proof interpretations with truth.Mathematical Logic Quarterly,

vol. 56 (2010), no. 6, pp. 591–610.
[2] P. Oliva, Unifying functional interpretations. Notre Dame Journal of Formal Logic,

vol. 47 (2006), no. 2, pp. 263–290.
[3] , Modified realizability interpretation of classical linear logic, Proceedings of

the Twenty Second Annual IEEE Symposium on Logic in Computer Science LICS’07, IEEE
Press,Wroclaw, Poland, 2007, pp. 431–442.
[4] , Hybrid functional interpretations of linear and intuitionistic logic. Journal of

Logic and Computation, vol. 22 (2012), no. 2, pp. 305–328.

� LUDOVIC PATEY, Ramsey’s theorem from a computable perspective.
Institut Camille Jordan – CNRS, Lyon, France.
E-mail: Ludovic.Patey@computability.fr.
URL: http://ludovicpatey.com.
Ramsey’s theorem for n-tuples and k colors (RTnk) asserts that given a k-coloring of

[N]n, there exists an infinite set H such that [H ]n is monochromatic. This theorem is not
computably true, in that there is a computable such coloring with no infinite computable
monochromatic set. Ramsey’s theorem can be seen as a mathematical problem, in terms
of instances and solutions. An instance is a k-coloring f of [N]n, and a solution to f is an
infinite setH such that [H ]n is monochromatic. A natural question to ask is “how hard is it to
compute a solution given an instance of Ramsey’s theorem?” The study of the computational
strength of Ramsey’s theorem is a long journey, started with Carl Jockusch, with high feats,
such as Seetapun’s theorem and Liu’s theorem. This talk aims to be a gentle introduction to
the modern analysis of Ramsey’s theorem from the viewpoint of proof-theory, computability
theory, and Weihrauch degrees. These approaches happened to be a very fruitful line of
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research, leading to the development of new techniques in various areas. Some important
questions remain however open, and we shall stress the remaining challenges.

� ANUSH TSERUNYAN, Descriptive combinatorics and ergodic theorems.
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green
St., Urbana, IL 61801, USA.
E-mail: anush@illinois.edu.
URL: http://www.math.uiuc.edu/∼anush/.
“Gee Professor Kechris, descriptive set theory sure is powerful, and beautiful too!” was

my friend’s suggestion on how to phrase my email to my future Ph.D. advisor asking for a
reading course. I still believe this, of course, and I’ll try to convince you as well by exhibiting
an example of how modern descriptive set theoretic thinking combined with combinatorial
and measure theoretic arguments yields a pointwise ergodic theorem for quasi-probability-
measure-preserving locally countable graphs. This can be viewed as a general analogue of
pointwise ergodic theorems for group actions, as a group action naturally induces a graph,
its Cayley–Schreier graph. The theorem states that ergodicity (measure kinetic indecompos-
ability) of a graph amounts to locally approximating global averages of L1-functions via
increasing subgraphs with finite connected components.

� MATTEO VIALE, Forcing as a tool to prove theorems.
Department ofMathematics “Giuseppe Peano”, University of Torino, Via Carlo Alberto 10,
Torino, Italy.
E-mail: matteo.viale@unito.it.
Forcing is a fundamental working tool of set theorists, and is the standard method to

obtain independence results. The aim of this talk was to outline that forcing can also be
used to find the correct solution for certain types of mathematical problems. Specifically, we
will present two examples of metamatemathical arguments (based on generic absoluteness
results and forcing) which can be used to answer two rather concrete questions, one related
to Schanuel’s conjecture on the transcendence properties of the complex exponential and
the other related to the classification problem for countable abelian groups [1, 3]. We will
also give a general picture of the generic absoluteness results mainly by Woodin (for second-
order arithmetic) and myself (for fragments of third-order arithmetic in combination with
forcing axioms) [2] and their connections with large cardinals, forcing axioms, and with other
nonconstructive principles such as the axiom of choice and the Baire category theorem.
[1] F. Calderoni and S. Thomas, The bi-embeddability relation for countable abelian

groups. Transactions of the AMS, DOI: https://doi.org/10.1090/tran/7513.
[2]M. Viale, Category forcings,MM+++, and generic absoluteness for the theory of strong

forcing axioms. Journal of the AmericanMathematical Society, vol. 29 (2016), no. 3, pp. 675–
728.
[3] , Forcing the truth of a weak form of Schanuel’s conjecture. Confluentes Mathe-

maticae, vol. 8 (2016), no. 2, pp. 59–83.

� DAGWESTERSTÅHL, Logical constants and logical consequence.
Department of Philosophy, Stockholm University, 106 91 Stockholm, Sweden.
E-mail: dag.westerstahl@philosophy.su.se.
Logical consequence is a (the?) central notion in logic, and consequence relations in gen-

eral and their properties is a familiar topic in the discipline. The dual notion of a logical
constant has received less attention. Yet consequence depends on constants: as Bolzano
and (100 years later) Tarski made precise, every choice of a set X of constants yields a
corresponding consequence relation ⇒X , defined in terms of truth preservation under re-
placement/reinterpretation of symbols outside X . How to choose X ? Both Bolzano and
Tarski emphasized the importance of this question, and admitted they had no answer (at the
time; Tarski later suggested an answer in terms of permutation invariance). However, our
intuitions about “what follows from what” are stronger than those about what is constant,
and it makes sense to try to see how constants depend on consequence, by “extracting” the
constants from a given consequence relation. A natural way to make this precise yields a
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Galois connection establishing the duality between sets of constants and Bolzano/Tarskian
consequence relations.
Logical consequence relations are also defined syntactically, via rules. If such a relation

coincides with the Bolzano/Tarskian consequence relation given by the standard logical
symbols with their standard interpretation, we have (soundness and) completeness: syntax
matches the semantics. But the other side of the coin, that semantics matches syntax in the
sense that the meaning of the logical symbols is (at least to a large extent) determined by the
relation of logical consequence, seems fundamental too. Such categoricity results were the
main focus of Carnap’s 1943 book The Formalization of Logic, but the topic has been rather
neglected since.
I will report on ongoing work together with Denis Bonnay on these issues, first presenting

the abstract relations between constants and consequence, and then some concrete categoric-
ity results (work begun in [1, 2]). While the picture for first-order logic and its extensions is
fairly clear, new conceptual issues, and some open questions arise in the case of other logics
such as modal logic.
[1]D. Bonnay and D. Westerståhl, Consequence mining. Constants versus consequence

relations. Journal of Philosophical Logic, vol. 41 (2012), no. 4, pp. 671–709.
[2] , Compositionality solves Carnap’s problem. Erkenntnis, vol. 81 (2016), no. 4,

pp. 721–739.

Abstracts of invited talks in the Special Session on
Computability Theory

� JOHANNA N. Y. FRANKLIN AND TIMOTHY H. MCNICHOLL, Lowness and com-
putable metric spaces.
Department of Mathematics, Hofstra University, Room 306, Roosevelt Hall, Hempstead,
NY 11549-0114, USA.
E-mail: johanna.n.franklin@hofstra.edu.
Department of Mathematics, Iowa State University, Ames, IA 50011, USA.
E-mail: mcnichol@iastate.edu.
In the past five years, lowness, a familiar notion in other areas of computability theory, has

been introduced into computable structure theory; specific types of structures studied include
equivalence structures and various types of linear orders. Recently, we have extended this
work to computable metric spaces. Here, we present some results on lowness for computably
presented metric spaces and then, more specifically, Banach spaces.

� TAKAYUKIKIHARA,On the structure of theWadge degrees of BQO-valuedBorel functions.
Graduate School of Informatics, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-
0814, Japan.
E-mail: kihara@i.nagoya-u.ac.jp.
URL: http://www.math.mi.i.nagoya-u.ac.jp/∼kihara.
In this talk, we give a full description of the Wadge degrees of Borel functions from ��

to a better-quasi-ordering Q. More precisely, for any countable ordinal �, we show that the
Wadge degrees of Δ

˜

0
1+�-measurable functions �

� → Q can be represented by countable joins
of the �-th transfinite nests of Q-labeled well-founded trees [2]. This result generalizes and
unifies former works by Wadge, Duparc, Selivanov, and others. This also has a consequence
in computability theory, since it is shown that there is a natural isomorphism between the
structure of the Wadge degrees of Q-valued functions and that of the “natural” many-one
degrees of Q-valued problems [1].
Our main theorem is completely described in the descriptive-set-theoretic language; never-

theless, our proof requires various computability-theoretic tools suchasMarcone–Montalbán’s
Turing jump operator via true stages, and (the uniform version of) the Friedberg jump inversion
theorem. Thus, our work provides a new application of computability theory to descriptive
set theory.
This is joint work with Antonio Montalbán.
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[1] T. Kihara and A.Montalbán, The uniform Martin’s conjecture for many-one degrees.
Transactions of the American Mathematical Society, to appear.
[2] , On the structure of the Wadge degrees of BQO-valued Borel functions,

submitted.

� TAKAYUKI KIHARA AND LINDA BROWN WESTRICK, Topology and parallelized
Weihrauch reducibility.
Graduate School of Informatics, Nagoya University, Japan.
E-mail: kihara@i.nagoya-u.ac.jp.
Department of Mathematics, University of Connecticut, 341 Mansfield Rd. U-1009, CT
06269, USA.
E-mail: westrick@uconn.edu.
The parallelized Weihrauch reducibility on functions f, g : 2� → R is defined as follows:

f ≤W ĝ if and only iff isWeihrauch reducible to�-many copies of g.We give some alternate
characterizations of this and related notions, relating them to the choice of topology on 2�

and on the space of functions f, g : 2� → R.

� MICHAEL MCINERNEY AND KENG MENG NG, A randomness-free characterization
of strong jump traceability.
Division of Mathematical Sciences, Nanyang Technological University, Singapore.
E-mail: kmng@ntu.edu.sg.
The strongly jump traceable degrees have been shown to be very useful and have been used

to illustrate themany connections between algorithmic randomness and classical computabil-
ity theory. It is a very robust class, with many different characterizations. Unfortunately, all
of the characterizations obtained so far have used notions of randomness (either directly or
indirectly). Given that the class of strongly jump traceable degrees exhibit strong connections
with randomness and computability, it is therefore natural to ask if a degree-theoretic char-
acterization can be obtained for strong jump traceability that does not utilize randomness.
We prove that the strongly jump traceable degrees are exactly those Δ02 degrees that are

jump traceable preserving, i.e., a degree a is JT -preserving if a∪x is jump traceable whenever
x is jump traceable. We also give several other degree-theoretic characterizations of strong
jump traceability.

Abstracts of invited talks in the Special Session on
Descriptive Set Theory and Dynamical Systems

� CLINTON CONLEY, Realizing abstract systems of congruences.
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
E-mail: clintonc@andrew.cmu.edu.
An abstract system of congruences is an equivalence relation on the power set of a finite set

meant to encode various possibilities for equidecomposability for some ostensible starting
partition. For example, the assertion {0}E{0, 1, 2} may be read to mean part 0 is congruent
with the union of parts 0, 1, and2. If now some group acts on a space X , we say a partition
of X realizes a given abstract system of congruences if the congruence equivalence relation
coincides with the induced notion of equidecomposability for the action. Wagon has charac-
terized which such abstract systems of congruences can be realized in the action of rotations
of the 2-sphere.We develop an analogous characterization of systems of congruences realized
by partitions with the property of Baire, and also investigate some other natural actions.
This is joint work with Andrew Marks and Spencer Unger.

� JULIENMELLERAY,Orbit equivalence of Toeplitz flows is Borel complete.
Institut Camille Jordan, Université de Lyon, France.
E-mail: melleray@math.univ-lyon1.fr.
A homeomorphism of the Cantor space is minimal if all its orbits are dense. Given two

minimal homeomorphisms g, h of the Cantor space, one says that g and h are orbit equivalent
if there exists a homeomorphism which maps each g-orbit onto an h-orbit.
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I will explain why the relation of orbit equivalence of minimal homeomorphisms is Borel
complete; more precisely, the relation of orbit equivalence between Toeplitz subshifts is Borel
complete, which stands in contrast with the fact that the relation of isomorphism on subshifts
is essentially countable.
Perhaps surprisingly, notions from model theory (ultrahomogeneity and Fraı̈ssé limits)

play a part in the proof, and I will try to explain why.

� TODOR TSANKOV, Universal minimal flows relative to a URS.
Université Paris Diderot, Paris, France.
E-mail: todor@math.univ-paris-diderot.fr.
A uniformly recurrent subgroup (URS) of a locally compact group G is a minimal, con-

jugation invariant, closed subset of the space of closed subgroups of G . To every minimal
action of G , one can naturally associate its stabilizer URS and thus understanding the URSs
of a given group gives important information about its nonfree, minimal actions. URSs were
introduced by Glasner and Weiss and they left open the following basic question: does ev-
ery URS arise as the stabilizer URS of a minimal action? We answer this question in the
affirmative by a universal construction.
This is joint work with Nicolás Matte Bon.

� ROBIN TUCKER-DROB,Measure equivalence, superrigidity, and weak Pinsker entropy.
Department of Mathematics, Texas A&MUniversity, College Station, TX, USA.
E-mail: rtuckerd@math.tamu.edu.
We show that the classB , of discrete groups, which satisfy the conclusion of Popa’s Cocycle

Superrigidity Theorem for Bernoulli actions, is invariant under measure equivalence. We
generalize this to the setting of discrete p.m.p. groupoids, and as a consequence, we deduce
that any nonamenable lattice in a product of two noncompact, locally compact second
countable groups, must belong to B. We also introduce a measure-conjugacy invariant called
weak Pinsker entropy and show that, if G is a group in the classB , then weak Pinsker entropy
is an orbit-equivalence invariant of every essentially free p.m.p. action of G .

Abstracts of invited talks in the Special Session on
Model Theory

� GABRIEL CONANT, Pseudofinite groups and tame arithmetic regularity.
Department of Mathematics, University of Notre Dame, Notre Dame, IN, USA.
E-mail: gconant@nd.edu.
Arithmetic regularity, developed by Green in 2005, uses discrete Fourier analysis to pro-

duce regular decompositions of subsets of finite abelian groups, giving an arithmetic analogue
of Szemerédi regularity for finite graphs. More recently, several authors have obtained var-
ious “strong arithmetic regularity” results for subsets of finite groups satisfying restricted
assumptions. On the combinatorial side, this includes quantitative results assuming stability
(Terry–Wolf) or bounded VC-dimension (Alon–Fox–Zhao; Sisask) in finite abelian groups.
On the model-theoretic side, in joint work with Pillay and Terry, we give qualitative arith-
metic regularity results for finite groups under the same tameness assumptions, by applying
local stability and NIP theory to pseudofinite groups. The common ground for these two
approaches lies in the study of approximate subgroups, especially the work of Hrushovski
and of Breuillard–Green–Tao. In this talk, I will present several of these results, with a focus
on the underlying connections between model theory and additive combinatorics.

� ADRIEN DELORO, Linearisation in model theory.
Sorbonne Université, Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS, Uni-
versité Paris Diderot. Campus Pierre et Marie Curie, case 247, 4 place Jussieu, 75252 Paris
cedex 5, France.
E-mail: adrien.deloro@imj-prg.fr.
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Model theory deals with algebraic structures in its own way, but the presence of a field is
always a good thing. Typically fields come from the very basic Schur lemma in representation
theory; of course in model theory one wants definable versions. The most famous result in
this vein is Zilber’s classical observation that definable fields emerge in many abstract groups
of finite Morley rank. But it is not the only such result, nor is finite Morley rank the only
model-theoretic framework.
We try to provide the ultimate version of linearisation theorems, in a single statement

generalising every Schur–Zilber result known so far and extending them to the natural
context of “finite-dimensional theories” (which will be discussed).
This reports on joint work with Frank Wagner.

� NADJA HEMPEL AND DANIEL PALACIN,Division rings with ranks.
Department ofMathematics, University of California LosAngeles, Box 951555 LosAngeles,
CA 90095-1555, USA.
E-mail: nadja@math.ucla.edu.
Einstein Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram Campus,
9190401 Jerusalem, Israel.
E-mail: daniel.palacin@mail.huji.ac.il.
In this talk, we analyze division rings which admit a well-behaved ordinal valued rank

function on definable sets that behaves like a rudimentary notion of dimension. These are
called superrosy division rings. Examples are the quaternions, any superstable division ring
(which are known to be algebraically closed fields by theorems of Macintyre [3]/Cherlin–
Shelah [1]), and more generally supersimple division rings (which are commutative by a
result of Pillay, Scanlon, andWagner [4]). We show that any superrosy division ring has finite
dimension over its center, generalizing the aforementioned results [2]. If time permits, we will
also present some results on division rings of finite burden and weight one [2].
[1]G. Cherlin and S. Shelah, Superstable fields and groups. Annals of Mathematical

Logic, vol. 18 (1980), pp. 227–270.
[2]N. Hempel and D. Palacin, Division rings with ranks. Proceedings of the American

Mathematical Society, vol. 146 (2018), no. 2, pp. 803–817.
[3] A.Macintyre, �1-categorical fields. Fundamenta Mathematicae, vol. 70 (1971), no. 3,

pp. 253–270.
[4] A. Pillay, T. Scanlon, and F.Wagner, Supersimple fields and division rings.Mathe-

matical Research Letters, vol. 5 (1998), pp. 473–483.

Abstracts of invited talks in the Special Session on
Philosophy of Logics and Mathematics

� BENEDICT EASTAUGH, Does nonclassical truth impair mathematical reasoning?
Munich Center for Mathematical Philosophy, LMUMunich, Germany.
E-mail: benedict@eastaugh.net.
URL: http://extralogical.net.
Weakening the principles of classical logic in order to retain desirable properties of in-

tensional notions such as truth has been widely embraced as a response to the intensional
paradoxes. Advocates of classical logic who resist logical revision have argued that our stan-
dard for reasoning with intensional notions should not be different from that employed in our
best scientific and mathematical theories. A specific version of this argument, due to Halbach
[1], uses a proof-theoretic analysis of two classical and nonclassical theories of Kripkean
truth (known as KF and PKF) to show that when we give up classical logic, we must in the
process give up important nonsemantic patterns of reasoning, in particular in mathematics.
The nonclassical logician has a natural response to Halbach’s argument: they can bite the
bullet and argue that even if one must give up the universality of these patterns of reasoning,
one does not thereby lose too much in the way of genuine mathematics. However, despite
first appearances, one does give up substantial mathematics by accepting nonclassical logic in
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this context. Drawing on work in reverse mathematics by Montalbán [2] and Neeman [3], we
show that an ordinary mathematical theorem concerning indecomposable linear orderings
is proof-theoretically reducible to the classical theory of Kripkean truth KF, but not to the
weaker nonclassical theory PKF.
This is joint work with Carlo Nicolai.
[1] V. Halbach, Axiomatic Theories of Truth, Cambridge University Press, 2011.
[2] A. Montalbán, Indecomposable linear orderings and hyperarithmetical analysis. Jour-

nal of Mathematical Logic, vol. 6 (2006), pp. 89–120.
[3] I.Neeman,The strength of Jullien’s indecomposability theorem. Journal ofMathematical

Logic, vol. 8 (2008), no. 1, pp. 93–119.

� BRICE HALIMI, Kreisel’s problem.
Department of Philosophy (IRePh), Université Paris Nanterre, Nanterre, France.
E-mail: bhalimi@parisnanterre.fr.
Is any logical consequence of zfc ensured to be true? (Q)Kreisel andBoolos both proposed

an answer to (Q), taking “truth” to mean truth in the background set-theoretic universe. My
talk will advocate another answer, which lies at the level of the models of zfc, so that “truth”
remains the usual semantic notion. This other, model-scaled answer relies on the fact that
any model of zfc can be shown to contain “internal models,” and thus can be compared to
a particular background universe itself.
After defining logical consequence w.r.t. any given model of zfc, I will set out the answer

to the original question (Q) prompted by this definition, and present further results bearing
on internal models. Finally, the semantics interpreting internal models as accessible possible
worlds leads to an “internal modal logic” in which internal reflection is shown to correspond
to modal reflexivity, and resplendency to the modal axiom 4.

� SIMON HEWITT, Some arguments for Ex Contradictione Quodlibet.
School of Philosophy, University of Leeds, Leeds, UK.
E-mail: s.hewitt@leeds.ac.uk.
The principle that any proposition whatsoever follows from a contradiction, ExContradic-

tione Quodlibet (ECN), is enshrined in classical, intuitionistic, and related logics. Although
it is frequently encountered as counterintuitive, and has been questioned by relevance and
paraconsistent logicians, little has been done to supply philosophical motivation for ECN.
To the extent that there has been philosophical debate concerning the principle, this

has been against the background of an alternative on which some propositions (but not
necessarily everthing) follow from a contradiction, as with Priest’s LP. In contrast to this,
I explore the prospects for a debate between the proponent of ECN and the historically
important view that no proposition follows from a contradiction. The hope is that this will
allow us to get clearer about both ECN and the potential of this alternative (which I call Ex
Contradictione Nihil).
I lay out four arguments for ECQ: C. I. Lewis’ “proof” of the principle (a version of which

was discovered byWilliam of Soissons in the 12th century); an argument from Tarski’s anal-
ysis of consequence; an argument from the necessary truth-preservation, and an argument
from the requirements of proof-theoretic harmony. In each case, I diagnose a circularity in
the case for ECQ: there is a point at which someone not antecedently disposed to accept
ECQ could, and should, object to the argument. This sheds light on the form a logical theory
embodying should take, with respect to structural rules and model-theoretic definitions of
consequence, and suggests that if debate is to move beyond impasse, then it will have to take
place on a terrain that is somehow more fundamental. I end by suggesting that the theory of
meaning is a candidate for such a terrain.

� GIL SAGI, Logicality and semantic theory.
Department of Philosophy, University of Haifa, 199 Aba Khoushy Ave, Mt Carmel, Haifa,
Israel.
E-mail: gilisagi@gmail.com.
URL: http://gilisagi.wix.com/gil-sagi.
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In this talk, we address the question of whether there is a logical consequence relation in
natural language, combining our previous work on semantic constraints and recent work by
Michael Glanzberg.
In previous work [3], we proposed a model-theoretic framework for logical consequence

where there is no strict division of the vocabulary into the logical and the nonlogical terms.
The class of models is set by semantic constraints: statements in the metalanguage that re-
strict the interpretation of terms in the language, not necessarily fixing them completely.
The framework is a generalization of standard first-order logic, and the standard semantic
clauses can be reformulated as semantic constraints. In recent work, we consider criteria for
logicality of semantic constraints. We generalize the criterion of invariance under isomor-
phisms for logical terms to apply to semantic constraints. The correct generalization, we claim
there, is to the requirement that the class of models satisfying a constraint be closed under
isomorphisms.
We apply these results to the question of logic in natural language. In a recent article [1],

Michael Glanzberg claims that natural language does not have a logical consequence relation.
He argues for this thesis by observing contemporary natural language semantics, and claiming
that it cannot distinguish logical consequence from other sorts of entailment. In the first part
of the talk, we criticize Glanzberg’s arguments, and claim that they do indeed leave room for
a logical consequence relation in natural language.
We then discuss another recent article by Glanzberg [2], where he proposes a thesis of

partiality in the explanatory force of linguistic theory. He observes that semantic clauses such
as

1. �Ann� = Ann
2. �smokes� = �x ∈ De. x smokes

appear to have only weak explanatory force. Some lexical items, for example, predicates, are
provided a type by the semantic theory, and while they are also provided with an extension as
their semantic value—what their extension is not explained by the theory—but is rather taken
for granted. According toGlanzberg, “semantics, narrowly construed as part of our linguistic
competence, is only a partial determinant of content.” We apply our framework of semantic
constraints to isolate the explanatory parts of semantic clauses as those above. We claim
that the semantic constraints obtained in this way will be invariant under isomorphisms, in
the sense defined before. We thus conclude that semantic theory proper (as delineated by
Glanzberg) is a theory of logical consequence in natural language, by the lights of a widely
accepted philosophical account of logicality.
[1]M. Glanzberg, Logical consequence and natural lanaguage, Foundations of Logical

Consequence (C. Caret and O. Hjortland, editors), Oxford University Press, Oxford, 2015,
pp. 71–120.
[2] , Explanation and partiality in semantic theory,Metasemantics: New Essays on

the Foundations of Meaning (A. Burgess and B. Sherman, editors), Oxford University Press,
Oxford, 2014, pp. 259–292.
[3]G. Sagi, Formality in logic: From logical terms to semantic constraints. Logique et

Analyse, vol. 227 (2014), pp. 259–276.

� NICOLEWYATT, Logics and explanations.
Department of Philosophy, University of Calgary, Calgary, Alberta, Canada.
E-mail: nicole.wyatt@ucalgary.ca.
Logics, it seems, explain things. To take a classic example, Russell deploys first-order

logic to explain the behaviour of “The present king of France is bald.” The debate over the
effectiveness of his explanation takes for granted that it is at least possible to use a logic to
explain natural language phenomena. But it is a bit of puzzle as to how this works. This talk
offers a anti-exceptionalist account of explanation in logic, and sketches some consequences
for logical pluralists.
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Abstracts of invited talks in the Special Session on
Proof Theory and Constructivism

� RYOTA AKIYOSHI, “Proofs as programs” revisited.
Waseda Institute forAdvanced Study, Tokyo, NishiWaseda 1-6-1, Japan andKeioUniversity,
Tokyo, Mita 2-15-45, Japan.
E-mail: georg.logic@gmail.com.
Schwichtenberg has developed the program called “Proofs as Programs” by measuring

the “complexity as programs” of proofs in an arithmetical system (with recursion) in [7].
Technically, he used Arai’s observation in [4] to use a slow growing hierarchy Ga(·) in order
to “climb down” tree ordinals due to Buchholz [5]. We remark that this is going back to
Girard’s hierarchy comparison theorem [6].
In this talk, we sketch another approach to this program by focusing on parameter-free

subsystems of Girard’s System F. There are at least two advantages in this approach. (i) It
is simpler and smoother than the original one. (ii) It is relatively easy and uniform to extend
our results to stronger fragments (corresponding to theories of iterated inductive definitions
based on intuitionistic logic).
For explaining basic ideas, we focus on the weakest parameter-free fragment of System F.

In this fragment called F0, a second-order type ∀α. A is permitted only if A is ∀-free and
contains no other variable than X .
The upperbound of the complexity of terms in F0 is computed as follows. For a finite term

M in F0, we define the relation 	αm M : A saying that (i) the upperbound of the complexity
of M is measured by a tree ordinal α, (ii) the “cut-rule” of the rank <m is sufficient. In
particular, we introduce a miniaturized version of the Ω-rule due to Buchholz [5]. Next, we
prove theorems for the relation 	αm M : A corresponding to the predicative cut-elimination
and impredicative cut-elimination theorems in proof-theory.
Now, the upperbound theorem is stated as follows:

Theorem 1. Let f be a representable function in F0 withM : N ⇒ N. Then, |=D0(d×(n+1))0
D0Dm1 (MSn0) : N with d = Dm1 (Ω × m) for some m ≥ 4. Therefore, there is m such that for
all n ≥ m ≥ 4

|D0Dm1 (MSn0)| < GD0Dm+21 0(n).

(Here, D1 is the standard exponential function with the base �, and D0 is the collapsing
function from Ω2 into Ω1.)
The lowerbound is proved by using Schwichtenberg’s result [7] and Aehlig’s one [1]:

Theorem 2. The function expressed by the formula ∀x∃y(D0Dm1 0)[x]y = 0 in arithmetic is
representable in F0.
If time is permitting, we sketch how to extend our approach into stronger parameter-free

fragments of System F by climbing up the hierarchy defined by Aehlig [1].
Acknowledgment. This work is partially supported by JSPS KAKENHI 16K16690 and

17H02265.
[1]K. Aehlig, Parameter-free polymorphic types. Annals of Pure and Applied Logic,

vol. 156 (2008), no. 1, pp. 3–12.
[2] R. Akiyoshi, An ordinal-free Proof of the complete cut-elimination theorem for Π11-CA

+ BI with the �-rule. The Mints’ Memorial Issue of the IfCoLog Journal of Logics and their
Applications, vol. 4 (2017), no. 4, pp. 867–884.
[3] R. Akiyoshi and K. Terui, Strong normalization for the parameter-free polymorphic

lambda calculus based on the Omega-rule. First International Conference on Formal Structures
for Computation and Deduction (FSCD), Leibniz International Proceedings in Informatics,
vol. 5, 2016, pp. 1–15.
[4] T. Arai,A slow growing analogue to Buchholz’ proof. Annals of Pure and Applied Logic,

vol. 54 (1991), no. 2, pp. 101–120.
[5]W. Buchholz, An independence result for (Π11-CA) + BI . Annals of Pure and Applied

Logic, vol. 33 (1987), pp. 131–155.
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[6] J.-Y.Girard, Π12-Logic, Part 1:Dilators.Annals ofMathematical Logic, vol. 21 (1981),
no. 2–3, pp. 75–219.
[7]H. Schwichtenberg, Proofs as Programs, Proof Theory: A Selection of Papers from

the Leeds Proof Theory Programme 1990 (P. Aczel and H. Simmons, editors), Cambridge
University Press, 1990, pp. 81–113.

� MARTÍN HÖTZEL ESCARDÓ, Univalent mathematics at work.
School of Computer Science, University of Birmingham, Birmingham, UK.
E-mail: m.escardo@cs.bham.ac.uk.
URL: http://www.cs.bham.ac.uk/∼mhe/.
I will illustrate how to work in Voevodsky’s univalent mathematics in practice, both on

article, informally, and in (cubical) Agda, formally, with examples from my recent work on
constructive mathematics.

� ALESSANDRA PALMIGIANO, Constructive canonicity of inductive inequalities.
Delft University of Technology, The Netherlands.
E-mail: a.palmigiano@tudelft.nl.
This talk, based on [8], discusses the canonicity of inductive inequalities in a constructive

meta-theory, for classes of logics algebraically captured by varieties of normal and regular
lattice expansions. These results are obtained using the tools of unified correspondence theory
[6, 10, 7, 9, 3, 2, 13] and contribute to develop a theoretical environment in which different
proof techniques for canonicity and correspondence can be systematically compared and
connected with each other (cf. [12, 16, 11, 17]). These canonicity results contribute to not
only applications of semantic results to proof-theoretic issues [14, 1, 15] but also of logic to
social sciences [5, 4].
[1]M. Bı́lková, G. Greco, A. Palmigiano, A. Tzimoulis, and N. Wijnberg, The logic

of resources and capabilities. The Review of Symbolic Logic, (2018). pp. 1–40.
[2]W. Conradie, A. Craig, A. Palmigiano, and Z. Zhao, Constructive canonicity for

lattice-based fixed point logics,Workshop on Logic, Language, Information, and Computation:
WoLLIC 2017, Proceedings, Springer, 2017, pp. 92–109.
[3]W. Conradie, Y. Fomatati, A. Palmigiano, and S. Sourabh, Algorithmic correspon-

dence for intuitionistic modal mu-calculus. Theoretical Computer Science, vol. 564 (2015),
pp. 30–62.
[4]W. Conradie, S. Frittella, A. Palmigiano, M. Piazzai, A. Tzimoulis, and N.Wi-

jnberg, Toward an epistemic-logical theory of categorization, TARK 2017. Proceedings, Elec-
tronic Proceedings in Theoretical Computer Science, vol. 251, pp. 170–189.
[5] , Categories: How I learned to stop worrying and love two sorts, Workshop on

Logic, Language, Information, and Computation:WoLLIC 2017, Proceedings, Springer, 2016,
pp. 145–164, preprint, arXiv:1604.00777.
[6]W. Conradie, S. Ghilardi, and A. Palmigiano, Unified correspondence, Johan van

Benthem on Logic and Information Dynamics (A. Baltag and S. Smets, editors), Outstanding
Contributions to Logic, vol. 5, Springer, 2014, pp. 933–975.
[7]W. Conradie and A. Palmigiano, Algorithmic correspondence and canonicity for dis-

tributive modal logic. Annals of Pure and Applied Logic, vol. 163 (2012), no. 3, pp. 338–376.
[8] , Constructive canonicity of inductive inequalities, submitted, preprint,

arXiv:1603.08341.
[9] , Algorithmic correspondence and canonicity for nondistributive logics, submit-

ted, arXiv:1603.08515.
[10]W. Conradie, A. Palmigiano, and S. Sourabh, Algebraic modal correspondence:

Sahlqvist and beyond. Journal of Logical and Algebraic Methods in Programming, vol. 91
(2017), pp. 60–84.
[11]W. Conradie, A. Palmigiano, S. Sourabh, and Z. Zhao, Canonicity and rela-

tivized canonicity via pseudo-correspondence: An application of ALBA, submitted, preprint
arXiv:1511.04271.
[12]W. Conradie, A. Palmigiano, and Z. Zhao, Sahlqvist via translation, submitted.
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[13] S. Frittella, A. Palmigiano, and L. Santocanale, Dual characterizations for finite
lattices via correspondence theory formonotonemodal logic. Journal of Logic andComputation,
vol. 27 (2017), no. 3, pp. 639–678.
[14] G. Greco, M. Ma, A. Palmigiano, A. Tzimoulis, and Z. Zhao, Unified corre-

spondence as a proof-theoretic tool. Journal of Logic and Computation, preprint, 2016,
arXiv:1603.08204, doi: 10.1093/logcom/exw022.
[15] G. Greco and A. Palmigiano, Lattice Logic Properly Displayed, Lecture Notes in

Computer Science, vol. 10388, 2017, pp. 153–169.
[16] A. Palmigiano, S. Sourabh, and Z. Zhao, Jónsson-style canonicity for ALBA-

inequalities. Journal of Logic and Computation, vol. 27 (2017), no. 3, pp. 817–865.
[17] , Sahlqvist theory for impossible worlds. Journal of Logic and Computation,

vol. 27 (2017), no. 3, pp. 775–816.

� CHUANGJIE XU, Unifying functional interpretations for nonstandard/uniform arithmetic.
Mathematisches Institut, Ludwig-Maximilians-Universität München, München, Germany.
E-mail: xu@math.lmu.de.
We extendOliva’smethod [3] to develop a parameterised functional interpretation for non-

standard arithmetic. By instantiating the parameterised relations, we obtain the Herbrand
functional interpretations introduced in [2, 4] for nonstandard arithmetic as well as the usual,
well-known ones such as modified realisability for Berger’s uniform Heyting arithmetic [1].
We implement it in the Agda proof assistant by making use of Agda’s parameterised mod-
ules. This allows us to extract computer programs from proofs in the nonstandard/uniform
arithmetic via different instantiations of our parameterised functional interpretation.
[1]U. Berger, Uniform Heyting arithmetic. Annals of Pure and Applied Logic, vol. 133

(2005), no. 1, pp. 125–148.
[2] F. Ferreira and J.Gaspar,Nonstandardness and the bounded functional interpretation.

Annals of Pure and Applied Logic, vol. 166 (2015), no. 6, pp. 701–712.
[3] P. Oliva, Unifying functional interpretations. Notre Dame Journal of Formal Logic,

vol. 47 (2006), no. 2, pp. 263–290.
[4] B. van den Berg, E. Briseid, and P. Safari, A functional interpretation for nonstandard

arithmetic. Annals of Pure and Applied Logic, vol. 163 (2012), no. 12, pp. 1962–1994.

Abstracts of invited talks in the Special Session on
Temporal and Multivalued Logics

� AGI KURUCZ, Horn fragments of the Halpern–Shoham interval temporal logicHS .
Department of Informatics, King’s College London, Strand Campus, Bush House, 30 Ald-
wych, London WC2B 4BG, UK.
E-mail: agi.kurucz@kcl.ac.uk.
The elegance and expressive power ofHS have attracted the attention of the temporal and

modal logic communities, as well as many other areas of computer science, AI, philosophy
and linguistics. As HS-satisfiability over various timelines is undecidable [2], the quest for
“tame” fragments began in the 2000s, and have resulted in a substantial body of literature
that identified a number of ways of reducing its expressive power. We discuss recent results
on the computational complexity of Horn and core fragments ofHS [1].
[1]D.Bresolin,A.Kurucz,E.Muñoz-Velasco,V.Ryzhikov,G. Sciavicco, andM.Za-

kharyaschev, Horn fragments of the Halpern–Shoham interval temporal logic. ACM Trans-
actions on Computational Logic, vol. 18 (2017), no. 3, pp. 22:1–22:39.
[2] J. Halpern and Y. Shoham, A propositional modal logic of time intervals. Journal of

the ACM, vol. 38 (1991), no. 4, pp. 935–962.

� DANIELEMUNDICI, Łukasiewicz logic: 98 years.
Department ofMathematics and Computer Science, University of Florence, Viale Morgagni
67, 50134 Florence, Italy.
E-mail: mundici@math.unifi.it.
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After almost a century since its origination, Łukasiewicz logic is still a vibrant research
topic.A recent development is the differential semantics ofŁukasiewicz infinite-valuedpropo-
sitional logic L∞, according to which a formula � follows from a set Θ of premises if, and
only if, the following two conditions are satisfied:

1. Every model m of Θ is a model of � (as per the Bolzano–Tarski paradigm), and
2. Any infinitesimal perturbation m + dm which is a model of Θ is a model of �.

Condition 2 makes sense because the space of models is endowed with the topological-
differential structure of a Tychonoff cube. This notion of semantic consequence turns out to
be equivalent to the classical notion of syntactic consequence—stating that � is derivable by
finitely many applications of modus ponens to a finite subset of (Θ ∪ tautologies of L∞).
This is the completeness theorem for L∞. If Θ is finite, Condition 2 automatically follows
from Condition 1 (Hay’s theorem). If Θ is infinite this is no longer true in general (Wójcicki’s
theorem).
[1] R. Cignoli, I. M. L. D’Ottaviano, and D.Mundici, Algebraic Foundations of Many-

Valued Reasoning, Trends in Logic, vol. 7, Kluwer, Dordrecht, 2000.
[2] L. S. Hay, Axiomatization of the infinite-valued predicate calculus. The Journal of

Symbolic Logic, vol. 28 (1963), pp. 77–86.
[3]D. Mundici, Advanced Łukasiewicz Calculus and MV-Algebras, Trends in Logic,

vol. 35, Springer, New York, 2011.
[4] , The differential semantics of Łukasiewicz syntactic consequence, Petr Hájek

on Mathematical Fuzzy Logic (F. Montagna, editor), Outstanding Contributions, vol. 6,
chapter 7, Springer, Switzerland, 2015, pp. 143–157.
[5] R. Wójcicki, Theory of Logical Calculi: Basic Theory of Consequence Operations,

Synthese Library, vol. 199, Kluwer, Dordrecht, 1988.

� PARITOSHK. PANDYA, Expressive-completeness and deciability of metric temporal logics:
Recent progress.
Tata Institute of Fundamental Research, Mumbai 400005, India.
E-mail: pandya@tifr.res.in.
The celebrated Kamp theorem established expressive completeness of linear temporal

logic (LTL) with respect to FO[<], the first-order theory of words. The equally celebrated
Buchi theorem established (effective) expressive completeness of monadic second-order logic
MSO[<] with respect to deterministic finite state automata (DFA). The latter also provides a
method for deciding satisfiability and model checking ofMSO[<] formulae using algorithms
over DFA.
Generalizing this approach to real-time logics has been problematic. In this talk, we will

survey some recent progress in formulating expressively complete real-time logics. Recent
results of Hunter, Ouaknine, and Worrell [4, 3] have led to metric temporal logics which
are expressively complete for FO[<,+1], the first-order theory of timed words with metric
distance predicate +1. However, these logics have undecidable satisfiability.
Towards the quest for expressive and decidable real-time logics, we will survey past work

on logics [1, 8, 2], which explored expressive completeness with nondeterministic timed
automata (NTA). We will then look at recent attempts at extending metric temporal logic
to get expressive completeness with 1-clock alternating timed automata (1ATA). A monadic
second-order logic with guarded metric quantifiers, QkMSO, has decidable satisfiability and
model checking. This logic will be presented and its expressive power will be characterised
using a subclass of 1ATA as well as a metric temporal logic RegMTL. The logic RegMTL
(see [5]) extends the well-knownMTL[UI ] [7] with a regular expression modality.
[1] R. Alur, T. Feder, and T.Henzinger, The benefits of relaxing punctuality. Journal of

the ACM, vol. 43 (1996), no. 1, pp. 116–146.
[2] Y. Hirshfeld and A. Rabinovich, An expressive temporal logic for real time,Mathe-

matical Foundations of Computer Science 2006, Proceedings (R. Kralovic and P. Urzyczyn,
editors), Springer, Berlin, 2006, pp. 492–504.
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[3] P. Hunter,When is metric temporal logic expressively complete? Proceedings of Com-
puter Science Logic (CSL 2013) (S. R. D. Rocca, editor), Dagstuhl, Saarbrücken/Wadern,
Germany, 2013, pp. 380–394.
[4] P. Hunter, J. Ouaknine, and J.Worrell, Expressive completeness for metric temporal

logic, Proceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2013), IEEE Computer Society Press, 2013, pp. 349–357.
[5] S. Krishna, K. Madnani, and P. K. Pandya, Making metric temporal logic rational,

Mathematical Foundations of Computer Science 2017, Proceedings (K. Larsen, H. Bodlaen-
der, and J.-F. Raskin, editors), Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, 2017,
pp. 77:1–77:14.
[6] , Büchi-Kamp Theorems for 1-clock ATA, CoRR, http://arxiv.org/abs/

1802.02514, 2018.
[7] J. Ouaknine and J.Worrell, On the decidability of metric temporal logic, Proceedings

of the 12th Annual ACM/IEEESymposium on Logic in Computer Science (LICS 2005), IEEE
Computer Society Press, 2005, pp. 188–197.
[8] T. Wilke, Specifying timed state sequences in powerful decidable logics and timed au-

tomata, Formal Techniques in Real-Time and Fault-Tolerant Systems 1994 (H. Langmaack,
W. P. de Roever, and J. Vytopil, editors), Springer, Berlin, 1994, pp. 694–715.

� AMANDA VIDAL,Many-valued modal logics: Axiomatizability issues.
Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.
E-mail: amanda@cs.cas.cz.
Modal logic is one of the most developed and studied nonclassical logics, yielding a

beautiful equilibrium between complexity and expressibility. Generalizations of the concepts
of necessity and possibility offer a rich setting tomodel and study notions frommany different
areas, including proof-theory, temporal and epistemic concepts, and workflow in software
applications. On the other hand, substructural logics provide a formal framework to manage
vague and resource-sensitive information in a very general (and so, adaptable) fashion.
Many-valued modal logics is a field in ongoing development. While the first publications on
the topic can be traced back to the 90s [5, 6], it has been only in the latter years when a more
systematic work has been developed, addressing the axiomatizability question in general,
characterization and study of the model-theoretic notions analogous to the ones from the
classical case, decidability and applicability issues, etc (see e.g., [7], [3, 4], [1], [9], [8], [2],. . . ).
In this talk, we present some recent results for these logics, focused on their decidability

and axiomatizability. In particular, we exhibit a large family of many-valued modal logics,
including several very natural cases (includingmodal expansions of Łukasiewicz and Product
logics, two of the three main BL extensions) that even if they enjoy the finite model property,
are undecidable. Thus, no r.e. axiomatization can exist for them, in contrast to what happens
with their propositional counterparts. We show that simple properties in the underlying
class of algebras (noncontractivity of the strong conjunction operation, and a technical but
easy notion related to the existence and behavior of the infimum of certain values) allow
the construction of a set of formulas capturing the Post correspondence Problem in a large
family of modal logics. In the particular case of Łukasiewicz logic, this allow us, together
with completeness with respect to the so-called witnessed models (where, in contrast to
other many-valued modal logics, each modal formula is evaluated as that formula in some
successor world) to also show that the usually called global Łukasiewic modal logic cannot
be axiomatized.
[1] F. Bou, F. Esteva, L. Godo, and R. Rodrı́guez, On the minimum many-valued modal

logic over a finite residuated lattice. Journal of Logic and Computation, vol. 21 (2011), no. 5,
pp. 739–790.
[2] X. Caicedo, G. Metcalfe, R. Rodrı́guez, and J.Rogger, A finite model property for

Gödel modal logics, WOLLIC 2013 (L. Libkin et al., editors), Lecture Notes in Computer
Science, vol. 8071, Springer, 2013, pp. 226–237.
[3] X. Caicedo and R. O.Rodriguez, Standard Gödel modal logics. Studia Logica, vol. 94

(2010), no. 2, pp. 189–214.

https://doi.org/10.1017/bsl.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.30


LOGIC COLLOQUIUM ’18 241

[4] , Bi-modal Gödel logic over [0, 1]-valued Kripke frames. Journal of Logic and
Computation, vol. 25 (2015), no. 1, pp. 37–55.
[5]M. Fitting, Many-valued modal logics. Fundamenta Informaticae, vol. 15 (1992),

pp. 235–254.
[6] , Many-valued modal logics II. Fundamenta Informaticae, vol. 17 (1992), pp.

55–73.
[7]G. Hansoul and B. Teheux, Extending Łukasiewicz logics with a modality: Algebraic

approach to relational semantics. Studia Logica, vol. 101 (2013), no. 3, pp. 505–545.
[8]G. Metcalfe and N. Olivetti, Towards a proof theory of Gödel modal logics. Logical

Methods in Computer Science, vol. 7 (2011), no. 2, 27.
[9] A. Vidal, F. Esteva, and L.Godo,Onmodal extensions of product fuzzy logic. Journal

of Logic and Computation, vol. 27 (2017), no. 1, pp. 299–336.

Abstracts of contributed talks

� PIOTR BŁASZCZYK, Trends in the history of infinity.
Institute of Mathematics, Pedagogical University of Cracow, Kraków, Podchora̧żych 2,
Poland.
E-mail: pb@up.krakow.pl.
Cantor established two kinds of infinity: cardinal and ordinal numbers, each with its

own arithmetic and its own relation greater than. In modern developments, ordinal numbers
are special sets, cardinal numbers are specific ordinal numbers. In both cases, the set of
natural numbers N makes the yardstick of infinity—be it the cardinal number ℵ0 or the
ordinal �. However, while Cantor infinities try to extend the arithmetic of finite numbers,
the addition and multiplication of ordinal numbers are not commutative. Moreover, while
there are many possible well-orderings on the setN, Cantor considered the natural one; in [2]
he also considered the natural order of the real numbers. Cantor could never explain what
does mean natural order in mathematical terms.
In [4], Euler introduced numbers that exceed any finite number. Still, while in his develop-

ment finite numbers form an ordered field, Euler infinite numbers also belong to the ordered
field. Consequently, when N is infinite, so is N − 1 and N/2.
Thus, Cantor’s and Euler’s investigations exemplify competing trends in the history of

infinity founded on set theory or algebra.
We will argue that the theory of surreal numbers developed in [2] provides a uniform

perspective that allows one to compare these two trends. We will argue that the perspective
of ordered fields provides a more general and consistent account of infinity. (a) The theory
of real closed fields developed in [3] provides mathematical reasons to treat a total order as
a natural one. Namely, in some fields, e.g., in the field of surreal numbers, there is only one
total order compatible with addition and multiplication. (b) Surreal numbers include ordinal
numbers. (c) The addition and multiplication of ordinal numbers is commutative when they
are taken as surreals. (d) There exist negative and fractional ordinal numbers, when ordinal
numbers are considered as elements of the filed of surreals.
[1] E. Artin and O. Schreier, Algebraische Konstruktion reeller Korper. Abhandlun-

gen aus dem Mathematischen Seminar der Hamburgischen Universität, vol. 5 (1926), pp.
85–99.
[2]G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre. Der Ordnungstypus

� des Linearkontinuums.Mathematische Annalen, vol. 46 (1895), pp. 481–512.
[3] J. Conway, On Numbers and Games, AK Peters, 2001.
[4] L. Euler, Introductio in Analysin Infinitorum, Bousquet, 1748.

� GIULIA BATTILOTTI, MILOS BOROZAN, AND ROSAPIA LAUROGROTTO, Read-
ing Bi-logic in first-order language.
Department of Mathematics, University of Padua, Italy.
E-mail: giulia@math.unipd.it.
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Department of Health Sciences, University of Florence, Italy.
E-mail: milos.borozan@stud.unifi.it.
E-mail: grotto@psico.unifi.it.
We see how one can formalise the main aspects of Matte Blanco’s Bi-logic [3] in first-order

language [1, 2, 4]. In particular, the formalisation allows easily to read also Freud’s original
way to distinguish between “word presentation” and “thing presentation,” introduced in [5],
that is at the root of his theory, in the distinction between closed terms and variables, that had
been introduced short before in formal logic. Moreover, we suggest how the psychoanalytical
problems so involved could be discussed in terms of the modal logic S4 and in terms of linear
logic, both of which are aimed to overcome the limitations of first-order logic, due to the
formal notion of term. Then, we think that logic should consider Freud’s view of the problem,
and, in general, that the particular clustering of the logical notions induced by the reading of
the psychoanalytical notions, and conversely, can offer a new opportunity for both subjects.
[1]G. Battilotti, Symmetry vs. Duality in Logic: An interpretation of Bi-logic to model

cognitive processes beyond inference. International Journal ofCognitive Informatics andNatural
Intelligence, vol. 8 (2014), pp. 83–97.
[2]G. Battilotti, M. Borozan, and R. Lauro Grotto, Bi-logic and first-order language,

in preparation.
[3] I. Matte Blanco, The Unconscious as Infinite Sets, Duckworth, London 1975.
[4]M.Borozan,When the Possible BecomesNecessary:Towards A Formalisation ofMatte

Blanco’s Bi-logic,Master’s Thesis,University of Florence, (Italian),R.LauroGrotto, advisor,
and G. Battilotti, co-advisor, 2017.
[5] S. Freud,Zur Auffassung der Aphasien. Eine kritische Studie, Franz Deutictke, Leipzig

und Wien, 1891.

� NIKOLAY BAZHENOV, EKATERINA FOKINA, DINO ROSSEGGER, AND LUCA
SANMAURO, Computable bi-embeddable categoricity.
Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia.
Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia.
E-mail: bazhenov@math.nsc.ru.
Institute of DiscreteMathematics and Geometry, Vienna University of Technology, Wiedner
Hauptstraße 8-10, 1040 Wien, Austria.
E-mail: ekaterina.fokina@tuwien.ac.at.
E-mail: dino.rossegger@tuwien.ac.at.
E-mail: luca.san.mauro@tuwien.ac.at.
The study of morphisms between computable structures is a main theme in computable

structure theory since Fröhlich and Shepherdson, and Mal’cev exhibited computable struc-
tures that are not computably isomorphic.
We study the complexity of embeddings between bi-embeddable computable structures.

To this end, we define and investigate the notions (relative) b.e. categoricity and degree of
b.e. categoricity. These notions are analogues to the well studied notions for isomorphisms
between computable structures. As general results we obtain that every Turing degree d that
is d-c.e. above 0(α) for α a computable successor ordinal is the degree of b.e. categoricity of a
structure and that 0′ b.e. categoricity is Π11 complete.
We furthermore prove that every computable equivalence structure has degree of cate-

goricity 0, 0′, or 0′′ and characterize the computable b.e. categorical structures in several
natural classes of structures.
[1]N.Bazhenov, E. Fokina, D.Rossegger,and L.SanMauro,Degrees of bi-embeddable

categoricity of equivalence structures, submitted.
[2] , Computable bi-embeddable categoricity. Algebra and Logic, to appear.

� NIKOLAY BAZHENOV, MANAT MUSTAFA, AND MARS YAMALEEV, Elementary
theories and hereditary undecidability for semilattices of numberings.
Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave.
Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia.
E-mail: bazhenov@math.nsc.ru.
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Department of Mathematics, SST, Nazarbayev University, 53, Kabanbay Batyr Avenue,
Astana 010000, Kazakhstan.
E-mail: manat.mustafa@nu.edu.kz.
N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 18
Kremlevskaya Str., Kazan 420008, Russia.
E-mail: mars.yamaleev@kpfu.ru.
The main motive in the study of degree structures of all kinds has been the question of

the decidability or undecidability of their first-order theories. This is a fundamental question
that is an important goal in the analysing of these structures. A decision procedure implies
and requires a full understanding and control of the first-order properties of a structure [4].
In this talk, we will show undecidability for theories of upper semilattices that arises from
the theory of numberings [1]. We use the following approach: given a level of complexity,
say Σ0α , we consider the upper semilattice RΣ0α of all Σ

0
α-computable numberings of all Σ

0
α-

computable families of subsets of N. We prove that the theory of the semilattice of all
computable numberings is m-equivalent to the first-order arithmetic. We show that the
theory of the semilattice of all numberings is m-equivalent to the second-order arithmetic.
We also obtain a lower bound for the m-degree of the theory of the semilattice of all Σ0α-
computable numberings, where α ≥ 2 is a computable successor ordinal. Furthermore, it is
shown that for any of the theories T mentioned above, the Π5-fragment of T is hereditarily
undecidable. Similar results are obtained for the commutative monoid of all computably
enumerable equivalence relations on N, under composition.
[1] Y. L. Ershov, Theory of numberings, Nauka, Moscow, 1977, in Russian.
[2] , Problems of decidability and constructive models, Nauka, Moscow, 1980, in

Russian.
[3] S. S. Goncharov and A. Sorbi, Generalized computable numerations and nontrivial

Rogers semilattices. Algebra Logic, vol. 36 (1997), no. 6, pp. 359–369.
[4] A. Nies, Undecidable fragments of elementary theories. Algebra Universalis, vol. 35

(1996), no. 1, pp. 8–33.

� DAVID BÉLANGER, CHITAT CHONG, WEI WANG, TIN LOK WONG, AND YUE
YANG, Some variants of weak pigeonholes principle and WWKL.
Department of Mathematics, Ghent University, Belgium.
E-mail: david.belanger@ugent.be.
Department of Mathematics, National University of Singapore, Singapore.
E-mail: matcct@nus.edu.sg.
Department of Philosophy and Institute of Logic and Cognition, Sun Yat-sen University,
Guangzhou 510275, P. R. China.
E-mail: wwang.cn@gmail.com.
Department of Mathematics, National University of Singapore, Singapore.
E-mail: matwong@nus.edu.sg.
E-mail: matyangy@nus.edu.sg.
Recently Avigad et al. [1] introduced a variant ofWWKL, 2−WWKL, which says that if

a Δ02 binary tree T and a positive ration satisfy ∀n(|T ∩ 2n | > �2n) then T has an infinite
path. They proved that 2−WWKL implies BΣ02 over RCA0. Combining this with a theorem
of Conidis and Slaman [2], we know that the first-order theory of 2−WWKL is axiomatized
by BΣ02. Obviously, 2−WWKL implies 2− RAN, the existence of a 2-random. Slaman
proved that RCA0 + 2− RAN � BΣ2. But the first-order theory of RCA0 + 2− RAN remains
unknown.
Here, we introduce an interpolation between 2−WWKL and 2− RAN, denoted by

2−WWKL(≥2−1), which says that if a Δ02 binary tree T satisfies ∀n(|T ∩ 2n| ≥ 2n−1) then
T has an infinite path. It turns out that the first-order theory of RCA0 + 2−WWKL(≥2−1)
has interesting connections with Σ02 −WPHP (there exists no Σ02 injection from any 2a to a)
whereWPHP stands for Weak Pigeonholes Principle, and the cardinal scheme (there exists
no first-order definable injection from N to any a). For example, the first-order theory of
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2−WWKL(≥2−1) is axiomatized by Σ02 −WPHP which lies strictly between BΣ02 and the
cardinal scheme for Σ02 injections.
[1] J. Avigad, E. T. Dean, and J.Rute, Algorithmic randomness, reverse mathematics, and

the dominated convergence theorem.Annals of Pure and Applied Logic, vol. 163 (2012), no. 12,
pp. 1854–1864.
[2] C. J. Conidis and T. A. Slaman, Random reals, the rainbow Ramsey theorem, and

arithmetic conservation. The Journal of Symbolic Logic, vol. 78 (2013), no. 1, pp. 195–206.

� S. BONZIO, T. MORASCHINI, AND M. PRA BALDI, Logics of variable inclusion and
Płonka sums of matrices.
Università Politecnica delle Marche, Ancona, Italy.
E-mail: stefano.bonzio@gmail.com.
Instituite of Computer Science, The Czech Academy of Sciences, Czech Republic.
E-mail: tommaso.moraschini@gmail.com.
Università di Padova, Padova, Italy.
E-mail: m.prabaldi@gmail.com.
It is always possible to associatewithanarbitrarypropositional logic	, twonew substitution-

invariant consequence relations 	l and 	r , which satisfies, respectively, a left and a right
variable inclusion principle, as follows:

Γ 	l ϕ ⇐⇒ there is Δ ⊆ Γ s.t. Var(Δ) ⊆ Var(ϕ) and Δ 	 ϕ,

and

Γ 	r ϕ ⇐⇒
{
Γ 	 ϕ and Var(ϕ) ⊆ Var(Γ) or
Σ ⊆ Γ,

where Σ is a set of inconsistency terms for 	. Accordingly, we say that the logics 	l and 	r
are, respectively, the left and the right variable inclusion companions of 	.
Prototypical examples of variable inclusion companions are found in the realm of three-

valued logics. For instance, the left and the right variable inclusion companions of classical
(propositional) logic are, respectively, paraconsistent weak Kleene logic (PWK for short) [4],
and Bochvar logic [1].
Recent work [2] linked PWK to the algebraic theory of regular varieties, i.e., equational

classes axiomatized by equations ϕ ≈ 
 such that Var(ϕ) = Var(
). The representation
theory iof regular varieties is largely due to the pioneering work of Płonka [5], and is tightly
related to a special class-operator P ł(·) nowadays called Płonka sums. This observations
led us to investigate the relations between left and right variable inclusion companions and
Płonka sums in full generality. Our study is carried on in the conceptual framework of abstract
algebraic logic [3, 6].
At first, we define an appropriate notion of direct system of logical matrices, and we lift the

construction of Płonka sums from algebras to logical matrices. This new technique allows
to provide a completeness theorem for arbitrary logics of variable inclusion (	l ,	r) by per-
forming Płonka sums over direct systems of models of 	. Then, we present a general method
to transform every Hilbert-style calculus for a finitary logic 	 with a partition function into
complete Hilbert-style calculi for 	l and 	r respectively. Moreover, we describe the structure
of the matrix semanticsModSu(	l ),ModSu(	r), given by the so-called Suszko reducedmodels
of 	l ,	r .We close our investigation by determining the location of logics of variable inclusion
in the Leibniz hierarchy.
[1]D. Bochvar, On a three-valued calculus and its application in the analysis of the para-

doxes of the extended functional calculus.Mathematicheskii Sbornik, vol. 4 (1938), pp. 287–
308.
[2] S. Bonzio, J.Gil-Férez, F. Paoli, andL.Peruzzi,Onparaconsistent weak kleene logic:

Axiomatization and algebraic analysis. Studia Logica, vol. 105 (2017), no. 2, pp. 253–297.
[3] J. Font, Abstract Algebraic Logic: An Introductory Textbook, College Publications,

2016.
[4] S. Halldén, The logic of nonsense, Lundequista Bokhandeln, Uppsala, 1949.
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[5] P. P�lonka, On a method of construction of abstract algebras. Fundamenta Mathemati-
cae, vol. 61 (1967), no. 2, pp. 183–189.
[6] J. Czelakowski, Protoalgebraic Logics, Trends in Logic, Studia Logica Library, vol.

10, Kluwer, Dordrecht, 2001.

� OLIVIERBOURNEZANDSABRINAOUAZZANI,Computability and cheap nonstandard
analysis.
Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France.
E-mail: bournez@lix.polytechnique.fr.
LACL, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil, France.
E-mail: sabrina.ouazzani@lacl.fr.
Nonstandard Analysis (NSA) is an area of mathematics dealing with notions of infinites-

imal and infinitely large numbers, in which many statements from classical analysis can be
expressed very naturally. Cheap NSA introduced by Terence Tao in 2012 [2] is based on the
idea that considering that a property holds eventually is sufficient to give the essence of many
of its statements. This provides constructibility but at some (acceptable) price.
We consider computability in cheap NSA. We prove that many concepts from computable

analysis as well as several concepts from computability can be very elegantly and alternatively
presented in this framework. For example, a standard real x is proved to be computable in the
classical sense (of computable analysis) iff there exists some cheap nonstandard computable

rational p
q
, such that

∣∣∣x − p
q

∣∣∣ ≤ ε for some effective infinitesimal ε. As another example,

a function f: [0, 1] → R is computable in the classical sense (of computable analysis) iff
it satisfies some discretization property (there exists some computable � such that if |x −
y| ≤ � then |f(x) − f(y)| ≤ ε.) and it has some uniform approximation function over the
rationals.
We illustrate on various statements from analysis and computable analysis that cheapNSA

provides a dual view and elegant dual proofs to several statements already known in these
fields. Further applications of the framework to ordinal time computations are hence made
possible.
[1] A. S. Kechris andW.HughWoodin, Ranks of differentiable functions.Mathematika,

vol. 33 (1986), no. 2, pp. 252–278.
[2] T. Tao, A cheap version of nonstandard analysis. What’s New, blog post on

terrytao.wordpress.com, April 2012.

� FILIPPO CALDERONI, The bi-embeddability relation for countable abelian groups.
Dipartimento di Matematica G. Peano, Università di Torino, Italia.
E-mail: filippo.calderoni@unito.it.
We analyze the Borel complexity of the bi-embeddability relation for different classes of

countable abelian groups.Most notably,we use theUlm theory to prove that bi-embeddability
is incomparable with isomorphism in the case of torsion groups, and p-groups for any
fixed prime number p. As I will explain, our result contrasts the arguable thesis that bi-
embeddability for countable abelian p-groups has strictly simpler complete invariants than
isomorphism.
This is joint work with Simon Thomas.

� DOMENICO CANTONE AND ALBERTO POLICRITI, Encoding sets as real numbers.
Dipartimento di Matematica e Informatica, University of Catania, Italy.
E-mail: domenico.cantone@unict.it.
Dipartimento di Scienze Matematiche, Informatiche e Fisiche, University of Udine, Italy.
E-mail: alberto.policriti@uniud.it.
In 1937, W. Ackermann proposed the following encoding of hereditarily finite sets by

natural numbers:

NA(x) :=
∑
y∈x
2NA(y). (1)
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The encodingNA is simple, elegant, and highly expressive for a number of reasons. On the one
hand, it builds a strong bridge between two foundational mathematical structures: (heredi-
tarily finite) sets and (natural) numbers. On the other hand, it enables the representation of
the characteristic function of hereditarily finite sets in terms of the usual notation for natural
numbers by sequences of binary digits. That is: y belongs to x if and only if the NA(y)-th
digit in the binary expansion ofNA(x) is equal to 1. As one would expect, the string of 0s and
1s representing NA(x) is nothing but (a representation of) the characteristic function of x.
We study a very simple variation of the encoding NA, applicable to a larger collection of

sets. The proposed variation is obtained by simply putting a minus sign before each exponent
in (1), resulting in the expression:

RA(x) :=
∑
y∈x
2−RA(y). (2)

The range ofRA is now a collection of real numbers and its domain can be enlarged to include
non–well-founded hereditarily finite sets, that is, sets defined by (finite) systems of equations
of the following form ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = {x1,1, . . . , x1,m1}
x2 = {x2,1, . . . , x2,m2}
...

...
xn = {xn,1 , . . . , xn,mn},

(3)

with bisimilarity as equality criterion (see [2] and [3], where the term hyperset is also used).
For instance, the special case of the single equation x1 = {x1}, resulting in the equation
x = 2−x , provides the code of the unique (under bisimilarity) hyperset Ω = {Ω}.1
As a matter of fact, NA is defined inductively and this is perfectly in line with our intuition

on the very basic properties of the collection of natural numbers N and the collection of
hereditarily finite sets HF—called HF0 in [3]. The definition of RA, instead, is not inductive
and it requires a more careful analysis, as it must be proved to injectively associate (real)
numbers to sets.
The injectivity ofRA on the collection of non–well-founded sets—henceforth, to be referred

to as HF1/2, see [3]—was conjectured in [6] and is still an open problem. Here, we prove that,
given any finite collection �1, . . . , �n of elements of HF1/2 satisfying a minimal system of set-
theoretic equations of the form (3) in the variables x1, . . . , xn , we can univocally determine
real numbers RA(�1), . . . ,RA(�n) satisfying the following system of equations:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RA(�1)=
∑m1
k=1 2

−RA(�1,k )

RA(�2)=
∑m2
k=1 2

−RA(�2,k )

...
...

RA(�n)=
∑mn
k=1 2

−RA(�n,k ).

This preliminary result shows that the definition of RA is well given, as it associates a
unique (real) number to evey non–well-founded hereditarily finite set. This extends to HF1/2

the first of the properties that the encoding NA enjoys with respect to HF. Should RA also
enjoy the injectivity property, our proposed adaptation ofNA would be completely satisfiying,
and RA could be coherently dubbed an encoding for non–well-founded sets.
In the course of our proof, we shall also introduce a procedure that drives us to the real

numbers RA(�1), . . . ,RA(�n) mentioned above by way of successive approximations. In the
well-founded case, our procedure will converge in a finite number of steps, whereas in the
non–well-founded case, infinitely many steps will be required for convergence.
[1]W.Ackermann,DieWiderspruchfreiheit der allgemeinenMengenlehre.Mathematische

Annalen, vol. 114 (1937), pp. 305–315.
[2] P. Aczel, Non—Well-Founded Sets, CSLI Lecture Notes, Stanford, CA, 1988.

1Notice that the solution to the equation x = e−x is the so-called omega constant, introduced by
Lambert in [5] and studied also by Euler in [4].
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[3] J. Barwise and L. S.Moss, Vicious Circles, CSLI Lecture Notes, Stanford, CA, 1996.
[4] L. Euler, De serie Lambertina Plurimisque eius insignibus proprietatibus. Acta

Academiae scientiarum imperialis petropolitanae, vol. 2 (1783), pp. 29–51, Reprinted in
Leonhard Euler, Opera Omnia, Series Prima, vol. 6, Commentationes Algebraicae, Teub-
ner, Leipzig, Germany, 1921, pp. 350–369.
[5] J. H. Lambert, Observations variae in Mathesin Puram. Acta Helvitica, Physico-

Mathematico-Anatomico-Botanico-Medica, vol. 3 (1758), pp. 128–168.
[6] A. Policriti, Encodings of sets and hypersets, Proceedings of the 28th Italian Con-

ference on Computational Logic, Catania, Italy, September 25–27, 2013, CEUR Workshop
Proceedings, CEUR-WS.org, 2013, pp. 235–240.

� DAVIDE CATTA, ALDA MARI, MICHEL PARIGOT, AND CHRISTIAN RETORÉ,
Natural language variants of universal quantification in first-order modal logic.
LIRMM, Université Montpellier, CNRS, 161 rue Ada, 34090 Montpellier, France.
E-mail: davide.catta@lirmm.fr.
IJN, CNRS, ENS, EHESS, 45 rue d’Ulm, 75005 Paris France.
E-mail: alda.mari29@gmail.com.
IRIF, CNRS, Université Paris Diderot, 5 rue Thomas Mann, 75205 Paris Cedex 13, France.
E-mail: michel.parigot@gmail.com.
LIRMM, Université Montpellier, CNRS, 161 rue Ada, 34090 Montpellier, France.
E-mail: christian.retore@lirmm.fr.
Natural languages offer avarietyof universal quantifiers, both intra andcross-linguistically.

French has three wordings of universal quantification: chaque (singular; ∼ each), tout (sin-
gular; �∼ every)—and a third one, tous les (plural; ∼ all), left out from this study because it
involves second–order objects.
Based on linguistic data, and granted parametrization of the lexical functions to both sets

of individuals and worlds, we show that chaque and tout differ in the modal properties of
their domains of quantification: with chaque the world is fixed (as the actual one), with tout
the set of worlds varies with the individuals. We treat exceptions as pertaining to individuals
for chaque and to worlds for tout, by forcing conditions on accessibility paths.
We will finally discuss the semantics of tout in comparison to the silent quantifier gen

that linguists have described as a generic unselective quantifier binding both individuals and
worlds variables, with worlds restricted to “normal” ones. [1]
[1] C. Beyssade, A.Mari, and F. Del Prete (eds.), Genericity, Oxford University Press,

2013.
[2]M. Fitting and R. L.Mendelsohn, First Order Modal Logic, Springer, 2007.
[3] A. Mari and C. Retoré, Conditions d’assertion de chaque et de tout et règles de

déduction du quantificateur universel. Travaux de Linguistique, vol. 72 (2016), pp. 89–106.

� ANAHIT CHUBARYAN AND ARTUR KHAMISYAN, On some universal proof system
for all versions of many-valued logics.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, Armenia.
E-mail: achubaryan@ysu.am.
E-mail: Artur.Khamisyan@gmail.com.
The current research refers to the problem of constructing some universal Gentzen-like

proof system for all versions of propositional many-valued logic (MVL) such that for every
variant of MVL any propositional proof system can be presented in described form. Some
generalization of Kalmar’s proof of deducibility for two-valued tautologies in the classical
propositional logic gives us a possibility to suggest some simple method for proving the
completeness for described systems.

Let Ek be the set
{
0, 1
k−1 , . . . ,

k−2
k−1 , 1

}
. We use the well-known notions of propositional

many-valued formula, which defined as usual from propositional variables with values from
Ek , (may be also propositional constants), parentheses (, ), and logical connectives &, ∨, ⊃,
¬, every of which can be defined by different well-known modes. For propositional variable
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p and � = i
k−1 (0 � i � k − 1) we define additionally “exponent” functions:

p� as (p ⊃ �)&(� ⊃ p) with Lukasiewicz’s implication (1) exponent,
p� as p with (k − 1)i cyclically permuting negation (2) exponent,

and introduce the additional notion of formula: for every formulas A and B the expression
AB (for both modes) is formula also. For every propositional variable p in k-valued logic
p0, p1/(k−1), . . . , p(k−2)/(k−1) and p1 in sense of both exponent modes are the literals. In every
MVL either only 1 or every of values 12 � i

k − 1 � 1 can be fixed as designated values. A
formula ϕ with variables p1, p2, . . . pn is called k-tautology if for every �̃ = (�1, �2, . . . , �n) ∈
Enk assigning �j (1 � j � n) to each pj gives the value 1 (or some value 12 � i

k−1 � 1)
of ϕ.
Universal system (US) for all versions of MVL is defined as follow. For sequent we use

the denotation Γ 	 Δ, where Γ and Δ are finite (may be empty) sequences (or sets) of
propositional formulas. For every literal C and for any set of literals Γ the axiom sxeme of
propositional systemUS is Γ, C → C . For every formulas A, B , for any set of literals Γ, for
each �1, �2, � from the set Ek and for ∗ ∈ {&,∨,⊃} the logical rules of US are:

	 ∗ Γ 	 A
�1 and Γ 	 B�2

Γ 	 (A ∗ B)ϕ∗(A,B,�1 ,�2)
, 	 exp Γ 	 A

�1 and Γ 	 B�2
Γ 	 (AB)ϕexp(A,B,�1 ,�2)

, 	 ¬ Γ 	 A�
Γ 	 (¬A)ϕ¬(A,�)

,

literals elimination 	 Γ, p
0 	 A,Γ, p

1
k−1 	 A, . . . ,Γ, p

k−2
k−1 	 A,Γ, p1 	 A

Γ 	 A ,

where many-valued functions ϕ∗(A,B, �1, �2), ϕexp(A,B, �1, �2) and ϕ¬(A, �), must be de-
fined individually for each version of MVL such, that
1. formulas A�1 ⊃ (B�2 ⊃ (A ∗ B)ϕ∗(A,B,�1 ,�2)), A�1 ⊃ (B�2 ⊃ (AB )ϕexp(A,B,�1 ,�2)) and

A� ⊃ (¬A)ϕ¬(A,�) must be k-tautology in this version,
2. if for some �1, �2, � the value of �1 ∗�2 (��21 ,¬�) is one of designed values in this version

of MVL, then (�1 ∗ �2)ϕ∗(�1 ,�2 ,�1 ,�2)) = �1 ∗ �2((��21 )ϕexp(�1 ,�2 ,�1 ,�2) = �
�2
1 , (¬�)ϕ¬(�,�) = ¬�).

Theorem. Any sequent � A is derived in US iff formula A is k-tautology.

� ANAHIT CHUBARYANAND GARIK PETROSYAN, On the relations between the proof
complexity measures of strongly equal k-tautologies in some proof systems.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, Armenia.
E-mail: achubaryan@ysu.am.
E-mail: garik.petrosyan.1@gmail.com.
In the mean time many interesting applications of many-valued logic (MVL) were found

in such fields as Logic, Mathematics, Formal Verification, Artificial Intelligence, Operations
Research, Computational Biology, Cryptography, Data Mining, Machine Learning, and
Hardware Design; therefore, the investigations of proof complexity for different systems of
MVL are very important.
The traditional assumption that all tautologies as Boolean functions are equal to each

other is not fine-grained enough to support a sharp distinction among tautologies. The
authors of [1] have provided a different picture of equality for classical tautologies. They have
introduced the notion of strong equality of 2-valued tautologies on the basis of determinative
conjunct notion. The idea to revise the notion of equivalence between tautologies in such
way that is takes into account an appropriate measure of their “complexity.” It was proved
in [2, 3] that in “weak” proof systems the strongly equal 2-valued tautologies have the same
proof complexities, while in the “strong” proof systems the measures of proof complexities
for strongly equal tautologies can essentially differ from each other. Here, we generalize the
notions of determinative conjunct and strongly equal tautologies for MVL and compare the
proof complexity measures of strongly equal many-valued tautologies in some proof systems
of MVL. We prove the following statement.
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Theorem. There are the sequences of strongly equal k-valued (k � 3) tautologies An and
Bn such, that (a) the lengths and sizes of An and Bn proofs in some “weak” systems of MVL
are the same, (b) if Υ is one of “strong” systems of MVL, then

tΦAn = O(1), l
Φ
An = O(n),

tΦBn = Ω(n), l
Φ
Bn = Ω(n

2),

where tΦAn (t
Φ
Bn ) and l

Φ
An (l

Φ
Bn ) are theminimal measures of Υ-proofs lengths and sizes for formulas

An (Bn).

[1] A. Chubaryan and A.Chubaryan, A new conception of equality of tautologies. L&PS,
Triest, Italy, vol. V (2007), no. 1, pp. 3–8.
[2] A. Chubaryan and G. Petrosyan, The relations between the proof complexities of

strongly equal classical tautologies in Frege systems. The Russian–Chinese Scientific Journal
“Commonwealth”, Phiz-Mat Science, no. I (1), 2016, pp. 78–80.
[3] A. Chubaryan and A.Mnatsakanyan, On the bounds of the main proof measures in

some propositional proof systems. Scholars Journal of Physics, Mathematics and Statistics,
vol. 1 (2014), no. 2, pp. 111–117.

� ALBERTO CIAFFAGLIONE, PIETRO DI GIANANTONIO, FURIO HONSELL, MA-
RINA LENISA, AND IVAN SCAGNETTO, Reversible computation and principal types in
�!-calculus.
DMIF, Udine University, Udine, Italy.
E-mail: alberto.ciaffaglione@uniud.it.
In [1], S. Abramsky discusses reversible computation in a game-theoretic setting using par-

tial involutions, i.e., functions such that f(u) = v ⇔ f(v) = u. The construction is a special
case of a general categorical paradigm [2, 3], which amounts to defining a combinatory alge-
bra starting from a Geometry of Interaction (GoI) Situation in a traced symmetric monoidal
category. Involutions amount to history-free strategies and apply according toGoI symmetric
feedback/Girard’s Execution Formula.
We highlight a duality between the GoI interpretation of a �-term as an involution and its

principal type w.r.t. an intersection types discipline for a refinement of �-calculus inspired by
Linear Logic, the �!-calculus.
The grammar of types is: � ::= α | �→ � |!v� | � ∧ �.
The grammar of �!-terms is: M ::= x | MN | �x.M | �!x.M |!M , where �-abstractions
can be taken only if x occurs at most once and is not in the scope of a!. Reduction rules are
extended with a !-pattern 
-reduction.
We define inductively the judgements: “�M : �”, “the termM has principal type scheme

�”, and “T (α, �) = u ↔ v”, “the type-variable α in the principal type � generates the
component u ↔ v of an involution.” We have
Theorem. GivenM,N ∈ Λ! such that

�M : �1 → �2, � N : �,
· fN = {u ↔ v | ∃α ∈ �. T (α, �) = u ↔ v}
· fM•GoI fN = {u ↔ v | S =MGU(�1, �) ∧ ∃α ∈ S(�2). (T (α, S(�2)) = u ↔ v)},

where fN denotes the interpretation of N in GoI, •GoI denotes application in GoI, andMGU
denotes the “most general unifier.”

The above theorem unveils three conceptually independent, but ultimately equivalent,
accounts of application in the �-calculus: 
-reduction, GoI application of involutions, and
unification of principal types. Furthermore, we prove that involutions are denotations of
combinators iff they generate the principal type of a �-term, thus answering an open question
raised in [1].
The present work extends [4], where the purely affine fragment of the GoI combinatory

algebra of involutions and purely affine �-calculus have been investigated.
[1] S. Abramsky, A structural approach to reversible computation. Theoretical Computer

Science, vol. 347 (2005), no. 3, pp. 441–464.
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[2] S. Abramsky, E. Haghverdi, and P. Scott, Geometry of interaction and linear combi-
natory algebras.Mathematical Structures in Computer Science, vol. 12 (2002), no. 5, pp. 625–
665.
[3] S.AbramskyandM.Lenisa,Linear realizability and full completeness for typed lambda-

calculi. Annals Pure Applied Logic, vol. 134 (2005), no. 2–3, pp. 122–168.
[4] A. Ciaffaglione, F. Honsell, M. Lenisa, and I. Scagnetto, Linear �-calculus and

Reversible Automatic Combinators, https://arxiv.org/abs/1806.06759, June 2018.

� CEZARY CIEŚLIŃSKI, Axiomatic theories of truth based on weak and strong Kleene logic.
Institute of Philosophy, University of Warsaw, Poland.
E-mail: c.cieslinski@uw.edu.pl.
One of the main research topics in the area of axiomatic theories of truth has been that

of assessing their strength. A subtle measure of strength has been proposed by Fujimoto in
[2]. Namely, denoting by LT the result of adding a new predicate “T (x)” to the language of
arithmetic, we say that the truth theory Th1 is relatively truth-definable in Th2 iff there is a
formula �(x) ∈ LT such that for every 
 ∈ LT , if Th1 	 
, then Th2 	 
(�(x)/T (x)).
If Th2 defines the truth predicate of Th1, then Th2 is not conceptually weaker than Th1, as

Th2 contains the resources permitting to reproduce the concept of truth of Th1.
We will compare the conceptual strength of two axiomatic theories of truth:KF andWKF.

The first one has been designed to capture Kripke’s fixed-point construction based on Strong
Kleene logic. The second one is based on the Weak Kleene evaluation schema.
In [2] Fujimoto proved thatWKF is relatively truth-definable in KF. However, it has been

an open question whether KF is relatively truth-definable inWKF.
We will provide the negative answer to this question, one that does not depend on the

choice of language and coding. We consider this remarkable, because various important
properties of Weak Kleene fixed-point construction are not absolute in this sense (see [1]).
[1] J. Cain and Z. Damnjanovic, On the weak Kleene scheme in Kripke’s theory of truth.

The Journal of Symbolic Logic, vol. 56 (1991), no. 4, pp. 1452–1468.
[2]K. Fujimoto, Relative truth definability of axiomatic truth theories, this Bulletin,

vol. 16 (2010), no. 3, pp. 305–344.

� NUNZIA COSMO, Notes on the semantic refractions of the intuitionistic logic.
Federico II, Naples, Italy.
E-mail: nunzia.cosmo@libero.it.
Myresearchproposal concerns the evaluationof apossible semantic for the dual-intuitionistic

logic. In particular, the purpose of this research is to validate the universalisation of Kripke’s
semantics for the modal and intuitionistic logic and also for the dual-intuitionistic logic; the
possibility of the exstention of the kripkeian’s logic is investigated through the examination
of semantic of the Da Costa’s paraconsistent logic [2, 3], which in Priest is a part of Rauszer’s
Brouwer–Heyting logic [11]. This research project is conducted through an analysis of the
history of semantic for the logical truths and laws of intuitionistic logic, from Brouwer theory
[1] and fromHeyting formalism [4]—with their theoretical developments (G. Kreisel, J. My-
hill, and A. S. Troelstra)—to Kripke’s semantic [6] and to Rauszer and Hiroshis’ theories
[5, 12, 13].
[1] L. E. J. Brouwer, Over de Grondslagen der Wiskunde, Amsterdam, 1907.
[2]N. C. A. Da Costa, Sistemas Formais Inconsistentes, Curitiba, Brazil, 1963.
[3] , Ensaio Sobre os Fundamentos da Logica, Hucitec, Saõ Paulo, 1980.
[4] A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der

Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1930,
pp. 42–56.
[5] A. Hiroshi, LK, LJ, dual intuitionistic logic and quantum logic. Notre Dame Journal of

Formal Logic, vol. 45 (2004), no. 4, pp. 193–213.
[6] S. Kripke, A completeness theorem in modal logic. The Journal of Symbolic Logic,

vol. 24 (1959), no. 1, pp. 1–14.
[7] ,Semantical analysis of modal logic I. Normalmodal propositional calculi.Math-

ematical Logic Quarterly, vol. 9 (1963), no. 5–6, pp. 67–96.
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[8] , Semantical considerations on modal logic. Actaa Philosophica Fennica, vol. 16
(1963), pp. 83–96.
[9] , Semantical analysis of modal logic II. Nonnormal modal propositional calculi,

Symposium on the Theory of Models (J. W. Addison, L. Henkin, and A. Tarski, editors),
North-Holland, Amsterdam, 1965.
[10]G. Priest, Dualising Intuitionistic Negation, Principia: An International Journal of

Epistemology, vol. 13 (2009), no. 2, pp. 165–189.
[11] G. Priest, R.Routley, and J.Normal (eds.), Paraconsistent Logic, München, 1989.
[12] C. Rauszer, Semi-Boolean algebras and thier applications to intuitionistic logic with

dual operations. Fundamenta Mathematicae, vol. 83 (1974), no. 3, pp. 219–249.
[13] , Applications of Kripke models to Heyting–Brouwer logic. Studia Logica,

vol. 36 (1977), no. 1/2, pp. 61–71.

� STAMATIS DIMOPOULOS, Strong compactness and the continuum function.
University of Bristol, Bristol, UK.
E-mail: stamatis.dimopoulos@bristol.ac.uk.
Strong compactness may be one of the established large cardinal notions in set theory, but

it is not robust when it comes to forcing. In particular, it is still open whether it is possible to
control the continuum function and at the same time preserve strong compactness, without
relying on stronger properties such as supercompactness. In an ongoing work with A. Apter,
we look at special cases where the preservation of strong compactness is possible, while having
some control over the continuum function.
Initially, we show that assuming only a partial degree of supercompactness, it is possible to

violateGCHat anonsupercompact strongly compact cardinal, while preserving the full extent
of its strong compactness. Also, we show that certain Easton functions can be realised while
preserving the strong compactness of the least measurable limit of supercompact cardinals.
Finally, we show how to force a violation of GCH at all strongly compact cardinals, in models
where strong compactness coincides with supercompactness.

� DAVIDFERNÁNDEZDUQUE ANDCHRISTIANRETORÉ,Logic and topology: Some
connections.
Department of Mathematics, Ghent University, Krijgslaan 281, B 9000 Gent, Belgium.
E-mail: David.FernandezDuque@UGent.be.
Université de Montpellier and LIRMM, 161 rue Ada, 34090 Montpellier, France.
E-mail: christian.retore@umontpellier.fr.
One of the oldest connections between logic and topology is McKinsey and Tarski’s

seminal result stating that S4 is sound and complete for its topological interpretation over
the real line and other topological spaces, a result that has since been extended and sharpened
and continues to be studied to this day.
This basic construction naturally yields semantics for intuitionistic logic via the Gödel–

Tarski translation, which in turn gives rise to models of first-order intuitionistic logics. The
(pre)sheaves over a topological space (or a pretopology) yield models for which the intu-
itioinistic predicate calculus is complete. They can be seen as Kripke models with additional
properties and enjoy a structure that is more familiar in common mathematics.
These connections between logic and topology have led to a wealth of applications that

have become increasingly relevant with developments in computing. Topological semantics
for modal logic make them an efficient tool for spatial reasoning, and topological semantics
of intuitionistic logic have led to models of computation including denotational semantics of
lambda calculi and more recently the development of Homotopy Type Theory.
In this talk, we will give brief overview of these connections between logic and topology.

We will discuss both historical and technical aspects of the field.

� MIRKO ENGLER, Pathological well-orderings and proof-theoretic ordinals.
Department of Philosophy, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin,
Germany.
E-mail: englermi@cms.hu-berlin.de.
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We consider proof-theoretic ordinals for theories of first- and of second-order languages.
The former may be defined as the supremum of order types of p.r. well-orderings for which
a theory T proves the corresponding schema of transfinite induction. The latter (also called
Π11-ordinal) may be defined as the supremum of order types of p.r. well-orderings whose
well-foundedness is provable in T . While it is known [2], that for any α < �CK1 there
are order-relations ≺ (not defining a well-ordering) of order type α s.t. PA 	 TI (≺), the
Π11-ordinal is often claimed to provide a stable and convenient measure of proof-theoretic
strength of theories. Moreover, it is claimed to be not dependent on any special concepts of
natural well-orderings.
In this contribution, we extend a result from [1] and first show that PA 	 TI (≺) for any

α < �CK1 , where ≺ is of order type α and actually represents a well-ordering. Furthermore,
we adapt the construction to prove a similar result for 2nd order and discuss the resulting
problems for defining Π11-ordinals.
[1] L. Beklemishev,Another pathological well-ordering,Logic Colloquium ’98, Proceedings

of the Annual European Summer Meeting of the Association for Symbolic Logic (S. R. Buss,
P. Hajek, and P. Pudlak, editors), Lecture Notes in Logic, vol. 13, A K Peters, Alberto
Ciaffaglione, Prague, Czech Republic, 2000, pp. 105–108.
[2]G. Kreisel, A variant to Hilbert’s theory of the foundations of arithmetic. The British

Journal for the Philosophy of Science, vol. 4 (1953), no. 14, pp. 107–129.

� MARTAFIORI CARONES, The strength of a theorem about subgraphs with nice properties.
Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di
Udine, via delle Scienze 206, 33100 Udine, Italia.
E-mail: fioricarones.marta@spes.uniud.it.
In 1979, Ivan Rival and Bill Sands [1] proved that each infinite graph G has an infinite

subgraph H such that each vertex of G is adjacent to none or to one or to infinitely many
vertices ofH . This statement, showing the existence of a substructure with some property in
every infinite graphs, resembles Ramsey’s theorem, which assures that each infinite graph has
a complete or a totally disconnected subgraph. Actually, the authors presented the statement
as a variation of Ramsey’s theorem because, while renouncing the complete information
about H itself, it gives some information about the adjacency structure of H with respect
to G . Despite the superficial similarity with Ramsey’s theorem, this principle is not what in
reverse mathematics is called a “Ramsey’s type principle”; in fact only if the graph is locally
finite each subgraph of a solution is still a solution.
We investigated this statement (restricted to countable graphs) from the viewpoint of

reverse mathematics, establishing that it is equivalent to ACA0. Hence, the coding power of
this statement is at least 0′, but we suspect that it is higher. Moreover, if there is a computable
bound to the degree of the vertices of G , then the theorem is computably true.
We will also discuss the reverse mathematics of a related theorem of Rival and Sands

proved in the same article: each countably infinite partial order P of finite width has an
infinite chain C such that every element of P is comparable with either none or cofinitely
many elements of C .
This is joint work with Paul Shafer and Giovanni Soldà.
[1] I. Rival and B. Sands,On the adjacency of vertices to the vertices of an infinite subgraph.

Journal of the London Mathematical Society, vol. 2 (1980), no. 3, pp. 393–400.

� EKATERINA FOKINA, TIMOKÖTZING, AND LUCA SANMAURO, Learning equiv-
alence structures.
Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Austria.
E-mail: ekaterina.fokina@tuwien.ac.at.
E-mail: luca.san.mauro@tuwien.ac.at.
Hasso Plattner Institute, University of Potsdam, Germany.
E-mail: Timo.Koetzing@hpi.de.
Algorithmic learning theory is a vast research program, initiated by Gold [1] in the 1960s,

that comprises different models of learning in the limit. It deals with the question of how a
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learner, provided with more and more data about some environment, is eventually able to
achieve systematic knowledge about it.
In this article, we investigate computable structures through the lens of algorithmic

learning theory (see, e.g., [2] for another study in this direction). We introduce the fol-
lowing framework. Let K be a class of structures. Suppose we have an effective numbering
A0,A1, . . . ,Ai , . . . of computable structures from K. LetM be a partial computable func-
tion which takes for its inputs finite substructures of a structure A from the class K (where
A0 ⊆ A1 ⊆ · · · ⊆ Ai ⊆ · · · and A =

⋃
i A
i ) and which either goes undefined or returns a

number of program. For a finite initial substructure Ai , ifM (Ai ) ↓= n, then n represents
M ’s conjecture or hypothesis as to an index for A in the abovementioned numbering. The
learnerM EX∼=-learnsA if there exists a number n such that A ∼= An andM (Ai ) ↓= n, for
all but finitely many i . A family of structures A is EX∼=-learnable if there isM that learns all
A ∈ A.
We focus on equivalence structures and study which families of equivalence structures

with domain � are EX∼=-learnable. We also unveil a natural hierarchy of different notions of
learnability by replacing isomorphism with other relations expressing structural similarity,
such as bi-embeddability ad bi-homomorphism.
[1]M. E. Gold, Language identification in the limit. Information and Control, vol. 10

(1967), no. 5, pp. 447–474.
[2] V.Harizanov andF.Stephan,On the learnability of vector spaces. Journal of Computer

and System Sciences, vol. 73 (2007), no. 1, pp. 109–122.

� BALTHASAR GRABMAYR, A step towards a coordinate free version of Gödel’s Second
Theorem.
Institut für Philosophie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
Germany.
E-mail: balthasar.grabmayr@gmx.net.
[2] locates three sources of indeterminacy in the formalization of a consistency statement

for a theoryT : (I) the choice of a proof system, (II) the choice of a coding system and (III) the
choice of a specific formula representing the axiom set of T . According to [2], “Feferman’s
solution [1] to deal with the indeterminacy is to employ a fixed choice for (I) and (II) and
to make (III) part of the individuation of the theory” (p. 544). [2]’s own approach rests on
fixed choices for (II) and (III) but is independent of (I).
The primary result of this talk is to eliminate the dependency on (II), by proving the

invariance of Gödel’s Second Theorem with regard to acceptable numberings. This involves
two steps. Firstly, I discuss the notion of acceptability of a numbering and argue that the
computability of a numbering is a necessary condition for its acceptability. A precise notion
of computability then allows the formerly vague invariance claim to be restated as a (meta-
)mathematical theorem, whose proof will be outlined in the second part of the talk.
[1] S. Feferman, Arithmetization of metamathematics in a general setting. Fundamenta

Mathematicae, vol. 49 (1960), pp. 35–92.
[2] A. Visser, Can we make the second incompleteness theorem coordinate free? Journal of

Logic and Computation, vol. 21 (2011), no. 4, pp. 543–560.

� HAROLD T. HODES,Modal logic out of moodal logic.
Department of Philosophy, Cornell University, Ithaca, NY, USA.
E-mail: hth3@cornell.edu.
Let Fml be the set of formulas generated from a set of propositional variables using the

logical constants ⊥, ⊃, � (and &, ∨, � for the intuitionistic case). Form the set MFml
of marked formulas by prefixing a formula with a moodal markers: 0 and 1 (and 1+ for
the intuitionistic case). Note: moodal markers are not operators—they cannot be iterated.
Heuristic: 0 indicates acceptance as true at the actual world; 1 indicates acceptance as true
at an arbitrary accessible world; 1+ indicates acceptance as true at an arbitrary accessible+

world. Classical and intuitionistic normal modal logics turn out to be 0-level fragments of
conceptually deeper moodal logics.
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Using marked formulas, we can formalize many normal modal logics so as to characterize
� (and � in the intuitionistic case) by introduction and elimination rules: the introduction
rules for � (and �) “freezes” a formula ϕ marked by 1 (or perhaps 1+ in the intuitionistic
case) into �ϕ (and �ϕ) marked by 0; the corresponding elimination rules “unfreezes” 0�ϕ
(and 0�ϕ).
We will introduce the modal moodal logics Intuitionistic K [Classical K] by model-

theoretically defining IK-consequence [CK-consequence] on marked formulas. Our model-
theory for IK builds on Plotkin and Sterling’s semantics; for CK it builds on Kripke’s
semantics.
This talk will focus on Natural Deduction formalizations for these logics. Necessitation

and the standard axioms are not proof-theoretically “rock-bottom”: necessitation is a derived
rule; the familar K-axioms, and in the intuitionistic case the other axioms offered by Plotkin
and Sterling, are all provable. Time permitting, I will discuss some other familiar normal
modal logics.
Note addedMay 1 2018: I have figured out how to avoid using 1+ in the intuitionistic case.

� RAMON JANSANA AND TOMMASO MORASCHINI, Relational semantics, ordered
algebras, and quantifiers for deductive systems.
Faculty of Philosophy, University of Barcelona, Barcelona, Spain.
E-mail: jansana@ub.edu.
Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.
E-mail: tommaso.moraschini@gmail.com.
Relational semantics has proved to be a fundamental tool in the mathematical and philo-

sophical understanding of many nonclassical logics, including intuitionistic, modal, and
substructural logics. Nevertheless, the evolution of the general theory of relational semantics
is far behind that of algebraic semantics. In this talk [4], we present a first abstract approach
to relational semantics, in the spirit of Abstract Algebraic Logic [2], which turns out to be
connected with the theory of completions of ordered algebras [6, 1, 3].
Even though, for the sake of simplicity,wewill confine our discussion to the local aspects [5]

of relational semantics, our approach can be extended harmlessly to arbitrary propositional
logics and, in particular, to global consequences of normal modal logics and to arbitrary
substructural logics. More in detail, we will consider two basic questions which need to be
addressed by any truly general theory of relational semantics:

• Can we make precise the idea that a logic has a local relational semantics?
• In case a logic has a local relational semantics, what are its distinguished relational
models?

As a matter of fact, our approach encompasses that of canonical extensions of arbitrary
lattices, but diverges from the known approaches when applied to non–lattice-based logics.
This is due to the fact that our approach is logic-based, and produces completions and
relational semantics which reflect the behaviour of the logic under consideration. This makes
it especially fruitful in the study of purely intensional fragments (which are not lattice based).
Interestingly enough, as a by-product of our approach, we are able to associate to every local
consequence a class of distinguished ordered algebras, thus justifying on general grounds the
empiric observation that most algebras of logics are intrinsically ordered.
If time allows, we will consider the following problems as well:

• Canweuse the distinguished relational semantics of a propositional logic 	 to introduce
a semantically defined first-order extension 	?

• Can we axiomatize this first-order extension relative to a given axiomatization of the
propositional logic 	?

[1]M. J. Dunn, M. Gehrke, and A. Palmigiano, Canonical extensions and relational
completeness of some substructural logics. The Journal of Symbolic Logic, vol. 70 (2005),
no. 3, pp. 713–740.
[2] J. M. Font, Abstract Algebraic Logic—An Introductory Textbook, Studies in Logic:

Mathematical Logic and Foundations, vol. 60, College Publications, London, 2016.
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[3]M.Gehrke, R. Jansana, and A. Palmigiano, Δ1-completions of a poset.Order, vol. 30
(2013), no. 1, pp. 39–64.
[4] R. Jansana and T.Moraschini, Relational semantics, ordered algebras, and quantifiers

for deductive systems, manuscript, 2017.
[5]M. Kracht,Modal consequence relations, Handbook of Modal Logic, vol. 3. Elsevier

Science Inc., New York, 2006.
[6]H. M. MacNeille, Partially ordered sets. Transactions of the American Mathematical

Society, vol. 42 (1937), no. 3, pp. 416–460.

� SÁNDOR JENEI, Group representation and Hahn-type embedding for a class of involutive
residuated chains with an application in substructural fuzzy logic.
Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6., Pécs, Hungary.
E-mail: jenei@ttk.pte.hu.
URL: http://jenei.ttk.pte.hu/home.html.
Hahn’s celebrated embedding theorem asserts that linearly ordered Abelian groups embed

in the lexicographic product of real groups. Conrad, Harvey, andHolland generalized Hahn’s
theorem for lattice-ordered Abelian groups [1]. We prove a representation theorem for a class
of involutive residuated semigroups, namely, for group-like FLe-chains which possess only
finitely many idempotents.
An FLe-algebra [2] is a structure X = (X,∧,∨, ∗◦,→∗◦, t, f) such that (X,∧,∨) is a lattice,

(X,≤, ∗◦, t) is a commutative,monoid, andf is anarbitrary constant.Onedefinesx′ = x→∗◦f
and calls X involutive if (x′)′ = x holds. Call X group-like if it is involutive and t = f. Since
for involutive FLe-chains t′ = f holds, one extremal situation is the integral case (when t
is the top element of the universe and hence f is its bottom one) and the other extremal
situation is the group-like case (when the two constants coincide). Prominent classes of
group-like FLe -chains are totally orderedAbelian groups and odd Sugihara chains, the latter
constitute an algebraic semantics of a logic at the intersection of relevance logic and fuzzy
logic. These two classes are extremal in the sense that lattice-ordered Abelian groups have a
single idempotent element, whereas all elements of any odd Sugihara algebra are idempotent.
The representation uses only linearly ordered Abelian groups and a newly introduced

construction, called partial lexicographic product. As a corollary, we extend Hahn’s theorem
to this class of semigroups by showing that any such algebra embeds in some partial-
lexicographic product of linearly ordered Abelian groups. As an application for this em-
bedding, we show the finite strong standard completeness of an axiomatic extension of the
Involutive Uninorm Logic IUL [4] by t ⇔ f.
Acknowledgment. Supported by the GINOP 2.3.2-15-2016-00022 grant.
[1] P. F. Conrad, J. Harvey, and W. C. Holland, The Hahn embedding theorem for

lattice-ordered groups. Transactions of the American Mathematical Society, vol. 108 (1963),
pp. 143–169.
[2]N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic

Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics,
Elsevier, 2007.
[3]H.Hahn, Über die nichtarchimedischenGrössensysteme.Sitzungsberichte derAkademie

der Wissenschaften, Wien, Mathematik-Naturwissenschaften Klasse, vol. 116 (1907), no. IIa,
pp. 601–655.
[4]G. Metcalfe and F.Montagna, Substructural fuzzy logics. The Journal of Symbolic

Logic, vol. 72 (2007), no. 3, pp. 834–864.

� ALEXANDER JONES, An axiomatic theory of truth and paradox.
Department of Philosophy, Cotham House, University of Bristol, Bristol BS6 6JL, UK.
E-mail: alexander.jones@bristol.ac.uk.
URL: www.alexandermjones.com.
In this article, I present a new axiomatic theory of truth, state key theorems about this

theory, and discuss its treatment of the semantic paradoxes.
The theory follows the spirit of Tarskian and contextual approaches to truth: truth is

treated as a typed notion (sentences are not true absolutely, but true relative to a particular
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level of the language) and this allows a broadly classical treatment of truth. Where my theory
differs to previous theories is that truth is treated as a binary, rather than unary, predicate, and
this allows for quantification over the levels of the language. This results in a more expressive
theory of truth that allows internal proofs of some natural statements that must ordinarily be
proven outside of the theory. I state some key theorems about this theory, and why it might
be viewed as a relatively attractive alternative to other typed theories of truth, before moving
on to a discussion of its relation to the semantic paradoxes.
There are a family of Liar-like and truth-teller-like sentences which the theory has to deal

with. Some of these are provable, some of their negations are provable, but all are provably
untrue. The theory carries with it an internal definition of “pathological” sentences. This
definition allows Liar-like sentences to be provably untrue, without falling into inconsistency.
I provide a philosophical interpretation of this definition as sentences which are not “truth-
apt” and consider some other examples of pathological sentences, in particular those which
quantify absolutely generally over all levels of the truth predicate. I propose that this is an
interesting new axiomatic theory of truth with intriguing formal features that add new depth
to contextualist approaches to the semantic paradoxes.

� JERZY KRÓL, TORSTEN ASSELMEYER-MALUGA, KRZYSZTOF BIELAS, AND
PAWEŁ KLIMASARA, Set-theoretic forcing in low-dimensional differential topology and
cosmology.
Institute of Physics, University of Silesia, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
German Aerospace Center (DLR), Berlin, Germany.
E-mail: jerzy.krol@us.edu.pl.
We propose a cosmological model as a mathematical tool for relating smoothness struc-

tures on R4 with the Cohen and random forcings. It refines the model where the initial
quantum state defines the lattice of projections L(H) of a Hilbert spaceH [3]. The maximal
Boolean subalgebras of L(H) are typically atomless measure algebras B supporting random
forcing. Internal real numbers of the Boolean-valued models VB parametrize the spacetime
points, the smooth regions of the spacetime gain exotic smoothness of R4. Additionally, it
predicts the value of the cosmological constant [1].
Cohen forcing distinguishes exotic smoothness structures of R4. One turns to Calkin

algebra C(H) = B(H)/K and Aut(L(H)), Aut(C(H)). Classically C(H) is P(N)/fin repre-
senting the hyperfinite extensions of Casson handles in nonstandard models of N. The trivial
automorphisms of P(N)/fin define operations on handlebodies and diffeomorphisms of ex-
otic R4’s [2]. Additionally, if an atlas of R4 contains transition functions from the Cohen
extensions L[a] of Gödel universe L it defines exotic R4.
[1] T.Asselmeyer-Maluga and J.Król,How to obtain a cosmological constant from small

exotic R4. Physics of the Dark Universe, vol. 19 (2018), pp. 66–77.
[2] J. Król,Model and set-theoretic aspects of exotic smoothness structures on R4, At the

Frontier of Spacetime (T. Asselmeyer-Maluga, editor), Fundamental Theories of Physics,
vol. 183, Springer, Switzerland, 2016, pp. 217–240.
[3] J. Król, T. Asselmeyer-Maluga, K. Bielas, and P. Klimasara, From quantum to

cosmological regime. The role of forcing and exotic 4-smoothness. Universe, vol. 3 (2017),
p. 31.

� QUENTIN LAMBOTTE AND FRANÇOISE POINT, On expansions of (Z,+, 0).
Département de Mathématique, Université de Mons, 15 Avenue Maistriau, 7000 Mons,
Belgique.
E-mail: quentin.lambotte@umons.ac.be.
E-mail: point@math.univ-paris-diderot.fr.
Call a (strictly increasing) sequence R = (rn) of natural numbers regular if it satisfies the

following two conditions:

1. R is eventually periodic modulo m for all m ≥ 2;
2. lim
n→∞

rn+1/rn = � ∈ R>1 ∪ {∞} and, if � is algebraic, then R satisfies a recurrence
relation whose characteristic polynomial is the minimal polynomial of �.
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Theorem 1 ([2]). Let R be a regular sequence. Then ZR = (Z,+, 0, R) is superstable of
U -rank �.

The proof follows the strategy used by D. Palacin and R. Sklinos [3] to show that, when
q > 1, Z(qn ) and Z(n!) are superstable, with U -rank � (the first result was also shown, using
different methods, by B. Poizat in [5]). Independently of our work, the results of [3] were
generalized, using the same strategy, by Gabriel Conant in [1]. The results in [1] and Theorem
1 have a nontrivial overlap: the case � = ∞ is completely treated by Conant without the
periodicity assumption while our result concerning recurrence relations is more general.
A function A : N→ Z of the form A(n) = a0rn + a1rn+1 + · · ·+ ad rn+d , a0, . . . , ad ∈ Z, is

called an operator on R. Let L be the language

L = {+,−, 0, 1, Dn|n > 1} ∪ {R, S, S−1} ∪ {ΣĀ|Ā is a tuple of operators},

where Dn is a predicate for nZ, S is the successor function on R (S(rn) = rn+1), S−1 its
inverse and ΣĀ is a predicate for the image of the function A1 + · · ·+ Ak .

Theorem 2. Let R be a regular sequence. Then Th(ZR) has quantifier elimination in L.
Theorem 2 corresponds to known results in Presburger arithmetic (see [6] and [4]), and

allows us to prove directly that ZR is superstable.
[1]G. Conant, Stability and sparsity in sets of natural numbers, preprint,

arXiv:1701.01387.
[2] Q. Lambotte and F. Point, On Expansions of (Z,+, 0), preprint, arXiv:1702.04795.
[3]D. Palacin and R. Sklinos, On superstable expansions of free abelian groups. Notre

Dame Journal of Formal Logic, vol. 59 (2018), no. 2, pp. 157–169.
[4] F. Point, On decidable extensions of Presburger arithmetic: From A. Bertrand nu-

meration systems to Pisot numbers. The Journal of Symbolic Logic, vol. 65 (2000), no. 3,
pp. 1347–1374.
[5] B. Poizat, Supergénérix. Journal of Algebra, vol. 404 (2014), pp. 240–270.
[6] A. L. Semenov, On certain extension of the arithmetic of addition of natural numbers.

Mathematics of the USSR-Izvestia, vol. 22 (1992), no. 2, pp. 401–418.

� JUNGUK LEE, Valued hyperfields, truncated discrete valuation rings, and valued fields.
Institute of Mathematics, Wroclaw University, Poland.
E-mail: jlee@math.uni.wroc.pl.
In [2], M. Krasner introduced a notion of valued hyperfield analogous to a valued field

with a multivalued addition operation, and used it to do a theory of limits of local fields.
In [1], P. Deligne did the theory of limits of local fields in a different way by defining a
notion of triple, which consists of truncated discrete valuation rings and some additional
data. Typical examples of a valued hyperfield and a truncated discrete valuation ring are the
n-th valued hyper field, which is quotient of a valued field by a multiplicative subgroup of
the form 1 +mn , where m is the maximal ideal of a valuation ring, and the n-th residue ring,
which is a quotient of a valuation ring by the n-th power of the maximal ideal.
J. Tolliver in [4] showed that discrete valued hyperfields and triples are essentially same,

stated by P. Deligne in [1] without a proof. In [3] W. Lee and the author showed that given
complete discrete valued fields of mixed characteristic with perfect residue fields, any homo-
morphism between the n-th residue rings of the valued fields is lifted to a homomorphism
between the valued fields for large enough n. This lifting process is functorial.
Motivated by above results in [4] and [3], we show that given complete discrete valued

fields of mixed characteristic with perfect residue fields, any homomorphism between the
n-th valued hyperfields of the valued fields can be lifted to a homomorphism between the
valued fields for large enough n, which is functorial. We also compute an upper bound of
such a minimal n effectively depending only on the ramification index. Most of all, any
homomorphism between the first valued hyperfields of valued fields is uniquely lifted to a
homomorphism between the valued fields in the case of tamely ramified valued fields. From
this lifting result, we prove a relative completeness AKE-theorem via valued hyperfields for
finitely ramified valued fields with perfect residue fields.
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[1] P. Deligne, Les corps locaux de caractéristique p, limits de corps locaux de car-
actéristique 0, Representations des groupes reductifs sur un corps local (J.-N. Bernstein, P.
Deligne, D. Kazhdan, and M.-F. Vigneras, editors), Travaux en cours, Hermann, Paris,
1984, pp. 119–157.
[2]M.Krasner,Approximation des corps valués complets de caractéristiquep �= 0 par ceux

caractéristique 0, 1957 Colloque d’algèbre supérieure, tenu á Bruxelles du 19 au 22 décembre.
[3] J. Lee and W. Lee, On the structure of certain valued fields, preprint.
[4] J. Tolliver, An equivalence between two approaches to limits of local fields. Journal of

Number Theory, 2016, pp. 473–492.

� JUDIT X. MADARÁSZ, MIKE STANNETT, AND GERGELY SZÉKELY, Frames and
coordinate systems in the formalization of Einstein’s special principle of relativity.
AlfrédRényi Institute ofMathematics,Hungarian Academyof Sciences, Budapest, Hungary.
E-mail: madarasz@renyi.hu.
E-mail: szekely.gergely@renyi.mta.hu.
Department of Computer Science, The University of Sheffield, Sheffield, UK.
E-mail: m.stannett@sheffield.ac.uk.
In the literature, there are several informal treatments and discussions of Einstein’s spe-

cial principle of relativity (SPR) and its consequences. The main problem with informal
approaches in physics (and science in general) is that they often lead to confusions and
misunderstandings.
Of course, formalization in itself does not save us from bumping into apparent contra-

dictions. For example Rindler, in his book [3, p. 40] referring to Dixon, claims that “the
principle of relativity is equivalent to the isotropy (of space) and the homogeneity (of space
and time).” Contrary to this claim, the construction proving Theorem 2 in article [1] gives
an anisotropic extension of the standard model of special relativity which still satisfies SPR
These two claims appear to be a direct contradictions of each other. Of course, the contra-
diction is only apparent since something else is meant by “the principle of relativity” in [1]
and [3]. Even the mathematical frameworks of the two formulations are different. So there
are inequivalent formulations of SPR in the literature. Therefore, it seems so natural to ask:
which formulation is the “true one”?
The “original” SPR is just an informal idea that goes back at least to Galileo’s famous

Dialogo. So it is not surprising that it has several different formalizations since an idea can
clearly be formulated in several different ways based on the many choices one has to make
when turning an idea into a formal statement. Therefore, the right question is not which
formulation is the “true one,” but how the different formulations are related to one another
logically.
In [2], we have already compared three different formalizations of SPR within a math-

ematical logic based axiomatic framework developed by the Andréka–Németi group and
investigated various auxiliary assumptions that make these three formalizations equivalent.
Now, we are going to use the same framework and Rindler’s distinctions between inertial
frames and inertial coordinate systems to investigate the logical connection between the two
versions of the principle from [1] and [3]. We will see that SPR in [3] is understood for
coordinate systems and the construction in [1] satisfies SPR understood for reference frames.
Based on Galileo’s ship argument, we will also argue that the original intuition behind

SPR is in some sense better reflected if we formulate it for reference frames only and hence
does not imply isotropy.
[1]H. Andréka, J. X. Madarász, I. Németi, M. Stannett, and G. Székely, Faster than

light motion does not imply time travel. Classical and Quantum Gravity, vol. 31 (2014), no. 9,
paper 095005, 11 pp.
[2]M. Stannett, J. X. Madarász, and G. Székely, Three different formalisations of

Einstein’s relativity principle. The Review of Symbolic Logic, vol. 10 (2017), no. 3, pp. 530–
548.
[3]W. Rindler, Relativity: Special, General, and Cosmological, Oxford University Press,

Oxford, 2001.
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� JOSÉM.MÉNDEZ,GEMMAROBLES,ANDFRANCISCOSALTO,Basic quasi-Boolean
extensions of relevant logics.
Universidad de Salamanca. Edificio FES, Campus Unamuno, 37007, Salamanca, Spain.
E-mail: sefus@usal.es.
URL: http://sites.google.com/site/sefusmendez.
Dpto. de Psicologı́a, Sociologı́a y Filosofı́a, Universidad de León, Campus Vegazana, s/n,
24071, León, Spain.
E-mail: gemma.robles@unileon.es.
URL: http://grobv.unileon.es.
E-mail: francisco.salto@unileon.es.
Let L be a negationless relevant logic. A Boolean negation (B-negation) can be introduced

inLbyadding to it the followingaxioms: (a1) (A∧ ∼ A)→ B , (a2)B → (A∨ ∼ A).Thisway
of introducing B-negation in relevant logics suggests the definition of two families of quasi-
Boolean negation (QB-negation) extensions of relevant logics. One of them, intuitionistic in
character, has a1 but not a2; the other one, dual intuitionistic in nature, has a2 but lacks
a1. The aim of this article is to begin the investigation of both families of QB-negation
extensions of relevant logics. B-negation extensions of relevant logics are of both logical and
philosophical interest (cf. [1, pp. 376, ff]). It is to be expected that QB-negation extensions of
the same logics (not considered in the literature, as far as we know) will have a similar logical
interest.
Acknowledgment.Work supported by research project FFI2017-82878-P, financed by the

Spanish Ministry of Economy, Industry, and Competitiveness.
[1] R. Routley, R. K.Meyer, V. Plumwood, and R. T.Brady,Relevance Logic and Their

Rivals, vol. 1, Ridgeview, Atascadero, CA, 1982.

� RUSSELL MILLER,Hilbert’s tenth problem as a pseudojump operator.
Mathematics Department, Queens College and CUNY Graduate Center, 65-30 Kissena
Blvd., Queens, NY 11367, USA.
E-mail: Russell.Miller@qc.cuny.edu.
URL: qcpages.qc.cuny.edu/∼rmiller.
When considering subrings of Q, it is natural to define the HTP-operator to be the pseu-

dojump operator sending each subsetW of the set P of prime numbers to the set

HTP(RW ) = {f ∈ Z[X1, X2, . . . ] : f = 0 has a solution in Z[W
−1]},

known asHilbert’s Tenth Problem for the subringRW = Z[W−1] ofQ. We show that every Σ02
Turing degree above 0′ is the degree ofHTP(RW ) for someΠ01 setW .Moreover, this operator
does not respect Turing equivalence. Indeed, using the technique of high permitting, we can
give an example where the HTP operator reverses the (strict) Turing reductions: V <T W ,
yet HTP(RW ) <T HTP(RV ). (The set V here is Π01, whileW is Σ

0
1.)

These results use joint work with Ken Kramer.

� RYSZARDMIREK, Linear perspective in Renaissance.
Institute of Logic, Pedagogical University of Cracow, Podchorazych 2, 30-084 Krakow,
Poland.
E-mail: mirek.r@poczta.fm.
Renaissance mathematicians and geometers like Piero della Francesca and Luca Pacioli

refers directly or indirectly to Euclidean geometry. But what is new in the Renaissance
concerns linear perspective. Piero della Francesca in Proposition 1.12 shows how to draw
in perspective a surface of undefined shape, which is located in profile as a straight line.
According toProposition 1.13,which is knownas the first newEuropean theorem in geometry
after Fibonacci, one can add a square that represents the object to be drawn in reality in a
horizontal plane. Then, we draw from the position of the eye of a hypothetical observer visual
rays to the corners of the square. At the same time, this proposition can be used to interpret
Renaissance paintings of Piero della Francesca’s, applying the strict rules of geometry and
perspective. The proposition is directly applicable in the masterpieces painted by Piero della
Francesca, namely, in his The Flagellation of Christ and The Baptism of Christ. In turn,
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in Proposition I.8, he shows for the first time that the perspective images of orthogonals
converge to a centric point. In De Pictura Alberti merely assumed the truth of this result.
My goal here is to provide a detailed analysis of themethods of inference that are employed

in the Renaissance treatises with particular emphasis on a method of natural deduction that
takes into account the importance of diagrams within formal proofs.

� KENJI MIYAMOTO AND GEORGMOSER, The epsilon calculus with equality predicate
and Herbrand complexity.
University of Innsbruck, Innsbruck, Austria.
E-mail: Kenji.Miyamoto@uibk.ac.at.
E-mail: Georg.Moser@uibk.ac.at.
Hilbert’s ε-calculus is based on an extension of the language of predicate logic by a

term-forming operator ε [1]. Two fundamental results about the ε-calculus, the first and
second epsilon theorem, play a role similar to that which the cut-elimination theorem plays
in sequent calculus. In particular, Herbrand’s Theorem is a consequence of the epsilon
theorems. Moser and Zach study the epsilon theorems and the complexity of the elimination
procedure underlying their proof, as well as the length of Herbrand disjunctions of existential
theorems obtained by this elimination procedure [2]. We extend their results to ε-calculus
with equality predicate.
[1]D.Hilbert and P.Bernays,Grundlagen derMathematik, vol. 2, Springer, Berlin, 1939.
[2]G. Moser and R. Zach, The epsilon calculus and Herbrand complexity. Studia Logica,

vol. 82 (2006), no. 1, pp. 133–155.

� GIANLUCA PAOLINI,Model theory of free projective planes.
Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel.
E-mail: gianluca.paolini@mail.huji.ac.il.
We prove that the theory of open projective planes is complete and strictly stable. As

a corollary, we prove that Marshall Hall’s free projective planes (�n : 4 ≤ n ≤ �) are all
elementary equivalent and that their common theory is strictly stable and decidable (being
in fact the theory of open projective planes).
This work is joint with Tapani Hyttinen.

� FRANCO PARLAMENTO AND FLAVIO PREVIALE, Absorbing the structural rules in
the sequent calculus with additional atomic rules.
Department of Mathematics, Computer Science and Physics, University of Udine, via delle
Scienze 206, 33100 Udine, Italy.
E-mail: franco.parlamento@uniud.it.
Department ofMathematics, University of Torino, via Carlo Alberto 10, 10123 Torino, Italy.
A multisuccedent sequent calculus for intuitionistic logic free of structural rules was pre-

sented in [1] and a detailed proof of their admissibility, based on [2], appeared in [5]. A single
succedent version of that calculus was adopted in [6]. In all cases, the proof of the admis-
sibility of the structural rules relies, as for the classical G3 system, on the hight-preserving
admissibility of the contraction rule, that, when atomic rules are added to the calculus, may
fail. Letting G3[mic] be the slight variants described in [3] for minimal, intuitionistic and
classical logic of the calculi in [5], and R any set of atomic rules of the following form:

�Q1,Γ1 ⇒ Δ1, �Q′
1 . . .

�Qn,Γn ⇒ Δn, �Q′
n

�P,Γ1, . . . ,Γn ⇒ Δ1, . . . ,Δn, �P′ ,

where �Q1, �Q′
1, . . . ,

�Qn, �Q′
n, �P, �P′ are sequences (possibly empty) of atomic formulae and

Γ1, . . . ,Γn,Δ1, . . .Δn are finite sequences (possibly empty) of formulae that are not active in
the rule, and letting G3[mic]R denote the calculi obtained by adding to G3[mic] the rules in
R and Cutcsthe contex-sharing cut rule, we have the following:
Theorem 1. For any set of atomic rules R, any derivation in G3[mic]R + Cutcs can be

transformed into a derivation in the same system in which the rules in R and the Cutcs rule are
applied before any logical rule.
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Corollary 2. If the structural rules are admissible in the calculus that contains only the
initial sequents and the rules inR, then they are admissible in G3[mic]R as well.
Twoapplications are the following. (1)ForR = ∅wehave aproof of the admissibility of the

Cut rule in G3[mic] independent from the height-preserving admissibility of the contraction
rule. (2) Let Ref and Repl be the following rules for equality, introduced in [4] and adopted
in the second edition [7] of [6]

t = t,Γ⇒ Δ
Ref

s = r, P[x/s ], P[x/r],Γ⇒ Δ
Repl

Γ⇒ Δ s = r, P[x/s ],Γ⇒ Δ

The contraction rule is not height preserving admissible in R = {Ref,Repl}, yet we obtain
that the structural rules are admissible in G3[mic]R, thus extending the result proved in [4]
in the case t, r, and s are restricted to be constants.
[1] A.Dragalin,Mathematical Intuitionism: Introduction to Proof Theory, Translation of

Mathematical Monographs 67, American Mathematical Society, 1988, Russian original of
1979.
[2] R. Dyckhoff, Dragalin’s proof of cut-admissibility for the intuitionistic sequent cal-

culi G3i and G3i′, Research Report CS/97/8 – Computer Science Division, St. Andrews
University, 1997.
[3] S. Negri, Glivenko sequent classes in the light of structural proof theory. Archive for

Mathematical Logic, vol. 55 (2016), pp. 461–473.
[4] J. von Plato and S. Negri, Cut elimination in the presence of axioms, this Bulletin,

vol. 4 (1998), no. 4, pp. 418–435.
[5] , Structural Proof Theory, Cambridge University Press, 2001.
[6] A. S. Troelstra and H. Schwichtemberg, Basic Proof Theory, Cambridge Tracts in

Theoretical Computer Science, vol. 43, Cambridge University Press, Cambridge, 1996.
[7] , Basic Proof Theory, second ed., Cambridge University Press, Cambridge,

2000.

� CHRISTIANRETORÉ AND LÉO ZARADZKI, Individuals, equivalences and quotients in
type theoretical semantics.
Université de Montpellier and LIRMM, 161 rue Ada, 34090 Montpellier, France.
E-mail: christian.retore@umontpellier.fr.
LLF, Université de Paris Diderot, 5 rue Thomas Mann, F-75205 Paris Cedex 13, France.
E-mail: leozaradzki@gmail.com.
In natural language semantics, individuation and the nature of individuals is highly de-

bated. If one says I carried all the books from the shelf to the cellar because I read them all
and if there were five books, two of them being Dubliners, five books were carried, whereas
four were read. This raises the question whether individuals are the same or not, and type
theoretical semantics with equality types offer new perspectives on this question.
Mathematically, sameness corresponds to equivalence: equivalent objects enjoy some com-

mon properties, their equivalence classes can be proved to be equal. Equivalence can be
coarser or finer grained: a book may be defined as a novel, as an edition of this novel or as a
particular copy of some particular edition.
We show how linguistically motivated quotient constructions can be integrated in type

theoretical semantics, with insights from some recent work on quotients in proof assistants—
indeed both cases require to only encode computable quotients.
[1] S. Chatzikyriakidis and Z. Luo (eds.),Modern Perspectives in Type Theoretical Se-

mantics, Springer, Heidelberg, 2017.
[2] C. Cohen, Pragmatic quotient types in Coq, ITP2013 International Conference on

Interactive Theorem Proving, vol. 7998 (S. Blazy, C. Paulin-Mohring, and D. Pichardie,
editors), Springer, Rennes, 2013, pp. 213–228.
[3] C.Retoré,TheMontagovian generative lexiconΛTyn:A type theoretical framework for

natural language semantics, 19th International Conference on Types for Proofs and Programs
(TYPES 2013) (R. Matthes and A. Schubert, editors), Leibniz International Proceedings in
Informatics (LIPIcs), vol. 26, Toulouse, 2014, pp. 202–229.
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� IBRAHIM SENTURK AND TAHSIN ONER, Regarding Aristotelian logic as a Sheffer
stroke basic algebra.
MathematicsDepartment, Faculfy of Science, EgeUniversity, 35100,Bornova, Izmir, Turkey.
E-mail: ibrahim.senturk@ege.edu.tr.
E-mail: tahsin.oner@ege.edu.tr.
In this work, our aim is to tackle with the Aristotelian logic by means of Carroll’s di-

agrammatic method. For this purpose, we firstly define a formal system which gives us a
formal approach to logical reasoning with diagrams for representations of the fundamental
propositions in Aristotelian logic. In the sequel, we show that syllogisms are closed under the
syllogistic criterion of inference which is the deletion of middle term. Therefore, it allows for
the formalism which comprise synchronically bilateral and trilateral diagrammatical appear-
ance and a naive algorithmic nature. And also, there is no specific knowledge or exclusive
ability needed in order to understand and use it.
In another perspective, we give a morphism from categorical syllogistic system to a Sheffer

stroke basic algebra. To this end, we give a reduction of basic algebras only by using the
Sheffer stroke operation. Thereupon, we explain the quantitative relationship between two
terms by means of bilateral diagrams. So, we obtain possible conclusion values of bilateral
diagrams of premises. Finally, by using these sets, we construct a complete bridge between
Sheffer stroke basic algebra and categorical logical system.
[1] L. Carroll (ed.), Symbolic Logic, Clarkson N. Potter, 1896.
[2] A. E. Kulinkovich, Algorithmization of resoning in solving geological problems, Pro-

ceedings of the Methodology of Geographical Sciences, Naukova Dumka, 1979, pp. 145–161.
[3] J. Łukasiewicz (ed.), Aristotle’s Syllogistic From the Standpoint of Modern Logic,

Clarendon Press, Oxford, 1951.
[4] T. Oner and I. Senturk, The Sheffer stroke operation reducts of basic algebras. Open

Mathematics, vol.15 (2017), no. 1, pp. 926–935.
[5] R. Pagnan, A diagrammatic calculus of syllogisms. Journal of Logic, Language and

Information, vol. 21 (2012), pp. 347–364.
[6] I. Senturk and T. Oner, An algebraic analysis of categorical syllogisms by using Car-

roll’s diagrams. Filomat, accepted.
[7] , A Construction of Heyting algebra on categorical syllogisms. Matematichki

Bilten, vol. 40 (2016), no. 4, pp. 5–12.

� PAUL SHAFER AND ANDREA SORBI, Comparing the degrees of enumerability and the
closed Medvedev degrees.
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
E-mail: p.e.shafer@leeds.ac.uk.
Dipartimento di Ingegneria Informatica e Scienze Matematiche, Università Degli Studi di
Siena, I-53100 Siena, Italy.
E-mail: andrea.sorbi@unisi.it.
For setsA,B ⊆ �� , recall that AMedvedev reduces to B if there is a Turing functional Φ

such thatΦ(f) ∈ Awheneverf ∈ B. The degree structure induced byMedvedev reducibility
is called theMedvedev degrees.
Both the Turing degrees and the enumeration degrees embed into the Medvedev degrees:

map the Turing degree of f ∈ �� to the Medvedev degree of {f}, and map the enumeration
degree of (a nonempty)A ∈ 2� to theMedvedev degree of {g : ran(g) = A}. The embedding
of the Turing degrees into the Medvedev degrees is particularly nice. Every Turing degree is
mapped to the Medvedev degree of a closed set (in particular, a singleton), and the range
of the embedding is definable (a theorem of Dyment and Medvedev). On the other hand,
little is known about the embedding of the enumeration degrees in the Medvedev degrees.
For example, whether or not the range of the embedding is definable is a longstanding open
question of Rogers.
Call a Medvedev degree closed if it is the degree of a closed subset of �� , and call a

Medvedev degree a degree of enumerability if it is in the range of the embedding of the
enumeration degrees into the Medvedev degrees. We explore the distribution of the degrees
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of enumerability with respect to the closed degrees and find that many situations occur. There
are nonzero closed degrees that do not bound nonzero degrees of enumerability, there are
nonzero degrees of enumerability that do not bound nonzero closed degrees, and there are
degrees that are nontrivially both degrees of enumerability and closed degrees. We also show
that the compact degrees of enumerability exactly correspond to the cototal enumeration
degrees.

� ASSAF SHANI, Borel equivalence relations and symmetric models.
Department of Mathematics, University of California Los Angeles, CA 90095-1555, USA.
E-mail: assafshani@ucla.edu.
We develop a correspondence between the study of Borel equivalence relations induced by

closed subgroups of S∞, and the study of symmetric models of set theory without choice,
and apply it to solve questions of [1].
In [1], the possible values of potential complexity of Borel equivalence relations which are

induced by actions of closed subgroups of S∞ are completely classified. To that end, they
refine the Friedman–Stanley hierarchy ∼=α , α < �1, by defining equivalence relations ∼=∗

�+1,
2 ≤ � < �1. E.g., ∼=∗

n has potential complexity D(Π
0
n).

Moreover, they define equivalence relations∼=∗
�+1,0≤B∼=∗

�+1, and show that they correspond
to actions by “well-behaved” closed subgroups of S∞. That is, if E ≤B∼=∗

�+1 is induced by a
Borel G-action of a closed subgroup G of S∞ which admits an invariant compatible metric,
then E ≤B∼=∗

�+1,0. Furthermore, they prove that for any countable ordinal α,∼=∗
α+3,0<B∼=∗

α+3.
They ask whether the remaining reductions are also strict, and conjecture that they are.

We confirm this, and focus on the minimal open cases:

Theorem 1. ∼=∗
�+1,0<B∼=∗

�+1 and ∼=∗
�+2,0<B∼=∗

�+2.

The proof goes through studying symmetric models generated by generic invariants of
these equivalence relations. To make the connection with Borel reducibility we use tools
developed by Zapletal.
We use models constructed in [3], separating the “generalized Kinna–Wagner principles,”

KWPn, which state that every set can be embedded into the n’th-power set of an ordinal.
Towards proving Theorem 1, we show the consistency of KWP�+1 ∧ ¬KWP� , answering a
question of [2].
[1]G. Hjorth, A. S. Kechris, and A. Louveau, Borel equivalence relations induced by

actions of the symmetric group. Annals of Pure and Applied Logic, vol. 92 (1998), pp. 63–112.
[2] A. Karagila, Iterating symmetric extensions, arXiv:1606.06718.
[3]G. P. Monro,Models of ZF with the same sets of sets of ordinals. Fundamenta Mathe-

maticae, vol. 80 (1973), no. 2, pp. 105–110.

� ANDREI SIPOŞ, Quantitative results on the method of averaged projections.
Department of Mathematics, Technische Universität Darmstadt, Schlossgartenstrasse 7,
64289 Darmstadt, Germany.
Simion Stoilow Institute of Mathematics of the Romanian Academy, Calea Griviţei 21,
010702 Bucharest, Romania.
E-mail: sipos@mathematik.tu-darmstadt.de.
URL: http://www.mathematik.tu-darmstadt.de/∼sipos/.
A recent direction of research in convex optimization has been the extension of classical

results that hold in normed spaces to various nonlinear analogues, e.g., the class of CAT(0)
spaces. One of such extensions refers to the class of firmly nonexpansive mappings (that play
a central role in convex optimization, as they encompass a large number of concrete and
useful cases such as proximal mappings or resolvents), whose nonlinear generalization was
introduced in [1]. A slightly larger class of mappings (which coincides with the former in
the context of Hilbert spaces) consists of those that satisfy property (P2), introduced in [2],
where the fact that the composition T := T2 ◦ T1 of two such mappings with Fix(T ) �= ∅ is
asymptotically regular is proven.
The primary application of this kind of algorithm is the alternating projections method,

where the twomappings are the projection operators on two closed, convex, nonempty subsets
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A and B of the space X . The goal is, then, to find best approximation pairs corresponding
to those sets, i.e., pairs (a, b) ∈ A × B such that d(a, b) = d(A, B), or, at least, points that
approximate such pairs to any prior degree.
A related method, the method of averaged projections, replaces the composition of projec-

tions from above with a weighted average of them, i.e., a convex combination. A classical
way of proving the efficacy of this method in the usual Euclidean space (and recently also
in Hilbert spaces [3, Section 5]) is by reducing it to the first one through the replacing of
the combined mapping with a concatenated transformation in a product space with the av-
eraged metric, followed by a projection on the diagonal. Our goal is to extend that line of
argument to self-mappings satisfying property (P2)—in particular, to firmly nonexpansive
self-mappings—in the setting of CAT(0) spaces.
In addition, we will also establish effective versions of such asymptotic results, in the

sense of proof mining. Proof mining is an applied subfield of mathematical logic, developed
primarily by U. Kohlenbach and his collaborators ([4] is the standard introduction, while
more recent surveys are [5, 6]), that aims to provide quantitative information (witnesses and
bounds) for numerical entities which are shown to exist by proofs which cannot be necessarily
said to be fully constructive. In nonlinear analysis, which has been a primary focus for such
work, the relevant information is usually found within convergence statements, where the
problem is to find an explicit formula for the Nε such that for any ε > 0, the elements of the
sequence of index greater than Nε are ε-close to the limit. The result above is an instance of
this, as asymptotic regularity is clearly a statement of convergence, and it has indeed been
analyzed from this viewpoint in [7].
The results presented in this talk may be found in [8].
[1]D. Ariza-Ruiz, L. Leuştean, and G. López-Acedo, Firmly nonexpansive mappings

in classes of geodesic spaces. Transactions of the American Mathematical Society, vol. 366
(2014), pp. 4299–4322.
[2]D. Ariza-Ruiz, G. López-Acedo, and A. Nicolae, The asymptotic behavior of the

composition of firmly nonexpansive mappings. Journal of Optimization Theory and Applica-
tions, vol. 167 (2015), pp. 409–429.
[3]H. Bauschke, V. Martin-Marquez, S. Moffat, and X. Wang, Compositions and

convex combinations of asymptotically regular firmly nonexpansive mappings are also asymp-
totically regular. Fixed Point Theory and Applications, vol. 53 (2012), pp. 1–11.
[4]U. Kohlenbach, Applied Proof Theory: Proof Interpretations and Their Use in Math-

ematics, Springer Monographs in Mathematics, Springer-Verlag, 2008.
[5] , Recent progress in proof mining in nonlinear analysis. IFCoLog Journal of

Logics and their Applications, vol. 10 (2017), no. 4, pp. 3357–3406.
[6] , Proof-theoretic methods in nonlinear analysis, Proceedings of the ICM2018,

draft, to appear.
[7]U.Kohlenbach,G.López-Acedo, andA.Nicolae,Quantitative asymptotic regularity

for the composition of two mappings. Optimization, vol. 66 (2017), pp. 1291–1299.
[8] A. Sipoş, The asymptotic behaviour of convex combinations of firmly nonexpansive

mappings, 2018, arXiv:1802.08476 [math.OC].

� WILLIAMSTAFFORD,The untyped �-calculus as a foundation for natural language seman-
tics: The problem of computational intractability.
University of California, Irvine, USA.
E-mail: stafforw@uci.edu.
Natural language appears to contain hyperintensional settings, but it has proven difficult to

formalise hyperintensionality using Montague’s approach of treating intensions as functions
from worlds to assignments. Fox and Lappin (2005) have proposed Property Theory with
Curry Types (PTCT) as an alternative foundation for natural language. They claim that
PTCT formalises hyperintensionality and polysemy but is a computationally weaker system
than the traditional Montague grammars. In this article, we dispute their claim to have
generated a computationally weaker system. Firstly, their argument is based on the claim
that Montague grammars are second-order systems and so stronger than PTCT, which is
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a first-order system. Second-order systems are only stronger than first-order systems if we
use the full semantics. This means that Montague grammars are of equivalent strength to
PTCT if they use a weaker semantics. Secondly, PTCT uses the untyped �-calculus, whereas
Montague grammars uses the typed �-calculi. The untyped calculus is Turing complete,
whereas the typed systems are not. From this point of view, we see that PTCT might in fact
be a stronger formal system than Montague grammars.
[1] C. Fox and S. Lappin, Foundations of Intensional Semantics, Blackwell, 2005.

� JOUKO VÄÄNÄNEN, An extension of a theorem of Zermelo.
University ofHelsinki,Helsinki, Finland andUniversity ofAmsterdam,Amsterdam,Nether-
lands.
E-mail: jouko.vaananen@helsinki.fi.
We show that if (M,∈1,∈2) satisfies the first-order Zermelo–Fraenkel axioms of set theory

when the membership-relation is ∈1 and also when the membership-relation is ∈2, and in
both cases the formulas are allowed to contain both ∈1 and ∈2, then (M,∈1) ∼= (M,∈2),
and the isomorphism is definable in (M,∈1,∈2). This extends a theorem of Zermelo [2] from
1930. A similar result holds for first-order Peano arithmetic, extending the categoricity result
of Dedekind [1] of second-order Peano arithmetic. The proof of this is similar, but somewhat
easier.
[1] R. Dedekind,Was sind und was sollen die Zahlen? Vieweg & Sohn, 1888.
[2] E. Zermelo, Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen über die

Grundlagen der Mengenlehre. Fundamental Mathematics, vol. 16 (1930), pp. 29–47.

� CATERINA VIOLA, Piecewise linear valued constraint satisfaction problems.
Technische Universität Dresden, Germany.
E-mail: caterina.viola@tu-dresden.de.
Valued constraint satisfaction problems (VCSPs) are a class of combinatorial optimisation

problems.Recently, the computational complexity of all VCSPs for finite sets of cost functions
over finite domains has been classified completely. Many natural optimisation problems,
however, cannot be formulated as VCSPs over a finite domain. One example is the famous
linear programming problem, where the task is to optimise a linear function subject to linear
inequalities. This can be modelled as a VCSP overQ, the set of rational numbers, by allowing
unary linear cost functions and cost functions of higher arity to express the crisp (i.e.,
hard) linear inequalities. I will present our work that initiates the systematic investigation of
infinite-domain VCSPs by studying the complexity of VCSPs for classes of piecewise linear
cost functions, i.e., cost functions admitting a first-order definition on (Q; +, <, 1).
This is joint work with Manuel Bodirsky, Technische Universität Dresden, and Marcello

Mamino, Università di Pisa.

� FARN WANG AND WEN-HONG CHIANG, Statistical model-checking uncertain re-
sponses written in LTL with confidence.
Department of Electrical Engineering, National Taiwan University, Taiwan.
E-mail: farn@ntu.edu.tw.
Model-checking [2] has been an important technology that aims to bridge the logic com-

munity and the industry. However, the assumption of rigid and complete models of the
model-checking technology has been a major incompatibility block to the industry projects.
In practice, there is usually no complete and precise model at all. Moreover, most specifica-
tion properties cannot be simplistically evaluated as “true” (for satisfaction) or “false” (for
failure). This is particularly true in the case of evaluating system responses. For example, if
we try to download a music file from a server via the internet. Usually the users can tolerate
a few downloading failures. To avoid frustration of the users, the developers may also want
to lift the download success ratio to p = 95% if the download request immediately follows
an unfulfilled request. This can be specified with the following Linear Temporal Logic (LTL)
property [3]:

�((downloadFail ∧©(downloadOrCancel ∧©download))→©©©downloadSucc).
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But clearly the model-checking technology cannot aid in answering how many consecutive
failures can be compiled to a confident test verdict of a server defect.
In this work, we adopt the LTL statistical model-checking [4] which extends the LTL

model-checking problem to the following.

Definition (Model Set Evaluation Problem with Chernoff Confidence (MSEPCC)).
Given a set S of traces (for a system with uncertain responses due to environment inter-
ference) and an LTL formula φ, what is the Chernoff Bound of probability that S is an
evidence that the system implements φ?

We have implemented a tool, SystemResponse Tester with Confidence (SRTC), that utilizes
the classic concept of Chernoff bounds [1] for Bernoulli variables and sample sizes to calculate
a bound on probability that a set of randomized traces is an evidence of system failure to
achieve a response success ratio. There are the following technical issues in collecting trace
sets for evaluating Chernoff bounds.
• Efficiency: The generation of traces cannot be too random for our purpose to trigger
the precondition for the target response property.

• Randomness: The Chernoff bounds are based on the assumption that the samples are
randomly collected. We propose to randomize the lengths of the test cases. Intuitively,
the lengths of test sessions should constitute a Poisson distribution.

SRTC can efficiently generate trigger sequences for a given response property with lengths of
the sequences roughly constitute a Poisson distribution. We experimented with several An-
droid apps fromGoogle play. Experiment data show that SRTC could be handy in evaluating
issues related to response properties expressed in LTL with the confidence values derived
from a Chernoff bound.
[1]H. Chernoff, Asymptotic efficiency for tests based on the sum of observations. Annals

of Mathematical Statistics, vol. 231 (952), pp. 493–507.
[2] E. M. Clarke and E. A. Emerson, Design and synthesis of synchronization skele-

tons using branching-time temporal logic, Workshop on Logic of Programs, Lecture Notes in
Computer Science, vol. 131, Springer-Verlag, 1981.
[3] A. Pnueli, The temporal logic of programs, 18th Annual IEEE-CS Symposium on

Foundations of Computer Science, 1977, pp. 45–57.
[4] , H. L. S. Younes and R. G. Simmons, Statistical probabilistic model checking wiith

a focus on time-bounded properties. Information and Computation, vol. 204 (2006), no. 9,
pp. 1368–1409.

� AIBAT YESHKEYEV,Hereditary 
-cosemantic Jonsson theories.
Faculty of Mathematics and Information Technologies, Karaganda State University, Uni-
versity str., 28, building 2, Kazakhstan.
E-mail: aibat.kz@gmail.com.
It is well known that the perfect Jonsson theory can be studied using of the first-order

properties of the center of this theory and its semantic model, since the center of the Jonsson
theory is the model companion of it. Imperfect Jonsson theories at the moment have not been
studied. For example, a bright example of this fact is the theory of all groups. We know that
this theory is Jonsson, but does not have amodel companion, and the structure of its semantic
model is unknown to us. In this thesis, we will consider a special subclass of Jonsson theories,
namely, hereditary 
-cosemantic Jonsson theories. The need to introduce such a class was
due to the following questions: (1) to find a reasonable approach to describing imperfect
Jonsson theories; (2) finding the conditions for preserving the theory’s consistency with some
enrichment of the language; and (3) finding conditions for preserving the definability of a type
with the appropriate stability obtained as a result of enriching the language. The proposed
method for solving the first problem is to use the central type and forcing companion in
some permissible enrichment of the language of the Jonsson theory under consideration.
The second and third tasks appear automatically after the proposed method to solve the first
problem. All three problems are independent in themselves and they have connections with
known questions for complete theories. For example, in problem 2, there is a question about
the existence of an amalgam and joint embedding property. In connection with Problem 3,
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well known are the results of T. G. Mustafin [2] and E. A. Palyutin [3] about new types of
stability for complete theories. In the works of B. Poizat [4], E. Bouscaren [1] considered
the problem of completeness of elementary pairs. It is clear that the concepts of heredity
and 
-cosemanticity will be a refinement of these problems in the framework of studying,
generally speaking, incomplete Jonsson theories.
We introduce the following definitions necessary for the above purposes.

Definition 1. An enrichment ᵀ of the Jonsson theory T is said to be permissible if any
type in this enrichment is definable in the framework of ᵀ-stability.
Definition 2. The Jonsson theory is said to be hereditary, if in any of its permissible

enrichment any expansion of it in this enrichment will be Jonsson theory.

Definition 3. The Jonsson theory T is called (α, 
i )-cosemantic, where i ∈ 1, α, if the
quotient of the Jonsson spectrum [5] of any model of the theory T by cosemanticness has α
equivalence classes, each of which has the power 
i , respectively.

If α = 1, then we omit the first index and say that the Jonsson theory T 
-cosemantic.
[1] E. Bouscaren, Elementary pairs of models. Annals of Pure and Applied Logic, vol. 45

(1989), pp. 129–137.
[2] T. G. Mustafin, New concepts of the stability of theories, Proceedings of the Soviet–

French Colloquium on Model Theory, Karaganda, 1990, pp. 112–125.
[3] E. A. Palyutin, E∗-stable theories. Algebra and Logic, vol. 41 (2003), no. 2, pp. 194–

210.
[4] B. Poizat, Paires de structures stables. The Journal of Symbolic Logic, vol. 48 (1983),

no. 2, pp. 239–249.
[5] A.R.Yeshkeyev andO. I.Ulbrikht, JSp-cosemanticness and JSB property of Abelian

groups. Siberian Electronic Mathematical Reports, vol. 13 (2016), pp. 861–874.

Abstracts of articles submitted by title

� A. ALIBEK, B. S. BAIZHANOV, B. SH. KULPESHOV, AND T. S. ZAMBARNAYA,The
countable spectrum of weakly o-minimal theories of convexity rank 1.
The Illinois University at Chicago, Chicago, USA.
E-mail: aalibe2@uic.edu.
Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan.
E-mail: baizhanov@hotmail.com.
International Information Technology University, Almaty, Kazakhstan.
E-mail: b.kulpeshov@iitu.kz.
E-mail: t.zambar@gmail.com.
Here, we discuss the Vaught’s problem for weakly o-minimal theories of convexity rank 1.

Convexity rank has been introduced in [2]. In particular, a theory has convexity rank 1 if
there is no parametrically definable equivalence relation with an infinite number of infinite
convex classes. Obviously, any o-minimal theory has convexity rank 1.
As it is known, in [4] the Vaught’s conjecture for o-minimal theories was solved. Recently

in [3], the Vaught’s conjecture for quite o-minimal theories was solved. From the above
works, it follows that these theories have the same spectrum, namely such a theory has either
continuum of countable models, or exactly 6a3b countable models for nonnegative integers
a and b.
In [1] B. S. Baizhanov and A. Alibek have constructed for every ordinal κ with 4 ≤ κ ≤ �

examples of weakly o-minimal theories having exactly κ countable models. All these examples
have convexity rank 1. The following theorem describes the countable spectrum of weakly
o-minimal theories of convexity rank 1 (which already differs from the countable spectrum
of o-minimal theories):
Theorem 1. LetT be a weakly o-minimal theory of convexity rank 1 in a countable language.

Then exactly one of the following possibilities holds:
(1) T is ℵ0-categorical
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(2) T has k countable models, where 3 ≤ k < �
(3) T has � countable models
(4) T has 2� countable models.

[1] A. Alibek and B. S. Baizhanov, Examples of countable models of a weakly o-minimal
theory. International Journal of Mathematics and Physics, vol. 3 (2012), no. 2, pp. 1–8.
[2] B. S. Kulpeshov,Weakly o-minimal structures and some of their properties.The Journal

of Symbolic Logic, vol. 63 (1998), no. 4, pp. 1511–1528.
[3] B. S.Kulpeshov andS.V.Sudoplatov,Vaught’s conjecture for quite o-minimal theories.

Annals of Pure and Applied Logic, vol. 168 (2017), no. 1, pp. 129–149.
[4] L. L.Mayer,Vaught’s conjecture for o-minimal theories.The Journal of Symbolic Logic,

vol. 53 (1988), pp. 146–159.

� S. S. BAIZHANOV AND B. SH. KULPESHOV, On expansions of ℵ0-categorical weakly
o-minimal structures by binary predicates.
Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan.
E-mail: sayan-5225@mail.ru.
International Information Technology University, Almaty, Kazakhstan.
E-mail: b.kulpeshov@iitu.kz.
The present talk is concerned with the notion of weak o-minimality originally deeply

studied in [2]. A subset A of a linearly ordered structure M is convex if for any a, b ∈ A
and c ∈ M whenever a < c < b we have c ∈ A. A weakly o-minimal structure is a linearly
ordered structure M = 〈M,=, <, . . . 〉 such that any definable (with parameters) subset of
the structureM is a finite union of convex sets inM .
In [1] expansions of 1-indiscernible ℵ0-categorical weakly o-minimal structures by an

equivalence relation were studied. Here, we study the question of preserving properties at
expanding models of weakly o-minimal theories by an arbitrary binary predicate.
Consider the following example:

Example 1. Let M := 〈Q × Q, <〉 be a linearly ordered structure on the set Q × Q,
ordered lexicographically. Obviously,M is an ℵ0-categorical o-minimal structure. Introduce
the followingbinary formulasE(x, y) andR1(x, y) on the setQ×Q: for anya = (m1, n1), b =
(m2, n2) ∈ Q ×Q

E(a, b)⇔ m1 = m2
R1(a, b)⇔ m1 = m2 ∧ n1 ≤ n2 < n1 +

√
2

Let R(x, y) := y ≤ x ∧ E(x, y) ∧ ¬R1(x, y) andM ′ := 〈Q×Q, <,R2〉 be an expansion
ofM by binary predicate R(x, y). Obviously, R(M ′, a) is convex and a < R(M ′, a) for any
a ∈M ′.
It can be established thatM ′ is an 1-indiscernible weakly o-minimal structure, but Th(M ′)

is not ℵ0-categorical.

Here,wediscuss necessaryand sufficient conditionswhenanexpansionof an 1-indiscernible
ℵ0-categorical weakly o-minimal theory by a binary predicate is both weakly o-minimal and
ℵ0-categorical.
[1] S. S. Baizhanov and B. S.Kulpeshov, Expanding 1-indsicernible countably categorical

weakly o-minimal theories by equivalence relations. Siberian ElectronicMathematical Reports,
vol. 15 (2018), pp. 106–114.
[2]H. D. Macpherson, D. Marker, and C. Steinhorn, Weakly o-minimal structures

and real closed fields. Transactions of the American Mathematical Society, vol. 352 (2000),
pp. 5435–5483.

� ALEXANDR BESSONOV, Gödel’s first incompleteness theorem cannot be used as an argu-
ment against Hilbert’s program.
Institute of Philosophy and Law, Siberian Branch, Russian Academy of Sciences, Nikolaeva
8, Novosibirsk 630090, Russia.
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Institute of Philosophy and Law, Novosibirsk State University, Pirogova 1, Novosibirsk
630090, Russia.
E-mail: trt@academ.org.
An argument against realizability of Hilbert’s program of finitary grounding mathematics

based on the Gödel’s second incompleteness theorem is generally built as follows. Let the
formal Dedekind–Peano arithmetic (PA) be consistent. Suppose that there is an informal
finitary consistency proof of PA. By von Neumann’s thesis (every finitary informal proof is
formalizable in PA), such a proof would be Gödel-style formalizable in PA. As a result, a
formula, say

∀y¬Prov(�(0 = 1)�, y)
expressing the unprovability of 0 = 1 and, hence, the consistency of PA, would turn out to
be provable, which would contradict the second incompleteness theorem; see, e.g., [2]. (Here
Prov(x, y) numeralwise expresses a provability predicate that satisfies Hilbert–Bernays–Löb
conditions; �A� denotes the Gödel number of A.)
Obviously, the von Neumann reasoning above applies if, instead of 0 = 1, we take any

other formula, in particular G or ¬G , where G is Gödel’s unsolvable formula. Thus, neither
∀y¬Prov(�G�, y) nor ∀y¬Prov(�¬G�, y) can be proved in PA, for otherwise we will be led
to a contradiction with the second incompleteness theorem. This implies that an informal
finitary proof of Gödel’s first incompleteness theorem does not exist.
The impossibility of an informal finitary proof of the first incompleteness theorem implies

the nonlegitimacy of any argument against realizability of Hilbert’s program based on this
theorem: from the standpoint of consistent finitism, any informal proof of the first theorem
is doubtful, since it is not finitary.
In [1] it was shown that argumentation against realizability of Hilbert’s program based

on the second Gödel’s incompleteness theorem is incorrect from the outset. Now we can
conclude that the textbook proposition, according to which both Gödel’s incompleteness
theorems serve as decisive arguments against feasibility of Hilbert’s finitistic program is
wrong.
[1] A. Bessonov, Gödel’s second incompleteness theorem cannot be used as an argument

against Hilbert’s program, this Bulletin, vol. 24 (2018), no. 2, pp. 235–236.
[2] R. Zach, Hilbert’s program then and now, Handbook of the Philosophy of Science

(D. Jacquette, editor), Philosophy of Logic, vol. 5, Elsevier BV, Amsterdam, 2006, pp. 431–
432.

� MARIJA BORIČIĆ, Soundness and completeness of a high probabilities sequent calculus.
Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade,
Serbia.
E-mail: marija.boricic@fon.bg.ac.rs.
We present a system LKprob(ε) (see [1], [7], and [2]) making it possible to work with

expressions of the form Γ 	n Δ, a generalization of Gentzen’s sequents Γ 	 Δ of classical
propositional logic LK, with the intended meaning that ‘the probability of the sequent Γ 	 Δ
is greater than or equal to 1− nε’, for a given small real ε > 0 and any natural number n (see
[4] and [5]). For instance, LKprob(ε) is based on rules of the following form:

ΓAB 	n Δ
ΓA ∧ B 	n Δ (∧ 	)

Γ 	n AΔ Γ 	m BΔ
Γ 	m+n A ∧ BΔ (	 ∧).

A model for LKprob(ε) is a mapping p : Seq → I ∩ [0, 1], where I = {1 − nε|n ∈ N},
satisfying the following conditions: (i) p(A 	 A) = 1, for any formulaA; (ii) if p(AB 	) = 1,
then p(	 AB) = p(	 A) + p(	 B), for any formulae A and B ; (iii) if sequents Γ 	 Δ and
Π 	 Λ are equivalent in LK, in sense that there are proofs for both sequents

∧
Γ →

∨
Δ 	∧

Π→
∨
Λ and

∧
Π→

∨
Λ 	

∧
Γ→

∨
Δ in LK, then p(Γ 	 Δ) = p(Π 	 Λ).

A theory LKprob(ε)(�1, . . . , �n), an extension of LKprob(ε) by the list of new axioms
�1, . . . , �n, is said to be consistent iff there exists a sequent Γ 	0 Δ which is unprovable in
LKprob(ε)(�1, . . . , �n). We prove that each consistent theory can be extended to a maximal
consistent theory, and as a consequence, soundness and completeness is also proved.

https://doi.org/10.1017/bsl.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.30


270 LOGIC COLLOQUIUM ’18

The system LKprob(ε) can be considered a particular case of our general approach to
probabilization of sequent calculus (see [1], [6], and [3]).
[1]M. Boričić, Hypothetical syllogism rule probabilized, this Bulletin, vol. 20 (2014),

no. 3, pp. 401–402, abstract in Logic Colloquium 2012.
[2] , Models for the probabilistic sequent calculus, this Bulletin, vol. 21 (2015),

no. 1, p. 60, abstract in Logic Colloquium 2014.
[3] , Suppes-style rules for probability logic, this Bulletin, vol. 22 (2016), no. 3,

p. 431, abstract in Logic Colloquium 2015.
[4] , Suppes-style sequent calculus for probability logic. Journal of Logic and Com-

putation, vol. 27 (2017), no. 4, pp. 1157–1168.
[5] , Sequent calculus for classical logic probabilized. Archive for Mathematical

Logic, to appear.
[6] P. Suppes, Probabilistic inference and the concept of total evidence, Aspects of Inductive

Inference (J. Hintikka and P. Suppes, editors), North-Holland, Amsterdam, 1966, pp. 49–55.
[7] C.G.Wagner,Modus tollens probabilized.British Journal for thePhilosophy of Science,

vol. 54 (2004), no. 4, pp. 747–753.

� JOHN CORCORAN, Aristotle’s term theory and its underlying logic.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Logics—distinguishing the semantic consequence relation from the syntactic deducibility

relation—are three-part systems composed of a language, a semantic system of interpreta-
tions, and a syntactic system of deductions [2]. In contrast, theories—distinguishing truths
from theorems—were regarded as certain systems of interpreted sentences—systems closed
under logical deducibility: every sentence of a theory’s language deducible from the theory’s
theorems using the theory’s underlying logic is one of its theorems [5].
Although attention focuses on a theory’s truths and theorems, reflection on what Church

[1] called a theory’s underlying logic reveals that a theory can be regarded as five-part
system: the three-parts of its underlying logic, its intended interpretation, and its intended
theorems—the intended interpretation being a member of its underlying logic’s semantics
and its intended theorems being members of its underlying logic’s language.
Until Łukasiewicz started arguing otherwise in the 1920s [4, pp. 15, 73, passim], people

generally regarded Aristotle’s syllogistic as a logic and not as a theory. In the 1970s, Austin,
Corcoran, Smiley, and others began finding difficulties reconciling the Łukasiewicz view with
Aristotle’s text. Corcoran and Smiley, working independently, proposed logics that fit parts
of the text that Łukasiewicz couldn’t treat [3]—construing Aristotle’s syllogistic as a logic
and not as a theory.
In retrospect, we see that the semantics of a Corcoran–Smiley underlying logic leaves

room for, and perhaps requires, in the metalanguage a Łukasiewicz-style theory of terms
[4, Chapter III]. This article explores the extent to which the antithetical Łukasiewicz and
Corcoran–Smiley approaches can be synthesized into a more adequate account of Aristotle’s
Prior Analytics.
[1] A. Church, Introduction to Mathematical Logic, Princeton University Press, 1956.
[2] J. Corcoran, Gaps between logical theory and mathematical practice,Methodological

Unity of Science, Kluwer, 1973.
[3] ,Aristotle’s demonstrative logic.History and Philosophy of Logic, vol. 30 (2009),

pp. 1–20.
[4] J. Łukasiewicz, Aristotle’s Syllogistic, Oxford University Press, 1951.
[5] A. Tarski, Introduction to Logic, Dover, 1995.

� JOHN CORCORAN AND IDRIS SAMAWI HAMID, Concrete-abstract distinctions in
logic.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Philosophy, Colorado State University, Fort Collins, CO 80523-1781, USA.
E-mail: ishamid@colostate.edu.
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Church [1], Tarski [3], and other mathematically oriented logicians use the adjectives
concrete and abstract as in traditional subject-object epistemology where concrete thinking
subjectsmake abstract judgments about concrete objects. In some correspondence theories of
truth, abstract propositions are true or false in virtue of concrete facts [2]. Teaching geometry
requires distinguishing between concrete triangles and their abstract shapes. Besides absolute,
or attributive, uses of concrete and abstract, we also find relative uses. Every sentence of the
form (p ∨ q) is more concrete than its form. Conversely, the form (p ∨ q) is more abstract
than any sentence having it.
We survey uses and conspicuous nonuses in logic of concrete and abstract including cog-

nates: to abstract, abstraction, etc. We also consider distinctions often confused or identified
with concrete-abstract distinctions, e.g., physical/nonphysical and individual/universal.
We identify many occurrences of concrete as fillers or rhetorical expletives: deleting them

leaves the sentences’s propositional meanings intact. In this use, every example is a concrete
example and every concrete example is an example. Equally empty substitutes come readily
to mind: particular, specific, individual, and so on.
Remarkably, Church [1] uses abstract frequently while completely avoiding concrete. How-

ever, in Tarski [3] the exact opposite holds: there concrete occurs frequently while abstract is
largely absent. Logicians considered include Aristotle, al-Farabi, Ockham, Boole, al-Ahsa’i,
De Morgan, Peirce, Frege, Russell, Carnap, Gödel, Quine, and Lawvere.
In primary senses, concrete and abstract are correlative adjectives like old and young. It is

difficult to determine what is being conveyed by calling something concrete or abstract unless
writers give examples where they would apply one and not the other and they present some
indication of their criteria for applying each word.
[1] A. Church, Introduction to Mathematical Logic, Princeton University Press, 1956.
[2] J.Corcoran, Sentence, proposition, judgment, statement, and fact,Many Sides of Logic,

College Publications, 2009.
[3] A. Tarski, Logic, Semantics, Metamathematics, Hackett, 1983.

� JOHN CORCORANAND JOSÉ MIGUEL SAGÜILLO, Argument validity, form omniva-
lidity, and schema panvalidity.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Consider a standard one-sorted first-order language L. Instances of argument-schemata

[3] are concrete [premise-conclusion] arguments using L’s sentences. Model-theoretically, an
argument is valid if its conclusion is true in every model of its premise-set; invalid if its
conclusion is false in some model of its premise-set. Every argument is either valid or invalid;
no argument is both.
Using [logical] form as in [1, 2], every concrete argument has exactly one abstract form.

Every two arguments having the same form are both valid or both invalid.
Validity and invalidity apply to concrete arguments andnot to abstract forms.Anargument

form is defined to be omnivalid if all arguments having it are valid; nullovalid if all arguments
having it are invalid [4]. Every argument form is either omnivalid or nullovalid, and not
both.
Notice that some argument-schemata have valid instances and invalid instances [3]. Con-

sider the schema of all one-premise arguments:

P

Q
.

Putting 2 = 1 for P and for Q yields a valid instance; putting 2 = 1 for P and 3 = 2 for Q
yields an invalid instance.
An argument-schema is panvalid if every instance is valid, paninvalid if every instance is

invalid, and neutrovalid if some but not every instance is valid [5].
We discuss how these three concepts can be used to give fresh understanding of classical

results, to suggest new avenues of research, and to correct confusions and errors in the
literature.
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[1] J. Corcoran, Argumentations and logic. Argumentation, vol. 3 (1989), pp. 17–43.
[2] , First-order logical form, this Bulletin, vol. 10 (2004), p. 445.
[3] , Schemata, this Bulletin, vol. 12 (2006), pp. 219–240.
[4] , Logic teaching in the 21st century. Quadripartita Ratio: Revista de Argu-

mentación y Retórica, vol. 1 (2016), pp. 1–34.
[5] , Panvalid four-connective argument schemata, this Bulletin, vol. 23 (2017),

pp. 209–210.

� JOACHIMMUELLER-THEYS, The necessity of reforming modern modal logic.
Kurpfalzstr. 53, 69 226 Nußloch bei Heidelberg, Germany.
E-mail: mueller-theys@gmx.de.
Formal rigour seems to be more important to philosophical logic than to mathematics.

However, worth is made up by substance, and it is not clear what the content of modern
modal logic precisely is.
The subject was conceived to avoid the so-called paradoxes of “material” implication

like ⊥ → φ and φ → !, but “strict” implication shows them likewise, namely, ⊥ ⇒ α(
eq. �(⊥ → α)

)
, α ⇒ !.

Possible worlds are already given on the nonmodal level. For instance, structures (models)
are the possible worlds of predicate logic.
The notion of world seems to have been misleading. Nonequivalent possible worlds are

incompatible: the union of their theories is inconsistent. So they cannot exist simultaneously.
Isn’t the notion of accessibility therefore dubious?
On the basis of a given logic, say PL, it is clear what the logical modalities are: φ is

logically necessary iff |= φ. Accordingly, φ is logically possible iff the negation of φ is
not logically necessary, viz. �|= ¬φ. Thus any atomic proposition p is logically possible—
naturally. However, �p is not a theorem of any of the systems of modern modal logic. The
deficiency is caused by uniform substitution, which must not be generalised to the modal
level. Proper implementation uniquely leads to the semantic system C (like Carnap) and
the evident deductive system S of ours. Cf. The Bulletin of Symbolic Logic 20, pp. 238,
264–265.
The logical modalities in the narrow sense can be generalised to the Σ-modalities: � is Σ-

necessary iff Σ seq �, � is Σ-nonnecessary iff � is not Σ-necessary, . . . , where seq := |== 	. We
proved that the Σ-modalities exhaust the objective modalities, where a necessity in whatever
sense is objective if it is closed under seq. (BSL 21, 239-0; BSL 22, 585)
The implementation of our mathematized conception of adequately formalising the Σ-

modalities leads to one and only one consequence relation, namely Σ seq� α, which can be
constructed as well semantically (M, V ‖=Σ �α :iff for all N |= Σ and allW :N ,W ‖=Σ α,
Σ ‖= α) as deductively (Σ ‖−α :iff Σ ∪ {¬�� : Σ �|= �} 	QNI α).
The transition to this metalogical extension forks validity and general consequence: ‖= α

does not imply //= α, viz. Σ ‖= α for all Σ, whence a separate deductive characterization
of the general consequences is required, which coincide with the theorems of (a suitable
quantificational version of) S5 probably. (BSL 23, 211-2)
It’s not that laws like (NR), (K), (T), (4), (5) were false: wrong conception, unjustified

pluralism, persisting in uniform substitution andmonotony, misguided semantics, and severe
incompleteness have lead modern modal logic away from science.

� CYRUS F. NOURANI, Filters, language topologies, and product models.
Informatik, Ernest Reuter Platz,TU Berlin AI, Germany and SFU, Canada.
E-mail: cyrusfn@alum.mit.edu.
A Brief on Direct Product Languages and Models Languages L1, . . . , Lw with signatures

Si ’s, . . . , Si < Si+1. Applying inclusion ordering on the signatures S∗ we have morphic
preorders on the free trees on the signature TSi .

Proposition 1. There is a small complete category on the infinitary language fragments
definable with the Si ’s based on the direct product on TSi .
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Consider the fragment topology defined on the author defined onKieslerL1w ,K fragments.
Let us have a glimpse on n-types and positive local realizability (Nourani 2007–2015). The
set of all complete n-types over T is denoted n(T ).
Theorem 1 (Nourani 2014). There is a generic functor on the category the omitting n-types

realizing a direct product model.
Theorem 2. The category based onL1w ,K fragments and preordermorphisms is a convergent

space category.

[1] C. F. Nourani and P. Eklund, Term functors and product models: A brief, Joint MM
AMS-MAM, Atlanta, Georgia, abstract 1125-VJ-2308, 2017.
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This work continues Beklemishev’s work [2], in which derived topologies and correspond-

ing generalizations of stationary sets were introduced and investigated. The starting point
of these studies lies rather in proof theory than in set theory. Esakia’s pioneer work [4]
connected scattered spaces to Gödel–Löb’s logic GL. This put beginning of studies of topo-
logical completeness of its extension, Japaridze’s provability logic GLP. Solving the problem,
Beklemishev introduced [2] the following construction: given a topology � on a set X , the
derived (or next) topology �+ on X is generated by � and the sets d(A) for all A ⊆ X ,
where d(A) is the Cantor derivative of A given by �, i.e., the set of �-limit points of A. He
considered �-sequences of topologies defined by letting �0 = � and �n+1 = �+n . If �0 is the left
(or Alexandroff) topology on an ordinal �, then �1 is the standard interval topology of �, �2 is
the so-called club topology whose limit points are ordinals α < � of uncountable cofinality
and d2(A) = {α < � : A ∩ α is stationary in α}, and �3 is called the Mahlo topology. It was
shown [2] that �n+2 is included into the topology �Π1n whose limit points are Π

1
n-indescribable

ordinals, so a weakly compact suffices to have �3 nondiscrete, and later [1] that in L (the con-
structible universe), �n+2 and �Π1n coincide. An overview with some additional information
can be found in [3].
We consider sequences of derived topologies of arbitrary length by letting �0 = �,

�α+1 = �+α , and �α = the topology generated by all �
 , 
 < α, if α is a limit ordinal.
We show that, for α ≥ �, under an appropriate definition of Π1α-formulas of second-order
infinitary languages, �α is included into �Π1α . Evaluating size of the least ordinals indescrib-

able in higher order infinitary languages, we show, e.g., that if κ is the least Π1n-indescribable
inL2α,α (the second-order language with connectives and quantifiers of arity<α), then it is so
already in L2�,� (the second-order finitary language). Furthermore, if � is the �-Erdős cardi-
nal, then the set {α < � : α is Lαα,α-indescribable} is stationary in �, and if � is a measurable
cardinal and U a normal ultrafilter on �, then this set is inU , therefore, almost all α < � are
�α-limit points. The hierarchy of derived topologies on � extends up to �+ by diagonalizing:
for � < �+ define d�(A) = {α < � : α ∈ d�α (A)} if cf � = � with limα→� �α = �, and as
before otherwise. If � is measurable, then all the topologies �� also are nondiscrete.
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