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ON THE RELATIONSHIP BETWEEN
FINANCIAL INSTABILITY AND
ECONOMIC PERFORMANCE:
STRESSING THE BUSINESS OF
NONLINEAR MODELING

DAVID UBILAVA
University of Sydney

The recent global financial crisis and the subsequent recession have revitalized the
discussion on causal interactions between financial and economic sectors. In this study,
I apply the financial stress and the national activity indices—respectively developed by
Federal Reserve Banks of Kansas City and Chicago—to investigate the impact of financial
uncertainty on an overall economic performance. I examine nonlinear dynamics in a
vector smooth transition autoregressive framework, and illustrate regime-dependent
asymmetries in the financial and economic indices using the generalized impulse-response
functions. The results reveal more amplified dynamics during the stressed conditions.
I further evaluate benefits of nonlinear modeling in an out-of-sample setting. The
forecasting exercise brings out the important advantages that nonlinear modeling provides
in the identification of the causal effect of financial instability on overall economic
performance.
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1. INTRODUCTION

The most recent global financial crisis and the subsequent recession have fostered
further discussion of the scope and the extent of causal links between financial
and economic sectors [Gertler and Kiyotaki (2010), Jermann and Quadrini (2012),
Brunnermeier and Sannikov (2014), Schleer and Semmler (2015)]. The topic is
not new, however. More than 80 years ago, Schumpeter (1934) pointed to the
benefits of financial services for economic growth, whereas Fisher (1933) and
Keynes (1936) attributed recessions in part to financial market failures [for further
discussion, see King and Levine (1993), Brunnermeier and Sannikov (2014)]. In
the intervening years, the question of whether financial development results in
economic growth, or, alternatively, financial crises cause economic downturns,
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has been broadly discussed and analyzed in the economics literature [see, for
example, King and Levine (1993), De Gregorio and Guidotti (1995), Levine
(1997), Arestis et al. (2001), Calderón and Liu (2003), Gilchrist et al. (2009)]. The
rationale behind the postulated relationship has been widely accepted. What has
been much more disputed, however, is the scope of financial variables to forecast
economic variables—i.e., the degree of out-of-sample Granger causality between
the economic and financial variables. After all, as Samuelson (1966) put it: “Wall
Street indices predicted nine out of the last five recessions!”

Business cycles, as defined by Burns and Mitchell (1946), reflect the co-
movement of multiple individual economic time series [Diebold and Rudebusch
(1996)]. A logical way to analyze cycles thus consists of examining the dynamics
of a composite index of economic variables [see Stock and Watson (1989, 1999a)].
Such indices have long been used as leading indicators for economic expansions
and recessions [e.g., Granger and Teräsvirta (1993), Stock and Watson (1993),
Lahiri and Wang (1994), Stock and Watson (2003), Camacho (2004), Marcellino
et al. (2006), Anderson et al. (2007)], albeit with varying degrees of success [see,
for example, Diebold and Rudebusch (1991), Giacomini and Rossi (2013)]. Factor
methods have been applied to financial variables as well, to obtain a composite
index, better known as the financial stress index [e.g., Hakkio and Keeton (2009),
Hubrich and Tetlow (2015)].

The main focus of this study is to investigate the relationship between financial
and economic indices in a forecasting environment. Much like previous studies
[such as Davig and Hakkio (2010), Liu et al. (2011), Mittnik and Semmler (2013),
Brunnermeier and Sannikov (2014), Hubrich and Tetlow (2015), Jones and En-
ders (2016)], this research also relies on the assumption that regime-dependent
nonlinear models are better suited for analyzing linkages between financial and
economic series. There exist a number of grounds for expecting such an “episodic”
character in the relationship, and this episodic nature may be one of the reasons
researchers in the past have failed to find much evidence of financial friction
affecting economic activity [see Hubrich and Tetlow (2015)]. First of all, eco-
nomic agents tend to behave differently in times of higher financial uncertainty, as
compared to a relatively stable environment [Hubrich and Tetlow (2015)]. Davig
and Hakkio (2010) offer a rationale for this discrepancy in terms of financial
accelerator theories. Furthermore, Schleer and Semmler (2015) suggest that the
interest rate on borrowing is low and remains constant in low stress regime, but
becomes a nonlinear function of the leverage ratio in high stress regime. These
considerations suggest that the effect of financial stress on economic activity
may be nonlinear and will vary, depending on the state of the financial sector.
Whether or not allowing for this nonlinearity produces more accurate forecasts is
the question to be investigated here.

This study contributes to, and complements, the existing literature in two main
areas. First, it applies a vector smooth transition modeling framework, with the
financial stress index used as the transition variable–a specification that introduces
an additional nonlinear link to the dynamic relationship between the two sectors.
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Notably, Schleer and Semmler (2015) used a similar methodology to address
regime-dependent behavior of the financial and economic sectors in the euro
area, and more recently, Jones and Enders (2016) applied the univariate version
of the methodology to the US data. Second, and in contrast to any previous study,
the current paper proceeds a step further by assessing the forecast accuracy of the
models under consideration, as the approach lends itself naturally to the out-of-
sample Granger causality testing [e.g., Ashley et al. (1980)].

The findings reveal asymmetric dynamics, of the kind that would be expected
under regime-dependent behavior. In addition, and more importantly, improved
forecasting performance is found to arise from vector smooth transition autore-
gressive (VSTAR) modeling. The results of this study add new insights to those
available in the existing and growing body of literature that has addressed the
linkages between financial and economic sectors in light of the recent financial
crisis.

2. ECONOMETRIC MODELING AND FORECASTING

This study adopts the regime-dependent modeling framework to examine nonlin-
earities in the financial stress and economic activity indicators. Smooth transition
regressions were first proposed by Bacon and Watts (1971), and subsequently
advocated in a time series context by Chan and Tong (1986). More formally,
Luukkonen et al. (1988) and Teräsvirta (1994) introduced and developed smooth
transition autoregressive (STAR) modeling and testing frameworks. The family
of smooth transition models was later extended to the multivariate framework
[e.g., Anderson and Vahid (1998), Rothman et al. (2001)], resulting in the VSTAR
model [e.g., Teräsvirta and Yang (2014a)].

The VSTAR framework facilitates the multivariate analysis in a manner that
allows for cases in which the extent of causal relationship varies across regimes,
depending on the transition variable’s state. In this modeling framework, a switch
between the regimes is allowed to occur either instantaneously or “smoothly,”
with the latter case featuring the continuum of intermediate steps between the two
regimes. A smooth transition process is appealing from a theoretical standpoint,
as it accounts for the aggregation effect across heterogeneous economic agents
[Jones and Enders (2016)]. Since their introduction, the smooth transition models
have gained popularity and have been given consideration in studies that model
asymmetric cyclical variations of business cycles, and other related economic
indicators [e.g., Teräsvirta and Anderson (1992), Teräsvirta (1995), van Dijk and
Franses (1999), Rothman et al. (2001), Skalin and Teräsvirta (2002), Franses and
van Dijk (2005), Schleer and Semmler (2015)]. The following section briefly
outlines the modeling and testing frameworks of STAR-type models, with an
emphasis on the multivariate case. The reader is refereed to Hubrich and Teräsvirta
(2013), Teräsvirta and Yang (2014a), and Teräsvirta and Yang (2014b) for a more
in-depth review and details.
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2.1. Univariate and Multivariate Smooth Transition Models

Consider a basic linear autoregressive model of order p, AR(p),

yt = α +
p∑

i=1

βiyt−i + εt (1)

where yt is the dependent variable in period t ; α and βi , i = 1, . . . , p, are
parameters defining the dynamic convergence properties of the model; and εt ∼
iid(0, σ 2

ε ) is a white noise process.
The linearity assumption might be relaxed in a variety of ways. But this paper ap-

plies the smooth transition nonlinear modeling framework of Teräsvirta (1994) for
this purpose. The STAR model introduces a particular type of regime-dependency
in the autoregression:

yt = α0 +
p∑

i=1

β0iyt−i +
(

α1 +
p∑

i=1

β1iyt−i

)
G(st ; γ, c) + εt , (2)

where G(st ; γ, c) is the so called transition function. This function’s values are
bounded between zero and one, and can take any value over that range—with the
actual value attained depending on the transition variable, st , and the smoothness
and location parameters, γ and c. γ determines the speed at which changes in
regimes occur, whereas c determines the value within the range of st , on which
regime changes are centered.1

There are several choices for the transition functions, the most popular of which
is the logistic function given by

G(st ; γ, c) =
⎧⎨
⎩1 + exp

⎡
⎣−γ ∗

k∏
j=1

(
st − cj

)⎤⎦
⎫⎬
⎭

−1

γ ∗ > 0, c1 < · · · < ck,

(3)
where c = (c1, . . . , ck) is a vector of centrality parameters. In practice, most
analysts choose either k = 1 or k = 2—choices that result in logistic STAR
(LSTAR) or quadratic STAR (QSTAR) models, respectively. The former is useful
in situations where asymmetries in autoregressive dynamic in relation to st are
suspected; the latter is useful for situations where nonlinearity in dynamics is
linked to the absolute value of st , with an implied assumption that c1 = −c2 in (3).
Finally, in equation (3), the parameter γ is normalized by σ k

s , γ ∗ = (γ /σ k
s ), where

σs is the sample standard deviation of the transition variable. This normalization
has the effect of making the smoothness parameter unit-free.

The STAR framework can be extended to a multivariate setting [e.g., Rothman
et al. (2001), Camacho (2004)]. To begin, consider a linear vector autoregressive

https://doi.org/10.1017/S1365100516001127 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516001127


84 DAVID UBILAVA

model of order p, VAR(p)

yt = α +
p∑

i=1

Biyt−i + εt , (4)

where yt = (y1t , . . . , ynt )
′ is an n-dimensional vector of dependent variables; α

and Bi , i = 1, . . . , p, are n-dimensional vector and matrices of parameters; and
εt ∼ iid (0,Σε), where Σε is a positive definite covariance matrix.

A nonlinear version of equation (4), the VSTAR model of order p, VSTAR(p),
is specified as follows:

yt = α0 +
p∑

i=1

B0iyt−i + Γt

(
α1 +

p∑
i=1

B1iyt−i

)
+ εt , (5)

where Γt = diag[G(s1t ; γ1, c1) , . . . ,G (snt ; γn, cn)] is a diagonal matrix of
smooth transition functions. The aforementioned specification implies that the
transition functions (possibly) differ across the equations. Alternatively, the tran-
sition functions may be restricted to be the same across the equations, i.e.,
Γt = G(st ; γ, c) In, where In is the n-dimensional identity matrix. A middle
ground between these extremes would correspond to the case in which the tran-
sition variable is common across the equations, but the parameters—and thus the
transition functions—differ.

2.2. Testing Linearity and the Adequacy of STAR-Type Models

A crucial component in the building of STAR-type models is the testing for
linearity. This step should precede estimation of any nonlinear model, because one
cannot directly test the hypothesis of linearity, that is, the null hypothesis of γ = 0,
in a STAR (or VSTAR) model. The unavailability of the option of a direct test arises
from the problem associated with unidentified nuisance parameters, also known as
Davies’ problem (Davies, 1977, 1987). To illustrate the point, consider equation (2)
in conjunction with equation (3): The nonlinear model will reduce to the linear
AR(p) either by imposing γ = 0 or by imposing α1 = β11 = · · · = β1p = 0.
To circumvent the issue, Luukkonen et al. (1988) proposed to approximate the
transition function using third-order Taylor series expansion around γ = 0. This
results in a testable auxiliary regression:

yt = φ0 +
p∑

i=1

φiyt−i +
3∑

j=1

p∑
i=1

ψjiyt−i s
j
t + νt , (6)

where φ0, φi , and ψji , i = 1, . . . , p, j = 0, . . . , 3, are parameters of the auxiliary
regression, whereas νt combines the original error term, εt , and the approximation
error resulting from the Taylor series expansion. Under the null, νt ≡ εt , and
an LM-type test (which only requires estimation of the model under the null)
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can be used to test for linearity against the STAR alternative. The linearity test
is equivalent to a joint test of H ′

0: ψji = 0, ∀j, i. The F -test has desirable size
properties in small and moderate samples [e.g., Teräsvirta et al. (2010)].

A similar approach can be applied to test linearity in a multivariate setting
[Camacho (2004), Teräsvirta and Yang (2014a)]. In particular, the system of
auxiliary regressions can be given by

yt = φ0 +
p∑

i=1

Φiyt−i +
3∑

j=1

S
j
t

(
p∑

i=1

Ψjiyt−i

)
+ ν t , (7)

where φ0, Φi , and Ψji , i = 1, . . . , p, j = 0, . . . , 3, are parameter vectors and
matrices of the auxiliary regression, and where, assuming a common transition
function across the equations, St = stIn; ν t ∼ iid (0,Σν) is a vector of error
terms, combining the original and the approximation errors. In small samples,
the higher-order polynomial terms can be ignored [Weise (1999), Teräsvirta and
Yang (2014a)], yielding a somewhat more “economical” version of the auxiliary
regression:

yt = φ0 +
p∑

i=1

Φiyt−i + St

(
p∑

i=1

Ψ1iyt−i

)
+ ν t . (8)

The linearity test is equivalent to a system-wide test of Ψji = 0, ∀j, i. Rao’s
F -test has desirable size properties in small and moderate samples [Teräsvirta and
Yang (2014a)].

Once the VSTAR (or STAR, in the univariate case) has been estimated, an
important final step is to conduct an array of misspecification tests. These include
tests for no remaining (additive) nonlinearity, remaining parameter constancy, and
no remaining serial correlation. The testing framework is similar to the aforemen-
tioned, as it is carried out in an auxiliary regression setting. See Teräsvirta (1994)
and Teräsvirta and Yang (2014a) for details concerning univariate and multivariate
nonlinear models, respectively.

2.3. Testing Forecast Accuracy and Granger Causality

An improved in-sample fit of less parsimonious models, say VAR or VSTAR as
compared to a simple AR, does not necessarily guarantee improved out-of-sample
predictability. The latter is a testable hypothesis. Consider a one-step-ahead point
forecast, given by

ŷt+1|t = f
(
Ft ; θ̂t

)
, (9)

where f (·) is the functional form of the estimated model, and θ̂t is a set of
parameter estimates; Ft is the information set available at the time of forecast.
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The associated forecast error is given by

êt+1 = yt+1 − ŷt+1|t , (10)

where yt+1 is the actual realization of the variable of interest in the forecast period.
Forecast accuracy is assessed based on a loss function, L(êt+1), which can take
various forms. Under the assumptions of a quadratic loss, i.e., L(êt+1) = ê2

t+1, the
forecast accuracy can be evaluated using the mean-square forecast error (MSFE)
measure:

δ̂2 = 1

P

T −1∑
t=R

ê2
t+1, (11)

where P is the total number of out-of-sample forecasts, and R denotes the estima-
tion window size, i.e., the subset of observations used to obtain a set of parameter
estimates, so that R + P = T − 1, where T denotes the total sample size. The
foregoing outlines the pseudo-forecasting exercise. In the course of this exercise,
the available sample is split into the estimation and the forecasting subsamples,
and a relatively large number of forecasts are obtained to be evaluated for accuracy.

Consider forecasts from two competing models. The models can differ due to
composition of the information set, as well as the functional form. If, for example,
one forecast is obtained based on the information set that omits a potentially causal
variable, whereas the information set of the other forecast incorporates the poten-
tially causal variable, then the test of equal forecast accuracy is effectively the test
of Granger noncausality in a forecasting environment. This lines up closely with
the original notion of Granger-causality testing [e.g., Ashley et al. (1980)]. In the
current context, let F (1)

t = {yt , yt−1, . . .}, and F (2)
t = {yt , yt−1, . . . , zt , zt−1, . . .},

where {zt } is the potentially causal variable. Then, δ̂2
1 > δ̂2

2, or equivalently
δ̂2

1 − δ̂2
2 > 0, would imply that {zt } Granger causes {yt }, where δ̂2

i , i = 1, 2, are
the MSFEs from the two competing models.

One of the more frequently applied metrics in the assessment of forecast ac-
curacy is the Diebold and Mariano (1995) (DM) statistic, which tests predictive
accuracy of two (non-nested) competing models. But when one of the competing
models nests another (which is certainly the case in Granger causality testing),
the standard asymptotic critical values are no longer applicable [e.g., Clark and
McCracken (2001)]. For such cases, McCracken’s critical values can be applied
(McCracken, 2007), despite the lack of clear guidance in cases in which the
competing models are nonlinear [e.g., Ferrara et al. (2015)]. Alternatively, the
test can be modified as per Clark and West (2007), which incorporates an adjust-
ment factor in the forecast accuracy statistic. Let ê1,t+1 and ê2,t+1 be the forecast
errors from two competing models, where the latter model nests the former.
Then, the null hypothesis of equal mean squared (forecast) errors, or currently
Granger noncausality, is rejected if the difference given by δ̂2

1 − (δ̂2
2 − δ̂2

a) is suffi-
ciently positive, where δ̂2

a is the sample variance of an “adjustment error” given by
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êa,t+1 = ŷ
(1)
t+1|t − ŷ

(2)
t+1|t , where ŷ

(1)
t+1|t and ŷ

(2)
t+1|t are one-step-ahead forecasts from

the restricted and unrestricted models [Clark and West (2007)].
The regression-based test of equal forecast accuracy is equivalent to a test of

H0 : μ = 0, against Ha : μ > 0, in the following regression setting:

�t+1 = μ + ξt+1, t = R, . . . , T − 1, (12)

where, in obtaining the DM statistic, �t+1 = ê2
1,t+1 − ê2

2,t+1 is regressed on a
constant, and the sample t-values are compared with McCracken’s critical values,
whereas, in obtaining the CW statistic, �t+1 = ê2

1,t+1 − ê2
2,t+1 + ê2

a,t+1 is regressed
on a constant, and the sample t-values are compared with standard normal critical
values. To account for possible autocorrelation in the results, the heteroskedasticity
and autocorrelation consistent (HAC) standard errors are applied.

3. EMPIRICAL FRAMEWORK

This research uses monthly series of the financial stress index (FSI) of the Federal
Reserve Bank of Kansas City, and the national activity index (NAI) of the Fed-
eral Reserve Bank of Chicago, as proxies for financial instability and economic
performance, respectively. The data span the period from February 1990 to Decem-
ber 2014. The respective indices are constructed based on principal components
methodology, and incorporate an array of major financial and economic indicators.
In particular, the FSI is based on 11 financial variables, containing credit and liq-
uidity spreads, and measures of asset price behavior [Hakkio and Keeton (2009)].
The behavior of the index lines up well with much other evidence on the timing
of financial instability episodes during the sample period. In addition, the index
is highly correlated with other indices designed for similar purposes(for example,
the financial stress index applied by Hubrich and Tetlow (2015), as well as indices
tabulated by the Federal Reserve Banks of St. Louis, Chicago, and Cleveland; see
also Hakkio and Keeton (2009) for a brief review of other available indices of
financial stress).2 The NAI is based on 85 economic variables, and corresponds to
the economic activity index of Stock and Watson (1999b). Key benefits associated
with using this index are that it is a monthly measure (as opposed to the quarterly
GDP measures), and, moreover, it combines an array of economic factors, and does
not focus on a single aspect of an economy [Hakkio and Keeton (2009)]. Figure 1
brings out the strong negative correlation between the two indices—the financial
stress episodes coincide with decreased economic activity, and the fluctuations in
both indices accurately convey the fact of a severe financial crisis and recession
in the late 2000s.

3.1. Model Specification, Estimation, and Evaluation

The initial stage of the modeling procedure involves specification of an econo-
metric model to be estimated. This stage identifies the linear specification of
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FIGURE 1. Time series of the financial stress and the national activity indices.

the univariate and multivariate models, and tests linearity against the respective
STAR-type alternatives.

First, unit root hypotheses are examined using Augmented Dickey–Fuller (ADF)
test statistics. The test results (available upon request) suggest that both time series
are weakly stationary. Therefore, the levels of these indices are used in the analysis.

Next, the bivariate vector autoregressive model is specified. The autoregressive
lag length, p, is set to four, based on the system-wide Bayesian information crite-
rion (BIC), and subject to the requirement that there be no residual autocorrelation.
Likewise, the (restricted) univariate model is specified as an AR(4) process.

Once the linear models are identified, the linearity tests are carried out using the
procedure described in the preceding section. Lags of the financial stress index,
i.e., zt−d , d = 1, . . . , p, are considered as candidate transition variables. Test
results reject the linearity assumption in favor of the logistic VSTAR model, with
zt−1 yielding the lowest probability value (see Table 1 for details). Therefore, zt−1

is identified as a suitable transition variable.
The next stage involves model estimation. In nonlinear modeling, starting val-

ues of the parameters matter. The estimation stage thus consists of several steps.
Initially, starting values are selected on an equation-by-equation basis, using a
gridsearch procedure. The gridsearch, in essence, isolates the optimal set of pa-
rameters, conditional on a range of predetermined values of the smoothness and
location parameters, that minimize the sum of squared residuals of a given equa-
tion. These parameters are then applied as starting values in a univariate nonlinear
least squares estimation. First, the smooth transition models are fit separately
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TABLE 1. Linearity and misspecification
test results

LMR

Test of linearity
zt−1 0.001
zt−2 0.005
zt−3 0.002
zt−4 0.024

Test of no remaining nonlinearity
zt−1 0.276

Test of parameter constancy
t∗ 0.137

Test of no serial correlation
act−1 0.157

Notes: The values are probability values of the test
statistics; LMR denotes the Rao’s F -test variants of the
Lagrange multiplier statistics. zt−d , d = 1, . . . , 4,
are candidate transition variables, where {zt } represents
the financial stress index in period t ; t∗ = t/T , where T is
the total sample size, is used to test for parameter constancy
in the estimated VSTAR model, whereas act−1 denotes the
joint first-order serial correlation. See Teräsvirta and Yang
(2014a,b) for details.

for each equation of the VSTAR model. Then, the parameter estimates from the
previous step are incorporated as starting values to estimate the VSTAR model
in a seemingly unrelated regression setting. The estimation relies on the Gauss–
Newton optimization algorithm.

The parameter estimates for the linear VAR and nonlinear VSTAR models are
given in Table 2. The estimated transition function associated with the VSTAR
model follows3:

G(st ; γ̂ , ĉ) =
{

1 + exp

[
−11.24

(4.95)
/σz

(
zt−1 − 0.97

(—)

)]}−1

. (13)

Several features of the transition function should be noted. First, the transition
function is restricted to be the same across the equations.4 Second, in the process
of estimation, the location parameter, c, converged to a value in excess of the 90th
percentile of the transition variable—the predetermined upper bound. Therefore,
instead of using the estimate of c, I set the value of the location parameter equal to
the upper bound of the transition variable. This restriction ensures that sufficient
number of observations are retained in the “stressed” regime for the purpose of
parameter identification. As the value of the location parameter was fixed rather
than estimated, there is no standard error associated with it. Finally, the transition
function appears to be “moderately” smooth, as illustrated in Figure 2. Thus, one
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TABLE 2. Parameter estimates

VSTAR

VAR yt zt

Dependent variable yt zt R1 R2 R1 R2

Intercept −0.038
(0.030)

−0.009
(0.018)

0.008
(0.035)

−0.601
(0.197)

−0.010
(0.019)

0.357
(0.109)

yt−1 0.100
(0.058)

−0.122
(0.035)

0.042
(0.065)

0.053
(0.161)

0.006
(0.037)

−0.513
(0.091)

yt−2 0.307
(0.059)

0.011
(0.035)

0.263
(0.064)

0.472
(0.190)

0.015
(0.036)

−0.167
(0.107)

yt−3 0.221
(0.059)

−0.013
(0.036)

0.204
(0.064)

0.216
(0.169)

0.021
(0.036)

−0.286
(0.095)

yt−4 0.022
(0.056)

0.071
(0.034)

0.022
(0.062)

−0.021
(0.151)

0.032
(0.035)

0.049
(0.085)

zt−1 −0.364
(0.095)

1.115
(0.058)

−0.237
(0.165)

0.218
(0.227)

0.990
(0.093)

−0.116
(0.127)

zt−2 −0.093
(0.141)

−0.366
(0.085)

0.167
(0.220)

−0.420
(0.302)

−0.151
(0.124)

−0.422
(0.169)

zt−3 −0.117
(0.142)

0.405
(0.086)

−0.041
(0.221)

−0.126
(0.324)

0.211
(0.124)

0.163
(0.182)

zt−4 0.391
(0.099)

−0.249
(0.060)

−0.038
(0.154)

0.922
(0.239)

−0.080
(0.086)

−0.403
(0.134)

Notes: Values are parameter estimates, with standard errors in parentheses underneath. R1 and R2 denote regimes
1 and 2, respectively, with parameters representing the elements of vectors α0 and α1, and matrices B0i and B1i .
As such, the dynamics in the first regime are defined by α0 and B0i , whereas the dynamics in the second r egime
are defined by α0 + α1 and B0i + B1i

set of parameters defines the model dynamics during the normal regime, and a
different set of parameters—during the stressed regime (see Table 2); and the
switch between the regimes occurs gradually, and is centered on approximately a
positive one standard deviation of the financial stress index.

The final stage of the modeling procedure consists of a diagnostic evaluation
of the estimated nonlinear models. Probability values associated with the tests of
no remaining nonlinearity, of parameter constancy, and of no serial correlation
are presented in Table 1. As is evident from the table, the tests fail to reject
any of these hypotheses, suggesting no apparent misspecification issues with the
estimated two-regime logistic VSTAR model. To better illustrate the dynamics of
this model, I now turn to the impulse-response analysis.

3.2. Interpretation: Generalized Impulse-Response Analysis

A special treatment is needed when generating impulse-responses from nonlinear
models, because their dynamics depend on the information set prior to the shocks,
i.e., the histories, the sign and the magnitude of the shocks, and the idiosyncratic
disturbances, i.e., the noise that occurs throughout the forecast horizon. It follows
that so called naive extrapolation will yield biased results and is not valid here. In
the face of this problem, Koop et al. (1996) proposed a numerical approximation
technique that produces the generalized impulse-response (GIR) functions. A GIR
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FIGURE 2. Transition function of the estimated VSTAR, with zt−1 as the transition vari-
able. The right-hand-side panel illustrates transition function in an ascending order of the
transition variable, where each dot corresponds to a value of the transition variable, zt−1,
on the horizontal axis.

for a horizon h, in the case of a given shock, υ ∈ ϒ , and history, ωt−1 ∈ �t−1, is
defined as a realization of a random variable:

GIRY (h,ϒ,�t−1) = E (Yt+h|ϒ,�t−1) − E (Yt+h|�t−1) , h = 0, 1, . . . ,

(14)
where ωt−1 denotes a point in time with initial conditions from the subset of
histories under consideration, and υt denotes the realization of an initial shock.

The goal of the exercise is to illustrate asymmetries in the dynamic responses
to financial and economic shocks. This paper follows a bootstrap resampling al-
gorithm, similar to that of Skalin and Teräsvirta (2002), extended to a multivariate
setting [e.g., Weise (1999)]. First, the overall model dynamics are illustrated using
100 randomly sampled histories (without replacement) from all 288 available
histories. For each sampled history, 100 pairs of initial shocks—i.e., shocks from
the same period, associated with each of the considered two equations—are ran-
domly sampled (with replacement) from the vectors of residuals of the estimated
VSTAR model. These shocks are sampled on the basis of the residuals that are
greater (less) than one positive (negative) residual standard deviation. In this
way, four distinct scenarios are generated. For each history-shock combination,
500 extrapolates of length equal to 24 (i.e., two years) are generated with and
without the initial shock, and using vectors of residuals that are randomly sampled
(with replacement) from the estimated VSTAR model. The extrapolates are then
averaged across all bootstrap iterations within each historyshock combination. A
difference of these averages yields the GIR associated with a particular history and
initial shock. Given 100 considered histories, and 100 initial shocks per history, a
total of 10,000 GIRs are obtained for each scenario considered (i.e., with positive
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FIGURE 3. Generalized impulse-responses. The GIR functions are generated from 100
randomly sampled histories. Bar-plots denote 50% (dark shade of gray) and 80% (light
shade of gray) highest density regions for the GIR densities for h = 1, . . . , 24. The top
panel features two pairs of plots representing impulse-responses after positive (top) and
negative (bottom) NAI shocks. The bottom panel features two pairs of plots representing
impulse-responses after positive (top) and negative (bottom) FSI shocks.

and negative economic and financial shocks). They are illustrated in Figure 3 using
the highest density region plots of Hyndman (1995, 1996).

Several features are apparent. First, the impulse-responses tend to converge to a
spike, which is indicative of stability of the estimated VSTAR model. Second, there
is little evidence of economic shocks manifesting in economically meaningful and
statistically significant responses in the financial sector; the financial shocks, how-
ever, appear to have some, albeit marginal, effect on the economic activity. Third,
the sign-specific asymmetries are apparent, particularly, when examining the NAI
responses to FSI shocks: On average, a negative shock in the financial sector

https://doi.org/10.1017/S1365100516001127 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516001127


SHOCKS AND ASYMMETRIES IN ECONOMIC DYNAMICS 93

−1 0 1 2 3 4 5 6

−
4

−
3

−
2

−
1

0
1

FSI

N
A

I

FIGURE 4. Scatter-plot of the financial stress and the national activity indices. The black
filled dots identify the co-occurrence of the economically and financially “stressed” condi-
tions, whereas the gray filled dots represent histories associated with the “normal” regime.

results in a better economic performance, but the opposite does not necessarily
appear to be true. In either case, the effects appear to be modest.

The foregoing exercise might be camouflaging a potentially strong causal rela-
tionship between the financial and economic variables in stressed conditions. That
is, history-specific asymmetries are a likely feature of the nonlinear model [see
also Jones and Enders (2016)]. To consider this possibility, GIRs are generated
for histories coinciding with the periods when the financial stress index is greater
than unity and, simultaneously, the NAI is less than negative unity (recall, the
indices are constructed so that their standard deviations are equal to one). These
histories evidently represent the stressed regime. Alternatively, the normal regime
is defined when the absolute values of both indices are less than 0.5 (see Figure 4).
The stressed regime contains a total of 18 histories, and all of them are used
in the impulse-response analysis. For purposes of comparison, another set of 18
histories are randomly sampled from the pool of histories associated with the
normal regime. The rest of the procedure is the same as before. The results of this
exercise are presented in Figures 5 and 6.

Several additional features emerge from these figures. First, there is clear ev-
idence of history-specific asymmetries: The GIRs are more amplified during the
stressed conditions, as compared with their values under the normal regime. Of
particular interest are responses to economic shocks. Although the financial stress
index is essentially nonresponsive to shocks during normal times, the picture
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FIGURE 5. Generalized impulse–responses during normal conditions. The GIR functions
are generated from 18 randomly sampled histories of the normal regime. Bar-plots denote
50% (dark shade of gray) and 80% (light shade of gray) highest density regions for the
GIR densities for h = 1, . . . , 24. The top panel features two pairs of plots representing
impulse-responses after positive (top) and negative (bottom) NAI shocks. The bottom panel
features two pairs of plots representing impulse-responses after positive (top) and negative
(bottom) FSI shocks.

changes dramatically under the stressed conditions, when GIRs of the financial
stress index are greatly amplified during the first year following the shock (top-
right panel). This effect is partly due to more amplified responses to own shocks in
the NAI (top-left panel). Second, the previously noted sign-specific asymmetries
are more apparent here. This is particularly true in the case of dynamic responses to
FSI shocks; In this case, there are bimodal densities of GIRs at intermediate hori-
zons. The regime-dependent nonlinear dynamics is also brought out clearly here,
as we observe the regime switch from stressed to normal conditions, associated
with a dramatic improvement in economic activity.
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FIGURE 6. Generalized impulse-responses during stressed conditions. The GIR functions
are generated from 18 histories of the stressed regime. Bar-plots denote 50% (dark shade
of gray) and 80% (light shade of gray) highest density regions for the GIR densities for
h = 1, . . . , 24. The top panel features two pairs of plots representing impulse-responses
after positive (top) and negative (bottom) NAI shocks. The bottom panel features two
pairs of plots representing impulse-responses after positive (top) and negative (bottom) FSI
shocks.

The asymmetries revealed by the generalized impulse-response analysis testify
to the existence of clear nonlinear dynamics in the system of financial stress and
national activity indices. The results are in accord with other related studies that
apply similar financial and economic variables in a nonlinear setting [e.g., Davig
and Hakkio (2010), Mittnik and Semmler (2013), Hubrich and Tetlow (2015)].
In particular, there is evidence of more amplified positive responses in economic
performance after negative financial shocks during stressed conditions. This is
in agreement with the findings of Mittnik and Semmler (2013) and Schleer and
Semmler (2015), suggesting that indeed, there is a good chance that regulation
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policies designed to reduce financial stress might be particularly effective during
stressed conditions. In turn, the financial sector is responsive to economic shocks
during stressed conditions—a phenomenon that is absent during normal condi-
tions, however. This finding is also consistent with Schleer and Semmler (2015),
who find that for a majority of considered European countries, nonlinear modeling
establishes causality from economic to financial sectors, which is camouflaged in
a linear setting. These results illustrate the adequacy of nonlinear modeling. To
see whether this also translates to an improved out-of-sample fit, I now turn to a
forecasting exercise.

3.3. Forecast Evaluation and Granger Causality

This paper uses a rolling window approach to obtain P one-step-ahead forecasts.
The first estimation window starts in January 1991 and ends in December of
2009. Every successive window is rolled over by one month, resulting in 59
one-step-ahead forecasts from each considered model. The forecasting exercise is
intentionally designed so that every estimation window contains the high-financial-
stress/low-economic-activity period of 2008–2009. The linearity test is carried out
in each rolling window, using the first four lags of the financial stress index as
candidate transition variables. In all instances, the first lag of the financial stress
index turned out to be the suitable transition variable. Four models are estimated in
each rolling window: the linear autoregressive and vector autoregressive models,
i.e., equations (1) and (4); the VSTAR model, i.e., equation (5); and the STAR
model, i.e., equation (2). Note that the NAI is modeled as some function of the
financial stress index in all these models, except for the linear autoregression.
Moreover, because the univariate STAR model incorporates the financial stress
index, the latter is implicitly assumed to be weakly exogenous. The aim is to
maintain some features of the VSTAR model, but to fit a more “parsimonious”
model, one featuring a simplified representation of the channel through which the
financial stress index can affect the dynamics of the NAI. Under this procedure,
the one-step-ahead forecasts are obtained based on the information set and the
parameter estimates of all four models.

The results of this forecasting exercise are presented in Table 3. The table
features the absolute and relative measures of root mean squared forecast errors
(RMSFEs) from each considered model. The forecast accuracy measures suggest
improved predictability of the NAI when the financial stress index is incorporated
into the regression, be that in a linear or nonlinear manner. That is, there is strong
out-of-sample evidence that the financial stress index does Granger cause to the
NAI. Of all models considered, the VSTAR performs the best. In particular, it
statistically significantly improves forecast accuracy relative to STAR and VAR
models. The finding leads to the main takeaway of this study: The financial
stress index facilitates improved forecasting of economic activity, and nonlinearity
matters in identifying such causal relationship.
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TABLE 3. Forecast evaluation and out-of-sample Granger
causality

AR STAR VAR VSTAR

AIC 4.244 4.150 4.037 4.012
δ̂i 0.437 0.416 0.421 0.407
δ̂i/δ̂AR 0.952∗,† 0.963† 0.932∗†

δ̂i/δ̂STAR 0.979
δ̂i/δ̂VAR 0.968∗†

Notes: AIC denotes the average AIC across rolling windows; the AIC measures
are calculated as ln (SSR) + 2k/R, where SSR is sum of squared residuals, k is
total number of estimated parameters, and R is the length of time series used in
estimation. Further, δ̂i , i = {AR, STAR, VAR, VSTAR}, denotes the root mean
squared forecast error; δ̂i /δ̂j , j = {AR, STAR, VAR}, are the ratios of the root
mean squared errors from the competing models, i.e., the relative accuracy mea-
sures. Finally, ∗ and † denote statistical significance at α = 0.05 level, respectively,
based on the DM test statistic and McCracken’s critical values in the former case,
and the CW test statistic and standard normal critical values in the latter case.

4. CONCLUSION

There has been a growing interest in examining the relationship between financial
and economic variables, particularly in a nonlinear framework. Nonlinearity has
long been recognized as a characteristic feature of business cycles [e.g., Teräsvirta
and Anderson (1992)], and more recently a series of studies have adopted vari-
ous nonlinear modeling techniques to better interpret the nontrivial dynamics in
financial and economic sectors [Davig and Hakkio (2010), Mittnik and Semmler
(2013), Hubrich and Tetlow (2015), Schleer and Semmler (2015), Jones and En-
ders (2016)]. This study contributes to the existing literature by applying VSTAR
framework to the US financial stress and national activity indices, and more impor-
tantly, by extending the nonlinear model evaluation in a forecasting environment.

The findings of this research, by and large, are in accord with and complement
those of the aforementioned studies. The specific results here suggest that dynamics
vary considerably across the normal and the volatile regimes: Both financial and
economic variables are more responsive to shocks during the stressed conditions
compared to the normal regime. From the forecasting standpoint, the findings of
this exercise support the hypothesis that financial stress Granger causes economic
performance, and the effect is most apparent when the nonlinearity in the system
of equations is accounted for.

An out-of-sample forecast comparison was performed for the period after the
most recent recession. This was done in order to address identification, that is,
to obtain a sufficiently large amount of observations in the volatile regime. The
downside of this procedure is that most of the forecast accuracy measures are
assessed in the normal regime (i.e., the stable period following the global financial
crisis). Even so, the benefits of nonlinear modeling are clearly evident, as a more

https://doi.org/10.1017/S1365100516001127 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516001127


98 DAVID UBILAVA

proper allowance for the nonlinear dynamics that are present in the data, has led
to more accurate forecasts.

NOTES

1. A special case of this functional form is the threshold autoregressive (TAR) model pioneered by
Tong and Lim (1980). For this special case, the transition function becomes, in essence, an indicator
function.

2. Schleer and Semmler (2015) applied similar measures of financial stress in the euro area.
3. In addition, the univariate STAR model also yielded qualitatively similar parameter estimates,

which, for the sake of brevity, are not presented here.
4. A somewhat more flexible version would imply that the smoothness and location parameters,

and thus the transition functions, are not restricted to be the same across the equations. A preliminary
analysis suggested that there were hardly any benefits (or qualitative differences) in such specification,
as compared to the currently specified model. Hence, the VSTAR with a common transition function
was maintained.
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