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Characterising line fountains
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(Received 4 August 2008 and in revised form 23 October 2008)

We present analytical solutions for the initial rise height zm of two-dimensional
turbulent fountains issuing from a horizontal linear source of width 2b0 into a
quiescent environment of uniform density. Using the initial rise height prediction
as a measure we classify line fountains into three types depending on their source
conditions. For source Froude numbers Fr0 � 1, the near-source flow of the ‘forced’
fountain is dominated by source momentum flux and behaves like a jet; the asymptotic
solution to the fountain equations yields, in agreement with previous studies,
zm/b0 ∼ Fr4/3

0 . For Fr0 =O(1) the fountain is ‘weak’ and fluid is projected vertically to
a height that is consistent with an energy-conserving flow – the sensitivity of the rise
height with Fr0 increases as zm/b0 ∼ Fr2

0. For Fr0 � 1, the fountain is ‘very weak’ and

we find that zm/b0 ∼ Fr2/3
0 . As the local value of the Froude number decreases with

height, all three forms of fountain behaviour identified are expected above a highly
forced source and we provide scalings for the three lengths that contribute to the
total rise height. Comparisons between our predicted rise heights and the previous
experimental results show good agreement across a wide range of Fr0. The collated
data highlights that experiments have focused in the majority on fountains above
sources with intermediate Fr0. Notably there is a lack of measurements on very weak
line fountains and of independent experimental confirmation of the initial rise heights
across the range of Fr0.

1. Introduction
The question of determining the rise height of turbulent fountains, that is the

continuous vertically-forced supply of negatively buoyant fluid upwards from a
localized source into a less-dense quiescent unbounded environment, was raised
and examined by Turner (1966). Campbell & Turner (1989) and Baines, Turner &
Campbell (1990) expanded Turner’s investigations of circular sources to consider
releases from a long horizontal line source. The resulting line fountain is assumed
to be two-dimensional as variations in the longitudinal direction are typically weak.
Fluid is projected upwards due to the source momentum flux. The momentum flux
is reduced locally in the rising fluid by the action of the opposing buoyancy force
until the fluid reverses direction and falls back towards the source. This downflow
retards subsequent upflowing fluid, resulting in the rise height decreasing from the
initial maximum. Figure 1 shows a schematic illustration of a line fountain.

Line fountains occur, or are generated, across a range of physical scenarios and
engineering applications. For example, air curtains (Guyonnaud et al. 2000) created
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Figure 1. Schematic illustration of a line fountain. (a) The fountain head initially rises to a
maximum height (zm) before settling back and intermittently switching between two ‘steady’
heights; (b) zss1 and (c) zss2 . The notation ‘m’, ‘ss1’ and ‘ss2’ is used to distinguish between
rise heights.

by injecting warm air downwards are commonly used in tunnels and shop entrances
as a means of segregating regions of fluid. A row of closely spaced axisymmetric
fountains may be approximated as a line fountain (Baines et al. 1990) as, for example,
in underfloor air distribution systems where the aim is to provide replacement cool
air from horizontal vents at floor level (Liu & Linden 2006). A consequence of a
thermal or fire plume (Cooper 1988) in a room is the projection of buoyant fluid
downwards, as a line fountain, when the ceiling current impinges on the sidewall – the
characteristics and subsequent penetration of this fountain depending on the room
aspect ratio (Kaye & Hunt 2007).

Baines et al. (1990) presented experimental results describing ‘forced’ line fountains,
that is fountains with a large momentum flux at the source relative to the source
buoyancy flux. They showed that a symmetrical downflow with fluid moving equally
down each side of the upflowing region is not generally maintained (figure 1). Instead,
the fountain head is unstable and fluctuates between the extremes of a symmetrical
downflow and an asymmetrical downflow in which the downflowing fluid is confined
to one side of the line source. During periods of asymmetrical downflow a significant
decrease in the fountain height was observed. Baines et al. (1990) noted that the flow
appeared to switch randomly between the two states and as such no time scale for
the cycle could be ascertained.

Measurements of the initial (maximum) height of the forced line fountain (zm) were
shown to scale on the source momentum jet length (LM (z = 0) ≡ LM0), i.e.

zm ∼ LM0 ∼ M0F
−2/3
0 , (1.1)

where M0 and F0 are the source momentum flux per unit length and buoyancy flux
per unit length, respectively. Assuming a uniform velocity profile at the source (1.1)
can be written in terms of a source Froude number (Fr0 = w0/

√
b0g

′
0) as

zm

b0

∼ Fr4/3
0 = 22/3

(
M3

0

Q3
0F0

)2/3

, (1.2)

where Q0 is the source volume flux per unit length and w0, b0 and g′
0 = g(ρ0 − ρa)/ρa

are the source vertical velocity, half-width and reduced gravity, respectively. The
densities ρ0 and ρa are those of the source and ambient, respectively. Based on an
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Figure 2. The rise height ζm as a function of Γ ′
0 from (2.8). The numerical solution of (2.8)

(solid line) is shown together with the forced fountain asymptotic solution (2.13) (dotted
line) and the weak fountain asymptotic solution (2.16) (dashed line). Also plotted are the
experimental data of Campbell & Turner (1989, � , ss1), Baines et al. (1990, �, m; �, ss1
and �, ss2) and Zhang & Baddour (1997, �, m). The faint grey symbols show the shift in
the Baines et al. (1990) data achieved by doubling their Fr0 (cf. (1.4)). The inset figure is an

enlargement of the small Γ ′
0 region (with linear axes), the dash-dot line ζss2 = 0.23Γ

′−2/3
0 is a

least-squares fit to �.

empirical fit to their data, Baines et al. (1990) gave

zm

b0

= 0.65Fr4/3
0 for 5 � Fr0 � 1000. (1.3)

We have been made aware (Kerr & Turner 2008) that an error (resolved by replacing
Fr0 with 2Fr0) may exist in the scaling and presentation of data by Baines et al.
(1990), and that the true scaling (cf. (1.3)) should read

zm

b0

= 0.65(2Fr0)
4/3 ≈ 1.64Fr4/3

0 . (1.4)

This result is consistent with the rise heights obtained by Bloomfield & Kerr (1998)
for an unstratified environment using the same experimental rig as used by Baines
et al. (1990). Whilst this supports the possibility of an error and brings the results of
Baines et al. (1990) in line with other measurements it is not possible to substantiate
the error directly from their published work. The data as recorded by Baines et al.
(1990) and on accounting for the error are shown in figure 2.

Zhang & Baddour (1997) also measured the rise heights of line fountains but for
weaker fountains towards the lower end of the Froude number range considered
by Baines et al. (1990). Zhang & Baddour (1997) generated fountains by forcing
fluid through slots of varying aspect ratios. Their experimental data supported the
4/3-power law, with

zm

b0

= 2.0Fr4/3
0 for 6.5 � Fr0 � 113, (1.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

51
44

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008005144


320 G. R. Hunt and C. J. Coffey

i.e. rise heights over three times those of Baines et al. (1990) based on (1.3), or closer
to 20 % based on (1.4). The differences in the source geometry used by these authors
may account for part of this variation. By generating fountains using a row of closely
spaced circular holes, the near-source axisymmetric flows of the Baines et al. (1990)
fountains would be expected to have greater entrainment and thus lead to a lower
rise height than for a fountain from an actual line source such as a slot. The disparity
between the rise heights of Baines et al. (1990) and Zhang & Baddour (1997), both
measured by eye and from nozzles of similar scales, highlights the sensitivity of
fountain behaviour to the method of generation. Of note is the lack of independent
corroboration of fountain rise height measurements and limited overlap between the
various authors’ range of measurements (see figure 2).

For even smaller values of the source Froude number, Zhang & Baddour (1997)
argued that an alternative scaling was required as the buoyancy flux dominates in
the near-source flow of these ‘weaker’ fountains. They presented two models. In the
first, they assumed the fountain was equivalent to that which develops from a virtual
source of momentum flux M0 and buoyancy flux F0 only. Dimensional arguments
suggest the distance zv between the virtual and real sources scales as zv/b0 ∝ Fr2/3

0

and, based on an empirical fit,

zm

b0

= 2.0Fr4/3
0 − zv

b0

=
(
2.0 − 1.12Fr−2/3

0

)
Fr4/3

0 for 0.62 � Fr0 � 6.5. (1.6)

This reduces to (1.5) for large Fr0. The origin correction reduces the fountain rise
height significantly across the range of Fr0 considered, though not enough to account
for the discrepancy between (1.3) and (1.5). Zhang & Baddour (1997) also discussed
an alternative scaling based on the time for the fountain to reach the maximum rise
height tm ∼ M0/F0. Taking the characteristic vertical velocity as w0, they argued that
zm ∝ w0tm ∝ (M0/Q0)(M0/F0) ∝ b0Fr2

0, and a fit to their experimental data gave

zm

b0

= 0.71Fr2
0 for 0.62 � Fr0 � 6.5. (1.7)

Lin & Armfield (2000) also consider ‘weak’ line fountains. Their dimensional
considerations for Fr0 = O(1) and small values of the source Reynolds number
Re0 = w0b0/ν, where ν is the kinematic viscosity, led to zm/b0 ∼ Fr0/

√
Re0, whereas

for sufficiently large values of the source Reynolds number

zm

b0

∼ Fr4/3
0 , (1.8)

i.e. the same power-law dependence as (1.2).
For very weak fountains, i.e. Fr0 � 1, the effect of viscosity was deemed important

and Lin & Armfield (2000) determined that, in this regime, the rise height scalings
are the same as for the axisymmetric fountain with zm/b0 ∼ (Fr0/Re0)

2/3. Numerical
simulation suggested that at Re0 = 200

zm

b0

≈ 1.88Fr2/3
0 . (1.9)

There is clearly some discrepancy in the literature regarding the rise height of
line fountains and in the ranges of source Froude numbers for which the resulting
fountains may be regarded as ‘forced’, ‘weak’ or ‘very weak’. To an extent this has
been compounded by the challenges in experimentally producing line fountains with
constant and uniform conditions per unit length, and of consistently measuring the
rise height of the inherently unstable fountain head.
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Herein, we consider turbulent line fountains across the entire range of Fr0. Our
objective is to classify line fountains based on the relative magnitudes of the source
fluxes and the corresponding rise height scalings. Following Kaye & Hunt (2006) we
recast in § 2 the conservation equations of Morton, Taylor & Turner (1956) for line
fountains in terms of a Richardson number (Γ ) and a dimensionless fountain width
(β). Their asymptotic solutions reveal the scalings for the rise heights and these are
validated by comparisons with existing experimental and numerical data. We then
consider the transitional behaviour with height within a fountain from a highly forced
source. In § 3 we present our conclusions.

2. Analytical solutions for the initial rise height

Assuming Gaussian profiles for the vertical velocity w(z, x) = wme−x2/b2

and reduced
gravity g′(z, x) = g′

me−x2/b2

, the conservation equations for a constant buoyancy flux
plume from a horizontal line source at z = 0 in a quiescent uniform environment may
be written in terms of the fluxes per unit length of volume (Ql = π1/2bwm), momentum
(Ml = (π/2)1/2bw2

m) and buoyancy (Fl = (π/2)1/2bg′
mwm) as (Hunt & Kaye 2001)

dQl

dz
= 23/2α

Ml

Ql

,
dMl

dz
=

QlFl

Ml

,
dFl

dz
= 0, (2.1)

where b is the fountain half-width (taken as the value of x at which the velocity is
1/e of its centreline value wm) and α is the entrainment coefficient.

The conservation equations (2.1) may be expressed in terms of a Richardson number
Γl describing the relative magnitudes of the fluxes Ql , Ml and Fl at a height z (Hunt
& Kaye 2001; Kaye & Hunt 2006) and a dimensionless width β of the plume:

Γl = 2−3/2α−1
jet

Q3
l Fl

M3
l

= 2−1/2α−1
jetFr−2

l , β =
Q2

l

Ml

M0

Q2
0

=
b

b0

. (2.2)

Here αjet (≈ 0.0515, see, for example, Kotsovinos & List 1977) denotes the entrainment
coefficient for a line jet. In terms of Γl and β the conservation equations (2.1) become

dΓl

dζ
= 3

Γl

β
(φ − Γl) ,

dβ

dζ
= 2φ − Γl, (2.3)

where the vertical coordinate is scaled on the source width such that ζ =
23/2αjetM0Q

−2
0 z = 21/2αjet (z/b0). The parameter φ = α/αjet introduced as the entrain-

ment coefficient for line fountains is not well understood and is unlikely to be
independent of height, however, we expect φ = O(1).

The source Richardson number for fountains Γ0 ≡ Γl(ζ = 0) < 0, as F0/M0 < 0, and
for convenience we introduce Γ ′

l = −Γl > 0. The governing equations (2.3) are then

dΓ ′
l

dζ
= 3

Γ ′
l

β
(φ + Γ ′

l ),
dβ

dζ
= 2φ + Γ ′

l , (2.4)

and the fountain source conditions Ql = Q0, Ml =M0 and Fl = F0 at z =0 reduce to

Γ ′
l = Γ ′

0, β = 1 at ζ = 0. (2.5)

Solving (2.4) subject to (2.5) yields β in terms of Γ ′
l ,

β =

(
Γ ′

l

Γ ′
0

)2/3 (
φ + Γ ′

0

φ + Γ ′
l

)1/3

. (2.6)
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Substituting (2.6) into (2.4) yields the variation of Γ ′
l with height so that

dΓ ′
l

dζ
= 3

Γ ′
0
2/3

(φ + Γ ′
0)

1/3
Γ ′

l

1/3
(φ + Γ ′

l )
4/3. (2.7)

We expect the fountain to reach its initial maximum height ζm when Γ ′
l → ∞ (and

β → ∞, see (2.6)), thus

ζm =
1

3

(φ + Γ ′
0)

1/3

Γ ′
0
2/3

∫ ∞

Γ ′
0

Γ ′
l

−1/3
(φ + Γ ′

l )
−4/3 dΓ ′

l . (2.8)

Figure 2 shows the numerical solution of (2.8) with φ = 1 obtained using an adaptive
Simpson quadrature. Expanding the integrand in (2.8) we obtain the following small
and large Γ ′

l limits which are used in § § 2.1 and 2.2:

Γ ′
l

−1/3
(φ + Γ ′

l )
−4/3 =

{
Γ ′

l
−1/3

φ−4/3 + OΓ ′
l →0

(
Γ ′

l
2/3

)
Γ ′

l
−5/3 + OΓ ′

l →∞
(
Γ ′

l
−8/3

) . (2.9)

2.1. Highly forced fountains (Γ ′
0 � 1)

For small values of Γ ′
l the fountain is highly forced and behaves like a jet. It is

therefore reasonable to make (in (2.8)) the approximation φ + Γ ′
l ≈ φ ≈ 1 as α ≈ αjet .

The error associated with this approximation as Γ ′
l → 0 is given in (2.9). The value

of Γ ′
l increases with ζ , thus, this approximation will not be valid over the entire rise

height and will fail once Γ ′
l � Γ ′

lim, where Γ ′
lim denotes some limiting value of Γ ′

l .
Using approximation (2.9) for the near-field region allows the initial rise height ζm

(2.8) to be expressed as

ζm ≈ 1

3

1

Γ ′
0
2/3

(∫ Γ ′
lim

Γ ′
0

Γ ′
l

−1/3
dΓ ′

l + I

)
where I = φ1/3

∫ ∞

Γ ′
lim

Γ ′
l

−1/3
(φ + Γ ′

l )
−4/3 dΓ ′

l .

(2.10)
Evaluating the first integral yields

ζm ≈ 1

2Γ ′
0
2/3

[
Γ ′

lim

2/3 − Γ ′
0
2/3

+
2I

3

]
. (2.11)

As Γ ′
lim/Γ ′

0 � 1,

ζm ≈ 1

2

[
Γ ′

lim

2/3
+

2I

3

]
Γ ′

0
−2/3 ∝ Γ ′

0
−2/3

(2.12)

and a fit to the full numerical solution of (2.8) gives

ζm ≈ 0.67Γ ′
0

−2/3
for Γ ′

0 � 1. (2.13)

Figure 2 shows the asymptotic solution (2.13) for the initial rise height (ζm) plotted
with the experimental data of Campbell & Turner (1989, �, ss1), Baines et al. (1990,
�, m), both extracted from figure 14 in Baines et al. (1990) and Zhang & Baddour
(1997, �, m). Equation (2.13) may be expressed in terms of the source Froude number
as

zm

b0

≈ 0.60α
−1/3
jet Fr4/3

0 ≈ 1.61Fr4/3
0 (2.14)

which lies between (1.3) and (1.5). In fact (1.3) was calculated by Baines et al. (1990)
based on a fit to data that included measurements of the two steady-state rise heights
ζss1 and ζss2 (shown as ◦ and �, respectively, in figure 2). As ζss1 and ζss2 are typically
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less than ζm the inclusion of this data will lead to a reduction in the constant of
proportionality. Restricting the fit to the data solely on the initial rise height gives

zm

b0

≈ 0.84Fr4/3
0 (2.15)

– marginally improved in comparison to Zhang & Baddour’s result (1.5) and to our
asymptotic solution (2.14).

We expect the steady rise heights ζss1 and ζss2 to follow the same scalings as ζm, i.e.
for {ζss1, ζss2} ∼ Γ ′

0
−2/3. The asymmetric case ζss2 provides the lower bound to the line

fountain’s possible rise height, thus fitting the available data (see the dash-dot line in
figure 2, inset) we expect the steady-state rise height of a forced line fountain ζss to
be bounded by 0.23Γ ′

0
−2/3 ≈ ζss2 � ζss � ζm ≈ 0.67Γ ′

0
−2/3

.

2.2. Weak fountains (Γ ′
0 � 1)

For weak line fountains Γ ′
l � φ and we may reasonably assume φ + Γ ′

l ≈ Γ ′
l (see

(2.9)). From (2.8) the initial rise height ζm is thus approximated using (2.9) by

ζm ≈ 1

3
Γ ′

0
−1/3

∫ ∞

Γ ′
0

Γ ′
l

−5/3
dΓ ′

l =
1

2
Γ ′

0
−1

. (2.16)

This is the same scaling as derived by Kaye & Hunt (2006) for axisymmetric fountains
and implies the initial rise height for weak fountains is independent of the entrainment
coefficient and scales on the square of the source Froude number. As with the
axisymmetric case, this scaling gives zm ∼ w2

0/g
′
0 suggesting that the source kinetic

energy is completely converted to potential energy and thus, energy is conserved.
Figure 2 shows the weak fountain asymptotic solution together with the full

numerical solution of (2.8). Based on our classifications, the majority of the data on
line fountain rise heights falls into a region of intermediate source Froude number
where the rise height behaviour is between ζm ∼ Γ

′−2/3
0 and ζm ∼ Γ ′−1

0 asymptotes.
The relative error ε = (dΓ ′

l /dζ )approx/(dΓ ′
l /dζ )exact |Γ ′

l =Γ ′
0
associated with our small and

large Γ ′
0 approximations can be used to estimate the value of Γ ′

0 for which the flow
will move from forced to weak behaviour on increasing Γ ′

0 (or indeed Γ ′
l ). We assume

that this transition occurs when relative errors are equal for both approximations.
From the asymptotic approximations for forced and weak cases (see §§ 2.1 and 2.2,
respectively), εforced = εweak requires (φ+Γ ′

0)
−1 = Γ ′

0(φ+Γ ′
0)

−1 and, thus, this transition
occurs for Γ ′

0 = 1. Whilst this forced-weak transition is based on the source value Γ ′
0 ,

we note that for a forced fountain source, this transition will occur at the height at
which Γ ′

l (ζ ) ≈ 1 is attained.

2.3. Very weak fountains (Γ ′
0 → ∞)

For very large values of Γ ′
l the width of the fountain may become large compared to

its vertical extent and the validity of the assumptions implicit in the plume equations
becomes questionable. The numerical data of Lin & Armfield (2000) suggest a different
scaling (1.9) may apply in this limit.

The very weak fountain limit we considered is indicated schematically in figure 3.
Fluid ejected vertically from the source with low momentum flux spills over the nozzle
with the rise height zss providing the pressure head and driving critical flow at x = b0.
No entrainment is expected and hence the velocity of the outflow may be expressed as
uout = cd

√
zcg

′
0, where 0 <cd � 1 is a dimensionless coefficient accounting for energy

losses due, for example, to the surface roughness and nozzle geometry (e.g. whether
a raised nozzle, figure 3a, or a flush nozzle, figure 3b). Conservation of volume
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Figure 3. Schematics of a very weak line fountain. (a) Raised nozzle. (b) Flush nozzle.
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Figure 4. zm/b0 vs Fr0 encompassing forced, weak and very weak source conditions. The
circles show the existing experimental data of figure 2. The squares show the numerical data of
Lin & Armfield (2000). The upper limit Fr0 ≈ 5.7 of the weak regime is included for illustrative
purposes and is the value at which weak and forced asymptotes intersect.

requires

Q0 = 2b0w0 = 2zcuout = 2cdg
′
0
1/2

z3/2
c . (2.17)

Applying Bernoulli’s theorem along the streamline marking the interface between the
fountain fluid and ambient, from x = 0 to x = b0, yields zc = (2/3)zss (see, for example,
White 2003). Rearranging (2.17) and substituting for zc yields

zss

b0

=
3

2

1

c
2/3
d

Fr2/3
0 . (2.18)

This analysis is analogous to that applied when modelling flow over a two-dimensional
weir (Batchelor 1967). Equation (2.18) leads to the initially counterintuitive result that
a decrease in cd (i.e. an increase in energy loss) results in an increase in the fountain
height. However, this must be the case as a volume flux b0w0 at x = b0 can only
be maintained as energy losses increase by raising the pressure head and hence the
height of the fountain.

Taking cd = 1, we have zss/b0 = 1.5Fr2/3
0 (cf. Lin & Armfield 2000), (1.9). To obtain

their constant value of 1.88 would require cd = 0.45. Figure 4 plots (2.18) together with
the numerical data of Lin & Armfield (2000, 	, ss1), showing a good comparison.
The transition from weak to very weak is shown graphically to occur at Fr0 ≈ 2.3
(Γ ′

0 ≈ 2.6).
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z

0 Γ0′
(a) Forced

Forced

Weak

Very weak
~Q2/F2

1/3

~M2
1/Q1F1

~M0/F0
2/3

(b) Weak

Weak

Very weak ~Q1/F1
1/3

~M2
0/Q0F0

(c) Very weak

Very weak ~Q0/F0
1/3

Figure 5. Summary of rise height scalings.

We may express (2.18) in terms of Γ ′
0 as

ζss =
3

22/3c
2/3
d

α
2/3
jet Γ

′−1/3
0 ≈ 0.26Γ

′−1/3
0 , (2.19)

assuming cd = 1 and αjet = 0.0515.

3. Discussion and conclusions
Following a method proposed by Kaye & Hunt (2006) for axisymmetric fountains

we have expressed the conservation equations for a turbulent line fountain in terms
of the local Richardson number Γ ′

l and fountain width β . The equations were solved
for the initial (maximum) rise height and three classes of fountain behaviour have
been identified – forced, weak and very weak. Figure 4 shows the initial rise height
plotted against the source Froude number (Fr0 ∼ Γ ′

0
−1/2) covering all three regimes and

summarizes the scalings expected in each. Also shown are the published experimental
results (◦) and the numerical results for the steady rise height of Lin & Armfield
(2000) (	). Generally good comparisons are seen, especially when considering the
innate difficulties in producing controlled line fountains with constant fluxes per unit
length under laboratory conditions (particulary for small source Froude numbers).

The rise height scalings for forced (zm ∼ M0/F
2/3
0 , from (2.13)), weak (zm ∼ M2

0/Q0F0,

from (2.16)) and very weak fountains (zm ∼ Q0/F
1/3
0 , from (2.19)) are summarized in

figure 5. For the highly forced fountain source we expect transition to weak fountain
behaviour for Γ ′

l (ζ ) ≈ 1. The length scale for this fraction of the total rise height

is ∼ M0/F
2/3
0 and is governed by the source momentum and buoyancy fluxes. The

subsequent vertical extent ∼ M2
1/Q1F1 of the weak component of the fountain depends

on the local fluxes of momentum, volume and buoyancy at the height of transition
(the subscript 1 denoting values at the first transition). The final component of the
total rise is the very weak fountain regime of extent ∼ Q2/F

1/3
2 (the subscript 2

denoting values at the second transition). Whilst this length scale was deduced by
considering fluid spilling over the edge of a nozzle in the near field (figure 3b), in the
far field of a highly forced fountain source (figure 5a), where the momentum flux is
sufficiently weak, Q2/F

1/3
2 is also expected to provide the characteristic length scale. It

is apparent then that the maximum rise height predicted in the literature for a highly
forced source and expressed as a multiple of the jet length (M0/F

2/3
0 ) agrees well

with measurements as M0/F
2/3
0 � {M2

1/Q1F1, Q2/F
1/3
2 }. This is evident from figure 6

which shows the fountain regime based on our classification as a function of Γ ′
0 and
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Initial rise height

Figure 6. The fountain regime as a function of Γ ′
0 and height above the source. The light grey

region highlights where the fountain is forced, the black region where the fountain is weak
and the dark grey region where the fountain is very weak.

height above the source. The light grey highlights the vertical extent over which the
fountain is forced, the black highlights where the fountain is weak and the dark grey
highlights where it is very weak. It is clear that, for fountains issuing from highly
forced sources, the forced regime is maintained over the vast majority of the entire
rise height. This suggests α = αjet is the appropriate entrainment coefficient over the
range of forced source conditions. Within both the black and grey regions our weak
and very weak fountain models predict rise heights independent of the choice of α.
Also clear from figure 6 is the limited region that the weak fountain regime occupies
in the {Γ ′

0, ζ} parameter space despite this region being the focus of many of the
experimental studies.

The analysis and classification presented has focused on fountains whose
development is independent of the source Reynolds number Re0. Williamson et al.
(2008) have shown that Re0 > 2000 is required to ensure fully turbulent flow in
axisymmetric fountains from circular sources. For Re0 < 120 the flow pattern observed
varies strongly with the source Reynolds number resulting in a departure from the
large Re0 scalings for rise height. It would be informative if a similar study was
performed for line fountains and our classification extended to low Re0 flows.

By bringing together all the available data on high-Reynolds-number line fountain
rise heights and comparing with the scalings derived from plume theory and from
a description of fluid spilling over a boundary, we have been able to predict the
fountain rise height over the complete range of source Froude number. The change
in the fountain behaviour with height deduced and in the characteristic length scales
over which these behaviours occur reveals a complex pattern of flow within the
fountain. We anticipate that this insight will assist in the development of improved
models for fountains.
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