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It is well known that many real world networks have a power-law degree distribution (the

scale-free property). However, there are no rigorous results for continuous-time quantum

walks on such realistic graphs. In this paper, we analyse the space–time behaviour of

continuous-time quantum walks and random walks on the threshold network model, which

is a reasonable candidate model having the scale-free property. We show that the quantum

walker exhibits localisation at the starting point, although the random walker tends to

spread uniformly.

1. Introduction

Continuous-time quantum walks, which are the quantum counterparts of classical random

walks, have been widely studied on various deterministic graphs, such as the line

(Konno 2005), star graph (Salimi 2009; Xu 2009), cycle graph (Ahmadi et al. 2003;

Inui et al. 2005; Mülken and Blumen 2006), dendrimers (Mülken et al. 2006), spidernet

graphs (Salimi 2010), the Dual Sierpinski Gasket (Agliari et al. 2008), the direct product of

Cayley graphs (Salimi and Jafarizadeh 2009), quotient graphs (Salimi 2008a), odd graphs

(Salimi 2008b), trees (Konno 2006a; Jafarizadeh and Salimi 2007) and ultrametric spaces

(Konno 2006b). For further information, see reviews such as Konno (2008) and Venegas-

Andraca (2008). There are also simulation-based studies of continuous-time quantum

walks on probabilistic graphs, such as small-world networks (Mülken et al. 2007) and the

Erdős–Rényi random graph (Xu and Liu 2008). However, there are no rigorous results

for continuous-time quantum walks on such probabilistic graphs. In this paper, we focus

on the continuous-time quantum walk on a random graph called the threshold network

model.

§ This work was supported by the Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion

of Science (Grant No. 21540118).
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Many real-world networks (graphs) are characterised by small diameters, high clustering

and power-law (scale-free) degree distributions (Albert and Barabási 2002; Newman 2003;

Boccaletti et al. 2006). The threshold network model belongs to the so-called hidden vari-

able models (Caldarelli et al. 2002; Söderberg 2002) and is known for being capable of gen-

erating scale-free networks. Their mean behaviour (Caldarelli et al. 2002; Söderberg 2002;

Boguñá and Pastor-Satorras 2003; Masuda et al. 2004; Servedio et al. 2004; Hagberg

et al. 2006; Fujihara et al. 2010) and limit theorems (Konno et al. 2005; Ide et al. 2007;

Fujihara et al. 2009; Ide et al. 2010a) for the degree, the clustering coefficients, the

number of subgraphs and the average distance have been analysed. The strong law of

large numbers and central limit theorem for the rank of the adjacency matrix of the model

with self-loops are given by Bose and Sen (2007). Eigenvalues and eigenvectors of the

adjacency matrix (Ide et al. 2010b) and the Laplacian matrix (Merris 1994; Merris 1998)

of the model have been studied. See also Mahadev and Peled (1995), Konno et al. (2005),

Masuda et al. (2005), Masuda and Konno (2006), Ide et al. (2007), Diaconis et al. (2009)

and Ide et al. (2010a) for related work.

This paper is organised as follows. We define the threshold network model and give

a brief review of the hierarchical structure of the graph in Section 2. In Section 3, we

define the continuous-time quantum walk on the threshold network model and a special

setting called the binary threshold model. The main results are presented in this section

and the proofs are given in Section 4, and results for continuous-time random walks on

the models are given in Section 5. Finally, we summarise our results in Section 6.

2. The threshold network model

The threshold network model Gn(X, θ) is a random graph on the vertex set

V = {1, 2, . . . , n}.

Let {X1, X2, . . . , Xn} be independent copies of a random variable X with distribution �.

We draw an edge between two distinct vertices i, j ∈ V if Xi + Xj > θ where θ ∈ �
is a constant called a threshold. From now on we will use �∞ as the distribution of

{Xi}∞
i=1.

Each sample graph G ∈ Gn(X, θ) has a hierarchical structure described by the so-called

creation sequence (Diaconis et al. 2009; Hagberg et al. 2006), which is defined as follows.

Let X(1) � X(2) � · · · � X(n) be a rearranged sequence of random variables X1, X2, . . . , Xn

in increasing order. If X(1) + X(n) > θ, we have

θ < X(1) + X(n) � X(2) + X(n) � · · · � X(n−1) + X(n),

which means that the vertex corresponding to X(n) is connected to the n−1 other vertices.

Otherwise, we have

θ � X(1) + X(n) � · · · � X(1) + X(3) � X(1) + X(2),

which means that the vertex corresponding to X(1) is isolated. We set sn = 1 or sn = 0

according to whether the former or latter case occurs. Then, depending on the case, we
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Fig. 1. A threshold graph G corresponding to SG = {1, 1, 0, 0, 1, 0, 1, 0}. V (1)
1 is a set of two vertices

located at the bottom right-hand corner. Similarly, V (0)
1 is a set of two vertices located at the

bottom left-hand corner, and so on.

remove the random variable X(n) or X(1), and then continue, using a similar procedure, to

define sn−1, . . . , s2. Finally, we set s1 = s2 and obtain a {0, 1}-sequence {s1, s2, . . . , sn}, which

is called the creation sequence of G and is denoted by SG.

Given a creation sequence SG, let ki and li denote the number of consecutive bits of 1’s

and 0’s, respectively, as follows:

SG = {
k1︷ ︸︸ ︷

1, . . . , 1,

l1︷ ︸︸ ︷
0, . . . , 0,

k2︷ ︸︸ ︷
1, . . . , 1,

l2︷ ︸︸ ︷
0, . . . , 0, . . . ,

km︷ ︸︸ ︷
1, . . . , 1,

lm︷ ︸︸ ︷
0, . . . , 0}. (2.1)

It may happen that k1 = 0 or lm = 0, but we have k2, . . . , km, l1, . . . , lm−1 � 1 and m � 1.

Moreover, by definition, we have two cases:

(a) k1 = 0 (equivalently, s1 = 0) and l1 � 2;

(b) k1 � 2 (equivalently, s1 = 1).

For example, if SG = {1, 1, 0, 0, 1, 0, 1, 0}, then k1 = 2, l1 = 2, k2 = 1, l2 = 1, k3 =

1, l3 = 1, and Figure 1 shows the shape of G.

The creation sequence SG gives rise to a partition of the vertex set:

V =

m⋃
i=1

V
(1)
i ∪

m⋃
i=1

V
(0)
i �V

(1)
i = ki , �V

(0)
i = li ,

where �A is the number of elements in a set A. The subgraph induced by V
(1)
i is the

complete graph (that is, every pair of vertices is connected) of ki vertices, and that induced

by V
(0)
i is the null graph (that is, the graph with no edges) of li vertices. Moreover, every

vertex in V
(1)
i is connected to, and every vertex in V

(0)
i is disconnected from, all vertices in

V
(1)
1 ∪ · · · ∪ V

(1)
i ∪ V

(0)
1 ∪ · · · ∪ V

(0)
i−1 .

In general, a graph possessing the above hierarchical structure is called a threshold graph

(Mahadev and Peled 1995).
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3. Our model and results

Let AG be the adjacency matrix and DG be the diagonal matrix of degrees (the sum

of the rows of AG) of G ∈ Gn(X, θ). The Laplacian matrix LG of G is then given by

LG = DG − AG. The time evolution operator UG
n,t of a continuous-time quantum walk on

G is defined by

UG
n,t = eitLG ≡

∞∑
k=0

(it)k

k!
Lk
G. (3.2)

Let {ΨG
n,t}t�0 be the probability amplitude of the quantum walk, that is,

ΨG
n,t = UG

n,tΨ
G
n,0,

and let Yn,t denote the position of the quantum walker at time t. The probability that the

quantum walker on G is in position y ∈ V at time t with initial condition ΨG
n,0 is then

defined by

PG
n,t(Yn,t = y) ≡ |ΨG

n,t(y)|2,

where ΨG
n,t = T

[
ΨG

n,t(1) · · · ΨG
n,t(n)

]
. In this paper, we use TA as the transpose of a matrix

A to distinguish between the transpose and the power of a matrix. From now on, we will

write PG
n,t(y) instead of PG

n,t(Yn,t = y) for simplicity.

The time evolution operator is obtained as follows.

Theorem 3.1. Suppose G ∈ Gn(X, θ) is connected. The time evolution operator UG
n,t of the

continuous-time quantum walk on G is given by

(
UG

n,t

)
v,w

=

⎧⎪⎪⎨
⎪⎪⎩
(
UG

n,t

)(1,i)

v,w
if v ∈ V

(1)
i , w ∈

{⋃i−1
j=1

(
V

(1)
j ∪ V

(0)
j

)}
∪ V

(1)
i

(
UG

n,t

)(0,i)

v,w
if v ∈ V

(0)
i , w ∈

⋃i
j=1

(
V

(1)
j ∪ V

(0)
j

)
.

Here Av,w denotes the (v, w) element of a matrix A and

(
UG

n,t

)(1,i)

v,w
=

(
I{v}(w) − 1

Dki − Dli + 1

)
eit(Dki

+1)

+

m∑
j=i+1

(Dlj−1
− Dlj )e

it(Dkj
+1)

(Dkj − Dlj−1
+ 1)(Dkj − Dlj + 1)

+

m−1∑
j=i

(Dkj+1
− Dkj )e

itDlj

(Dkj − Dlj + 1)(Dkj+1
− Dlj + 1)

+
1

n
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(
UG

n,t

)(0,i)

v,w
=

(
I{v}(w) − 1

Dki+1
− Dli + 1

)
eitDli

+

m∑
j=i

(Dlj−1
− Dlj )e

it(Dkj
+1)

(Dkj − Dlj−1
+ 1)(Dkj − Dlj + 1)

+

m−1∑
j=i+1

(Dkj+1
− Dkj )e

itDlj

(Dkj − Dlj + 1)(Dkj+1
− Dlj + 1)

+
1

n
.

Where Dki and Dli denote the degrees of the vertices in V
(1)
i and V

(0)
i , respectively, and

IA(x) is the indicator function of a set A, that is, IA(x) = 1 if x ∈ A and IA(x) = 0

otherwise.

Because UG
n,t is a symmetric matrix, Theorem 3.1 covers all elements of the matrix.

Theorem 3.1 shows that we can, at least in principle, obtain the probability of the

quantum walker in position y ∈ V at time t for any initial conditions. However, in general

it is hard to obtain the probability. In this paper, we analyse the behaviour of quantum

walks starting from a vertex v, that is, for

Ψn,0(s) =

{
1 if s = v

0 otherwise.

Theorem 3.2. Suppose G is connected. The limit of the probability of the quantum walker

starting from a vertex v ∈ V (1)
m is given by

lim
n→∞

PG
n,t(y) =

{
1 if y = v

0 otherwise.

Because PG
n,t does not converge for t → ∞, we study the time-averaged probability P̄ G

n (y)

defined by

P̄ G
n (y) = lim

T→∞

1

T

∫ T

0

PG
n,t(Xn,t = y)dt.

Theorem 3.3. Suppose G ∈ Gn(X, θ) is connected. The time-averaged probability P̄ G
n (y) of

the quantum walker on G starting from a vertex v ∈ V (1)
m is

P̄ G
n (y) =

{(
1 − 1

n

)2
+ 1

n2 if y = v
2
n2 otherwise.

If we consider graphs containing vertices with degree n− 1, then, as long as we start from

the vertex, we obtain the same results as Theorems 3.2 and 3.3. These results state that a

strong localisation occurs at the starting point. An interesting problem for future work is

to find intuitive insights explaining this localisation; we are currently studying an extension

to the general starting point. But if we consider a special setting of the model discussed

in the next paragraph, we can obtain the transition probabilities for any starting points.
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In order to study more detailed properties of the quantum walk on the model, we

focus on the threshold network model Gn(X, θ) defined by Bernoulli trials with success

probability p ∈ (0, 1), that is, �(X = 1) = 1−�(X = 0) = p, and a threshold θ ∈ [0, 1). We

call this model the binary threshold model Gn(p). For each G ∈ Gn(p), that is, realisation

G of Gn(p), we consider the following partition of the vertex set V :

V = V
(1)
G ∪ V

(0)
G , V

(1)
G = {i : Xi = 1}, V

(0)
G = {i : Xi = 0}.

It is easy to see that the subgraph induced by V
(1)
G is the complete graph on kG ≡ �V

(1)
G

vertices, and the subgraph induced by V
(0)
G is the null graph on lG ≡ �V

(0)
G vertices.

Moreover, every vertex in V
(1)
G is connected to all vertices in V

(0)
G . Note that this is the

case of m = 2, k1 = l2 = 0, k2 = kG and l1 = lG in Equation (2.1).

The time evolution operator of the continuous-time quantum walk on the binary

threshold model is obtained as follows.

Theorem 3.4. The time evolution operator UG
n,t of the continuous-time quantum walk on

G ∈ Gn(p) is given by

UG
n,t =

[
UkG,kG UkG,lG

UlG,kG UlG,lG

]
.

The elements of UG
n,t are

UkG,kG = eintIkG +
1 − eint

n
1kG,kG

UkG,lG =
1 − eint

n
1kG,lG

UlG,kG =
1 − eint

n
1lG,kG

UlG,lG = eikGtIlG +

(
1

n
+

kGe
int

nlG
− eikGt

lG

)
1lG,lG ,

where 1i,j is the i × j matrix consisting of only 1, and Ii is the i × i identity matrix.

On the binary threshold model, a strong localisation is observed at any starting point

as follows.

Proposition 3.5. The limit of the probability of the quantum walker starting from a vertex

v ∈ V is given by

lim
n→∞

PG
n,t(y) =

{
1 if y = v

0 otherwise
for �∞-almost every G.

Note that if the quantum walker starts from a vertex v ∈ V
(1)
G , the statement of

Proposition 3.5 is the same as Theorem 3.2.
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The time-averaged probability of the quantum walker on the binary threshold model is

obtained as follows.

Proposition 3.6. The time-averaged probability P̄ G
n (y) of the quantum walker on G ∈ Gn(p)

starting from a vertex v ∈ V
(0)
G is given by

P̄ G
n (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − 1

lG

)2

+
(

kG
nlG

)2

+ 1
n2 if y = v

1
l2G

+
(

kG
nlG

)2

+ 1
n2 if y ∈ V

(0)
G \ {v}

2
n2 otherwise.

Note that when the quantum walker starts from a vertex v ∈ V
(1)
G , we can use

Theorem 3.3.

4. Proofs

The Laplacian matrix LG of G ∈ Gn(p) is given by

LG =

[
nIkG − 1kG,kG −1kG,lG

−1lG,kG kIlG

]
.

The eigenvalues and eigenvectors of LG are known (Hagberg et al. 2006; Merris 1994;

Merris 1998), and are as follows:

eigenvalue eigenvectors

n vj ≡ 1√
j(j+1)

⎡
⎣ 1j,1

−j

0n−j−1,1

⎤
⎦ (1 � j � kG − 1),

vkG ≡ 1√
nkGlG

[
lG1kG,1

−kG1lG,1

]

kG wj ≡ 1√
j(j+1)

⎡
⎢⎢⎣

0kG,1
1j,1
−j

0lG−j−1,1

⎤
⎥⎥⎦ (1 � j � lG − 1)

0 wlG ≡ 1√
n

[
1n,1

]
,

where 0i,j is the i × j zero matrix. Note that the set of these eigenvectors forms an

orthonormal basis of �n. Thus we can define an orthogonal matrix BG corresponding to

the eigenvectors as follows:

BG =
[
v1 . . . vkG w1 . . . wlG

]
. (4.3)
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Because UG
n,t is an n × n (finite) matrix, using Equations (3.2) and (4.3), it can be

represented by

UG
n,t = BG

⎡
⎢⎣
eintIkG 0kG,lG 0kG,1

0lG−1,kG eikGtIlG−1 0lG−1,1

01,kG 01,lG−1 1

⎤
⎥⎦ TBG.

It is easy to see that

UG
n,t =⎡
⎣eintIkG +

[(
− 1

kG
+ lG

nkG

)
eint + 1

n

]
1kG,kG

1
n

(
1 − eint

)
1kG,lG

1
n

(
1 − eint

)
1lG,kG eikGtIkG +

[
− 1

lG
eikGt + kG

nlG
eint + 1

n

]
1lG,lG

⎤
⎦ .

Using the relation −1/kG + lG/nkG = −1/n, we can then obtain Theorem 3.4.

By simple calculations, we then have

∣∣∣∣
(

1 − 1

n

)
eint +

1

n

∣∣∣∣2 = 1 − 2

n

(
1 − 1

n

)
(1 − cos nt)

∣∣∣∣1n (1 − eint
)∣∣∣∣2 =

2

n2
(1 − cos nt)

f

∣∣∣∣
(

1 − 1

lG

)
eikGt +

kGe
int

nlG
+

1

n

∣∣∣∣2 =

(
1 − 1

lG

)2

+

(
kG

nlG

)2

+
1

n2

+
2kG
nlG

(
1 − 1

lG

)(
cos lGt +

lG

kG
cos kGt

)

+
2kG
n2lG

cos nt

∣∣∣∣−eikGt

lG
+

kGe
int

nlG
+

1

n

∣∣∣∣2 =
1

l2G
+

(
kG

nlG

)2

+
1

n2

− 2kG

nl2G

(
cos lGt +

lG

kG
cos kGt − lG

n
cos nt

)
.

On the other hand, limn→∞ kG/n = p and limn→∞ lG/n = 1 − p, �∞-almost surely by the

strong law of large numbers for the i.i.d. Bernoulli sequence. Combining these facts and

Theorem 3.4, we have Proposition 3.5. Also, we can obtain Proposition 3.6 immediately

from

lim
T→∞

1

T

∫ T

0

cos nt dt = lim
T→∞

1

T

∫ T

0

cos kGt dt = lim
T→∞

1

T

∫ T

0

cos lGt dt = 0.

https://doi.org/10.1017/S0960129510000381 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000381


CTQW on threshold model 1087

In the case of a connected G ∈ Gn(X, θ), eigenvalues and eigenvectors of LG are also

known (Hagberg et al. 2006; Merris 1994; Merris 1998), and are as follows:

eigenvalue eigenvectors

Dki + 1

(2 � i � m)

1√
j(j+1)

⎡
⎢⎢⎣

0ui+li

1j,1
−j

0di+ki−j−1,1

⎤
⎥⎥⎦ (1 � j � ki − 1)

1√
(ki+di)kidi

⎡
⎣ 0ui+li

di1ki,1
−ki1di,1

⎤
⎦

Dli

(2 � i � m − 1)

1√
j(j+1)

⎡
⎢⎢⎣

0ui,1
1j,1
−j

0di+1−j−1,1

⎤
⎥⎥⎦ (1 � j � li − 1)

1√
(ki+di)lidi+1

⎡
⎣ 0ui+li

(ki + di)1li ,1
−li1ki+di,1

⎤
⎦

Dk1
+ 1 1√

j(j+1)

⎡
⎢⎢⎣

0ui+li

1j,1
−j

0k1−j−1,1

⎤
⎥⎥⎦ (j = 1, . . . , k1 − 1) if k1 	= 0

Dl1
1√

j(j+1)

⎡
⎢⎢⎣

0u1 ,1

1j,1
−j

0d2−j−1,1

⎤
⎥⎥⎦ (j = 1, . . . , l1 − 1)

Dl1
1√

(k1+d1)l1d2

⎡
⎣ 0u1+l1

(k1 + d1)1l1 ,1
−l11k1+d1 ,1

⎤
⎦ if k1 	= 0

0 1√
n

[
1n,1

]
,

where ui =
∑

j>i(kj + lj) and di =
∑

j<i(kj + lj). We then have Theorem 3.1 using the

same argument as in the proof of Theorem 3.4 and the following relations:

k1 = Dk1
− Dl1 + 1 (if k1 	= 0)

ki = Dli−1
− Dli (2 � i � m)

li = Dki+1
− Dki (1 � i � m − 1).

Note that Dkm = n − 1 and Dlm = 0 by assumption. Comparing Theorem 3.1 with

Theorem 3.4, the transition probability of the walker on G ∈ Gn(p) starting from a vertex

v ∈ V (1)
m is the same as that on G ∈ Gn(p) starting from a vertex v ∈ V

(1)
G . Thus we have

Theorems 3.2 and 3.3.
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5. Classical case

The time evolution operator UG
n,t of a continuous-time random walk on G ∈ Gn(X, θ) is

defined by

UG
n,t = e−tLG ≡

∞∑
k=0

(−t)k

k!
Lk
G.

Let {PG
n,t}t�0 be the probability distribution of the random walk, that is, PG

n,t = UG
n,tPG

n,0.

The yth element PG
n,t(y) of PG

n,t denotes the probability that the random walker is in

position y ∈ V at time t. By the same observation as in the previous section, we have the

same results for UG
n,t as Theorems 3.1 and 3.4 by exchanging it of UG

n,t for t. Using these

results, we have the following.

Proposition 5.1. The limit of the probability that the random walker starting from a vertex

v ∈ V (1)
m is given by

lim
n→∞

nPG
n,t(y) = 1 for all y ∈ V and for �∞-almost every G.

Proposition 5.2. The long-time limit of the probability of the random walk on G ∈ Gn(p)

starting from a vertex v ∈ V is given by

lim
t→∞

PG
n,t(y) =

1

n
for all y ∈ V .

We can also estimate the time-averaged probability P̄G
n (y). By simple calculation, we have

P̄G
n (y) = 1/n for a random walk on G ∈ Gn(p) starting from a vertex v ∈ V .

6. Summary

In this paper, we have studied the continuous-time quantum and random walks on the

threshold network model. By comparing Theorem 3.2 with Proposition 5.1, we have quite

different limit behaviours as n → ∞ for the two types of walks starting from a vertex with

degree n − 1. Although quantum walkers exhibit strong localisation at the starting point,

random walkers tend to spread uniformly.

Theorem 3.3 and Proposition 3.6 show that the time-averaged probabilities of quantum

walkers are not the uniform distribution (unlike the case for random walks). Furthermore,

the time-averaged probability shows localisation at this starting point as n → ∞. In the

case of the binary threshold model, the rates of convergence are slightly different for the

two starting points. Indeed, we have

lim
n→∞

n(1 − P̄ G
n (v1)) = 2 < lim

n→∞
n(1 − P̄ G

n (v0)) = 2/(1 − p),

�∞-almost surely for v0 ∈ V
(0)
G and v1 ∈ V

(1)
G . A study covering the more general setting is

now in progress. These results might be useful for data searching on some complex data

structures or networks.
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