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Abstract In this work, we describe a method to construct the generic braid monodromy of the preimage
of a curve by a Kummer cover. This method is interesting since it combines two techniques, namely, the
construction of a highly non-generic braid monodromy and a systematic method to go from a non-generic

to a generic braid monodromy. The latter process, called generification, is independent from Kummer
covers, and it can be applied in more general circumstances since non-generic braid monodromies appear
more naturally and are oftentimes much easier to compute. Explicit examples are computed using these

techniques.
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Introduction

A Kummer cover is a map πn : P2→ P2 given by πn([x : y : z]) := [xn : yn : zn]. Kummer
covers are a very useful tool in order to construct complicated algebraic curves starting
from simple ones. Since Kummer covers are finite Galois covers of P2 \ {xyz = 0} with
Gal(πn) ∼= Z/nZ × Z/nZ, topological properties of the new curves can be obtained:
Alexander polynomial, fundamental group, characteristic varieties, and so on (see [3, 4,
17, 41, 25, 19] for papers using these techniques).

On the other hand, the generic braid monodromy of a plane projective curve is
a powerful invariant that provides a way to compute the fundamental group of its
complement, and it was originally described as a formalization of the Zariski–van
Kampen method [42, 26] (see [35, 23]; also [18] and references therein for a detailed
exposition on the subject). However, generic braid monodromies are much more
powerful invariants, since in fact they encode the topology of the embedding of the
curve, as well as the isomorphism problem for surfaces whose branching locus over P2 is
a given curve (see [13, 29, 37, 15, 14, 28, 9, 21, 1], to name only a few).
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first published online 17 October 2013)

J. Inst. Math. Jussieu (2014) 13(3), 633–670

https://doi.org/10.1017/S1474748013000297 Published online by Cambridge University Press

mailto:artal@unizar.es
mailto:jicogo@unizar.es
mailto:jortigas@unizar.es
https://doi.org/10.1017/S1474748013000297


634 E. Artal Bartolo et al.

In this work, we focus on a method to construct the generic braid monodromy of
the preimage of a curve by a Kummer cover. This method is interesting in and of
itself, since it combines two techniques, namely, the construction of a highly non-generic
braid monodromy and a systematic method to go from a non-generic to a generic braid
monodromy. The latter process, called generification, is independent from Kummer
covers, and it can be applied in more general circumstances (see also [38, 6, 2]). The
reason for this is that, oftentimes, non-generic braid monodromies are much easier to
compute, since they involve either braids with fewer strands or simply fewer braids, or a
combination of both.

This paper provides, in particular, a constructive proof of the following results (see ğ 1
for the appropriate definitions).

Theorem 1. Let C = {f (x, y, z) = 0} be a plane curve such that P = [0 : 0 : 1] 6∈ C, and
assume that its Kummer cover Cn = {f (xn, yn, zn) = 0} contains only A2-singularities. Let
∇ be the braid monodromy given by (C ∪ Lz,L∞,P) for a generic L∞, and denote by σx

(respectively, σy) the braid associated with the meridian of Lx (respectively, Ly) by ∇.
Then (∇, σx, σy) determines the generic braid monodromy of Cn.

The fundamental group of the complement of a curve under a generic Kummer cover
was computed by Uludağ [41]. The following result shows that in fact it is possible to
recover its generic braid monodromy.

Theorem 2. Let C = {f (x, y, z)= 0} be a plane curve which is transversal to the union of
the coordinate axes. Then the generic braid monodromy given by (C,L∞,P) determines
the generic braid monodromy of its Kummer cover Cn.

The core of the method proposed in this paper provides a constructive proof of the
following result.

Theorem 3. Let C = {f (x, y, z) = 0} be a plane curve such that P = [0 : 0 : 1] 6∈ C, and
let ∇, σx, and σy be as in Theorem 1. Then (∇, σx, σy) determines the braid monodromy
given by (Cn,L∞,P).

As an application of this method, it is worth recalling that Libgober (see [34])
proposed a class of invariants for algebraic plane curves via representations of generic
braid monodromies. In order to obtain such invariants, one needs to acquire both
interesting braid representations and generic braid monodromies. In [34], the author
uses the Burau representation to obtain basically the Alexander polynomial (up to a
factor encoding only on the degree of the curve). Later, with the works of Bigelow,
Lawrence, and Krammer [12, 27, 30], new (linear and faithful) representations of the
braid group have been found; they can be used to obtain invariants using the
above-mentioned method. This paper provides an effective tool to find a wide variety
of generic braid monodromies of curves from simpler ones. The method presented here
will provide a large range of highly non-trivial examples where these Libgober invariants
can be successfully applied.
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We briefly recall that any direct computation of the braid monodromy of a curve (that
is, using the Zariski–van Kampen method) requires one to calculate the discriminant
∆ of a generic projection of the degree-d polynomial f (x, y) defining the curve, with
respect to a variable, say x. Once this is obtained, one needs a system of generators of
the complement of ∆ in C. The braids are obtained as the 1-parametric collection of
d distinct roots of f (x(t), y) for t ∈ [0, 1] and x(t) ⊂ C \ ∆ one of the aforementioned
generators. This requires some kind of appropriate polynomial root approximation
method ensuring the exactness of the result. This is in practice a very complicated
issue, which can only be dealt with in particularly simple cases, such as curves whose
equation can be given in Z[x, y, z] ([11, 13]), strongly real curves ([7, p. 17] and references
therein), or line arrangements (see [8, 39, 20, 40, 21]). One of the applications of the
method presented here is to avoid numerical issues of a direct computation of the braid
monodromy.

The previous paragraph justifies a fairly detailed section devoted to describing a list of
applications of the method. In 7.1, generic braid monodromies of smooth curves of any
degree are computed providing a simpler approach to Moishezon’s famous result [37];
the same applies to the Zariski sextics in 7.2. We also describe the generic braid
monodromy of a sextic with six cusps not on a conic in 7.8; according to Degtyarev [22],
this family is connected, and hence it completes the equisingular stratum of sextics
with six cusps. As examples of highly non-real curves, we present the generic braid
monodromies of a sextic with nine cusps (in 7.3) as well as the Hesse arrangement in 7.7
and generalized Ceva arrangements in 7.4.

The layout of the paper is as follows. After describing in ğ 1 the main objects to be
used, such as generic and non-generic braid monodromies, Kummer covers and extended
braid monodromies are described in ğ 2 as the main tool to recover a non-generic
braid monodromy of a Kummer cover from a braid monodromy of the base. Useful
generification techniques are described in ğ 4. Sections 3 and 5 are more technical. The
first one describes useful connections between systems of generators for the braid group
of k-strings, say on a base C \ ∆ (k = #∆) and the braid group of kn-strings on a
base C \ π−1(∆), where π is the k-Kummer cover of C, defined as z 7→ zk. The second
one describes the properties and singularities of Kummer transforms. Theorems 1–3 are
proved in ğ 6. Finally, a detailed account of numerous examples of the power of Kummer
transforms is given in ğ 7, where generic braid monodromies of smooth curves, sextics
with six cusps (on a conic and otherwise), sextics with nine cusps, Hesse, Ceva, and
MacLane arrangements are provided.

1. Settings: braid monodromy

After the work of Zariski, braid monodromy was defined by Chisini [16], but it was
necessary to wait for Moishezon [37] in order to get further applications of this invariant.

1.1. Construction

Let us fix a curve C̄ ⊂ P2 of degree d, a point Py ∈ P2, and a line L̄∞ in such a way that
Py ∈ L̄∞. We say that the curve is horizontal with respect to Py if it does not contain
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any line through Py; we assume C̄ to be horizontal. We consider a system of coordinates
[X : Y : Z] such that Py := [0 : 1 : 0] and L̄∞ := {Z = 0}. We identify C2 ≡ P2 \ L̄∞ with
affine coordinates (x, y)≡ [x : y : 1].

Let F(x, y, z)= 0 be a reduced equation of C̄, k := degy F,

F(x, y, z)=
k∑

j=0

ād−j(x, z)yj, ād−k(x, z) 6= 0, āj homogeneous of degree j,

normalized such that the coefficient of the term of higher degree of ād−k(x, z) in x is 1.
The fact that C̄ is horizontal is equivalent to gcd(F, ād−k)= 1.

The pencil of lines through Py is identified with P1 ≡ C ∪ {∞}, where ∞ corresponds
with L̄∞. Following the previous notation, the lines in the pencil are denoted
by L̄t := {X − tZ = 0}. Let us restrict our attention to the affine part. Let C := C̄ ∩ C2 and
Lt := L̄t ∩ C2; the line Lt has equation x= t, while C has equation f (x, y)= 0, where

f (x, y) := F(x, y, 1)=
k∑

j=0

ad−j(x)y
j, aj(x) := āj(x, 1).

Let B := {t ∈ C|#(Lt ∩ C) < k}; this is a finite set which consists of the roots of ad−k(x)
(if any) and the values t such that Lt 6t C. The set B is the zero locus of the product of
ad−k(x) and the discriminant of f (x, y) with respect to y.

Let Σk(C) := {A⊂ C|#A= k} be a configuration space of C; for any A := {x1, . . . , xk} ∈
Σk(C), the fundamental group π1(Σk(C);A) =: B(x1, . . . , xk) is isomorphic to the braid
group Bk with the usual Artin presentation,

Bk :=
〈
σ1, . . . , σk−1

∣∣∣∣ [σi, σj] = 1
1<i+1<j<k

, σi · σi+1 · σi = σi+1 · σi · σi+1
16i<k−1

〉
. (1.1)

For the next sections we need to describe a canonical identification between Bk and
B(x1, . . . , xk); the group π1(Σk(C);A) is identified with the homotopy classes of sets of
arcs ϕ1, . . . , ϕk : [0, 1] → C starting and ending in A and such that #{ϕ1(t), . . . , ϕk(t)} =
k, ∀t ∈ [0, 1]. Let us order the points of A, say x1, . . . , xk, and consider a set I
of simple segments Ai, 1 6 i < k, such that ∂Ai = {xi, xi+1}, Ai ∩ Ai+1 = {xi+1} and
the other intersections are empty; such a collection I will be called a diagram
system for (x1, . . . , xk). Then we associate to σi the braid which is constant for
x1, . . . , xi−1, xi+2, . . . , xk and behaves in a small closed (topological) disk N(Ai) such
that Ai is a diameter as follows. The points xi and xi+1 counterclockwise exchange along
∂N(Ai). These generators may be understood as half-twists around Ai.

There is also a basis of the free group π1(C \ A; x0) if one chooses a simple edge
A0 from x0 to x1 intersecting

⋃k−1
i=1 Ai only at x1. This basis µ1, . . . , µk is obtained

as follows. Take small disks ∆i centered at xi and assume that their intersection with
Ai−1 ∪ Ai are diameters with ends x−i , x+i . Then µi is defined as follows. Take a path αi

from x0 to x−i running along A0 ∪ · · · ∪ Ai−1 outside the interior of the disk ∆j and going
counterclockwise along ∂∆j from x−j to x+j , 1 6 j 6 i. Let βi be the closed path obtained
by running counterclockwise along ∂∆j with base point x−i , and define µi := αi · βi · α−1

i .
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Figure 1. Diagram system, k = 5.

Ai Ai

Figure 2. Geometric version of the action of Bk on Fk.

The group Bk acts geometrically on the group Fk := π1(C \ A; x0) as follows:

µ
σj
i :=


µi+1 if j= i,

µi · µi−1 · µ−1
i if j= i− 1,

µi otherwise.

(1.2)

Notation 1.1. As usual, ab = b−1ab is the conjugation of a by b. Also, for brevity, we
will write b ∗ a= bab−1.

There are two important facts in these definitions: the element µ∞ := (µk · . . . · µ1)
−1

is a meridian of the point at infinity, and µ∞ is a fixed point by the action of Bk. We say
that (µ1, . . . , µk) is an ordered geometric basis of π1(C \ A; x0). As a general notation,
if G is a group and x := (x1, . . . , xk) ∈ Gk, we define the pseudo-Coxeter element of x as
cx := xk · . . . · x1.

After this digression, note that f defines a map f̃ : C \ B→Σk(C).

Definition 1.2. The braid monodromy of the triple (C̄,Py, L̄∞) is the morphism

∇ : π1(C \ B; t0)→ Bk, t0 ∈ C \ B,

defined by f̃ on the fundamental group.
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Remark 1.3. Consider an ordered geometric basis (γ1, . . . , γr) of π1(C \ B; t0), and let
c∞ be its pseudo-Coxeter element. Note that ∇ is determined by (∇(γ1), . . . ,∇(γr)) ∈ Br

k
having as pseudo-Coxeter element ∇(c∞).

The braid monodromy measures the motions of the points of C along the affine lines Lt

(identified with C).
Given a triple (C̄,Py, L̄∞) as above, the choice of an element of Br

k determining the
braid monodromy is not unique. It is not hard to check that these choices are given
by the orbits of an action of Bk × Br on Br

k as follows. The action of Bk is given by
simultaneous conjugation. The action of Br is defined as follows. Let h1, . . . , hr−1 be an
Artin system of generators of Br. Then, if (τ1, . . . , τr) ∈ Br

k,

(τ1, . . . , τr)
hi := (τ1, . . . , τi−1, τi+1, τi+1 · τi · τ−1

i+1, τi+2, . . . , τr); (1.3)

hi is called a Hurwitz move. In particular, for a choice of (C̄,Py, L̄∞), two objects are
unique and well defined: the conjugacy classes of the pseudo-Coxeter element and of the
monodromy group, i.e., the group generated by ∇(γ1), . . . ,∇(γr).

In light of the previous discussion, a braid monodromy ∇ of a triple (C̄,Py, L̄∞)
will sometimes be considered as a morphism (see Definition 1.2) or as a list of braids
(∇(γ1), . . . ,∇(γr)), where (γ1, . . . , γr) is an ordered geometric basis.

1.2. Applications

The first application of braid monodromy is the computation of the fundamental group;
see [5].

Let ∇ be the braid monodromy of a triple (C̄,Py, L̄∞). Consider C2 := P2 \ L̄∞,
C := C̄ ∩ C2, and Lt (t ∈ B) the non-generic fibers of the pencil of lines through Py as
above. One has the following result.

Theorem 1.4. The group π1(C2 \ (C ∪⋃t∈B Lt)) has the following presentation:〈
µ1, . . . , µk, γ̃1, . . . , γ̃r

∣∣∣∣ γ̃i
−1 · µj · γ̃i = µ∇(γi)

j
16i6r;16j6k

〉
.

A triple (C̄,Py, L̄∞) (or simply a curve C) is said to be fully horizontal if C has
no vertical asymptotes, i.e., if ad−k(x) = 1. In that case, for any B0 ⊂ B (which may
be empty), corresponding to the generators {γi1 , . . . , γis}, one has a new version of
Zariski–van Kampen theorem, due to the fact that the above generators γ̃j are meridians
of the corresponding lines.

Theorem 1.5. The group π1(C2 \ (C ∪⋃t∈B0
Lt)) has the following presentation:〈

µ1, . . . , µk, γ̃i1 , . . . , γ̃is

∣∣∣∣ γ̃−1
ij · µ` · γ̃ij = µ

∇(γij )

`

16j6s; 16j6k

, µj = µ∇(γi)
j

i6=i1,...,is; 16j<k

〉
.

There is also a statement like Theorem 1.5 for curves with vertical asymptotes, but it is
more technical; see [13] or [35].
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Let us assume now that Py 6∈ C̄. In this case, the triple (C̄,Py, L̄∞) is automatically
fully horizontal, and d = k. In this case, another version can be stated, which is closer to
the original Zariski–van Kampen theorem (see [7, Corollary 1.11] for a proof).

Theorem 1.6. The group π1(P2 \ C̄) has the following presentation:〈
µ1, . . . , µd

∣∣∣∣ µj = µ∇(γi)
j

16i6r; 16j<d

, µd · . . . · µ1 = 1
〉
.

There is also a procedure to compute π1(P2 \ C̄) when Py ∈ C̄, but the general formula
is not so closed since it depends heavily on the local singularity (C̄ ∪ L̄∞,Py).

1.3. Generic braid monodromies

We finish this sequence of versions of the Zariski–van Kampen theorem with the generic
cases. We will describe different notions of genericity of braid monodromies which will
play a role in the forthcoming sections. By a generic triple we mean a triple (C̄,Py, L̄∞)
such that Py 6∈ C̄, L̄∞ t C̄ (i.e., they intersect at d distinct points), and, moreover, for
each t ∈ B there is exactly one point Pt ∈ L̄t ∩ C̄ where the intersection is not transversal
and it satisfies

(C̄ · L̄t)Pt =
2 if (C̄,Pt) is smooth,

mt if (C̄,Pt) is singular,
(1.4)

where mt is the multiplicity of the germ (C̄,Pt). In the case when Pt is singular, this
condition means that L̄t is not in the tangent cone of (C̄,Pt) and, in the smooth case,
it means that Pt is not an inflection point. In order to state the final form of the
Zariski–van Kampen theorem, we need some notation. The above conditions imply that,
for each γi, 1 6 i 6 r, we can express ∇(γi) = ηi · τi · η−1

i , where ηi, τi ∈ Bd and τi is a
positive word in Σi := {σj}j∈si , where si ⊂ {1, . . . , d − 1} and #si = (C̄ · L̄t)Pt − 1.

For each i (16 i6 r), the elements µj(i) := µ(η
−1
i )

j represent another basis of Fd. Let us
denote by µj(i)σk(i) the action (1.2) written in the basis µ1(i), . . . , µd(i).

Theorem 1.7. Let (C̄,Py, L̄∞) be a generic triple. Then the group π1(P2 \ C̄) admits the
following presentation:〈

µ1, . . . , µd

∣∣∣∣ µj(i)= µj(i)
τi(i)

16i<r; j∈si

, µd · . . . · µ1 = 1
〉
.

The braid monodromy associated with a generic triple will be called a generic braid
monodromy. In this case, the pseudo-Coxeter element of (∇(γ1), . . . ,∇(γr)) is ∆2

d , the
positive generator of the central element of Bd. This is why in the literature generic
braid monodromies are also referred to as factorizations of ∆2

d . The main point is that
any generic braid monodromy is an invariant of C̄, that is, it is independent of the
choice of Py and L̄∞ (of course, as long as (C̄,Py, L̄∞) is a generic triple). Moreover, if
two curves can be connected by a path of equisingular curves, then their generic braid
monodromies coincide.
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A more general type of genericity occurs simply when Py 6∈ C̄, L̄∞ t C̄. We will refer to
such a triple as generic at infinity. In this case, Theorem 1.7 is still true, but the sets si

have to be replaced by a finite number of disjoint subsets si,1, . . . , si,κi ⊂ {1, . . . , d − 1}.
An interesting case of genericity at infinity occurs when condition (1.4) holds, but

each fiber Lt, t ∈ B, is allowed to have more than one ramification point. We refer to
this case as local genericity. From a locally generic braid monodromy, a generic braid
monodromy might easily be obtained (see Proposition 4.3).

2. Pencils of lines and Kummer covers

Following notation from ğ 1, let us fix a curve C̄ ⊂ P2 of degree k. We assume that Py :=
[0 : 1 : 0] 6∈ C̄. Let C̄n := π−1

n (C̄) be its Kummer transform. Denote by L̄t := {X − tZ = 0}
the pencil of lines through Py.

Let L̄Y := {Y = 0} ⊂ P2, and let LY be its affine part. We consider the set of lines
through Py which are not transversal to C̄ ∪ L̄Y and in which we include the lines L̄0 and
L̄∞ if necessary (due to their special relation with πn). Let

B := {t ∈ P1|L̄t 6t (C̄ ∪ L̄Y)}, B∗ := B ∩ C∗, B̃ := B∗ ∪ {0}, B∞ := B ∪ {∞}.
The braid monodromy of C̄ ∪ L̄Y with respect to Py and L̄∞ is the morphism

∇ : π1(C \ B; t0)→ Bk+1, t0 ∈ C \ B̃.

Note that the image of ∇ is contained in Bk,1, the subgroup of Bk+1 given by all the
braids whose associated permutation fixes a given point (see ğ 3 for a description of this
group).

Definition 2.1. The map

∇̃ : π1(C \ B̃; t0)→ Bk,1 (2.1)

is called the extended braid monodromy of the triple (C̄,Py,L∞) with respect to LY .

Note that if 0 6∈ B then the image by ∇̃ of a meridian around 0 is the trivial braid.
We define the analogous objects for C̄n: Bn,B∗n, B̃n,B∞n ,∇n, ∇̃n for a choice of t0,n, an

nth root of t0. The following lemmas are easy consequences of the properties of the
Kummer cover.

Lemma 2.2. Let φn : C→ C be the map defined by φn(t) := tn. Then, B∗n = φ−1
n (B∗) and

B̃n = φ−1
n (B̃).

In order to avoid ambiguity, we will denote by L0,n = {X = 0} the preimage of
L0 = {X = 0} by πn. The same will occur with L∞,n and LY,n. We will also denote by
Lt,n = {X − tZ = 0} the corresponding lines in the source of πn.

Lemma 2.3. The map πn induces degree-n coverings ϕn : Lt,n 7→ Ltn . Moreover, the
preimage of a line Ls by πn is the disjoint union of Lt,n, tn = s, each one inducing a
covering ϕn as above.
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As a consequence of these lemmas, the braid monodromy ∇̃n can be thought of as
follows. Consider the loops γ in C \ B̃ which can be lifted as loops by φn, and replace the
braid ∇(γ ), where k points move in C∗, by the braid obtained by the constant string 0
and the n-roots of these k points. This construction defines a map

ρ̃n,k : Bk,1→ Bnk,1,

which is described in ğ 3.
Let us summarize the results. If r := #B∗, we denote by Fr+1 the free group

π1(C \ B̃; t0). Analogously, we denote by Fnr+1 the free group π1(C \ B̃n; t0,n). Using
covering theory, the map (φn)∗ fits in a short exact sequence

0→ Fnr+1→ Fr+1→ Z/nZ→ 0.

The following commutative diagram holds:

Fr+1 Bk,1

Fnr+1 Bnk,1

∇̃

∇̃n

(2.2)

Using this diagram, one can recover ordered geometric bases and relate the central
elements of the corresponding braid groups. The upcoming results will show this
construction useful.

Summarizing, let ∇̃ := (τ1, . . . , τr+1) ∈ Br+1
k,1 be an extended braid monodromy for

(C̄,Py, L̄∞) with respect to LY , where τr+1 is the braid corresponding to L̄0. Consider
πn(X : Y : Z)= [Xn : Yn : Zn], the nth Kummer cover of P2, and denote by C̄n the preimage
of C̄ by πn. The braid monodromy ∇̃ produces a list of braids ∇̃n ∈ Bnr+1

nk,1 , as described in
diagram (2.2). One has the following proposition.

Proposition 2.4. The element ∇̃n described above is an extended braid monodromy for
the triple π−1

n (C̄,Py, L̄∞)= (C̄n,Py, L̄∞,n) with respect to π−1
n (L̄Y)= L̄Y,n.

Proof. This is an immediate consequence of the previous construction and Lemmas 2.2
and 2.3. �

Remark 2.5. Note that the braid monodromy obtained from ∇̃n via the forgetful map
Bnk,1→ Bnk might be a highly non-generic braid monodromy.

Lemma 2.6. Let (γ1, . . . , γr+1) be an ordered geometric basis of Fr+1 such that γr+1 is a
meridian of 0 ∈ B̃. Then, the ordered list

(v0, . . . , vj, . . . , vn−1, γ
n
r+1),

where vj := (γ γ
j
r+1

1 , . . . , γ
γ

j
r+1

r ) (see Notation 1.1), forms an ordered geometric basis of
Fnr+1.

https://doi.org/10.1017/S1474748013000297 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000297


642 E. Artal Bartolo et al.

Lemma 2.7. Let ∆2
k+1 ∈ Bk,1 be the positive generator of the center of Bk+1. Then

∆2n
k+1 =∆2

nk+1 via the inclusion Bk,1 ↪→ Bnk,1.

The purpose of the forthcoming sections will be to describe an effective way to obtain
a generic braid monodromy for C̄n from the given computation of ∇̃n. This is an outline
of the general strategy, which will be developed in what follows.

• If L̄Y,n 6⊆ C̄n, we compose ∇̃n with the natural map Bnk,1→ Bnk obtained by forgetting
the constant string 0.

• If 0 6∈ Bn, then the map factorizes through Fnr+1� Fnr, whose kernel is generated by
the meridians around 0.

• If ∞ ∈ Bn, we change the line at infinity; the image α of a meridian at infinity is
obtained as follows. Let τ be the pseudo-Coxeter element of the braid monodromy;
then α :=∆2τ−1, where ∆2 is the positive generator of the center of the braid group.

• Move the projection point Py slightly to obtain a generic projection.

3. The motion of n-roots

As was introduced in ğ 2, let Bk,1 be the subgroup of Bk+1 given by all the braids whose
associated permutation fixes a given point in C, say 0.

We identify Bk+1 with the group of braids with ends in k + 1 non-negative real points
x1 > · · · > xk > xk+1 = 0, and we consider the Artin generators σ1, . . . , σk in Bk+1 which
are geometrically associated with the diagram system obtained from the paths joining
these points in the real line; see ğ 1. Recall that any choice of a diagram system I of
k + 1 points in C induces an Artin system of generators (1.1) of Bk+1. Note that the only
half-twist σi that moves 0 is σk. The following result is well known.

Lemma 3.1. The group Bk,1 is generated by σ1, . . . , σk−1, σ
2
k (as a subgroup of Bk+1),

and it is naturally isomorphic to the group of braids of k strands in C∗.

Let us consider the map ρn : C∗ → C∗, given by ρn(z) := zn. Note that this map
induces a morphism ρ̃n : Bk,1→ Bnk,1 via the multivalued function ρ−1

n . The goal of this
section is to give explicit formulæ for this morphism. In order to do so, one needs to
explicitly choose systems of generators for Bk+1 and Bnk+1.

Consider the diagram system I for Bk,1 described above. The image of the half-twist
σi, associated with Ai, 1 6 i < k, is a product of half-twists associated with the pairwise
disjoint arcs Ai,1, . . . ,Ai,n such that ρ−1

n (Ai) = Ai,1 ∪ · · · ∪ Ai,n. The image of σ 2
k is more

complicated since Ak,1, . . . ,Ak,n intersect at 0. In order to describe ρ̃n, it is convenient to
consider diagram systems on both sets of points in C in the source and in the target to
fix a basis. However, note that the system of arcs Ai,j obtained as the preimage of Ai does
not produce a diagram system for Bnk+1. In order to solve this situation, we will define
diagram systems for Bnk,1 from which the arcs Ai,j can be easily described. For different
purposes, different diagram systems might be more appropriate. Here we will focus on
two particular diagram systems: the circular and the radial.
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t4 = 0

t3 t1

0
t2t1t2t3

(a) (b)

Figure 3. (a) Circular diagram system of Bnk+1 for k = n= 3. (b) A straightened view of Figure 3.

3.1. Circular diagram systems

Let us denote d := nk. We identify Bd+1 with B({ξ j
nti|16 i6 k, 16 j6 n}∪ {0}), where ti is

the non-negative nth root of xi ∈ R>0 and ξn := exp(2π
√−1
n ). Consider the following arcs.

• ci,j is the counterclockwise arc joining tiξ
j−1
n to tiξ

j
n in the circle centered at 0,

16 j< n.

• ci,n is the segment joining tiξn−1
n and ti+1.

These arcs and segments are illustrated in Figure 3(a). The list of arcs {ci,j}i,j with a
left-lexicographic order produces a diagram system called the circular diagram system.
The half-twist produced by an arc ci,j will be denoted by σi,j ∈ Bnk,1. The half-twists
associated with Ai,j will be denoted by αi,j.

Figure 3(a) is obtained from Figure 3(a) after unwinding the circular diagram system
into a straight line. This will help visualize the rewriting of the half-twists αi,j in terms of
the σi,j.

Consider (i1, j1) < (i2, j2), where <` represents the left-lexicographic order (that is,
either i1 < i2 or i1 = i2 and j1 < j2). We will define

Pi2,j2
i1,j1 := σi1,j1 · . . . · σi2,j2 =

∏
(i1,j1)6`v6`(i2,j2)

σv,

P̄i2,j2
i1,j1 := σ−1

i1,j1 · . . . · σ−1
i2,j2 =

∏
(i1,j1)6`v6`(i2,j2)

σ−1
v ,

Mi2,j2
i1,j1 := σi2,j2 · . . . · σi1,j1 =

∏
(i2,j2)>`v>`(i1,j1)

σv,

M̄i2,j2
i1,j1 := σ−1

i2,j2 · . . . · σ−1
i1,j1 =

∏
(i2,j2)>`v>`(i1,j1)

σ−1
v ,

(3.1)

where the order in the products is given by the lexicographic order described above.
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Remark 3.2. Note that Pi2,j2
i1,j1 = (M̄

i2,j2
i1,j1 )

−1, (P̄i2,j2
i1,j1)

−1 =Mi2,j2
i1,j1 . Also, note that

Pi2,j2
i1,j1 ∗ σi2,j2 = M̄i2,j2

i1,j1 ∗ σi1,j1 (respectively, P̄i2,j2
i1,j1 ∗ σ−1

i2,j2 =Mi2,j2
i1,j1 ∗ σ−1

i1,j1)

represents a half-twist (respectively, a negative half-twist) interchanging ti1ξ
j1−1
n and

ti2ξ
j2+1
n along a spiral arc. The arc corresponding to P3,1

1,1 ∗ σ3,1 = M̄3,1
1,1 ∗ σ1,1 (or

P̄3,1
1,1 ∗ σ−1

3,1 =M3,1
1,1 ∗ σ−1

1,1) is shown in Figure 3(a).

Lemma 3.3. Under the above conditions, and for any (i1, j1) < (i, j) < (i2, j2), one has

(1) Pi2,j2
i1,j1 ∗ σi2,j2 =

(
M̄i2,j2
(i,j)+ · Pi,j

i1,j1

)
∗ σi,j, where (i, j)+ denotes the element following (i, j)

in the left-lexicographic order.

(2) P̄i2,j2
i1,j1 ∗ σi2,j2 =

(
Mi2,j2
(i,j)+ · P̄i,j

i1,j1

)
∗ σi,j.

(3) αi,j =
(

Pk,n
i+1,jP̄

k,n
i,j

)
∗σk,n =

(
Pk,n

i+1,jσ
2
k,nMk,n−1

(i2,j2)+ P̄i2,j2
i,j

)
∗σi2,j2 =

(
Pk,n−1

i+1,j σ
2
k,nMk,n−1

i,j

)
∗σi,j.

Proof. Property (1) is immediate by induction, since

Pi2,j2
i1,j1 ∗ σi2,j2 =

(
P(i2,j2)−2

i1,j1 · σ(i2,j2)−
)
∗ σi2,j2

=
(

P(i2,j2)−2
i1,j1 · σ−1

i2,j2

)
∗ σ(i2,j2)− =

(
σ−1

i2,j2 · P
(i2,j2)−
i1,j1

)
∗ σ(i2,j2)− ,

where (i2, j2)− denotes the element immediately smaller than (i2, j2) and (i2, j2) − 2
denotes its second predecessor ((i2, j2)−)−. Property (2) is analogous.

In order to show Property (3), note that αi,j is a half-twist that exchanges tiξ
j−1
n and

ti+1ξ
j−1
n . Therefore, according to Remark 3.2, one has

αi,j =
(

Pk,n
i+1,j ∗ σk,n

)
·
(

P̄k,n
i,j ∗ σk,n

)
·
(

Pk,n
i+1,j ∗ σ−1

k,n

)
.

A similar induction argument shows that(
Pk,n

i+1,j ∗ σk,n

)
·
(

P̄k,n
i,j ∗ σk,n

)
·
(

Pk,n
i+1,j ∗ σ−1

k,n

)
=
(

Pk,n
i+1,jP̄

k,n
i,j

)
∗ σk,n.

The other equalities are a consequence of Remark 3.2 and Properties (1) and (2). �

Proposition 3.4. The map ρ̃n : Bk,1→ Bd,1 is given by

σi 7→
n∏

j=1

αi,j, i ∈ 1, . . . , k − 1

σ 2
k 7→ σ 2

k,nσk,n−1σk,n−2 · . . . · σk,1.

Proof. As mentioned at the beginning of this section, if i 6= k, the preimage of Ai by
ρn is a disjoint union of segments Ai,1, . . . ,Ai,n. Therefore the image of the half-twist
σi associated with Ai is the product of the n half-twists αi,1 · . . . · αi,n. Note that σ 2

k
corresponds to a full turn around 0, its preimage by ρn being a counterclockwise rotation
of angle 2π

n of the points ξ j
ntk. This is nothing but σ 2

k,n · σk,n−1 · . . . · σk,1 (see Figure 4). �
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0

tk

0 tk

Figure 4. Image of σ2
k , n= 3.

0

t2
0

t1 1 ba

(a) (b)

Figure 5. (a) Radial diagram system of Bnk+1 for k = n= 3. (b) A straightened view of Figure 5(a).

Example 3.5. Let us consider the case k = 1 and the composition of ρ̃n with the
natural projection of Bn,1 � Bk given by forgetting the string 0. Then we have a map
ρ̂n : B1,1→ Bn such that ρ̂n(σ

2
1 )= σn−1σn−2 · . . . · σ1.

Example 3.6. Next consider the case k = 2 and the map ρ̂n : B2,1 → B2n, as
in Example 3.5. Then, according to Lemma 3.3(3),

ρ̂n(σ1)=
n∏

j=1

(
P2,n−1

2,j M2,n−1
1,j

)
∗ σ1,j =

n∏
j=1

(
σ2,j · . . . · σ 2

2,n−1 · . . . · σ1,j−1

)
∗ σ1,j

and

ρ̂n(σ
2
2 )= σ2,n−1 · . . . · σ2,1.

3.2. Radial diagram systems

For some applications, it is more useful to consider a different diagram system, which
will be called radial ; see Figure 5(a).
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We call the Artin generators for this system σ̃i,j, 16 i6 k, 16 j6 n. According to this
choice, these are the half-twists αi,j associated with the segments Ai,j for 1 6 i 6 k − 1;
that is,

σ̃i,j = αi,j. (3.2)

However, the element σ̃k,j corresponds to an arc joining tkξ
j
n with t1ξ

j+1
n , as shown in

Figure 5(a). Denote βj := σ̃k−1,j · . . . · σ̃1,j. Then we have

σk,j = βj+1σ̃k,jβ
−1
j+1 (16 j6 n− 1). (3.3)

Moreover, σk,n = σ̃k,n. The following result holds.

Proposition 3.7. The map ρ̃n : Bk,1→ Bd,1 is given by

σi 7→
n∏

j=1

σ̃i,j, 16 i6 k − 1

σ 2
k 7→ σ̃ 2

k,n

∏
(k−1,n)>rv>r(k,1)

σ̃v ·
n∏

j=2

β−1
j ,

where >r represents the right-lexicographic order.

Proof. The result follows from Proposition 3.4. The formula for the image of σi is a
direct consequence of (3.2). The formula for the image of σ 2

k can be obtained using (3.3)
and the fact that βj commutes with βj′ and with σ̃i,j′ for j′ 6 j and (i, j′) 6= (k, j − 1) (see
Figure 6). �

Example 3.8. Let us consider the case n = 2 and ρ̂2 : Bk,1→ B2k the composition of ρ̃
with the forgetful map as in Example 3.5. According to Proposition 3.7, one has

σi 7→ σ̃i,1σ̃i,2, 16 i6 k − 1

σ 2
k 7→ (σ̃k−1,2 · . . . · σ̃1,2) ∗ σ̃k,1.

In fact, a more convenient description of these maps can be given for another choice
of generators σ̂i coming from the natural diagram system on the real line joining the
preimages of xk (which all lie on the real line, since n= 2).

ρ′2 : Bk,1 → B2k+1 ρ̂′2 : Bk,1 → B2k

σi 7→ σ̂iσ̂2k−i+1 σi 7→ σ̂iσ̂2k−i

σ 2
k 7→ σ̂k+1σ̂kσ̂k+1 σ 2

k 7→ σ̂k.

4. Deformations of braid monodromies

We are mostly interested in computing generic braid monodromies of curves (see ğ 1.3).
However, it is usually easier (and oftentimes more natural) to compute non-generic
braid monodromies. For instance, assume that (C̄,Py,L∞) is a generic triple, where
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Figure 6. Image of σ2
k by Proposition 3.7.

Py = [0 : 1 : 0] and L∞ = {Z = 0}, and consider the Kummer cover πn : P2→ P2 given by
the equation [X : Y : Z] 7→ [Xn : Yn : Zn]. Assume that the line L0 := {X = 0} is tangent to
C̄. Note that the preimage L0,n of L0 (which is also a line by the equation {X = 0} on the
source P2) will intersect the curve π−1

n (C̄) at n singular points each with local equation
xn − y2 = 0. The triple (C̄n,Py,L∞,n), where C̄n (respectively, L∞,n) is the preimage of C̄
(respectively, L∞), is locally generic, but not generic.

4.1. From fully horizontal to generic at infinity

Let us consider the braid monodromy of a fully horizontal triple (C̄,P, L̄), where P 6∈ C̄
(e.g., the hypothesis in Theorem 1.6), where L̄ and C̄ are not necessarily transversal.

Proposition 4.1. Assume that L̄ 6t C̄, let (τ1, . . . , τr) ∈ Br
d be a braid monodromy

factorization for (C̄,P, L̄), and consider a line L̄′ such that P ∈ L̄′ and L̄′ t C̄. Then
(τ1, . . . , τr,∆

2
d(τr · . . . · τ1)−1) is a braid monodromy factorization for (C̄,P, L̄′).

Proof. Note that B′ = B ∪ {tL}, where B (respectively, B′) is the ramification set for
(C̄,P, L̄) (respectively, for (C̄,P, L̄′)). Since the line L̄′ is transversal, the pseudo-Coxeter
element of its braid monodromy factorization is ∆2

d , and the result follows. �

This will be a common situation when studying Kummer covers for curves which are
not transversal to the axes. In that case, we can be more explicit.

Let T := (τ1, . . . , τr, τr+1) ∈ Br+1
k,1 be an extended braid monodromy factorization for

(C̄,Py = [0 : 1 : 0], L̄∞) with respect to L̄Y . Assume that L̄0 = {X = 0} is not transversal to
C̄, and that τr+1 is the braid corresponding to L̄0. Let us denote by cT its pseudo-Coxeter
element.
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Consider πn(X : Y : Z) = [Xn : Yn : Zn] the nth Kummer cover of P2, and denote by C̄n

the preimage of C̄ by πn. The extended braid monodromy T produces an extended braid
monodromy Tn ∈ Bnr+1

nk,1 for (C̄n, π
−1
n Py, L̄∞,n) (see Proposition 2.4).

Proposition 4.2. Under the above conditions, a generic at infinity extended braid
monodromy factorization is obtained by adding to Tn the braid ∆2n

k+1c−n
T , using the

inclusion Bk,1 ↪→ Bnk,1 (see diagram (2.2)).

Proof. This is a consequence of Proposition 4.1 and Lemma 2.7. �

4.2. From locally generic to generic

As announced in ğ 1, some types of non-generic braid monodromies can be easily
deformed into generic braid monodromies. This is the case with locally generic triples.
Let (C̄,Py, L̄∞) be a locally generic triple (see ğ 1.3), and let B be the set of ramification
values of the projection. As already mentioned in ğ 1.3, for each t ∈ B, there exists a
finite number of points Pt,1, . . . ,Pt,κt ∈ Lt satisfying (1.4).

Proposition 4.3. Under the above conditions, let τt be the braid associated with Lt,
t ∈ B. Then there is a factorization τt = τt,κt · . . . · τt,1, where τt,1, . . . , τt,κ are pairwise
commuting braids and each one corresponds to one non-transversal point in Lt.

Moreover, replacing τ by (τt,1, . . . , τt,κt) (the order does not matter) in the braid
monodromy factorization of (C̄,Py, L̄∞) for each t ∈ B produces a generic braid
monodromy factorization of C̄.

Proof. Since Py 6∈ C̄, the triple (C̄,Py, L̄∞) is fully horizontal; that is, there are no
vertical asymptotes. Consider Pt,1, . . . ,Pt,κt ∈ Lt. Due to the conic structure of (C2, C)Pt,i ,
one can find disjoint Milnor polydisks BPt,i := Dt,x × Dt,y around each Pt,i such that
C ∩ ∂BPt,i ⊂ ∂Dt,x×Dt,y (we need condition (1.4) to ensure this). Let us denote by µt,i the
local monodromy around each Pt,i based at tε (close enough to t). Note that µt,i ∈ Bm,
where m = 1 if and only if Pt,i is a transversal intersection of C and Lt. If Pt,i is singular
in C, then the link produced by closing µt,i is the link of the singularity at Pt,i. If Pt,i is
a single tangency, then µt,i is a half-twist. Therefore, µt,i is trivial if and only if Pt,i is a
transversal intersection of C and Lt. We disregard these trivial braids, denote by κt the
number of non-trivial braids, and denote them by µt,1, . . . , µt,κt after reordering. Define
by βt a path that joins tε and t, consider β̃t the open braid associated with βt, and define
τt,i := βt · µt,i · β−1

t (here, “·” simply means juxtaposition). Since the strings inside each
Milnor polydisk are different, the braids τt,i automatically commute.

For the moreover part, note that moving Py generically on L∞ causes just a small
change of coordinates X 7→ X + ηY, and hence each Lt splits into κt non-transversal
vertical lines satisfying the genericity condition (1.4) at only one point. This shows the
statement. �

4.3. From generic at infinity to locally generic

In the more general case when triples (C̄,Py, L̄∞) are just generic at infinity, the change
of projection might lead to more complicated situations, but in general the result is of
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Figure 7. Changing the projection.

the same nature; that is, some braids produced by the monodromy around L̄t in the
non-generic braid monodromy need to be replaced by an appropriate factorization. To
simplify notation, we say that a braid σ = ∇(γ ) (image by the monodromy of a meridian
γ in a certain ordered geometric basis) is replaced by a factorization (β1, . . . , βr) if there
is a triple for which βi = ∇(γi) and γ = γr · · · γ1, and hence σ = βr · · ·β1. We state some
interesting particular cases.

Proposition 4.4. Let us assume that Lt intersects C̄ transversally at k − 3 points and
that it is tangent to an ordinary cusp. The braid µ := (σ2σ1)

2 can be seen as the image of
the monodromy on a certain meridian around t ∈ C, the projection of Lt.

Moreover, µ can be replaced by the factorization (σ
σ2
1 , σ 3

2 ) so that the monodromy
becomes generic in a regular neighborhood of Lt.

Proof. The local equation of C at P is y3 − x2 = 0. Note that the local monodromy
around t = 0 is given by the braid parameterized by y3 = e4π

√−1λ, λ ∈ [0, 1], that is,
a rotation of angle 4

3π of the third roots of unity. This produces the braid (σ2σ1)
2.

A small perturbation of the projection point along L̄∞ produces a change of variable
fη := y3 − (x − 3ηy)2. The discriminant of fη with respect to y is x3(x − 4η3), which
implies that the non-transversal vertical line L̄0 splits into L̄0 and L̄t1 , where t1 = 4η3. It
is straightforward to check that there is a cusp at (0, 0) (whose tangent x = 3ηy is not
vertical if η 6= 0), a simple point at (0, 9η2), a vertical tangency at (t1, 4η2), and a simple
point at (t1, η2) (see Figure 7).

Regardless of the value of η, there is an ordered geometric basis on a local disk Dx,0

centered at t = 0 and a choice of generators σ1 and σ2 in B3 such that the local braid
monodromy around t = 0 is given by σ 3

2 . Therefore, since the product should be (σ2σ1)
2

and σ 3
2 · σ σ21 = σ 2

2 σ1σ2 = (σ2σ1)
2, the local monodromy around t = t1 should be given by

σ
σ2
1 , which concludes the proof. �

Similar computations provide the following results for the simplest cases.

Proposition 4.5. Let us assume that Lt intersects C̄ transversally at k − 3 points
and that it is tangent at one of the local branches of an ordinary double point. After
conjugation, the monodromy around Lt produces the braid µ := σ1σ2σ1.

Moreover, µ can be replaced by the factorization (σ
σ1
2 , σ 2

1 ) so that the monodromy
becomes generic in a regular neighborhood of Lt.
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Proposition 4.6. Let us assume that Lt intersects C̄ transversally at k − m points and
that it is tangent to an inflection point of order m. After conjugation, the monodromy
around Lt produces the braid µ := σm−1 . . . σ1.

Moreover, µ can be replaced by the factorization (σ1, . . . , σm−1) so that the monodromy
becomes generic in a regular neighborhood of Lt.

4.4. Line arrangements: from non-generic to generic

We are also interested in the case where C̄ is the union of a fully horizontal curve
C̄0 (such that Py 6∈ C̄) and some lines L̄1, . . . , L̄` passing through Py and different from
L̄∞. In order to avoid technical problems, we restrict our attention to the case of line
arrangements, which admits two approaches. One of them is to use wiring diagrams [8]
(which is an invariant equivalent to braid monodromy). The other is more direct, but we
need some definitions.

Definition 4.7. Let n, k ∈ N, and let ` ∈ {0, 1, . . . , k}. The `-shift of Bn into Bn+k is the
inclusion ρ` : Bn→ Bn+k such that ρ(σj)= σj+`, 16 j< n.

Definition 4.8. The partial Garside element of the strings i, . . . , j, i 6 j, is the
image ∆i,j of the Garside element by the (i− 1)-shift of Bj−i+1 into Bn.

Let C̄ = L̄1 ∪ · · · ∪ L̄n ∪ L̄n+1 ∪ · · · ∪ L̄n+k be a line arrangement such that Py is a point of
multiplicity k and Py ∈ L̄n+1∩· · ·∩ L̄n+k. Let L̄∞ be a generic line through Py. We want to
construct a generic braid monodromy for C̄ starting from the one of (C̄h,Py, L̄∞), where
C̄h := L̄1 ∪ · · · ∪ L̄n. Recall that this braid monodromy is obtained as a representation
∇ : π1(C \ B; t0)→ Bn, where B is the set of x-coordinates of the multiple points of
Ch. Let B0 := B ∪ {t1, . . . , tk}, where Ln+i = {x = ti}; since the braids associated with
the meridians around the points in B0 \ B are trivial, the above mapping defines a
representation ∇0 : π1(C \ B0; t0)→ Bn (which will be referred to as the augmented braid
monodromy). A choice of an ordered geometric basis (γ1, . . . , γr) allows us to represent
this braid monodromy by (τ1, . . . , τr) ∈ Br

n; let 1 6 i1 < · · · < ik 6 r be the indices of the
braids corresponding to the vertical lines Ln+1, . . . ,Ln+k.

Proposition 4.9. Under the above conditions, let us decompose τi as βi ∗ αi, where

αi =
m(i)∏
s=1

∆2
as(i),as+1(i)−1, 1= a1(i) < · · ·< am(i)+1(i)= n+ 1, (4.1)

is a product of squares of partial Garside elements of Bn. Then, a generic braid
monodromy for C̄ is obtained by replacing the braids τi as follows.

(1) If ij < i< ij+1 (by convention i0 = 0, ik+1 = r + 1), then replace τi by the sequence{
βi ∗∆2

as(i),as+1(i)−1

}
m(i)>s>1

,

and take out the trivial braids (for s such that as(i) < as+1(i)− 1).
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(2) If i= ij, then replace τi by{
(βi · σ−1

n+j−1 · . . . · σ−1
n+1 ·∆am(i)(i),am(i)+1(i) · . . . ·∆as+1(i),as+2(i)) ∗∆2

as(i),as+1(i)

}
m(i)>s>1

.

(3) Finally, add ∆2
n+1,n+k.

Proof. For simplicity, we can assume that r = k, since we may add vertical lines to
the arrangement, and once the generic braid monodromy is obtained we may forget the
strings corresponding to the added lines; it is easily seen that this does not affect the
final result.

The augmented braid monodromy ∇0 described above may be computed as follows.
Fix a generic line L̄∗ through Py close to L̄∞, and fix a base point P∗ := (t0, y∗) ∈ L∗
close to Py. We fix an ordered geometric basis (µ1, . . . , µn) of π1(L∗ \ Ch;P∗) such that
µi is a meridian of Li and its pseudo-Coxeter element is the boundary of a disk D∗ in L∗
surrounding L∗ ∩ Ch (which is also the negative boundary of a disk in L̄∗ centered at Py).

In the affine plane C2 = P2 \ L̄∞, we consider the horizontal line H∗ passing through
P∗. We can choose P∗ such that there is a disk Dx containing B0 × {y∗} in its interior.
We fix an ordered geometric basis (µ̃1, . . . , µ̃n, γ̃1, . . . , γ̃k) of π1(H∗ \ C;P∗) such that the
following hold.

• The meridians µ̃i and µi are equal in π1(C2 \ C;P∗) (and we identify them from now
on). The product µ̃n · . . . · µ̃1 is the boundary of a disk D̃∗ which is isotopic to D∗ (in
C2 \ C) and disjoint to Dx (see Figure 8(a)).

• The meridians (γ̃1, . . . , γ̃k) are obtained as follows. Pick a base point in ∂Dx; all
the meridians have as common part a path joining P∗ with this point avoiding
(counterclockwise) the disk D̃∗. These meridians project onto the meridians γi.

It is then clear that (γ̃k · . . . · γ̃1) · (µd · . . . · µ1)= 1 in π1(P2 \ C̄;P∗).
The next step is to deform the projection point in L̄∞, which induces a family of

coordinate changes (x, y) 7→ (x+ sεy, y) for a fixed 0< |ε| � 1 and s ∈ (0, 1]. For each new
projection point, we obtain a braid monodromy ∇s : π1(C \ Bs; t0,s)→ Bn+k, s ∈ (0, 1].
We can fix small pairwise disjoint disks D1, . . . ,Dk (centered at t1, . . . , tk resp.) such that
Bs is contained in the interior of

⋃k
j=1 Dj. Note that #(Bs ∩ Dj) = #(Ch ∩ Ln+j) = m(j).

In order to compute the braid monodromy ∇s, we choose an ordered geometric basis
(ηi,j)

16j6k
16i6m(j), such that

∏m(j)
i=1 ηi,j = γj. The generic base fiber is the new vertical line

passing through P∗. In this vertical line we can construct disks isotopic to D̃∗ and Dx

containing respectively the intersections with L1 ∪ · · · ∪ Ln and Ln+1 ∪ · · · ∪ Ln+k.
We start with the computation of ∇1(γj). The decomposition τj = βj ∗ αj has a

geometric meaning: βj is the braid starting from the vertical line through P∗ and ending
in a vertical line close to Ln+j, while αj is the braid obtained by turning around Ln+j, as
(4.1) justifies. Let us produce a similar decomposition for ∇1(γj) = β̃j ∗ α̃j in Bn+k. The
motion producing βj induces now a braid β̃j as the product of two commuting braids:
βj and σ−1

n+j−1 · . . . · σ−1
n+1; see Figure 8(b). The first one corresponds to the motion of

the points in the disk D̃∗, and the second one is obtained by considering the motion
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L*

(a) (b)

Figure 8. (a) π1(H∗ \ C̄;P∗). (b) π1(L∗ \ C̄;P∗).

Figure 9. Braid α̃j.

of the ith point to the boundary (behind the other ones), and then how this point
approaches D̃∗.

The braid α̃j is decomposed as a product of conjugate of partial Garside elements
leading to the images of ηi,j as in (1); see Figure 9.

For the case k < r, the decomposition in (1) obtained is the same one as that obtained
by forgetting the strings corresponding to the verticals line not in C.

The final step consists in the choice of a new line at infinity close to L̄∞ (without
changing the projection point); the last lines are no longer parallel, since the multiple
point Py becomes affine, and we must add the braid of (3). �

Example 4.10. Let us consider the line arrangement of Figure 10. In order to obtain
the augmented braid monodromy ∇0, it is necessary to add an extra vertical line L
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t0

L1

L2

L3

L4L5L6

Figure 10. From non-generic to generic braid monodromy.

passing through the double point L1 ∩ L3 of C. It is easy to see that ∇0 is given by
(σ 2

2 , 1, σ2 ∗ σ 2
1 , σ

2
1 ). The generic braid monodromy is given by

(∆2
2,4,∆2,4 ∗ σ 2

1 , (σ
2
3 )
σ4 , (σ−1

4 σ3) ∗ σ 2
2 , (σ

−1
4 σ3σ2) ∗ σ 2

1 , σ2 ∗ σ 2
1 , (σ

2
3 )
σ4σ5 ,

(σ−1
5 σ−1

4 σ3) ∗∆2
1,3).

5. Transformations of curves by Kummer covers

Let C̄ be a (reduced) projective curve of degree k of equation Fk(x, y, z) = 0, and let C̄n

be its transform by a Kummer cover πn, n > 1. Note that C̄n is a projective curve of
degree nk of equation Fk(xn, yn, zn)= 0. Another obvious remark is that, if C̄ is reducible,
then so is C̄n. The converse is not true, as we will see in ğ 7.

We will briefly analyze the singularities of C̄n in terms of C̄. For convenience, we
distinguish three types of point in P2.

Definition 5.1. Let P ∈ P2 such that P := [x0 : y0 : z0]. We say that P is a point of
type (C∗)2 (or simply of type 2) if x0y0z0 6= 0. If x0 = 0 but y0z0 6= 0, the point is said
to be of type C∗x (types C∗y and C∗z are defined accordingly). Such points will also be
referred to as type-1 points. The corresponding line (either LX := {X = 0}, LY := {Y = 0},
or LZ := {Z = 0}) that type-1 points lie on will be referred to as their axis. The remaining
points Px := [1 : 0 : 0], Py := [0 : 1 : 0], and Pz := [0 : 0 : 1] will be called vertices (or type-0
points), and their axes are the two lines (either LX , LY , or LZ) they lie on.

Remark 5.2. Note that a point of type `, ` = 0, 1, 2, in P2 has exactly n` preimages
under πn. It is also clear that the local type of Cn at any two points on the same fiber are
analytically equivalent.

The following results are immediate, and we omit their proofs.

Lemma 5.3. Let P ∈ P2 be a point of type `, and let Q ∈ π−1
n (P). There exist local

coordinates (u0, v0) and (u1, v1) centered at Q and P, respectively, such that the following
hold.

(1) If `= 2, then (u1, v1)= πn(u0, v0)= (u0, v0).
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(2) If ` = 1, then (u1, v1) = πn(u0, v0) = (un
0, v0), where u0 = 0 and u1 = 0 are the local

equations (at Q and P, respectively) of the axes containing the points.
(3) If ` = 0, then (u1, v1) = πn(un

0, v0) = (un
0, vn

0), where ui = 0 and vi = 0 are the local
equations of the axes containing P,Q.

Proposition 5.4. Let P ∈ P2 be a point of type `, and let Q ∈ π−1
n (P). One has the

following.

(1) If `= 2, then (C̄,P) and (C̄n,Q) are analytically isomorphic.
(2) If ` = 1, then (C̄n,Q) is a singular point of type 1 if and only if m > 1, where

m := (C̄ · L̄)P and L̄ is the axis of P.
(3) If `= 0, then (C̄n,Q) is a singular point.

Example 5.5. In some cases, we can be more explicit about the singularity type of
(C̄n,Q).

(1) If P is of type 1, (C̄,P) is smooth, and m := (C̄ · L̄)P, then (C̄n,Q) has the same
topological type as un

0 − vm
0 = 0. In particular, if n= 2, then (C̄n,Q) is of type Am−1.

(2) If P is of type 0, and (C̄,P) is smooth and transverse to the axes, then (C̄n,Q) is an
ordinary multiple point of multiplicity n.

In order to better describe singular points of type 0 and 1 of C̄n, we will introduce
some notation. Let P ∈ P2 be a point of type ` = 0, 1, and let Q ∈ π−1

n (P) be a
singular point of C̄n. Denote by µP (respectively, µQ) the Milnor number of C̄ at P
(respectively, C̄n at Q); also, denote by δ1, . . . , δr the local branches of C̄ at P, and
consider δ̃i := π−1

n (δi). Define µP,δi (respectively, µQ,δ̃i
) as the Milnor number of the

singularity (δi,P) (respectively, (δ̃i,Q)). Since ` = 0, 1, P and Q belong to either exactly
one or two axes. If P and Q belong to an axis L̄, then mL̄

P := (C̄ · L̄)P and mL̄
P,δi
:= (δi · L̄)P

(there is analogous notation for Q and δ̃i). More specific details about singular points of
type 0 and type 1 can be described as follows.

Proposition 5.6. Under the above conditions and notation, one has the following.

(1) For `= 1, P belongs to a unique axis L̄, and the following hold.
(a) µQ = nµP + (mL̄

P − 1)(n− 1).,

(b) µQ,δ̃i
= nµP,δi + (mL̄

P,δi
− 1)(n− 1).

(c) If i 6= j then (δ̃i · δ̃j)Q = n(δi · δj)P.

(d) If ri := gcd(n,mL̄
P,δi
), then δ̃i has ri irreducible components.

(2) For `= 0, P belongs to exactly two axes L̄1 and L̄2, and the following hold.
(a) µQ = n2µP + (n− 1)(n(mL̄1

P + mL̄2
P )− 1).

(b) µQ,δ̃i
= n2µP,δi + (n− 1)(n(mL̄1

P,δi
+ mL̄2

P,δi
− 1)− 1), m

L̄j

Q,δ̃i
= nm

L̄j
P,δi

.

(c) If i 6= j, then (δ̃i · δ̃j)Q = n2(δi · δj)P.

(d) If ri := gcd(n,mL̄1
P,δi
,mL̄2

P,δi
), then δ̃i has nri irreducible components, which are

analytically isomorphic to each other for any fixed i.
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Proof. For part (1), note that

µQ = dimC
C{x, y}

(xn−1fx(xn, y), fy(xn, y))
= dimC

C{x, y}
(xn−1, fy(x, y))

+ dimC
C{x, y}

(fx(xn, y), fy(xn, y))

= (n− 1) dimC
C{x, y}

(x, fy(x, y))
+ n dimC

C{xn, y}
(fx(xn, y), fy(xn, y))

= (n− 1)(mL̄
P − 1)+ nµP.

The same proof applies to µQ,δ̃i
. Also,

(δ̃i · δ̃j)Q = dimC
C{x, y}

(fi(xn, y), fj(xn, y))
= n dimC

C{xn, y}
(fi(xn, y), fj(xn, y))

= n(δi · δj)P,

where fi (respectively, fj) is a local equation for δi (respectively, δj).
Finally, we can describe the irreducible branch δi as a Puiseux factorization of type

fi(x, y)=∏ν
j=1(y− s(ξ j

ν x1/ν)), where ν is a multiple of m= mL̄
P,δi

, the order of fi in y. Note
that fi(xn, y) =∏ν

j=1(y − s(ξ j
ν xn/ν)). Assume that r is a common divisor, that is, n = rn′,

m= rm′ (and hence ν = rν′); then

ν′∏
j=1

(y− s(ξ rj
ν xrn′/ν))=

ν′∏
j=1

(y− s(ξ j
ν′x

n′/ν′))

is invariant under the Galois conjugation by ν′-roots of unity, and hence it is a
convergent series in C{x, y}, that is, a union of branches. Therefore the result follows.

The proof of part (2) is analogous. �

6. Proofs of main results

Proof of Theorem 1. By Proposition 5.4 (see also Example 5.5), the curve C can only
have ordinary cusps as singularities. Moreover, it should intersect the axes transversally
except if n = 2 (respectively, n = 3), where the axes can be tangent to ordinary flexes
(respectively, ordinary tangents) eventually at several points. The monodromy given by
(C ∪ Lz,L∞,P) determines as shown in § 3 the braid monodromy given by (Cn,L∞,P),
which might not be generic, but it is generic at infinity. Propositions 4.4 and 4.3 provide
the result. �

Proof of Theorem 2. It is straightforward that the braid monodromy given by
(C,L∞,P) determines the one given by (C ∪ Lz,L∞,P) for generic choices of Lz, L∞,
and P. As above, the method described in § 3 provides a (non-generic) braid monodromy
given by (Cn,L∞,P). The result follows from Proposition 4.3. �

Proof of Theorem 3. This is the content of § 3. �

7. Examples and applications

In this section, the results obtained in ğ ğ 2–3 will be applied to produce generic braid
monodromies of curves. We will follow the conventions introduced in [5]. In the language
of the previous section, diagram systems on C for the starting curve C will be chosen
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LY L0

t0

Figure 11. A generic line.

by joining the points with segments in a decreasing order according to the lexicographic
order.

7.1. Smooth curves
We start with the braid monodromy of a smooth curve considered as a Fermat curve
C̄n = {xn − yn + zn = 0} ⊂ P2, via the nth Kummer cover of the line C̄ of equation
x− y+ z= 0. Using the conventions of ğ 2, one can obtain an extended braid monodromy
∇̃ : π1(C \ B̃; t0)→ B1,1, where γ1, γ2 is an ordered geometric basis of the free group
π1(C \ B̃; t0) and ∇̃(γ1) = 1, ∇̃(γ2) = σ 2

1 , as shown in Figure 11. Using Example 3.5 and
the commutative diagram (2.2), one can obtain a braid monodromy ∇n : Fn→ Bn for Cn

as follows:

∇n(γ̃j)= σn−1 · . . . · σ1, (7.1)

where the basis γ̃j, j= 1, . . . , n, is obtained as in Lemma 2.6, by forgetting the last term,
since L̄0 is transversal.

However, note that ∇n is not a generic braid monodromy, since the projection from Py

contains n special fibers L̄ξ i
n
, i = 0, . . . , n − 1, with an order-n tangency at [ξ i

n : 0 : −ξ i
n].

Still, ∇n is useful to compute the fundamental group of the complement of a smooth
curve (using Theorem 1.6). This group is generated by µ1, . . . , µd with a relation
µd · . . . · µ1, and, since

µ
σn−1·...·σ1
i = µi+1, 16 i< d,

the group is cyclic of order d, as obtained by Zariski in [42].
By the previous discussion, in order to obtain a generic braid monodromy, it is enough

to use Proposition 4.6 and obtain the following.

Proposition 7.1 ([37, Theorem 1, p. 120]). Let C̄ be a smooth curve of degree n. Then C̄
induces a braid monodromy factorization of ∆2

n given by

(

1stpackage︷ ︸︸ ︷
σ1, . . . , σn−1, . . . ,

nthpackage︷ ︸︸ ︷
σ1, . . . , σn−1).
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L0
LY

t0

Figure 12. A conic tangent to two axes.

7.2. Zariski sextics

In [42], Zariski showed that the fundamental group of a sextic with six cusps on a conic
is Z/2 ∗ Z/3 and that the family of such sextics is irreducible, so they all have equivalent
braid monodromies. We are going to compute one in two steps: first, a (fully horizontal)
non-generic braid monodromy of such a sextic will be obtained from a simpler curve via
a Kummer covering and second, a deformation will be performed to compute the desired
generic braid monodromy.

Consider a conic as in Figure 12. It is tangent to two of the axes and transversal to
the third one, e.g., the conic C̄ = {x2 + y2 − 2xz− 2yz+ z2 = 0}. Using the conventions of
ğ 2, the projection from Py has three non-generic fibers at B̃ = {0, 1, 2}. Consider t0 = 3
and γ1, γ2, γ3 meridians around 2, 1, and 0, respectively (see Figure 12), forming an
ordered geometric basis of the free group π1(C \ B̃; t0). One can obtain an extended braid
monodromy ∇̃ : π1(C \ B̃; t0)→ B2,1 as follows:

∇̃(γ1)= σ1, ∇̃(γ2)= σ1 ∗ σ 4
2 , ∇̃(γ3)= (σ1σ

2
2 ) ∗ σ1.

After conjugating by the braid (σ1σ
2
2 ), the above representation becomes

∇̃(γ1)= σ σ
2
2

1 , ∇̃(γ2)= σ 4
2 , ∇̃(γ3)= σ1.

Let us consider the third Kummer cover of C̄. The curve C̄3 is a curve of degree 6.
Since C̄ is smooth and intersects L̄∞ transversally, the singular points are contained
in L̄0 ∪ L̄Y (Proposition 5.4). Using Proposition 5.6, the curve C̄3 possesses six
ordinary cusps (which are in a conic, namely the union of the lines π−1

3 (L̄0) = L̄0 and
π−1

3 (L̄Y)= L̄Y).
Using a radial system of generators as in ğ 3.2, the map ρ̂3 : B2,1→ B6 is given (see

Proposition 3.7) by

σ1 7→ σ1σ3σ5

σ 2
2 7→ σ5σ4σ3σ2σ

−1
3 σ−1

5 = (σ5σ4σ
−1
2 ) ∗ (σ4σ3),

where the generators σi on the right-hand side are defined as σ1 := σ̃1,1, σ2 :=
σ̃2,1, . . . , σ5 := σ̃1,3 (with the right-lexicographic order) for simplicity. Let us conjugate
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the result by σ5σ3:

σ1 7→ σ1σ3σ5

σ 2
2 7→ σ−1

3 σ4σ3σ2 = σ4 ∗ (σ3σ2).
(7.2)

Proposition 7.2. There is an ordered geometric basis, as in Lemma 2.6, such that
∇3 : F7→ B6 is given as follows:

γ̃1 = γ1 7→ (σ1σ3σ5)
σ4∗(σ3σ2) = (σ1σ3σ5)

σ4σ3σ2

γ̃2 = γ2 7→ σ4 ∗ (σ3σ2)
2

γ̃3 = γ
γ3
1 7→ (σ1σ3σ5)

σ4∗(σ3σ2)σ1σ3σ5 = (σ1σ3σ5)
σ4σ3σ2σ1σ3σ5

γ̃4 = γ
γ3
2 7→ ((σ3σ2)

2)σ
−1
4 σ1σ3σ5

γ̃5 = γ
γ 2
3

1 7→ (σ1σ3σ5)
σ4∗(σ3σ2)σ2

1 σ
2
3 σ

2
5 = (σ1σ3σ5)

σ4σ3σ2σ
2
1 σ

2
3 σ

2
5

γ̃6 = γ
γ 2
3

2 7→ ((σ3σ2)
2)σ

−1
4 σ2

1 σ
2
3 σ

2
5

γ̃7 = γ 3
3 7→ σ 3

1 σ
3
3 σ

3
5 .

As mentioned above, this braid monodromy is not generic. However, the triple
(C̄3,Py,L∞) is fully horizontal and transversal at infinity. One can deform ∇3 as
described in ğ 4. First, a deformation is performed, as in ğ 4.3, to produce a locally
generic triple. Then, a move as described in ğ 4.2 will produce a generic braid
monodromy.

Also note that the non-generic fibers of the projection from Py are

B̃3 = {t1 = 3
√

2, t2 = 1, t3 = ξ3 3
√

2, t4 = ξ3, t5 = ξ2
3

3
√

2, t6 = ξ2
3 , t7 = 0},

where γ̃i is a meridian around ti, and the following hold.

(1) L̄ti , i = 1, 3, 5, correspond to vertical lines containing three simple tangencies (hence
locally generic fibers).

(2) L̄ti , i = 2, 4, 6, correspond to vertical lines passing tangent to an ordinary cusp and
transversal to three smooth points of C̄3.

(3) L̄0 corresponds to a vertical line passing through three ordinary cusps (hence a
locally generic fiber).

Step 1. This step is necessary at the fibers of type (2) above. According to
Proposition 4.4, the braid obtained as the image of γ̃2, that is, σ4 ∗ (σ3σ2)

2 =
((σ4 ∗ σ3) · (σ2))

2 has to be replaced by

(σ
σ4∗σ3
2 , σ4 ∗ σ 3

3 )= (σ σ3σ
−1
4

2 , (σ 3
3 )
σ−14 ). (7.3)

Analogously this can be done with ∇3(γ̃4) and ∇3(γ̃6).

Step 2. This is necessary at the locally generic fibers described above. Applying
Proposition 4.3 to the fibers of types 1 and 3, one obtains that, for instance,
∇3(γ̃1)= (σ1σ3σ5)

σ4σ3σ2 is replaced by

(σ
σ4σ3σ2
1 , σ

σ4σ3σ2
3 , σ

σ4σ3σ2
5 )= (σ σ21 , σ4, σ

σ4σ3σ2
5 ). (7.4)

Analogously this can be done with ∇3(γ̃3), ∇3(γ̃5), and ∇3(γ̃7).
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However, instead of working out each ∇3(γ̃i) separately, we can note that ∇3(γ̃i+2j) =
∇3(γ̃i)

σ
j
1σ

j
3σ

j
5 (i = 1, 2, j = 0, 1, 2). Therefore one can also work out the first set of braids

coming from ∇3(γ̃1) and ∇3(γ̃2) and conjugate to obtain the rest of the braids coming
from ∇3(γ̃i) i = 3, . . . , 6. Finally attach the braids (σ 3

1 , σ
3
3 , σ

3
5 ) obtained from ∇3(γ̃7).

From (7.3) and (7.4), one obtains

(σ
σ2
1 , σ4, σ

σ4σ3σ2
5 , σ

σ3σ
−1
4

2 , (σ 3
3 )
σ−14 ).

Using the sequence of Hurwitz moves h−1
2 h−1

3 h−1
4 h2h3 (see (1.3)) one obtains the first

block:

(σ
σ2
1 , σ

σ3
2 , σ 3

3 , σ
σ−15 σ−13
4 , σ4). (7.5)

After conjugating (7.5) by σ1σ3σ5 and applying h2, one obtains the second block:

(σ
σ3
2 , σ 3

3 , σ
σ−13 σ1
2 , σ4, σ

σ3σ5
4 ). (7.6)

The third block is obtained from (7.6) using conjugation by σ1σ3σ5 and applying h1h−1
4 :

(σ 3
3 , σ

σ−13 σ1
2 , σ

σ2
1

2 , σ4, σ
σ3σ5
4 ). (7.7)

Proposition 7.3. A generic braid monodromy for C̄3 is given by

(σ
σ2
1 , σ

σ3
2 , σ 3

3 , σ
σ−15 σ−13
4 , σ4, σ

σ3
2 , σ 3

3 , σ
σ−13 σ1
2 , σ4, σ

σ3σ5
4 , σ 3

3 , σ
σ−13 σ1
2 , σ 3

1 , σ
σ2
1 ,

σ4, σ
σ3σ5
4 , σ 3

3 , σ
3
5 ).

Remark 7.4. This result is also obtained in [37, Theorem 1(3), p. 160]. It is
straightforward to compute the fundamental group of the complement of C̄3 and to
retrieve Zariski’s computation. Moreover, this braid monodromy allows us to compute
the homotopy type of C2 \ C3 (for a generic choice of line at infinity) using the method
in [33]. It is easy to see that

C2 \ C3 ' (S3 \ {trefoil knot}) ∨
13∨
i=1

S2.

7.3. Dual of a smooth cubic

The dual of a smooth cubic is a sextic with nine cusps. Kummer covers allow one to
recover one of these curves easily.

Consider a conic C̄ := {x2+y2+z2−2(xy+xz+yz)= 0}, as in Figure 13. Projecting from
Py = [0 : 1 : 0] as usual, one obtains two non-generic fibers L̄∞ and L̄0 with tangencies
P3 := [1 : 1 : 0] and P1 := [0 : 1 : 1], respectively. Also note that C is tangent to L̄Y at
P2 := [1 : 0 : 1]. Using the conventions of ğ 2, we obtain an extended braid monodromy
∇̃ : π1(C \ B̃; t0)→ B2,1, where B̃ = {P1,P2,P3}, γ1, γ2 are meridians around P2 and P1,
respectively, forming an ordered basis of the free group π1(C \ B̃; t0) and ∇̃(γ1) = σ 4

2 ,
∇̃(γ2)= σ 2

2 ∗ σ1. For simplicity, we conjugate this monodromy by σ 2
2 , and obtain

γ1 7→ σ 4
2 , γ2 7→ σ1. (7.8)
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Lx

Ly

t0

Figure 13. Tritangent conic.

The preimage of C̄ by the Kummer cover of order 3 is a sextic C̄3 with nine cusps, as
can be deduced from Example 5.5. Let us compute the braid monodromy (C̄3,Py, L̄∞).
Following the ideas in ğ 7.2, one immediately obtains

γ1 7→ ((σ3σ2)
2)σ

−1
4

γ
γ3
1 7→ ((σ3σ2)

2)σ
−1
4 σ1σ3σ5

γ
γ 2
3

1 7→ ((σ3σ2)
2)σ

−1
4 σ2

1 σ
2
3 σ

2
5

γ 3
3 7→ σ 3

1 σ
3
3 σ

3
5 .

Since the line L̄∞ is not generic, one can apply Proposition 4.2 to obtain a
braid monodromy that is generic at infinity. The pseudo-Coxeter element for the
monodromy (7.8) is c := σ1σ

4
2 , and hence ∆6

3c−3 = (∆2
3c−1)3 = (σ 3

1 )
σ2
2 ∈ B2,1, whose

image in B6 via ρ̂3 (see (7.2)) is (σ 3
1 σ

3
3 σ

3
5 )
σ4σ3σ2σ

−1
4 . Therefore

(((σ3σ2)
2)σ

−1
4 , ((σ3σ2)

2)σ
−1
4 σ1σ3σ5 , ((σ3σ2)

2)σ
−1
4 σ2

1 σ
2
3 σ

2
5 , σ 3

1 σ
3
3 σ

3
5 , (σ

3
1 σ

3
3 σ

3
5 )
σ4σ3σ2σ

−1
4 )

is a braid monodromy factorization of ∆2
6 generic at infinity for the Zariski sextic

C̄3. Finally, in order to obtain a generic braid monodromy, one needs to apply
Propositions 4.2 and 4.3 to slightly turn the projection generic and perform Hurwitz
moves to simplify the braids. One can check that the final generic braid monodromy of
C̄3 is

σ 3
2 , σ

σ3σ
−1
4

2 , σ
σ3σ

−1
4 σ1σ3σ5

2 , σ 3
3 , (σ

3
3 )
σ4σ5 , σ 3

5 , σ
σ−13 σ4σ

2
1 σ
−1
5

2 , (σ 3
5 )
σ4 , σ 3

1 , (σ
3
1 )
σ2 ,

σ 3
4 , (σ

3
5 )
σ4σ3σ2).

The fundamental group of this curve complement has been extensively studied by
Zariski in [32]. He also used deformation arguments to recover the fundamental group
studied in [42], see ğ 7.2, as well as to study the fundamental group of sextics with six
cusps not on a conic.

Similar arguments can be used to describe the generic braid monodromy of any curve
C̄n, n odd, which is an irreducible curve of degree-3n and degree-9n singularities of type
An−1 (see [17]).
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t0

Figure 14. Ceva arrangement.

7.4. Ceva arrangement

Line arrangements provide a particularly interesting source of examples of arrangements
of curves. Their braid monodromies, or their equivalent objects such as braided wiring
diagrams, have been used and calculated in the literature (see [8, 39, 20, 40, 21]). Such
braid monodromies are especially simple to obtain for real arrangements. In this section,
we will use the classical Ceva arrangement (six lines joining four points in general
positions) which is a real arrangement, to find the braid monodromy of the 9-Ceva
arrangement

C := {(x3 − y3)(y3 − z3)(x3 − z3)= 0},
since it can be obtained as a Kummer covering of three concurrent lines in a classical
Ceva arrangement; see Figure 14.

The extended braid monodromy on B2,1 of Figure 14 is given by

γ1 7→ σ 2
1 , γ2 7→ σ 2

2 .

Hence, after performing a Kummer cover of order 3, one obtains

γ1 7→ σ 2
1 σ

2
3 σ

2
5

γ
γ2
1 7→ (σ 2

1 σ
2
3 σ

2
5 )
σ4σ3σ2

γ
γ 2
3

1 7→ (σ 2
1 σ

2
3 σ

2
5 )
σ2
4 σ3σ

2
2

γ 3
2 7→ σ4 ∗ (σ3σ2)

3

(see (7.2)).
In order to make this monodromy generic at infinity, one applies Proposition 4.2,

obtaining the new braid:

(∆2
3c−1)3 = ((σ3σ2)

3)σ
−1
4 σ1σ3σ5 .
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Using Proposition 4.9, one can obtain a generic braid monodromy as follows:

(∆2
5,7, (∆

2
3,5)

∆−15,7 , (∆2
1,3)

∆−13,5∆
−1
5,7 , (∆2

5,7)
σ4σ3σ2σ7 , (∆2

3,5)
∆−15,7σ4σ3σ2σ7 ,

(∆2
1,3)

∆−13,5∆
−1
5,7σ4σ3σ2σ7 , (∆2

5,7)
σ2
4 σ3σ

2
2 σ7σ8 , (∆2

3,5)
∆−15,7σ

2
4 σ3σ

2
2 σ7σ8 ,

(∆2
1,3)

∆−13,5∆
−1
5,7σ

2
4 σ3σ

2
2 σ7σ8 , σ4 ∗ (σ3σ2)

3, ((σ3σ2)
3)σ

−1
4 σ1σ3σ5).

Another direct application is the monodromy of the MacLane arrangement [36], which is
obtained from C̄3 by deleting one line. This results in deleting one of the strings, that is,

(∆2
5,7, (∆

2
3,5)

∆−15,7 , (∆2
1,3)

∆−13,5∆
−1
5,7 , (∆2

5,7)
σ4σ3σ2σ7 , (∆2

3,5)
∆−15,7σ4σ3σ2σ7 ,

(∆2
1,3)

∆−13,5∆
−1
5,7σ4σ3σ2σ7 , (σ 2

5 )
σ2
4 σ3σ

2
2 , (σ 2

3 )
σ2
4 σ3σ

2
2 , (σ 2

1 )
σ2
4 σ3σ

2
2 ,

σ4 ∗ (σ3σ2)
3, ((σ3σ2)

3)σ
−1
4 σ1σ3σ5).

The computational difficulty of the braid monodromy of the 9-Ceva as well as the
MacLane arrangements comes from the fact that they cannot be given by real equations;
the MacLane arrangement is the smallest one with this property. A direct computation
of the braid monodromy of the MacLane arrangement can be found in [20]. Using our
construction, everything is reduced to computing the braid monodromy of a very simple
real line arrangement.

Braid monodromy for generalized Ceva arrangements [10] (n > 3) are also obtained,
but we omit their lengthy factorizations.

7.5. A useful nodal cubic

This section will serve as an important tool for the remaining examples. The main object
will be the triple (C̄,Py, L̄∞), where C̄ is a nodal cubic, Py 6∈ C̄, L̄∞ is tangent to C̄ at
an inflection point, and the projection has only two non-generic fibers: another tangency
at an inflection point and the line passing though Py and the node. The purpose of
this section is to calculate the extended non-generic braid monodromy of the triple
(C̄,Py, L̄∞) with respect to the tangent line L̄Y at the remaining inflection point. Let us
consider the following cubic, C̄ = {f (x, y, z) = 0}, f (x, y, z) = (x + y + z)3 − 27xyz, whose
real picture appears in Figure 15(a). The usual projection from Py has four non-generic
fibers L̄t at t = ∞, 1, 0, where L̄∞ and L̄0 are tangent lines at inflection points and
L̄1 is the vertical line through the node (which is real, but whose branches are not).
For this reason, the real picture is not enough to recover the braid monodromy of
(C̄,Py, L̄∞). However, the extra information required can be obtained from drawing the
real part of the missing complex conjugate branches (shown in Figure 15(b) as dotted
lines).

In order to find these dotted lines, one can proceed as follows. Let p(y) := y3 − a1y +
a2y2 − a3 ∈ R[y], and assume that it has only one real root, say t1. Let t2, t3 ∈ C be the
remaining roots, t3 = t̄2. Note that their common real part is t2+t3

2 .
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t0 t0

(a) (b)

Figure 15. (a) The nodal cubic. (b) Nodal cubic with a global real picture.

Lemma 7.5. Under the above conditions, the polynomial

q(y)= y3 − a1y2 + a2
1 + a2

4
y− a1a2 − a3

8

contains exactly one real root, which is the common real part t2+t3
2 of the complex

conjugate roots t2, t3 of p(y).

Proof. Consider ai = si(t1, t2, t3) the symmetric polynomial of degree i; it is enough
to show that a1 = s1(t̃1, t̃2, t̃3),

a2
1+a2

4 = s2(t̃1, t̃2, t̃3), and a1a2−a3
8 = s3(t̃1, t̃2, t̃3), where

t̃i = tj+tk
2 , {i, j, k} = {1, 2, 3}, which is a simple exercise. �

Since the affine cubic f (x0, y, 1) satisfies the conditions of Lemma 7.5, for any fixed
x̄ ∈ R, the real parts of the complex roots of f (x0, y, 1) are given by the equation

0 = y3 + 3(x0 + 1)y2 + 3
4x2

0 − x0 + 4
4

+ (x0 + 1)
8x2

0 − 65x0 + 8
8

= (y+ x0 + 1)3 − 27
4

x0y− 81
8

x0(x0 + 1).

This is enough to compute the required braid monodromy; see [6] for details.
In order to show the extended braid monodromy ∇̃ of C, note that LY is also

tangent to C at the inflection point (−1, 0). Hence B̃ = {1, 0,−1}. Choose an ordered
geometric basis as in Figure 15(b) and a system diagram on the fiber given by decreasing
lexicographic order on C. For instance, according to Figure 15(b), σ1 is the half-twist
exchanging the two complex conjugated roots of f (t0, y, 1), and σ2 is the half-twist
exchanging the complex conjugated root of f (t0, y, 1) of negative real part and 0. Then,
∇̃ : π1(C \ B̃; t0)→ B3,1 is given by

γ̂1 7→ σ 2
1

γ̂2 7→ (σ2σ3)
σ−11 σ2

γ̂3 7→ σ 6
2 .
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In order to meet the hypothesis of ğ 2, one needs the system diagram to be such that the
last string is the one that remains constant. This means that one needs to conjugate ∇̃
by σ−1

3 . Combining this with a conjugation by σ−1
2 , the Hurwitz move h−1

2 (changing γ̂i

to γi), and another conjugation by σ−1
1 , one obtains

γ1 7→ σ 2
2

γ2 7→ σ2 ∗ σ 6
3

γ3 7→ (σ1σ2)
σ2
3 .

(7.9)

An easy computation gives that the product of ∆2 and the inverse of the
pseudo-Coxeter element is (σ1σ2)

σ2
3 σ2 .

7.6. The dual of the nodal quartic

The dual curve of a nodal quartic is a sextic curve with six cusps and four nodes.
Moreover, this curve appears as a generic plane section of the discriminant of the
polynomials of degree 4, and its fundamental group has been computed by Zariski [31]:
it is the braid group on S2 with four strings.

This sextic can also be obtained from the cubic in ğ 7.5 using a Kummer cover π2.
Each inflection point in the axes produces two cusps, while the double point produces
four nodes; see Example 5.5.

In order to give a braid monodromy for (C2,Py, L̄∞) from (7.9), one needs to combine
ρ̂′2 (see Example 3.8) and Lemma 2.6. We start with the first part of (2.2):

F5 ↪→ F3
∇̃→ B3,1

γ̃1 7→ γ1 7→ σ 2
2

γ̃2 7→ γ2 7→ σ2 ∗ σ 6
3

γ̃3 7→ γ
γ3
1 7→ (σ 2

2 )
σ−23 σ1σ2σ

2
3 = (σ2σ

2
3 σ1) ∗ σ 2

2

γ̃4 7→ γ
γ3
2 7→ (σ 6

3 )
σ−12 σ−23 σ1σ2σ

2
3 = (σ 6

3 )
σ−12 σ1

γ̃5 7→ γ 2
3 7→ σ−2

3 ∗ (σ1σ2)
2.

(7.10)

Using ρ̂′2, we obtain the braid monodromy of (C̄2,Py, L̄∞):

(σ̂ 2
2 σ̂

2
4 , (σ̂2σ̂4) ∗ σ̂ 3

3 , (σ̂2σ̂4σ̂3σ̂5σ̂1) ∗ (σ̂ 2
2 σ̂

2
4 ), (σ̂

3
3 )
σ̂−12 σ̂−14 σ̂5σ̂1 , ((σ̂1σ̂2)

2(σ̂5σ̂4)
2)σ̂3).

(7.11)

Using Proposition 4.2, the monodromy can be made generic at infinity adding the
image by ρ̂′2 of (σ−1

2 σ 2
3 ) ∗ (σ2σ1)

3, which is ((σ̂1σ̂2)
2(σ̂5σ̂4)

2)σ̂3σ̂2σ̂4 .
In order to obtain a generic braid monodromy, we apply Propositions 4.3 and 4.4.

Table 1 shows the decompositions.
We can compute the fundamental group of C2 \ C2. It is well known [31] that this

group is obtained as a central extension of the braid group of S2 with four strings by Z.
More precisely, applying Theorem 1.7 (without the relation µ6 · . . . · µ1 = 1), we obtain a

https://doi.org/10.1017/S1474748013000297 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000297


Kummer covers and braid monodromy 665

σ̂2
2 σ̂

2
4 (σ2

2 , σ
2
4 )

(σ̂2σ̂4) ∗ σ̂3
3 ((σ̂2σ̂4) ∗ σ̂3

3 )

(σ̂2σ̂4σ̂3σ̂5σ̂1) ∗ (σ̂2
2 σ̂

2
4 ) ((σ̂2σ̂4σ̂3σ̂1) ∗ (σ̂2

2 ), (σ̂2σ̂4σ̂3σ̂5) ∗ (σ̂2
4 ))

(σ̂3
3 )
σ̂−12 σ̂−14 σ̂5σ̂1 ((σ̂3

3 )
σ̂−12 σ̂−14 σ̂5σ̂1 )

((σ̂1σ̂2)
2(σ̂5σ̂4)

2)σ̂3 (σ̂
σ̂1σ̂3
2 , σ̂3

1 , σ̂
σ̂5σ̂3
4 , σ̂3

5 ))

((σ̂1σ̂2)
2(σ̂5σ̂4)

2)σ̂3σ̂2σ̂4 (σ̂
σ̂1σ̂3σ̂2σ̂4
2 , (σ̂3

1 )
σ̂2 , σ̂

σ̂5σ̂3σ̂2σ̂4
4 , (σ̂3

5 )
σ̂4 )

Table 1. From generic at infinity to generic braid monodromy.

group with generators µ1, . . . , µ6 and relators

[µ4, µ5] = [µ2
2, µ5µ

−1
4 ] = 1, µ2µ4µ2 = µ4µ2µ4, µ2µ5µ2 = µ5µ2µ5,

µ6 = µµ5
2 , µ1 = µ4 ∗ µ2, µ3 = µµ2µ4

5 , 1= 1︸ ︷︷ ︸
7 times

.

This presentation is obtained using GAP4 [24].
From the original presentation, we obtain this one only using Tietze moves of type I

and type II. Hence, by Libgober’s result [33], one can verify that C2 \ C2 has the
homotopy type of K∨∨7

j=1S2, where K is the 2-complex associated with the presentation

〈x, y, z|[x, z] = [y2, xz−1] = 1, xyx= yxy, yzy= zyz〉.

7.7. Hesse arrangement

The Hesse arrangement, that is, the arrangement of the 12 lines joining the inflection
points of a smooth cubic, is a complex arrangement of lines with only double and
quadruple singular points. It can be seen as the union of the four completely reducible
fibers in a pencil of smooth cubics whose base points are the nine inflection points.
Our purpose in this section is to obtain the generic braid monodromy of the Hesse
arrangement. This problem was considered in [18] using a computer-based approach. For
our approach, note that the Hesse arrangement can be obtained from the nodal cubic in
ğ 7.5 using a Kummer cover π3: it is the preimage of the cubic and the three ramification
lines. It can be seen using Proposition 4.3 and Example 5.5, and also directly from the
following equations:

(x3 + y3 + z3)3 − 27x3y3z3 =
∏
ζ31=1

(x3 + y3 + z3 − 3ζ1xyz).

Hence xyz = 0, and the above factors give the four reducible members of the pencil of
cubics generated by x3 + y3 + z3 = 0 and xyz = 0. The base points of this pencil are the
nine common inflection points of the irreducible cubics of the pencil. The reducible fibers
split as a product of lines:

x3 + y3 + z3 − 3ζ1xyz=
∏
ζ32=1

(x+ ζ2y+ ζ1ζ̄2z).
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These are the lines joining the inflection points, i.e., we obtain the Hesse arrangement.
We start with the braid monodromy with respect to (C̄3,Py, L̄∞): (σ 2

2 , σ2 ∗ σ 6
3 , (σ1σ2)

σ2
3 ),

and the braid at infinity is (σ1σ2)
σ2
3 σ2 . In order to simplify the braid monodromy of the

Hesse arrangement, we conjugate by σ−2
3 σ−1

2 , and we obtain

((σ 2
2 )
σ2
3 , σ 6

3 , σ2σ1), ∞ 7→ (σ2σ
2
3 σ
−1
2 σ−2

3 ) ∗ (σ1σ2).

We proceed as in ğ 7.6, but we perform a Hurwitz move to the base of Lemma 2.6 in
order to obtain simpler braids:

F7 ↪→ F3
∇̃→ B3,1

γ̃1 7→ γ1 7→ (σ 2
2 )
σ2
3

γ̃2 7→ γ2 7→ σ 6
3

γ̃3 7→ γ
γ3
1 7→ (σ 2

2 )
σ2
3 σ2σ1

γ̃4 7→ γ
γ3
2 7→ (σ 6

3 )
σ2σ1

γ̃5 7→ γ 3
3 7→ (σ2σ1)

3

γ̃6 7→ γ3 ∗ γ1 7→ (σ2σ1σ
−2
3 ) ∗ σ 2

2

γ̃7 7→ γ3 ∗ γ2 7→ σ2 ∗ σ 6
3 .

(7.12)

Let us recall the map ρ̃3 : B3,1→ B9,1 of Proposition 3.7:

σ1 7→ σ̃1,1σ̃1,2σ̃1,3

σ2 7→ σ̃2,1σ̃2,2σ̃2,3

σ 2
3 7→ σ̃ 2

3,3σ̃2,3σ̃1,3σ̃3,2σ̃2,2σ̃1,2σ̃3,1σ̃
−1
1,2 σ̃

−1
2,2 σ̃

−1
1,3 σ̃

−1
2,3 .

(7.13)

For convenience, we rewrite this map in the usual generators:

σ1 7→ σ1σ4σ7

σ2 7→ σ2σ5σ8

σ 2
3 7→ σ 2

9 σ8σ7σ6σ5σ4σ3σ
−1
4 σ−1

5 σ−1
7 σ−1

8 = (σ 2
9 σ8σ7)

σ6σ5σ4σ3σ7σ6 .

(7.14)

It is worthwhile noting that (σ 2
9 σ8σ7)

3 = ∆2
7,10. Let us denote τ := σ6σ5σ4σ3σ7σ6 and

Θ := (σ 2
9 σ8σ7)

τ . The next step is to write down the braid monodromy of (C̄3,Py, L̄∞):

((σ 2
2 σ

2
5 σ

2
8 )
Θ , (∆2

7,10)
τ , (σ 2

2 σ
2
5 σ

2
8 )
Θσ2σ1σ5σ4σ8σ7 , (∆2

7,10)
τσ2σ1σ5σ4σ8σ7 ,∆2

1,3∆
2
4,6∆

2
7,9,

(σ2σ1σ5σ4σ8σ7Θ
−1) ∗ (σ 2

2 σ
2
5 σ

2
8 ), (σ2σ5σ8τ

−1) ∗∆2
7,10).

This monodromy becomes generic at infinity by adding (σ2σ5σ8Θσ
−1
8 σ−1

5 σ−1
2 Θ−1) ∗

(∆2
1,3∆

2
4,6∆

2
7,9). Let us denote η := σ2σ5σ8Θσ

−1
8 σ−1

5 σ−1
2 Θ−1.

To compute a generic braid monodromy to this arrangement, one has to apply
Proposition 4.9, where we have two vertical lines corresponding to the fifth and eighth
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x = 0

y = 0

y + z = 0

x + y  + z = 0

x + y = 0x + z = 0

t0

Figure 16. Arrangement C̄.

braids:

((σ 2
2 )
Θ , (σ 2

5 )
Θ , (σ 2

8 )
Θ , (∆2

7,10)
τ , (σ 2

2 )
Θσ2σ1σ5σ4σ8σ7 , (σ 2

5 )
Θσ2σ1σ5σ4σ8σ7 , (σ 2

8 )
Θσ2σ1σ5σ4σ8σ7 ,

(∆2
7,10)

τσ2σ1σ5σ4σ8σ7 , σ 2
10, σ10 ∗∆2

7,10, (σ10∆7,10) ∗∆2
4,7, (σ10∆7,10∆4,7) ∗∆2

1,4,

(σ2σ1σ5σ4σ8σ7Θ
−1) ∗ σ 2

2 , (σ2σ1σ5σ4σ8σ7Θ
−1) ∗ σ 2

5 , (σ2σ1σ5σ4σ8σ7Θ
−1) ∗ σ 2

8 ,

(σ2σ5σ8τ
−1) ∗∆2

7,10, (σ
−1
11 η) ∗ σ 2

10, (σ
−1
11 ησ10) ∗∆2

7,10, (σ
−1
11 ησ10∆7,10) ∗∆2

4,7,

(σ−1
11 ησ10∆7,10∆4,7) ∗∆2

1,4, σ
2
11). (7.15)

7.8. Sextics with six cusps outside a conic

The Kummer cover π3 of the curve C̄ of equation (x+y+z)(x+y)(y+z)(x+z)= 0 produces
a Fermat cubic (as the preimage of the line x + y + z = 0), while the other three lines
become the tangent lines to the nine inflection points. The non-generic extended braid
monodromy associated with the triple (C̄,Py, L̄∞) with respect to the line L̄Y = {y= 0} is
given by (σ 2

2 , σ2 ∗ (σ 2
1 σ

2
3 ), (σ2σ3σ

−1
2 )∗σ 2

1 ). In order to apply the Kummer transformation
to this monodromy, one needs to find an equivalent monodromy that meets the
hypotheses of ğ 2. This can be achieved if the last generator in the ordered geometric
basis corresponds to x = 0, and if the system diagram is such that the last string is the
one that remains constant. One can meet the first requirement by using the Hurwitz
move h−1

2 :

(σ 2
2 , (σ2σ

−1
3 σ−1

1 ) ∗ σ 2
2 , σ2 ∗ (σ 2

1 σ
2
3 )).

In order to switch the string y = 0 to the last position, one must perform the
automorphism σi 7→ σ4−i, but these braids are invariant by the morphism. After these
changes, the braid around infinity is (σ 2

1 σ
2
3 )
σ2 . The braid monodromy of the Kummer

cover can be obtained using the appropriate transformation described in Proposition 3.7,
or its version for n= 3 given in (7.13).
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In order to obtain a sextic with six cusps not on a conic, we will follow the method
used in [3] by means of a two-fold Kummer cover where the three ramification lines
are tangent lines to a smooth cubic at non-aligned inflection points. Hence we will
restrict ourselves to the cubic previously constructed (the preimage of x + y + z = 0),
two preimages of x + z = 0, one preimage of y + z = 0, and none of x + y = 0. Hence, we
can forget the second string (recall the automorphism), and we obtain (the first braid
disappears since it is trivial)

((σ 2
2 )
σ1 , σ 2

1 ),

and hence the braid around infinity is σ 2
2 . We have to forget some strings in the

mapping ρ̂3. This causes the morphism to not be well defined in B2,1, but only in the
pure braid group:

σ 2
1 7→ σ 2

1

σ 2
2 7→ 1

(σ 2
2 )
σ1 7→ (σ3σ2)

σ1 .

Hence the braid monodromy of the cubic with the tangent lines is given by

((σ3σ2)
σ1 , (σ3σ2)

σ3
1 , (σ3σ2)

σ5
1 , σ 6

1 ),

where the first two braids correspond to the tangent lines in the curve, while the second
string corresponds to the remaining tangent line. To simplify the braid monodromy,
some operations will be performed, namely, conjugation by σ−3

1 , cyclic permutation,
permutation of the order of the strings, and forgetting one braid (at infinity):

(σ 6
3 , σ

2
3 ∗ (σ1σ2), σ1σ2),

the braid at infinity being (σ1σ2)
σ2
3 . This result coincides with the one obtained using

Carmona’s program [13].
We first consider the braid monodromy factorization induced by this braid

monodromy after a double cover of the base, that is, F5 ↪→ F3→ B3,1:

(σ 6
3 , σ

2
3 ∗ (σ1σ2), (σ

6
3 )
σ2 , (σ−1

2 σ 2
3 ) ∗ (σ1σ2), (σ1σ2)

2, ((σ1σ2)
2)σ

2
3 ).

Then perform the morphism ρ̃ (see Example 3.8) and a generic deformation, resulting in

(σ 3
3 , σ1, σ5, σ

σ2
3 , σ

σ4
3 , (σ 3

3 )
σ2σ4 , σ

σ2
1 , σ

σ4
5 , σ

σ2
2 σ4

3 , σ
σ2σ

2
4

3 , σ
σ1
2 , σ 3

1 , σ
σ5
4 , σ 3

5 , σ
σ1σ3
2 ,

σ 3
1 , σ

σ5σ3
4 , σ 3

5 ).

A straightforward computation shows that π1(C2 \ C2) = Z. Using [33], one can check
that

C2 \ C2 ' S1 ∨
13∨
i=1

S2.
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