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Abstract. We consider Hilbert-style non–well-founded derivations in the Gödel-Löb provability
logic GL and establish that GL with the obtained derivability relation is globally complete for
algebraic and neighbourhood semantics.

§1. Introduction. The Gödel-Löb provability logic GL is a modal logic describing
all universally valid principles of the formal provability in Peano arithmetic [20].
A proof-theoretic presentation of this logic in a form of a sequent calculus allowing non–
well-founded proofs was given recently in [7, 15]. In this article, we consider Hilbert-style
non–well-founded derivations in GL and study algebraic and neighbourhood semantics
of GL with the obtained derivability relation. This article is an extension of a conference
article [16].

The Gödel-Löb provability logic GL can be additionally defined as the logic of the class
of Magari algebras [10, 19]. In this article, we introduce a notion of l-founded Magari
algebra and show that GL enriched with non–well-founded derivations is strongly sound
and complete for its algebraic interpretation over this class of algebras.

Neighbourhood semantics is a generalization of Kripke semantics independently de-
veloped by D. Scott and R. Montague in [14] and [12]. A neighbourhood frame can be
defined as a pair pX,lq, where X is a set and l is an unary operation in PpXq. The
Gödel-Löb provability logic GL is compact for its neighbourhood interpretation, which
immediately implies that GL is strongly neighbourhood complete (see [2, 17]). However,
this completeness result holds for the case of the so-called local semantic consequence
relation. Recall that, over neighbourhood GL-models, a formula A is a local semantic
consequent of � if for any neighbourhood GL-model M and any world x of M

p@B P � M, x ( Bq ñM, x ( A.

A formula A is a global semantic consequent of � if for any neighbourhood GL-model M
p@B P � M ( Bq ñM ( A.

Notice that this global semantic consequence relation coincides with the following one: A
is a consequent of � if for any neighbourhood GL-model M, any world x of M and any
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NON–WELL-FOUNDED DERIVATIONS IN GL 777

open neighbourhood U of x, that is x P U Ă lU,

p@B P � @y P U M, y ( Bq ñM, x ( A.

We show that GL enriched with non–well-founded derivations is strongly complete with
respect to the global semantic consequence relation over neighbourhood GL-frames. We
also show that this system is complete for its neighbourhood interpretation over the sin-
gle neighbourhood GL-frame defined by the first uncountable ordinal equipped with the
interval topology. This latter observation resembles the result of M. Abashidze [1] and
A. Blass [4] that GL is locally complete for its neighbourhood interpretation over the
ordinal ωω (see also [2]).

Now it remains to stress that the ordinary global syntactic consequence relation in GL,
which is a derivability relation standardly defined without non–well-founded derivations,
is not neighbourhood complete (see Corollary 7.6 in [9]).

The plan of the article is as follows. In §2, we recall the Gödel-Löb provability logic GL
and define non–well-founded derivations in it. In §3, we define l-founded Magari algebras
and establish algebraic completeness of GL with non–well-founded derivations. In §4,
we recall neighbourhood semantics of GL and consider a connection between scattered
topological spaces and corresponding neighbourhood frames. In the next section, we show
that the global consequence relation over neighbourhood GL-frames is determined by the
set of countable ordinals equipped with the interval topology. In §6, we obtain a form
of neighbourhood compactness result using the ultrabouquet construction from [17]. In
§7, we present a sequent calculus for GL allowing non–well-founded proof trees. In the
final section, we establish neighbourhood completeness for GL with non–well-founded
derivations.

§2. Non–well-founded derivations in GL. In this section we recall the Gödel-Löb
provability logic GL and define local and global derivability relations for the given system.

Formulas of GL (also called modal formulas) are built from the countable set of variables
PV “ tp, q, . . . u and the constant K using propositional connectives Ñ and l. We treat
other Boolean connectives and the modal connective � as abbreviations:

�A :“ A Ñ K, J :“ �K, A^ B :“ �pA Ñ �Bq,
A_ B :“ �A Ñ B, A Ø B :“ pA Ñ Bq ^ pB Ñ Aq, �A :“ �l�A.

In the sequel, the set of modal formulas is denoted by Fm.
The Gödel-Löb provability logic GL is defined via its Hilbert-style axiomatization.
Axiom schemes:

(i) the tautologies of classical propositional logic;

(ii) lpA Ñ Bq Ñ plA Ñ lBq;
(iii) lA Ñ l lA;

(iv) lplA Ñ Aq Ñ lA.

Inference rules:

mp
A A Ñ B

B
, nec

A

lA
.

A relation of derivability from assumptions in GL is inductively defined in the following
way. A formula A is derivable from the set of assumptions � (cf. [6]), if A is in �, or A is
one of the axioms of GL, or follows from derivable formulas through applications of the

https://doi.org/10.1017/S1755020319000613 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000613


778 D. SHAMKANOV

inference rules (mp) and (nec) so that the rule (nec) can be applied only to derivations
without assumptions. We denote this derivability relation by $l, where l stands for ’local’.

Global derivability relations are defined via non–well-founded derivations in GL. An8-
derivation in GL is a (possibly infinite) tree whose nodes are marked by modal formulas
and that is constructed according to the rules (mp) and (nec). In addition, any infinite
branch in an 8-derivation must contain infinitely many applications of the rule (nec). An
assumption leaf of an 8-derivation is a leaf that is not marked by an axiom of GL. An
assumption leaf is boxed if there is an application of the rule (nec) on the path from this
leaf to the root of the tree.

The main fragment of an 8-derivation is a finite tree obtained from the 8-derivation
by cutting every infinite branch at the nearest to the root application of the rule (nec).
The local height |π | of an 8-derivation π is the length of the longest branch in its main
fragment. An8-derivation only consisting of a single formula has height 0.

For example, consider the following8-derivation

...
lp3 lp3 Ñ p2mp p2nec lp2 lp2 Ñ p1mp p1nec lp1 lp1 Ñ p0mp ,

p0

where assumption leafs are marked by formulas of the form lpn`1 Ñ pn. The local height
of this8-derivation equals to 1 and its main fragment has the form

lp1 lp1 Ñ p0mp .
p0

We set � $g A if there is an 8-derivation with the root marked by A in which all
assumption leafs are marked by some elements of �. We also set �; � $ A if there is an
8-derivation with the root marked by A in which all boxed assumption leafs are marked
by some elements of � and all nonboxed assumption leafs are marked by some elements
of �.

Note that the relation $ is a generalization of $l and $g since H; � $ A ô � $l A
and �; � $ A ô � $g A. The only nontrivial implication (whether H; � $ A implies
� $l A) will be checked in the next sections.

§3. Algebraic semantics. In this section we consider local and global semantic con-
sequence relations over l-founded Magari algebras and obtain completeness results con-
necting semantic and previously introduced syntactic consequence relations.

A Magari algebra A “ pX,^,_,Ñ, 0, 1,lq is a Boolean algebra pX,^,_,Ñ, 0, 1q
together with a unary map l : X Ñ X satisfying the identities:

l1 “ 1, lpx^ yq “ lx^ly, lplx Ñ xq “ lx.

A valuation in A is a function θ : Fm Ñ X such that θpKq “ 0, θpA Ñ Bq “ θpAq Ñ θpBq,
and θplAq “ lθpAq.

Note that, for any Magari algebra A, the mapping l is monotone with respect to the
order (of the Boolean part of) A. Indeed, if a ď b, then a ^ b “ a, la ^ lb “ lpa ^
bq “ la, and la ď lb. In addition, we recall that, in any Magari algebra, an inequality
lx ď l lx holds.
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NON–WELL-FOUNDED DERIVATIONS IN GL 779

A filter F of (the Boolean part of) a Magari algebra A is called open if la P F, whenever
a P F. Let us remember that any open filter F of A “ pX,^,_,Ñ, 0, 1,lq defines a
congruence „F“ tpa, bq P X ˆ X | pa Ø bq P Fu on A (see Lemma 3.1.5. from [8]). We
will write A{F instead of A{ „F .

We call a Magari algebra l-founded (or Pakhomov-Walsh-founded)1 if, for every se-
quence of its elements paiqiPN such that lai`1 ď ai, we have a0 “ 1. This notion can be
defined in terms of the binary relation ă on a Magari algebra A:

a ă b ðñ la ď b.

PROPOSITION 3.1. For any Magari algebra A “ pX,^,_,Ñ, 0, 1,lq, the relation ă
is a strict partial order on Xzt1u.

Proof. We prove a ć a for a ‰ 1 by reductio ad absurdum. If a ‰ 1 and a ă a, then
pla Ñ aq “ 1 and la “ lpla Ñ aq “ l1 “ 1. Consequently, a “ 1. We obtain a
contradiction with the assumption a ‰ 1.

Now we check the transitivity condition. Suppose b ă c and c ă d. We have lb ď c
and lc ď d. Hence, lb ď l lb ď lc ď d. l

PROPOSITION 3.2. For any Magari algebra A “ pX,^,_,Ñ, 0, 1,lq, the algebra A
is l-founded if and only if the partial order ă on Xzt1u is well-founded.

Proof. Suppose the algebra A is l-founded. We prove that the partial order ă on Xzt1u
is well-founded by reductio ad absurdum. If there is a descending sequence a0 ą a1 ą
. . . of elements of Xzt1u, then we obtain a sequence of elements such that lai`1 ď ai.
Since the algebra A is l-founded, we have a0 “ 1. We obtain a contradiction with the
assumption that ai ‰ 1 for any i P N.

Now suppose that the partial order ă on Xzt1u is well-founded. We prove that the
algebra A is l-founded by reductio ad absurdum.

Consider a sequence of elements paiqiPN such that lai`1 ď ai and a0 ‰ 1. We claim
that ai ‰ 1 for any i P N and prove it by induction on i. We have a0 ‰ 1. If i “ j` 1, then
aj ‰ 1 by induction hypothesis and lai ď aj. Thus, lai ‰ 1 and ai ‰ 1. The claim is
checked.

We have a descending sequence a0 ą a1 ą . . . of elements of Xzt1u. We obtain a
contradiction with the assumption that ă is well-founded on Xzt1u. l

Below a series of examples of l-founded Magari algebras is given. We call a Mag-
ari algebra σ -complete if its underlying Boolean algebra is σ -complete that is every its
countable subset S has the least upper bound

Ž
S. An equivalent condition is that every

countable subset S has the greatest lower bound
Ź

S.

PROPOSITION 3.3. 2 Any σ -complete Magari algebra is l-founded.

Proof. Assume we have a σ -complete Magari algebra A and a sequence of its elements
paiqiPN such that lai`1 ď ai. We shall prove that a0 “ 1.

Put b “ Ź
iPN

ai. For any n P N, we have b ď an`1 and lb ď lan`1 ď an. Hence,

lb ď b, lb Ñ b “ 1, lb “ lplb Ñ bq “ l1 “ 1, b “ 1.

We obtain that a0 “ 1. l

1 This notion has been inspired by an article of F. Pakhomov and J. Walsh [13].
2 This statement has been inspired by a correspondence with T. Litak (see also the proof of Theorem

2.15 from [9]).
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780 D. SHAMKANOV

REMARK. Let us mention an example of l-founded Magari algebra of a different
kind without going into details. If we consider the second-order arithmetical theory �1

1 ´
AC0 extended with all true �1

1-sentences, then its provability algebra forms a l-founded
Magari algebra. This obseravtion can be obtained following the lines of Theorem 3.2
from r13s.

Now we define semantic consequence relations over l-founded Magari algebras corre-
sponding to derivability relations $l, $g and $. For a subset S of a Magari algebra A, the
filter of (the Boolean part of) A generated by S is denoted by xSy.

Given a set of modal formulas � and a formula A, we set � (l A if for any l-founded
Magari algebra A and any valuation θ in A

θpAq P xtθpBq | B P �uy.
We also set � (g A if for any l-founded Magari algebra A and any valuation θ in A

p@B P � θpBq “ 1q ñ θpAq “ 1.

In addition, we set �; � ( A if for any l-founded Magari algebra A and any valuation θ
in A

p@C P � lθpCq “ 1q ñ θpAq P xtθpBq | B P �uy.
The relation ( is a generalization of (l and (g since H; � ( A ô � (l A and

�; � ( A ô � (g A. The only nontrivial implication is the following.

PROPOSITION 3.4. For any set of modal formulas �, and for any modal formula A, if
� (g A, then �; � ( A.

Proof. Assume � (g A and, in addition, we have a l-founded Magari algebra A “
pX,^,_,Ñ, 0, 1,lq together with a valuation θ in A such that lθpBq “ 1 for any B P �.
We shall prove that θpAq P xtθpBq | B P �uy.

We denote the filter xtθpBq | B P �uy of A by F. Let us check that F is an open filter
that is la P F, whenever a P F. If a P F, then θpB1q ^ ¨ ¨ ¨ ^ θpBkq ď a for a finite
set of formulas tB1, . . . ,Bku Ă �. Consequently, lθpB1q ^ ¨ ¨ ¨ ^ lθpBkq ď la. Since
lθpBq “ 1 for any B P �, we obtain la “ 1 and la P F.

Thus, we obtain the Magari algebra A{F and the canonical epimorphism ν : AÑ A{F.
We claim that the algebra A{F is l-founded. Assume we have a sequence of elements
paiqiPN of A such that lνpai`1q ď νpaiq. We have νplai`1 Ñ aiq “ 1 and plai`1 Ñ
aiq P F. There is a sequence pSiqiPN of finite subsets of � such that

ŹtθpBq | B P Siu ď
plai`1 Ñ aiq in A. Consequently,

ŹtθpBq | B P Siu ^ lai`1 ď ai and
ŹtlθpBq |

B P Siu ^ l lai`1 ď lai. Since lθpBq “ 1 for any B P �, we have l lai`1 ď lai

in A. From l-foundedness of A, we obtain lai “ 1 for any i P N. Since
ŹtθpBq | B P

Siu ^ lai`1 ď ai, we obtain
ŹtθpBq | B P Siu ď ai. Thus, ai P F for any i P N and

νpa0q “ 1. The algebra A{F is l-founded.
Now consider the valuation ν ˝ θ in A{F. We see that pν ˝ θqpBq “ 1 in A{F for any

B P �. From the assumption � (g A, we conclude that pν ˝ θqpAq “ 1 and θpAq P F “
xtθpBq | B P �uy. l

LEMMA 3.5. For any set of modal formulas �, and for any modal formula A, if � $g A,
then � (g A.

Proof. Assume π is an8-derivation with the root marked by A in which all assumption
leafs are marked by some elements of �. In addition, assume we have a l-founded Magari
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NON–WELL-FOUNDED DERIVATIONS IN GL 781

algebra A “ pX,^,_,Ñ, 0, 1,lq together with a valuation θ in A such that θpBq “ 1
for any B P �. We shall prove that θpAq “ 1.

By Nπ , we denote the set of nodes of the 8-derivation π . For any of its nodes w, let
πw be the subtree of π with the root w. Also, put rpwq “ |πw|. In addition, let Bw be
the formula of the node w. A node w belongs to the pn ` 1q-th slice of π if there are n
applications of the rule (nec) on the path from this node to the root of π . By cn, we denote
the element

ŹtθpBwq | w belongs to the pn` 1q-th slice of πu.
We claim that lcn`1 ď cn for any n P N. It is sufficient to prove that lcn`1 ď θpBwq

whenever w belongs to the pn` 1q-th slice of π . The proof is by induction on rpwq.
If Bw is an axiom of GL or an element of �, then we immediately obtain the required

statement. Otherwise, Bw is obtained by an application of an inference rule in π .
If Bw is obtained by the rule (nec), then this formula has the form lBv, where v is the

premise of w. We see that v belongs to the pn`2q-th slice of π . Consequently, cn`1 ď θpBvq
and lcn`1 ď θpBwq.

Suppose Bw is obtained by the rule (mp). Consider the premises v1 and v2 of w. We
have rpv1q ă rpwq and rpv2q ă rpwq. By induction hypotheses, we obtain lcn`1 ď
θpBv1q ^ θpBv2q ď θpBwq.

Now we see that lcn`1 ď cn for any n P N. Applying l-foundedness of A, we note that
c0 “ 1. Since the root of the 8-derivation π belongs to the first slice of π , we conclude
that c0 ď θpAq and θpAq “ 1. l

PROPOSITION 3.6 (Algebraic soundness). For any sets of modal formulas� and �, and
for any modal formula A, if �; � $ A, then �; � ( A.

Proof. Assume π is an 8-derivation with the root marked by A in which all boxed
assumption leafs are marked by some elements of � and all nonboxed assumption leafs
are marked by some elements of �. In addition, assume we have a l-founded Magari
algebra A together with a valuation θ such that lθpCq “ 1 for any C P �. By induction
on |π | we prove that θpAq P xtθpBq | B P �uy.

If A is an axiom of GL or an element of �, then we obtain the required statement
immediately. Otherwise, consider the lowermost application of an inference rule in π .

Case 1. Suppose that π has the form

π 1
...
D

π2
...

D Ñ Amp .
A

By the induction hypotheses for π 1 and π2, we have θpDq P xtθpBq | B P �uy and
θpD Ñ Aq P xtθpBq | B P �uy. We have θpDq ^ θpD Ñ Aq P xtθpBq | B P �uy and
θpDq ^ θpD Ñ Aq ď θpAq. Consequently, θpAq P xtθpBq | B P �uy.

Case 2. Suppose that π has the form

π 1
...
Dnec ,

lD

where lD “ A. We see that � $g D. By the previous lemma, we have � (g D. From
Proposition 3.4, we obtain �,� ( D. It follows that θpDq P xtθpCq | C P �uy and there
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is a finite subset S of � such that
ŹtθpCq | C P Su ď θpDq. Therefore

ŹtlθpCq | C P
Su ď lθpDq. We obtain θpAq “ lθpDq “ 1 from the assumption lθpCq “ 1 for any
C P �. We conclude that θpAq P xtθpBq | B P �uy. l

THEOREM 3.7. For any sets of modal formulas � and �, and for any modal formula A,
we have

�; � $ A ðñ �; � ( A.

Proof. The left-to-right implication follows from Proposition 3.6. We prove the con-
verse. Assume �; � ( A. Consider the set T “ tG P Fm | �;H $ Gu. We see
that T contains axioms of GL and is closed under the rules (mp) and (nec). We define
an equivalence relation „T on the set of modal formulas Fm by putting D „T E if and
only of pD Ø Eq P T . Let us denote the equivalence class of D by rDsT . Applying the
Lindenbaum-Tarski construction, we obtain a Magari algebra LT on the set of equivalence
classes of formulas, where rDsT ^ rEsT “ rD ^ EsT , rDsT _ rEsT “ rD _ EsT , rDsT Ñ
rEsT “ rD Ñ EsT , 0 “ rKsT , 1 “ rJsT and lrDs “ rlDs.

Let us check that the algebra LT is l-founded. Assume we have a sequence of formulas
pDiqiPN such that lrDi`1sT ď rDisT . We have rlDi`1 Ñ DisT “ 1 and plDi`1 Ñ Diq P
T . For every i P N, there exists an 8-derivation πi for the formula lDi`1 Ñ Di such that
all assumption leafs of πi are boxed and marked by some elements of �. We obtain the
following8-derivation for the formula D0:

...
lD3

π2

...
lD3 Ñ D2mp

D2nec lD2

π1

...
lD2 Ñ D1mp

D1nec lD1

π0

...
lD1 Ñ D0mp ,

D0

where all assumption leafs are boxed and marked by some elements of �. Hence, D0 P T
and rD0sT “ rJsT “ 1. We see that the Magari algebra LT is l-founded.

Consider the valuation θ : E ÞÑ rEsT in the Magari algebra LT . Since tlC | C P �u Ă
T , we have lθpCq “ 1 for any C P �. From the assumption �; � ( A, we obtain
that θpAq P xtθpBq | B P �uy. Consequently, there is a finite subset �0 of � such thatŹtθpBq | B P �0u ď θpAq in LT . We have pŹtrBsT | B P �0u Ñ rAsTq “ 1 and
pŹ�0 Ñ Aq P T . In other words, �;H $ Ź

�0 Ñ A. Notice that H; � $ Ź
�0.

Thus, �; � $ Ź
�0 and �; � $ Ź

�0 Ñ A. Applying an inference rule (mp), we obtain
�; � $ A. l

§4. Neighbourhood semantics. In this section we consider neighbourhood semantics
of the Gödel-Löb provability logic and recall a connection between scattered topological
spaces and corresponding neighbourhood frames.

An Esakia frame, or neighbourhood GL-frame, X “ pX,lq is a set X together with a
mapping l : PpXq Ñ PpXq such that the Boolean algebra of subsets of X enriched with
the mapping l forms a Magari algebra. Elements of X are called worlds of the frame X .
An Esakia model, or neighbourhood GL-model, is a pair M “ pX , θq, where X is an
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Esakia frame and θ is a valuation in the powerset Magari algebra of X . A formula A is true
at a world x of a model M, written as M, x ( A, if x P θpAq. In addition, a formula A is
called true in M, written as M ( A, if A is true at all worlds of M.

We briefly recall a connection between scattered topological spaces and Esakia frames
(cf. [3]). Note that we allow Esakia frames and topological spaces to be empty.

In a topological space, an open set U containing a point x is called a neighbourhood of x.
A set U is a punctured neighbourhood of x if x R U and UY txu is open. For a topological
space pX, τ q and its subset V , the derivative set dτ pVq of V is the set of limit points of V:

x P dτ pVq ðñ @U P τ px P U ñ Dy ‰ x py P U X Vqq .
The co-derivative set cdτ pVq of V is defined as Xzdτ pXzVq. By definition, x P cdτ pVq if
and only if there is a punctured neighbourhood of x entirely contained in V . Notice that
cdτ pVq is open if V is open. In addition, V is open if and only if V Ă cdτ pVq.

In a topological space, a point having an empty punctured neighbourhood is called
isolated. A topological space pX, τ q is called scattered if each nonempty subset of X (as a
topological space with the inherited topology) has an isolated point. Notice that any ordinal
with the standard (interval) topology gives us a natural example of scattered space.

It turns out that scattered topological spaces and Esakia frames are essentially the same
notions.

PROPOSITION 4.1 (L. Esakia [5]). If pX,lq is an Esakia frame, then X bears a unique
topology τ for which l “ cdτ . Moreover, the space pX, τ q is scattered.

PROPOSITION 4.2 (H. Simmons [18], L. Esakia [5]). If pX, τ q is a scattered topological
space, then pX, cdτ q is an Esakia frame.

In the sequel, we don’t distinguish Esakia frames and corresponding topological spaces
so that we use the topological terminology referring to pX, τ q for the frame pX, cdτ q. For
example, we say that a subset U is open in pX,lq if it is open in the corresponding
topological space (which is equivalent to U Ă lU).

Notice that an open set in a scattered topological space is scattered (as a topological
space with the inherited topology). Hence an open set in an Esakia frame X defines an
Esakia frame, which is called an open subframe of X .

LEMMA 4.3. If pX0,l0q is an open subframe of an Esakia frame pX1,l1q, then l0V “
X0 Xl1V for any V Ă X0.

LEMMA 4.4 (see Lemma 6 from [17]). For Esakia models pX0, θ0q and pX1, θ1q, where
X0 is an open subframe of X1 and θ0ppq “ X0 X θ1ppq for p P PV, we have that θ0pAq “
X0 X θ1pAq for any formula A.

For a topological space pX, τ q, we define transfinite iterations of the co-derivative-set
operator by

‚ cd0
τ pVq “ V , cdα`1

τ pVq “ cdτ pcdατ pVqq,
‚ cdατ pVq “

Ť
βăα

pcdβτ pVqq if α is a limit ordinal.

PROPOSITION 4.5 (Cantor). A topological space pX, τ q is scattered if and only if
cdατ pHq “ X for some α.

For a scattered topological space pX, τ q and a point x P X, the rank ρτ pxq of x is the least
ordinal α such that x P cdα`1

τ pHq.
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Let us consider an example of an ordinal α with the left topology τ , where open sets
have the form tγ | γ ă βu for β ď α. The pair pα, τ q is a scattered topological space. We
have cdβτ pHq “ β X α and ρτ pγ q “ γ for γ P α.

LEMMA 4.6 (cf. Lemma 3.11 from [2]). In a scattered topological space pX, τ q, we
have

‚ cdατ pHq Ă cdβτ pHq if α ď β,
‚ cdατ pHq is an open set for any α.

LEMMA 4.7. For any scattered topological space pX, τ q and any x P X, the set ty P X |
ρτ pyq ă ρτ pxqu is a punctured neighbourhood of x.

Proof. Let us check that txu Y ty P X | ρτ pyq ă ρτ pxqu is an open set. We have

ty P X | ρτ pyq ă ρτ pxqu “ cd
ρτ pxq
τ pHq, txu Ă cd

ρτ pxq`1
τ pHq,

cd
ρτ pxq
τ pHq Ă cd

ρτ pxq`1
τ pHq.

Hence

txu Y ty P X | ρτ pyq ă ρτ pxqu Ă cdτ pty P X | ρτ pyq ă ρτ pxquq Ă
Ă cdτ ptxu Y ty P X | ρτ pyq ă ρτ pxquq.

Notice that, in any topological space, a set U is open if and only if U Ă cdτ pUq. Thus
txu Y ty P X | ρτ pyq ă ρτ pxqu is an open set. l

A topological space is Td (T 1
2
, or local T1) if any point of the space is closed in some of

its neighbourhoods.

LEMMA 4.8. Any scattered topological space pX, τ q is Td.

Proof. Consider any point x P X. By Lemma 4.7, the open set cd
ρτ pxq
τ pHq “ ty P

X | ρτ pyq ă ρτ pxqu is a punctured neighbourhood of x. Hence the point x is closed in its
neighbourhood txu Y ty P X | ρτ pyq ă ρτ pxqu. l

Let us remark that, for any Esakia frame X , the powerset Magari algebra of X is σ -
complete. Consequently this algebra is l-founded by Proposition 3.3. In a similar way
to the definitions of (l, (g and (, we define consequence relations (l̊ , (g̊ and (˚
by considering only powerset Magari algebras of Esakia frames instead of arbitrary l-
founded algebras.

The global consequence relation (g̊ can be reformulated in terms related to Esakia
frames as follows: � (g̊ A if and only if for any Esakia model M

p@B P � M ( Bq ñM ( A.

We also denote this relation by (g.
In addition, we give another definition for the local consequence relation (l̊ . We will

check that these two definitions are equivalent later in this section. Given a set of modal
formulas � and a formula A, we set � (l A if for any Esakia model M and any of its
worlds x

p@B P � M, x ( Bq ñM, x ( A.

REMARK. Since any Esakia frame can be considered as a topoloigcal space, it is more
natural to call the relation (l pointwise rather than local. However we follow modal

https://doi.org/10.1017/S1755020319000613 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000613


NON–WELL-FOUNDED DERIVATIONS IN GL 785

logical tradition and call relations (l and (g local and global respectively (see [21] or p.
103 from [8]).

The following strong completeness result was obtained by V. Shehtman using the so-called
ultrabouquet construction (see [17]).

THEOREM 4.9 (Local neighbourhood completeness). For any set of modal formulas �,
and for any modal formula A, we have

� $l A ðñ � (l A.

We set �; � ( A if for any Esakia model M and any of its worlds x

pp@B P � M, x ( Bq ^ p@y ‰ x @C P � M, y ( Cqq ñM, x ( A.

We see thatH; � ( A ô � (l A and �; � ( A ô � (g A.
We will show that relations (˚ and ( coincide by proving �; � (˚ A ô �; � ( A.

The left-to-right implication is obtained below. The converse will be shown in the final
section.

PROPOSITION 4.10. For any sets of modal formulas � and �, and for any modal
formula A, if �; � (˚ A, then �; � ( A.

Proof. Assume �; � (˚ A. In addition, assume we have an Esakia model M “
ppX1,l1q, θ1q and its world x such that

@B P � M, x ( B and @y ‰ x @C P � M, y ( C.

We shall prove that M, x ( A.
Put X1 “ pX1,l1q. We have

x P
č
tθ1pBq | B P �u.

Also, X1ztxu is a punctured neighbourhood of x in X1 and

X1ztxu Ă
č
tθ1pCq | C P �u.

From the definition of co-derivative set, we see

x P l1

č
tθ1pCq | C P �u.

We denote the set l1
Ştθ1pCq | C P �u by X0. We obtain

x P X0 X
č
tθ1pBq | B P �u Ă X0 X

č
tX0 X θ1pBq | B P �u. (1)

Since an inequality la ď l la holds in any Magari algebra, we have X0 Ă l1X0.
Consequently, the set X0 is open in X1. Therefore the set X0 defines an open subframe
X0 “ pX0,l0q of X1. We define a valuation θ0 over X0 obtained by restricting θ1 to X0. By
Lemma 4.4, we have l0θ0pEq “ θ0plEq “ X0Xθ1plEq “ X0Xl1θ1pEq for any formula
E. Notice that X0 Ă l1θ1pCq for any C P �. Hence l0θ0pCq “ X0 X l1θ1pCq “ X0 for
any C P �. Applying the assumption �; � (˚ A to the Magari algebra of subsets of X0
and the valuation θ0, we obtain

θ0pAq P xtθ0pBq | B P �uy.
Therefore there is a finite subset S of � such that

X0 X
č
tθ0pBq | B P Su Ă θ0pAq.
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From 1 and Lemma 4.4, we have

x P X0 X
č
tX0 X θ1pBq | B P �u “ X0 X

č
tθ0pBq | B P �u Ă

Ă X0 X
č
tθ0pBq | B P Su Ă θ0pAq “ X0 X θ1pAq Ă θ1pAq.

We obtain M, x ( A. l

The following corollary shows all local consequence relations considered so far
coincide.

COROLLARY 4.11. For any set of modal formulas �, and for any modal formula A, we
have

� (l A ðñ � (l̊ A ðñ � (l A ðñ � $l A ðñH; � $ A.

Proof. Assume � (l A. We immediately obtain � (l̊ A. Hence H; � (˚ A. By
Proposition 4.10, we have H; � ( A. It follows that � (l A. Consequently, � $l A by
Theorem 4.9. We obtainH; � $ A. All the left-to-right implications are proved.

It is sufficient to prove that an assertion H; � $ A implies � (l A. Assume H; � $ A.
By Proposition 3.6, we haveH; � ( A. Hence � (l A. l

In the next section, we will show that it is sufficient to consider only countable Esakia
frames in order to determine the relation (. In fact, countable ordinals with the interval
topology are enough. However, we can not restrict ourselves to Esakia frames where ranks
of all worlds are bounded by a fixed countable ordinal.

Let us consider the following example. For a countable ordinal α, put �α “ tpβ Ñ
�pγ | γ ă β ď αu. Let M “ ppα ` 1, τ q, θq be the Esakia model, where τ is the left
topology on α` 1 and M, x ( pβ ô x “ β. We see M ( pβ Ñ �pγ for any γ ă β ď α
and M, α ( pα . Hence, �α *g �pα .

PROPOSITION 4.12. For any Esakia model M and any of its worlds x, if M, x ( pα
and @B P �α M ( B, then the rank of x is greater or equal than α.

Proof. Let M “ pX , θq be an Esakia model, where @B P �α M ( B, and τ be the
scattered topology on the frame X . Assume M, x ( pα . We prove α ď ρτ pxq by transfinite
induction on α.

Since M, x ( pα , we have M, x ( �pβ for every β ă α. By Lemma 4.7, an open set

ty P X | ρτ pyq ă ρτ pxqu “ cd
ρτ pxq
τ pHq is a punctured neighbourhood of x. Thus, for every

β ă α, there is a world xβ P ty P X | ρτ pyq ă ρτ pxqu such that M, xβ ( pβ . By induction
hypotheses for β, β ď ρτ pxβq for every β ă α. We have β ď ρτ pxβq ă ρτ pxq for all
β ă α. Hence, α “ suptβ ` 1 | β ă αu ď ρτ pxq. l

§5. Tree-like frames. Recall that any ordinal equipped with the interval topology
is a scattered topological space. This means that any ordinal yields an Esakia frame. In
this section, we show that our semantic consequence relation $ over Esakia frames is
determined by Esakia frames obtained from countable ordinals.

Let N˚ denote the set of finite sequences of natural numbers including the empty se-
quence λ. For v P N˚, its prefix of length (at most) k is denoted by vrks. Note that vr0s “ λ.

A tree is a subset of N˚ that contains all prefixes of all its elements. For a tree T and a
sequence v P T of length k, put Tv “ tw P T | wrks “ vu. A sequence v P T is a leaf of T
if Tv “ tvu.
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A tree T is ω-branching if it satisfies the additional condition: if n1, . . . , nk, nk`1 P T ,
then n1, . . . , nk,m P T for any m P N. For an ω-branching tree T , any of its elements
v “ n1, . . . , nk and a natural number m, put

Tmpvq “
$&
%
tvu if v is a leaf of T ,

tvu Y Ť
mďa

Tn1,...,nk,a otherwise.

Any ω-branching tree T bears the topology σT defined from the basis

tTmpvq | v P T, m P Nu.
A tree T is well-founded if there is no infinite branch in T , i.e., there is no infinite

sequence of natural numbers with all its finite prefixes being elements of T . A nonempty
ω-branching well-founded tree T together with the topology σT is called ω-bouquet3.

LEMMA 5.1. Any ω-bouquet is a countable compact Hausdorff space.

Proof. Assume we have an ω-bouquet pT, σTq. Obviously, it is a countable Hausdorff
topological space.

We claim that Tv is compact for any v P T . Let v “ n1, . . . , nk P T . Since T is a
well-founded tree, we can proceed by transfinite induction on the ordinal rank of v. If
Tv “ tvu, then Tv is compact. Now consider the case when v is not a leaf of T . By induction
hypotheses, Tn1,...,nk,n is compact for every n P N. Assume U is an open cover of Tn1,...,nk .
There is an open set U P U such that v P U. By definition of the topology on T , we have
v P Tmpvq Ă U for some m P N. In addition, we have a finite cover Un Ă U of Tn1,...,nk,n

for every n P N. We see that tUu Y
m´1Ť
n“0

Un is the required finite subcover of Tn1,...,nk . Now

we can conclude that Tv is compact for any v P T . Hence, T “ Tλ is compact. l

Now we recall the following classical result.

THEOREM 5.2 (Mazurkiewicz-Sierpiński [11]). Every countable compact Hausdorff space
is homeomorphic to an ordinal with the interval topology.

COROLLARY 5.3. Any ω-bouquet is a scattered topological space. Moreover, this space
is homeomorphic to a countable ordinal with the interval topology.

LEMMA 5.4. For any Esakia model M, any of its worlds x and any neighbourhood
U of x, there exists an Esakia model K over an ω-bouquet pT, σTq such that for any
formula A

@y P Uztxu M, y ( A ùñ @v P Tztλu K, v ( A,

M, x ( A ðñ K, λ ( A.

Proof. Assume we have an Esakia model M “ ppX,lq, θq. Let τ be the topology on
X corresponding to the Esakia frame pX,lq. Assume also that x is a world of X and U is
a neighbourhood of x. We construct the required ω-bouquet pT, σTq and the valuation ψ
over it by transfinite induction on ρτ pxq.

Suppose M, x ( lK. Set T “ tλu. Define a valuation ψ on the set of propositional
variables by letting λ P ψppq ô x P θppq. Put K “ ppT, σTq, ψq. We see that Tztλu “ H

3 We adopt the term ω-bouquet from the article [2]. However, we have slightly changed the
corresponding notion.
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and

M, x ( A ðñ K, λ ( A

for any formula A. Thus, we obtain the required ω-bouquet pT, σTq and the valuation ψ
over it.

Suppose now that M, x * lK. Let tlCn | n P Nu be the set of all formulas of the form
lB that are true at x. Let tlEn | n P Nu be the (nonempty) set of all formulas of the form
lB that are false at x. In addition, let every element lEn of tlEn | n P Nu has infinitely

many indices n P N. Put Dn “
nŹ

i“0
Ci. Notice that GL $

nŹ
i“0

lCi Ø lDn.

For any n P N, we have M, x ( lDn and M, x * lEn. Thus there is a neighbourhood
Vn of x such that @y P Vnztxu M, y ( Dn. Now define the open set Un “ U X Vn X ty P
X | ρτ pyq ă ρτ pxqu. The set Un is, in addition, a punctured neighbourhood of x by Lemma
4.7. From the condition M, x * lEn, there is a world xn P Un such that M, xn * En. We
have

ρτ pxnq ă ρτ pxq, @y P Un M, y ( Dn, and M, xn * En.

By the induction hypothesis for xn and Un, there is an Esakia model Kn“ppLn, σLnq, ϕnq,
where pLn, σLnq is an ω-bouquet, such that for any formula A

@y P Unztxnu M, y ( A ùñ @v P Lnztλu Kn, v ( A, (2)

M, xn ( A ðñ Kn, λ ( A. (3)

For n P N and v P N
˚, let n ¨ v be the finite sequence of natural numbers with the first

member n and the remainder v. Consider the ω-bouquet T “ tλu Y Ť
nPN
tn ¨ v | v P Lnu and

the valuation ψ over it defined on the set of propositional variables as follows:

‚ n ¨ v P ψppq if and only if v P ϕnppq;
‚ λ P ψppq if and only if x P θppq.

Notice that Tn “ tw P T | wr1s “ nu “ tn ¨ v | v P Lnu is an open subframe of T . Let us
denote the restriction of the valuation ψ on Tn by ψn. We see that every ω-bouquet Ln is
homeomorphic to the open subframe Tn. Furthermore, by Lemma 4.4, every valuation ϕn

can be identified with respect to this homeomorphism with the valuation ψn.
Put K “ ppT, σTq, ψq. Now we shall check that for any formula A

@y P Uztxu M, y ( A ùñ @v P Tztλu K, v ( A, (4)

M, x ( A ðñ K, λ ( A. (5)

First, we see

@y P Uztxu M, y ( A ùñ @n P N @y P Un M, y ( A

ùñ @n P N @v P Ln Kn, v ( A (from 2 and 3)

ùñ @n P N @v P Tn ppTn, σT æ Tnq, ψnq, v ( A

ùñ @v P Tztλu K, v ( A (by Lemma 4.4).

We prove 5 by induction on the structure of A. Let us consider only the main case when A
has the form lB. We have
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M, x ( lB ùñ lB P tlCn | n P Nu
ùñ Dm P N B “ Cm

ùñ Dm P N @n P N pm ď n ñ @y P Un M, y ( Bq
ùñ Dm P N @n P N pm ď n ñ @v P Ln Kn, v ( Bq (from 2 and 3)

ùñ Dm P N @n P N pm ď n ñ @v P Tn ppTn, σT æ Tnq, ψnq, v ( Bq
ùñ Dm P N @v P Tmpλqztλu K, v ( B (by Lemma 4.4)

ùñ λ P cdσT pψpBqq
ùñ K, λ ( lB.

We prove the converse

M, x * lB ùñ lB P tlEn | n P Nu
ùñ D8m P N B “ Em

ùñ D8m P N M, xm * B

ùñ D8m P N Km, λ * B (from 3)

ùñ D8m P N ppTm, σT æ Tmq, ψmq,m * B

ùñ D8m P N K,m * B (by Lemma 4.4)

ùñ λ R cdσT pψpBqq
ùñ K, λ * lB,

where D8 means “there exist infinitely many”.
Both Conditions 4 and 5 are satisfied. Hence, we obtain the required ω-bouquet pT, σTq

and the valuation ψ over it. l

In a similar way to the definition of (, we obtain a consequence relation (˚ by consid-
ering only Esakia models over ω-bouquets.

THEOREM 5.5. For any sets of modal formulas � and �, and for any modal formula A,
we have

�; � ( A ðñ �; � (˚ A.

Proof. The left-to-right implication is obvious. We prove the converse by reductio ad
absurdum. Assume �; � * A and �; � (˚ A. Then there exist an Esakia model M and a
world x such that

@y ‰ x @C P � M, y ( C, @B P � M, x ( B and M, x * A.

By Lemma 5.4, there is an Esakia model K over an ω-bouquet pT, σTq such that

@v P Tztλu @C P � K, v ( C, @B P � K, λ ( B and K, λ * A.

We obtain a contradiction with the assumption �; � (˚ A. l

§6. Neighbourhood compactness. In this section we prove that if �; � ( A, then
there is a finite subset �0 of � such that �; �0 ( A. This neighbourhood compactness
result is obtained by applying the ultrabouquet construction from [17].

For any n P N, let Xn “ pXn, τnq be a topological space and xn be a closed point in it.
Let U be a nonprincipal ultrafilter in N. The ultrabouquet

Ž
U
pXn, xnq is a topological space
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obtained as a set from the disjoint union
Ů

nPN
Xn by identifying all points xn. A set U is open

in
Ž
U
pXn, xnq if and only if

‚ for any n P N the set U X pXnztxnuq is open in Xn,
‚ tn P N | U X Xn is open in Xnu P U whenever x˚ P U,

where x˚ is the point of
Ž
U
pXn, xnq obtained by identifying points xn.

It can be checked that an ultrabouquet of scattered topological spaces is a scattered topo-
logical space. Hence we can construct an Esakia frame as an ultrabouquet of a countable
family of Esakia frames.

For n P N, let θn be a valuation over an Esakia frame Xn “ pXn,lnq. Let θ be a valuation
over

Ž
U
pXn, xnq defined on the set of propositional variables as follows:

‚ the restriction of θppq to Xnztxnu is equal to θnppq;
‚ x˚ P θppq if and only if tn P N | xn P θnppqu P U .

We denote this valuation θ by
Ž
U
pθn, xnq.

LEMMA 6.1 (see Lemmas 22 and 27 from [17]). For any n P N, let pXn, θnq be an
Esakia model and xn be a closet point in it. Let U be a nonprincipal ultrafilter in N and
θ “ Ž

U
pθn, xnq. Then for any formula A we have

‚ θpAq X pXnztxnuq “ θnpAq for any n P N;
‚ x˚ P θpAq if and only if tn P N | xn P θnpAqu P U .

THEOREM 6.2. For any sets of modal formulas � and �, and for any modal formula A, if
�; � ( A, then there is a finite subset �0 of � such that �; �0 ( A.

Proof. Assume �; � ( A. We prove that there exists the required finite subset �0 of �
by reductio ad absurdum.

Suppose that for any finite subset �0 of � we have �; �0 * A. Let � “ tBn | n P Nu
and Cn “

nŹ
i“0

Bi. Then, for any n P N, there exists an Esakia frame Xn “ pXn,lnq, a

valuation θn over it and a world xn such that

@y ‰ xn @D P � pXn, θnq, y ( D, pXn, θnq, xn ( Cn and pXn, θnq, xn * A.

By Lemma 4.8, any point of an Esakia frame is closed in some of its neighbourhoods. Let
Yn be an open subframe of Xn, in which xn is closed. We define a valuation ψn over Yn

obtained by restricting θn to Yn. By Lemma 4.4, we have

@y ‰ xn @D P � pYn, ψnq, y ( D, pYn, ψnq, xn ( Cn and pYn, ψnq, xn * A.

We take an nonprincipal ultrafilter U in N and consider the ultrabouquet Y “ Ž
U
pYn, xnq

together with the valuation ψ “ Ž
U
pψn, xnq over Y . From Lemma 6.1, we have

@y ‰ xn @D P � pY, ψq, y ( D, @B P � pY, ψq, xn ( B and pY, ψq, xn * A.

We obtain a contradiction with the assumption �; � ( A. Therefore there exists a finite
subset �0 of � such that �; �0 ( A. l
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§7. Sequent calculus. In this section we define a calculus corresponding to the global
consequence relation (.

A sequent is an expression of the form�; � ñ �, where � and� are finite multisets of
formulas, and� is an arbitrary set of formulas. For a multiset of formulas � “ A1, . . . ,An,
we set l� :“ lA1, . . . ,lAn.

Initial sequents and inference rules of the sequent calculus S have the following form:

�; �, p ñ p,�, �; �,K ñ �,

�; �,B ñ � �; � ñ A,�ÑL ,
�; �,A Ñ B ñ �

�; �,A ñ B,�ÑR ,
�; � ñ A Ñ B,�

�; �0, �,l� ñ Al (�0 is a finite subset of �).
�;�,l� ñ lA,�

An 8-proof in S is a (possibly infinite) tree whose nodes are marked by sequents and
whose leaves are marked by initial sequents and that is constructed according to the rules
of the sequent calculus. Notice that any infinite branch in an 8-proof of S has infinitely
many applications of the rule plq. A sequent �; � ñ � is provable in S if there is an
8-proof π with the root marked by �; � ñ �. In this case π is called an 8-proof of
�; � ñ �.

A sequent �; � ñ � is called valid if �; tŹ�u ( Ž
�.

LEMMA 7.1. If a sequent �; �,A Ñ B ñ � is valid, then sequents �; �,B ñ � and
�; � ñ A,� are valid. If �; � ñ A Ñ B,� is valid, then �; �,A ñ B,� is also valid.

Proof. Let us check the first statement of the lemma. Assume a sequent�; �,A Ñ B ñ
� is valid. In other words, we have �; tŹ� ^ pA Ñ Bqu ( Ž

�. We shall prove that
sequents �; �,B ñ � and �; � ñ A,� are valid. Consider any Esakia model M and
any of its worlds x such that

M, x (
ľ

� @y ‰ x @C P � M, y ( C.

We claim M, x ( A_Ž
�. If M, x ( A, then we immediately obtain M, x ( A_Ž

�.
Otherwise, suppose M, x * A. It follows that M, x ( A Ñ B. We obtain M, x ( Ž

�
from the assumption �; tŹ� ^ pA Ñ Bqu ( Ž

�. Thus, M, x ( A_Ž
�. We see that

�; tŹ�u ( A_Ž
�. The sequent �; � ñ A,� is valid.

Now suppose that M, x ( B. We obtain M, x ( A Ñ B. Consequently, M, x ( Ž
�

from the assumption �; tŹ� ^ pA Ñ Bqu ( Ž
�. We see that �; tŹ� ^ Bu ( Ž

�.
The sequent �; �,B ñ � is valid.

The second statement of the lemma is obtained analogously. So we omit further
details. l

A sequent �; � ñ � is called saturated if � and� do not contain formulas of the form
A Ñ B.

LEMMA 7.2. If �;�,l� ñ � is a valid noninitial saturated sequent, where �
consists only of propositional variables, then there are a finite subset �0 of � and a
formula lA from � such that �; �0, �,l� ñ A is a valid sequent.
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Proof. Assume�;�,l� ñ � is a valid noninitial saturated sequent, where� consists
only of propositional variables. We claim that there is a formula lA from � such that
�; � Y tŹ� ^Ź

l�u ( A. We prove this claim by reductio ad absurdum.
Let lA1, . . . ,lAn be all elements from � of the form lA. Suppose that for any i P

t1, . . . , nu there exist an Esakia frame Xi “ pXi,liq, a valuation θi over it and a world xi

such that

@y P Xi @B P � pXi, θiq, y ( B, pXi, θiq, xi (
ľ

� ^
ľ

l� and pXi, θiq, xi * Ai.

We consider a topological space X obtained from the disjoint union of Xi by adding a new
world x. A subset U of X is open if and only if the following conditions hold:

‚ the restriction of U to Xi is open for any i P t1, . . . , nu;
‚ if x P U, then xi P U for any i P t1, . . . , nu.

Clearly, the topological space X is scattered. Hence we can consider it as an Esakia frame.
Let θ be a valuation over X defined on the set of propositional variables as follows:

‚ the restriction of θppq to Xi is equal to θippq for any i P t1, . . . , nu;
‚ x P θppq if and only if p P �.

We shall show that

@y ‰ x @B P � pX , θq, y ( B, pX , θq, x (
ľ

�^
ľ

l� and pX , θq, x *
ł

�.

Every Esakia frame Xi is an open subframe of X . Thus, by Lemma 4.4, the condition
@y ‰ x @B P � pX , θq, y ( B follows from @i P t1, . . . , nu @y P Xi @B P � pXi, θiq, y (
B. Further, we have pX , θq, x ( p for p P � and pX , θq, x * p for p P � by definition
of θ .

Let us check that pX , θq, x ( Ź
l�. For any formula C from � and any i P t1, . . . , nu

we have pX , θq, xi ( C ^lC by Lemma 4.4. This yields that for any i P t1, . . . , nu there
is a neighbourhood Ui of xi such that Ui Ă θpCq. We have that

Ť
1ďiďn

Ui Ă θpCq, where
Ť

1ďiďn
Ui is a punctured neighbourhood of x. Hence pX , θq, x ( lC for any C P �.

It remains to check that pX , θq, x * lAi for i P t1, . . . , nu. For any punctured neigh-
bourhood U of x, there is a world xi P U such that pX , θq, xi * Ai. Hence pX , θq, x * lAi.

We obtain that the sequent �;�,l� ñ � is not valid, which is a contradiction.
Therefore there is a formula lA from� such that�; �YtŹ�^Ź

l�u ( A. In addition,
by Theorem 6.2, there is a finite subset �0 of � such that �; �0 Y tŹ� ^Ź

l�u ( A.
Hence we find the required valid sequent �; �0, �,l� ñ A. l

THEOREM 7.3. Any valid sequent is provable in S.

Proof. Let us consider a valid sequent �; � ñ �. If this sequent is not saturated, then
it can be obtained by an application of the rule (ÑR) or (ÑL) from other valid sequents
using Lemma 7.1. If this sequent is saturated, then it is initial or can be obtained by an
application of the rule (l) from another valid sequent using Lemma 7.2. Therefore any
valid sequent is an initial sequent of the sequent calculus S or can be obtained by an
application of an inference rule from other valid sequents. Thus, for any valid sequent, its
8-proof in S is immediately defined travelling upwards from conclusions to premises by
co-recursion. l
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COROLLARY 7.4. For any set of modal formulas �, any finite set of modal formulas �
and any modal formula A, if �; � ( A, then the sequent �; � ñ A is provable in S.

Proof. If �; � ( A, then the sequent �; � ñ A is valid by definition. Hence this
sequent is provable in S by Theorem 7.3. l

§8. Neighbourhood completeness.

THEOREM 8.1. For any set of modal formulas�, and for finite multisets of modal formulas
� and �, if a sequent �; � ñ � is provable in S, then �;H $ Ź

� Ñ Ž
�.

Proof. Assume π is an8-proof of�; � ñ � in S. We define the required8-derivation
f pπq in GL travelling upwards from conclusions to premises by co-recursion.

If �; � ñ � is an initial sequent of the sequent calculus S, then the formula
Ź
� ÑŽ

� is provable in GL by a finite proof. Let f pπq be such a proof.
Otherwise, consider the final application of an inference rule in π .
Case 1. If π has the form

π 1
...

�; �,B ñ �

π2
...

�; �,ñ A,�ÑL ,
�; �,A Ñ B ñ �

then we define f pπq as

f pπ 1q
...
G

f pπ2q
...
F

ξ

...

F Ñ pG Ñ Hq
mp

G Ñ Hmp ,
H

where F “ Ź
� Ñ ŽptAu Y�q, G “ Źp� Y tBuq Ñ Ž

�, H “ Źp� Y tA Ñ Buq ÑŽ
� and ξ is a finite proof of the formula F Ñ pG Ñ Hq in GL.
Case 2. If π has the form

π 1
...

�; �,A ñ B,�ÑR ,
�; � ñ A Ñ B,�

then we define f pπq as

f pπ 1q
...
F

ξ

...
F Ñ Gmp ,

G

where F “ Źp�YtAuq Ñ ŽptBuY�q, G “ Ź
� Ñ ŽptA Ñ BuY�q and ξ is a finite

proof of the formula F Ñ G in GL.
Case 3. Now consider the final case when π has the form
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π 1
...

�; �0, �,l� ñ Al (�0 is a finite subset of �).
�;�,l� ñ lA,�

We define f pπq as

η

...Ź
�0

f pπ 1q
...
F

ζ

...

F Ñ pŹ�0 Ñ Gq
mp Ź

�0 Ñ G
mp

Gnec lG

ξ

...
lG Ñ Hmp ,

H

where F “ Źp�0 Y � Y l�q Ñ A, G “ Źp� Y l�q Ñ A, H “ Źp� Y l�q ÑŽptlAu Y �q and η is a finite derivation of the formula
Ź
�0 in GL from the set of

assumptions �0. In addition, ζ and ξ are finite proofs in GL of the corresponding formulas
F Ñ pŹ�0 Ñ Gq and lG Ñ H.

It is not hard to prove that every infinite branch in f pπq contains infinitely many applica-
tions of the rule (nec) and, in addition, any assumption leaf of f pπq is boxed and is marked
by an element of �. Hence f pπq is the required8-derivation. l

COROLLARY 8.2. For any sets of modal formulas � and �, and for any modal formula
A, we have

�; � $ A ðñ �; � ( A ðñ �; � (˚ A ðñ �; � ( A ðñ �; � (˚ A.

Proof. The left-to-right implications follow from Proposition 3.6, the definition of the
consequence relations (˚, Proposition 4.10, and the definition of the consequence relations
(˚. Assume �; � (˚ A. Applying Theorem 5.5, we have �; � ( A. By Theorem 6.2,
there is a finite subset �0 of � such that�; �0 ( A. By Corollary 7.4, the sequent�; �0 ñ
A is provable in S. From Theorem 8.1, we have �;H $ Ź

�0 Ñ A. Notice that H; � $Ź
�0. Thus, �; � $ Ź

�0 and �; � $ Ź
�0 Ñ A. Applying an inference rule (mp), we

obtain �; � $ A. l

REMARK. In this corollary, we do not mention the corresponding semantic consequence
relation over Kripke GL-frames ptransitive conversely well-founded relational framesq,
because the set tlnplpn`1 Ñ pnq | n P Nu globally entails p0 over such frames. However,
tlnplpn`1 Ñ pnq | n P Nu &g p0. Here, ln denotes n consequent applications of l and
l0plp1 Ñ p0q “ lp1 Ñ p0.

Let O be the Esakia frame corresponding to the first uncountable ordinal with the
interval topology. The logic GL enriched with non–well-founded derivations is complete
for its neighbourhood interpretation over O in the following sense.

COROLLARY 8.3. For any sets of modal formulas � and �, and for any modal formula
A, if �; � & A, then there is a valuation θ over O, a world x of O and a neighbourhood U
of x such that

@C P � @y P Uztxu pO, θq, y ( C, @B P � pO, θq, x ( B and pO, θq, x * A.
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Proof. Any countable ordinal with the interval topology is an open subframe of the first
uncountable ordinal. Thus, this statement follows from the previous corollary, Corollary
5.3 and Lemma 4.4 immediately. l

REMARK. By Proposition 4.12, the logic GL with non–well-founded derivations is not
complete with respect to any countable ordinal.
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