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We present the results of an experimental investigation across a broad range of source
Froude numbers, 0.4 6 Fr0 6 45, into the dynamics, morphology and rise heights
of Boussinesq turbulent axisymmetric fountains in quiescent uniform environments.
Typically, these fountains are thought to rise to an initial height, zi, before settling
back and fluctuating about a lesser (quasi-) steady height, zss. Our measurements show
that this is not always the case and the ratio of the fountain’s initial rise height to
steady rise height, λ = zi/zss, varies widely, 0.5 . λ . 2, across the range of Fr0

investigated. As a result of near-ideal start-up conditions provided by the experimental
set-up we were consistently able to form a vortex at the fountain’s front. This enabled
new insights into two features of the initial rise of turbulent fountains. Firstly, for
1.0 . Fr0 . 1.7 the initial rise height is less than the steady rise height. Secondly,
for Fr0 & 5.5, the vortex formed at the fountain’s front pinches off, separates from
the main body and rises high above the fountain; there is thus a third rise height
to consider, namely, the maximum vortex rise height, zv. From our observations we
propose classifying turbulent axisymmetric fountains into five regimes (as opposed
to the current three regimes) and present detailed descriptions of the flow in each.
Finally, based on an analysis of the rise height fluctuations and the width of fountains
in (quasi-) steady state we provide further insight into the physical cause of height
fluctuations.

Key words: plumes/thermals, turbulent convection

1. Introduction
Dense turbulent fountains formed as fluid is ejected energetically vertically upwards

from an axisymmetric source into quiescent uniform environments initially exhibit a
jet-like behaviour as they rise. However, being denser than the ambient the rising
flow is slowed by gravity and this decreasing vertical velocity combined with the
entrainment of external ambient fluid forms the cone-like shape classically associated
with starting fountains (Turner 1966). The fountain continues to rise until the opposing
momentum flux, arising from the work done by the fluid’s negative buoyancy, balances
at the fountain’s top with the momentum flux from the source; at this instant the
fountain has reached its initial rise height, zi. A downflow then forms around the
upflowing core and the momentum exchanged between these two flows reduces the
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FIGURE 1. Schematic of a relatively high-Froude-number fountain at initial rise height, zi,
and subsequent lesser steady rise height, zss.

vertical extent of the rising core. Rise heights are then observed to fluctuate about a
lesser steady height, zss, and the fountain is described as being in a quasi-steady state.
Figure 1 shows schematics of one such energetic fountain both at the initial rise height
and during the subsequent steady state. Whilst we have described the flow of a heavy
fluid being forced vertically upwards, for Boussinesq fountains the same dynamics
apply and similar flows are observed should a light fluid be forced downwards.

The occurrence of fountains within nature and their applications in industry are
wide and diverse. These include: plumes rising in a stratified environment (Devenish,
Rooney & Thompson 2010), flows in volcanic magma chambers (Campbell & Turner
1989), the heating of large industrial spaces (Baines, Turner & Campbell 1990),
building ventilation by underfloor air distribution systems (Liu & Linden 2006),
the discharge of brine from desalination plants (Zhang & Baddour 1998) and the
compensation of fuel tanks within naval ships (Friedman & Katz 1999).

By their very nature, turbulent fountains are complex flows and their current
classification (Kaye & Hunt 2006) is based on the changing dependence of their
rise heights on the source Froude number, Fr0. The initial rise height for very low
source Froude numbers follows the relationship zi/r0 ∝ Fr2/3

0 , where r0 is the radius
of the fountain’s source at z = 0. With increasing Froude number the initial rise
height sensitivity to Fr0 increases so that zi/r0 ∝ Fr2

0 and then decreases for fountains
of even higher source Froude number for which zi/r0 ∝ Fr0. These changes in rise
height dependence on Fr0 form the basis for the classification of fountains into the
three regimes (very weak, weak and forced) and reflect how the dominant physical
processes alter with increasing Fr0. This raises the question of whether the ratio of the
initial rise height, zi, to the steady rise height, zss, varies with Fr0 as it is not clear
why a constant rise height ratio, λ = zi/zss = 1.43 as reported for ‘forced’ fountains
(Turner 1966), should apply across the entire range of Fr0. One might reasonably
anticipate a dependence of λ on Fr0, particularly when one considers that, for example,
the physics of a low-source-Froude-number (very weak) fountain differs significantly
from that of high-source-Froude-number (forced) fountain, the former having been
successfully modelled as a hydraulic flow over a weir (the fountain nozzle being the
weir, Kaye & Hunt 2006) and the latter by reversing the sign of the source buoyancy
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394 H. C. Burridge and G. R. Hunt

flux relative to momentum flux in classical plume theory. Whilst our experimental
measurements (§ 3) of high-Froude-number fountains independently confirm Turner’s
findings, we show that the rise height ratio is not constant and varies by a factor of
four, 0.5 . λ. 2 for 0.4 6 Fr0 6 45.

Turner deduced on dimensional grounds that the initial rise height, scaled on the
source radius, is directly proportional to the source Froude number (zi/r0 ∝ Fr0); the
Froude number is defined as Fr0 = w0/

√
r0 g′0, where w0 is the vertical source velocity

and g′0 = g(ρ0 − ρa)/ρa the source reduced gravity, with ρ0 and ρa denoting the
density of the source and ambient fluids, respectively. Turner verified this linear power-
law dependence by comparison with rise height measurements of saline fountains
from circular nozzles. These fountains, now recognised as ‘forced’ fountains, rose to
an initial maximum height before the subsequent exchange of momentum between
the upflow and downflow reduced the vertical extent to a quasi-steady height for
which λ= zi/zss ≈ 1.43. Turner’s experiments covered the range 0.55< Fr0 < 11.8 and
notably no dependence of the rise height ratio on Fr0 was identified.

Theoretical descriptions of the bulk dynamics of forced fountains, up to their initial
maximum rise height and prior to interaction between the upflowing core and the
downflowing perimeter, have been successfully developed using the Morton, Taylor &
Turner (1956) plume theory and extensions of it (e.g. McDougall 1981). The adoption
of an entrainment coefficient, α, suitable for a highly forced plume, e.g. α = 0.058
recommended by Kaye & Hunt (2006), enables good prediction of the initial rise
height. The agreement with measurement as achieved with this entrainment coefficient
is understandable when one considers that for high-Fr0 sources the majority of the rise
height occurs over a momentum-jet length scale.

Following the experimental work of Turner (1966), a succession of authors
(including Baines et al. 1990; Bloomfield & Kerr 1998; Zhang & Baddour 1998;
Ansong, Kyba & Sutherland 2008; Williamson et al. 2008) made measurements of
fountain rise heights which now encompass very weak, weak and forced releases. The
transition between very weak and weak fountains is generally accepted as Fr0 ≈ 1
and whilst the work of Zhang & Baddour (1998) cites the transition between weak
and forced fountains as Fr0 ≈ 7, later works cite the transition as Fr0 ≈ 3 (e.g.
Kaye & Hunt 2006). The experimental work of Zhang & Baddour (1998) focused on
classifying fountains into two regimes, weak and forced. Their data support a linear
rise height dependence on Fr0 for Fr0 & 4, albeit at a lesser gradient than that of
higher-Fr0 fountains.

The need for the three regimes can be deduced by consideration of the three
characteristic length scales that naturally arise from a source from which there
are steady fluxes of volume (Q0 ∝ r2

0w0), momentum (M0 ∝ r2
0w2

0) and buoyancy
(B0 ∝ r2

0w0g′0). For forced fountains, momentum and buoyancy fluxes dominate and
as such the initial rise height is expected to scale on the momentum jet length (Turner
1966)

zi ∝M3/4
0 /B1/2

0 ∝ r1/2
0 w0/g

′1/2
0 = r0Fr0. (1.1)

For weak fountains, all three fluxes are of importance giving

zi ∝M2
0/B0Q0 ∝ w2

0/g
′
0 = r0Fr

2
0. (1.2)

For very weak fountains, the fountain is hydraulically controlled at the source giving

zi ∝ Q1/3
0 M1/3

0 /B1/3
0 ∝ r2/3

0 w2/3
0 /g′1/30 = r0Fr

2/3
0 . (1.3)
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For a given fountain, the local Froude number, Fr(z), decreases with height z from
Fr = Fr0 at z = 0 to Fr = 0 at the fountain-top. Thus during its initial rise a
forced fountain has a region where Fr(z) decreases from the source value to values
characteristic of weak fountains, before decreasing further to values characteristic of
very weak fountains. The relative fountain heights at which the local Froude number
reaches the transitional values between the three regimes are outlined in Appendix.

Experimental measurements have been complemented by numerous further advances
in the theoretical and numerical modelling of turbulent fountains. Numerical studies
include work investigating weak fountains (Lin & Armfield 2000a,b), starting
fountains (Marugán-Cruz, Rodrı́guez-Rodrı́guez & Martı́nez-Bazán 2009; Wang, Law
& Adams 2011), laminar to turbulent transitional fountains (Williamson, Armfield &
Lin 2010), fountain-top entrainment (Devenish et al. 2010) and the internal dynamics
of fountains (Williamson, Armfield & Lin 2011). Theoretical works have sought to
include the interaction between upflow and downflow (McDougall 1981; Bloomfield
& Kerr 2000) and fountain classification (Kaye & Hunt 2006). The theoretical study
of Carazzo, Kaminski & Tait (2010), through the development of a Reynolds-averaged
integral model, yields a framework providing an explicit expression for the fountain
entrainment coefficient both during the initial rise, αi, and whilst in steady state, αss.
The rise height ratio was then deduced to be of the form λ= zi/zss ∝√αss/αi. Carazzo
et al. (2010) were unable to validate this result by comparison with measurements due
to a lack of information in the literature on the rise height variation between initial and
steady heights.

In our paper we address this issue. We raise the question of what is the variation of
initial and steady rise heights across a range of Fr0 encompassing forced, weak and
very weak fountains. A description of our experimental apparatus and measurement
techniques is given in § 2. We present rise height measurements, focusing on relatively
high source Reynolds numbers, Re0 = w0 r0/ν0 (ν0 denoting the kinematic viscosity of
the source fluid). We follow this with our results (§ 3) which show the variation of
λ with Fr0 and we identify a number of new features distinct to a range of source
Froude numbers within the current classification. At low Fr0 we observe that an initial
local (in time) maximum rise height is reached before the symmetry of the flow breaks
down and greater rise heights are subsequently obtained. This finding challenges the
notion that fountains rise to an initial maximum height prior to the development of a
counterflow and thereafter fluctuate about a lower steady rise height. With increasing
Fr0 we observe significant differences in rise height ratio and in the manner in which
the rise heights are attained. Moreover for Fr0 & 5.5, a vortex formed at the fountain’s
front during the initial transients, pinches off the main body of the fountain and rises
significantly higher; as a consequence there are then two initial rise heights to consider.
For 1.7 . Fr0 . 5.5 the fountain’s head, although remaining integral to the fountain,
has a significant role in determining the dynamics of the initial rise. Based on our
observations and measurements of distinct rise height behaviours we propose a new
fountain classification comprising five types. In § 5 we summarize our findings and
present our conclusions.

2. Experiments
2.1. Set-up

Saline solution driven by an ISMATEC MCP-Z Process gear pump, at volume flow
rates of 15 cm3 s−1 6 Q0 6 65 cm3 s−1, was ejected vertically upwards through a
smooth-bore cylindrical nozzle into a clear glass-sided visualization tank, of horizontal
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cross-section 176 cm × 125 cm, containing fresh water to a depth of 120 cm. The
nozzle was aligned vertically and rigidly clamped in place within the visualization
tank. Nozzles of internal radii r0 = 0.51, 0.75 and 1.1 cm and of lengths exceeding
36r0 (to ensure the internal flow was fully developed at the nozzle exit, White 2003)
were used. To ensure that fluid entrained by the fountains was solely of ambient
density the nozzle exit (at z = 0) was never less than 80r0 from the base of the tank
and the tank was emptied before the saline layer (that accumulated at the base of
the tank) exceeded a depth of 70r0. For the large majority of experiments reduced
gravities of 15 cm s−2 6 g′0 6 30 cm s−2 were used. However, to achieve the low Fr0

required for very weak fountains whilst maintaining suitably high Reynolds numbers
(see § 2.3), reduced gravities of up to g′0 ≈ 150 cm s−2 were required. Prior to release
the saline solution was stored in an 80 l reservoir which was connected to the nozzle,
via the gear pump, using reinforced PVC tubing. The saline reservoir was permanently
immersed within the visualization tank to equalize the temperatures of the saline
solution and the ambient; their densities were measured using an Anton PAAR DMA
4500 densitometer to an accuracy of ±5× 10−5 g cm−3.

The fountain was made visible by staining the source fluid with methylene blue
to a concentration of approximately 0.01 mg cm−3. The apparatus was diffusively
back-lit using a light box containing an array of high-frequency fluorescent tubes.
Images of the experiments were recorded as 8-bit bitmap image files at a frequency
of 24 frames per second and digitally stored via a computer-controlled BitFlow R3
frame grabber card. Images were captured using a JAI CVM4+CL camera, resolution
1372 (h) × 1024 (v), with a Pentax 12.5–75 mm 1:1.8 TV ZOOM lens and a Hoya
R(25A) red filter.

2.2. Diagnostics
A digitized movie was produced of each experiment by assembling the captured
images within Matlab (R2010b). From each movie a time series of vertical light
intensity was created in order to establish the variation in rise height. Averaging the
pixel light intensities horizontally across each image produced a vertical bar of pixels.
Aligning side-by-side the vertical pixel bar from each image produced a time series
of rise heights for each fountain. The first image in figures 6, 8, 9, 10 and 12 (§ 3)
shows these time series. The height of the fountain’s top, zf (t), was then followed to
ascertain the initial rise height, zi, and the mean steady-state rise height, zss. Similarly,
tracking the vortex height, zv(t), yielded the maximum vortex rise height, zv. The rise
velocity of the fountain’s top, wf (t) = dzf /dt, and of the vortex, wv(t) = dzv/dt, were
then attained. Measurements of the fountain’s breadth were made by analysing, within
every frame, each pixel row and locating the left-hand and right-hand edges of the
fountain; the distance between edges being taken as the breadth, denoted 2b(z, t), at
a given height and time. Thus for each experiment we also obtained a time series of
fountain breadth at all heights. Figure 2 shows images and an outline of a fountain
with the relevant heights and breadths marked, including those introduced later in this
section.

Each experiment was recorded for a time interval [0,T2] of duration varying from
150 to 420 s. The time interval over which measurements were recorded whilst the
fountain was in steady state [T1,T2] yielded the statistics used, including the mean
steady-state rise height,

zss = 1
T2 − T1

∫ T2

T1

zf (t) dt. (2.1)
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zf (t)

zf (t)

z

2b(zss, t)

zss

zpe

ztr

2bss(zss)

During initial rise In steady state

z  (t)
(a) (bi) (bii)

FIGURE 2. The same highly forced fountain at two different instants during experimentation;
the outline (bii) shows the edges identified from (bi). Marked on (a) and (bi) are the
instantaneous breadths and heights. Marked on (bii) are the statistically generated breadths
and heights for the experiment pictured, with the vertical and horizontal arrows showing the
scale of (zpe − ztr) and 2bss(zss) (as defined in (2.3) and (2.4)), respectively.

The interval [T1,T2] needed to be sufficiently long to ensure that the measured
mean, zss, was a good estimate of the true mean rise height, µss; the true mean
being that for an experiment run indefinitely. To ensure our recording intervals were
sufficiently long we calculated an estimate of the mean-square error, E[(µss − zss)

2], of
our measurements

E[(µss − zss)
2] ≈ 2σ 2

ss

T2 − T1

∫ T2

T1

R(τ ) dt, (2.2)

see Tennekes & Lumley (1972), where σ 2
ss is the variance of zf (t) in the interval

[T1,T2] and R(τ ) the autocorrelation coefficient. For all experiments the duration of
recording was increased until

√
E[(µss − zss)

2]/zss . 0.5 %, thereby ensuring any bias
in the measured mean value of zss due to the recording time was small and comparable
across the range of Fr0 considered.

To quantify the scale of fountain height fluctuations (for t > T1) it was necessary to
define measures of the fountain’s mean ‘peak’ height, zpe, and mean ‘trough’ height,
ztr, figure 2, which were insensitive to statistical outliers and to the time interval
[T1,T2], namely

zpe = 1
Tpe

∫ T2

T1

zpe(t) dt, ztr = 1
Ttr

∫ T2

T1

ztr(t) dt (2.3)

where zpe(t)= zf (t) for zf (t)> zss + σss, otherwise zpe(t)= 0, and Tpe is the total length
of time for which zf (t)> zss + σss; ztr(t)= zf (t) for zf (t)6 zss − σss, otherwise ztr(t)= 0,
and Ttr is the total length of time for which zf (t)6 zss + σss.

As a measure of the fountain-top width we define

2bss(zss)= 2
Th

∫ T2

T1

b′(t, zss) dt (2.4)

where b′(t, zss) = b(t, zss) when zf (t) > zss, otherwise b′(t, zss) = 0, and Th is the total
length of time for which zf (t)> zss.
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2.3. Source conditions and start-up

Our experiments investigated source Froude numbers in the range 0.4 . Fr0 . 45,
the upper limit being the maximum achievable with our experimental apparatus.
However, no qualitative change in fountain behaviour above this limit has been
reported elsewhere nor is any anticipated.

The pinch-off of a vortex at the fountain’s front for Fr0 & 5.5 and the subsequent
maximum rise height, zv, of the vortex was of particular interest to us. Forming the
separating vortex in a repeatable fashion was experimentally problematic and a broad
spread of zv was measured even between nominally identical experiments. The vortex
rise and its general behaviour was sensitive to Fr0 and Re0, the initial acceleration of
the source fluid by the pump, the density interface at the nozzle exit (at t = 0) and any
residual motion in the visualization tank. We now consider these aspects in turn.

For in excess of 80 % of all experiments presented herein the gear pump set-
up (unrestricted by the need to include a flow meter) accelerated source fluid
from rest to the desired velocity (and hence Fr0) within a ‘ramp-up’ time of
tr 6 1/24 s,where 1/24 s was the frame rate of the camera. Thus within a single
frame the desired Fr0 was consistently attained thereby allowing the repeatable
formation of an initial vortex. A survey of existing literature reveals that this was
not the case in a number of other experimental studies on fountains and in fact very
few details regarding the ramp-up can be found. For studies where the ramp-up time
(i.e. the time for the Froude number at the source to reach the desired value Fr0)
was significant the fountain would not necessarily attain the full initial height, zi, nor
would the initial vortex form. For example, should the flow of source fluid be started
gradually, such that the time to reach Fr0 was comparable to the time for the returning
downflow to develop, then the initial height would be decreased by the momentum
exchange between the upflow and the downflow and zi → zss. In other words the
parameter tr/ti, where ti denotes the time at which the fountain reaches initial rise
height, whilst previously unconsidered in experimental work, can have a profound
influence on rise heights. To ensure the fountains we produced were also of suitably
high source Reynolds numbers, low volume flow rates were avoided whenever possible
and the pump’s maximum flow rate was often used. For experimental configurations
where the pump flow rate was close to maximum, the pump took up to 1/8 s to
achieve the desired flow rate. To ensure that the ramp-up time never significantly
affected the initial rise dynamics we monitored tr/ti. The worst case from any of the
experiments performed gave tr/ti ≈ 0.3, whilst for in excess of 90 % of all experiments
tr/ti < 0.1.

To ensure the observed trends in rise height fluctuations (§ 3) were not due to time-
varying source conditions, a set of calibration tests were carried out. An individual
calibration test (for every value of volume flow rate used) recorded the actual volume
flow rate supplied by the pump, Q0(t), for the given dialled input volume flow rate.
For comparison we define similar statistics to (2.3) for the ‘peak’ and ‘trough’ mean
volume flow rates supplied: Qpe denotes the mean observed value for Qpe(t), where
Qpe(t) = Q0(t) for Q0(t) > Q0(t) + σQ0 ; and Qtr denotes the mean observed value of
Qtr(t), where Qtr(t)= Q0(t) for Q0(t)6 Q(t)− σQ0 , where σQ0 is the standard deviation
of the measured flow rate. Notably, flow rate variations were nominally constant with
fluctuations of typically 2 %.

Williamson et al. (2008) report Re0 = 120 to be the start of the transition to
turbulence for fountains, whilst fountains with Re0 & 2000 are reported therein
to be fully turbulent. For fountains of a given reduced gravity and source
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radius, Fr0 ∝ Re0. Thus, producing fully turbulent low-Froude-number Boussinesq
fountains is experimentally more problematic. Fountains studied herein were typically
of source Reynolds number Re0 & 2000. Where this was not possible a number of
different source Reynolds numbers were examined for a given source Froude number
to highlight any dependence of fountain rise heights on Re0 (see § 3.2 for further
details).

The interval between experiments needed to be sufficiently long to ensure the
ambient was quiescent, whilst not so long as to allow diffusion to compromise the
sharp density interface between the ambient and source fluids at the nozzle exit.
Consideration of two characteristic time scales, a settling time scale (tq), and a
diffusive time scale (tl), enabled suitable times between experiments to be determined.
The diffusive time scale tl =L 2/2D ≈ 400 s, where the diffusivity of salt in water
D = 1.25 × 10−5 cm2 s−1 (Washburn 2003) and we have taken L = 0.1 cm (the
accuracy to which heights were recorded). The settling time scale, found to be in
the range 290 s . tq . 6000 s was taken as the ratio of the square of the fountain’s
maximum radius and the viscosity of the ambient; the fountain’s maximum radius
being a characteristic length scale for the distance over which viscosity must act to
quiesce the ambient. For fountains where the settling time scale exceeded the diffusive
time scale the tank was allowed to settle for a sufficiently long time to allow the
ambient to quiesce before purging, at very low flow rates, the plug of diffuse fluid
from the nozzle. The tank was then left for a shorter time period before the next
experiment commenced.

3. Results
We begin with a brief synopsis of our findings before discussing our results in detail

in §§ 3.1–3.4. For forced fountains our measurements confirm the rise height ratio
and scalings of Turner (1966). However, we note the presence of distinct vortices in
the initial formation and subsequent rise to an initial maximum height, which greatly
alter the rise dynamics, particularly for Fr0 & 5.5. In addition, our results for the
steady-state rise heights agree well with the scalings described in Kaye & Hunt (2006)
across the range of source Froude numbers we have investigated.

For fountains of relatively low source Froude number, 1.0 . Fr0 . 1.7, we observe
that the initial rise height is not the maximum rise height and, moreover, within this
range of Fr0 we identify fountains where the rise height ratio is below unity.

The formation or otherwise of a vortical structure at the fountain’s front is central
to our revised fountain classification as it influences not only the initial rise height
but the entire morphology of the fountain during the initial rise. These initial vortices
were formed repeatably by achieving close to ideal initial conditions (§ 2.3) through
ensuring a uniform quiescent ambient, a sharp density interface at the nozzle exit
and the rapid acceleration of the source fluid. For 1.7 . Fr0 . 2.8 the formation of
the vortical structure is apparent but it remains integral to the fountain (figure 9(d).
For 2.8 . Fr0 . 5.5 the vortex remains attached yet is clearly distinguishable from
the fountain body (figure 8c–f ). For still higher source Froude number, Fr0 & 5.5,
the vortex separates from the main body of the fountain and rises high above
(figure 6c–f ).

These features lead us to propose a new fountain classification consisting of five
classes. The current classification and the primary distinctions leading to our proposed
classification are illustrated in figure 3. Each of the classes is distinguished as follows:
(a) for Fr0 . 1.0 the source forcing is only sufficient to generate a weir-like flow
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FIGURE 3. (a) Current fountain classification and (b) the distinguishing feature of each of the
five classes within the new proposed fountain classification.
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FIGURE 4. Rise height ratio variation with Fr0: measurements of λ = zi/zss (•) and
λv = zv/zss (×). The vertical dotted line marks the very weak-to-weak transition, dashed
line marks the weak-to-intermediate transition, solid line marks the intermediate-to-forced
transition and dashed-dotted line marks the forced-to-highly forced transition. Seven error
bars (aligned along λ = 0.2) are plotted to indicate the maximum error associated with an
experiment in that region of Fr0. An exploded view highlighting trends for Fr0 6 7 is shown
in figure 14 and is discussed in § 3.3.

– herein very weak fountains; (b) for 1.0 . Fr0 . 1.7 the weak source forcing leads to
‘low’ initial rise heights – herein weak fountains; (c) for 1.7 . Fr0 . 2.8 the relatively
weak forcing produces ‘high’ initial rise heights – herein intermediate fountains; (d)
for 2.8 . Fr0 . 5.5 the relatively strong forcing forms a distinct yet integral initial
vortex – herein forced fountains and (e) for Fr0 & 5.5 the strong forcing forms an
initial vortex which pinches off – herein highly forced fountains.

In figures 4, 7, 11, 14, 15 and 16 vertical lines mark the boundaries between
these fountain classes; dotted lines mark the very weak-to-weak transition, dashed
lines mark the weak-to-intermediate transition, solid lines mark the intermediate-to-
forced transition and dashed-dotted lines mark the forced-to-highly forced transition. In
addition, error bars (at specified vertical locations) are plotted at Fr0 values such that
the vertical and horizontal extent of the bars illustrate the maximum error associated
with any experiment in that region of Fr0 values.

Significantly, our results show that the rise height ratio, other than for highly forced
fountains, is not constant at λ = 1.43. This is clear from figure 4 which also shows
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FIGURE 5. Time series for five qualitatively different fountains illustrating the initial rise
height zi (—), steady rise height zss (- - -) and where applicable (d,e) vortex rise height zv(· · ·).
t̂ = tg

′
0/w0.

that the ratio of the vortex rise height to the steady rise height, λv = zv/zss (relevant
only to forced and highly forced fountains, marked ×) varies widely. It is noted
that whilst the initial vortex formed and separated from the fountain for the highest
Fr0 examined the depth of the visualization tank prevented vortex rise heights being
recorded for fountains of Fr0 & 30.

3.1. Morphology and dynamics
For all fountains we observed that fluid first ejected from the nozzle formed a domed
cap. The subsequent dynamics varied widely depending on Fr0 and the following
subsections document the rise and fall behaviours observed and measured over the
range of Fr0 indicated. These contrasting behaviours, as highlighted in the time series
of figure 5, form the basis for the extended classification. Behaviours are described for
decreasing Fr0 (§ 3.1.1 to § 3.1.5) beginning with highly forced fountains.

3.1.1. Highly forced fountains, Fr0 & 5.5
A circulation of fluid within the domed starting cap was clearly visible; figure 6

images Ex(a) and Ex(b) show the vortical cap atop the fountain stem. Trailing in the
lee of this lead vortex, a number of smaller vortices formed along the stem of fluid
linking the lead vortex to the nozzle (figure 6b and Ex(b)) giving the stem a ribbed
outline. The lead vortex subsequently pinched off and rose separately above the main
body of the fountain. We therefore distinguish between the position of the highest
point on the vortex, zv(t), and the highest point on the body of the fountain, zf (t).

Prior to pinching off, fluid was ejected periodically from the lead vortex and this
fluid descended around the rising stem. The smaller vortices aligned along the stem
appeared to instantaneously break down causing the entire stem to depart from an
ordered, ribbed appearance (figure 6b) to a stem characterized by numerous smaller-
scale turbulent eddies (figure 6c). The fountain body continued to rise, albeit more
slowly, forming the classical cone-like fountain shape (figure 6d). The now turbulent
fountain was clearly entraining ambient fluid (observable from the opacity of the fluid
at the fountain’s edge) prior to the body reaching its initial rise height. This initial
rise height was the absolute maximum height reached by the main fountain body – the
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FIGURE 6. Highly forced fountain typical of the class Fr0 & 5.5. Time series (top left) and
images (a–h) for Fr0 = 11.9 and Re0 = 2373. Plotted on the time series are the timing of
images (a) to (h) and the: initial rise height (—), vortex rise height (· · ·) and steady rise height
(- - -) for which (T1 = 29.2 s,T2 = 343.7 s). Images Ex(a) and Ex(b) show exploded sections
of images (a) and (b). Image (f ) (darker frame) is captured at the initial rise height, zf (t)= zi.
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FIGURE 7. Steady zss/r0 (•), initial zi/r0 (◦) and vortex zv/r0 (×) rise heights plotted against
Fr0. Seven error bars are plotted at z/r0 = 170.

body subsequently collapsed back and thereafter fluctuated about a reduced (quasi-)
steady height, zss.

The pinched-off vortex continued to rise, reducing in volume on route to attaining a
maximum height, zv. As the vortex decelerated on approach to maximum rise height
the decreasing momentum of the vortex by the action of its negative buoyancy became
further dampened by viscous effects. The fluid which had formed the vortex evolved
into an incoherent negatively buoyant, diffuse cloud-like structure. As this fluid fell
back slowly under gravity, weak mixing continued to further dissipate the structure.
By the time the cloud fell back to the top of the fountain body it was hardly
detectable. On impact the cloud had no discernible effect on the main body of the
fountain.

The lower limit of Fr0 ≈ 5.5, which we have used to bound the highly forced
regime, was the lowest value of Fr0 for which the lead vortex detached from the
body of the fountain. Our results for the steady rise height and the initial rise height
(figure 7), and thus the rise height ratio (figure 4 for Fr0 & 5.5), fit extremely well
with Turner (1966). The solid lines in figures 4 and 7 represent the main findings of
Turner (1966), namely that zi/r0 = 3.52Fr0, zss/r0 = 2.46Fr0 and λ = 1.43. The best
fits to our experimental data are zi/r0 = 3.58Fr0, zss/r0 = 2.46Fr0 and λ= 1.45. Whilst
these best fits are produced using all our experimental data where Fr0 > 5.5, the
spread in the rise height ratio is considerable for 5.5 . Fr0 . 10; this results from the
difficulty in determining the fountain’s initial rise height when the vortex is only just
able to separate from the fountain body. The vortex rise heights are discussed in detail
in § 3.2.

3.1.2. Forced fountains, 2.8 . Fr0 . 5.5
A rising stem formed with a bulbous cap at its front showing a marked circulation

(figure 8a). Fluid was periodically ejected downwards from the cap and this fluid
descended around the stem as rings centred around the vertical axis of the rising
core. The falling rings curled back on themselves (figure 8(b) at z ≈ r0/2). Smaller
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FIGURE 8. Forced fountain typical of the class 2.8 . Fr0 . 5.5. Time series (top) and
images (a-i) for Fr0 = 3.7 and Re0 = 2166. Plotted on the time series are the timing of
images (a) to (i) and the: initial rise height (—), vortex rise height (· · ·) and steady rise height
(- - -) for which (T1 = 12.2 s,T2 = 283.5 s). Image (f ) (darker frame) is captured at the initial
rise height, zf (t)= zi.

vortices were advected upwards along the stem, resulting in a ribbed appearance. The
falling rings broke up and appeared to introduce instabilities to the fountain’s stem
(figure 8c).
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The vortex cap was clearly distinguishable from the main body of the fountain;
however unlike releases with Fr0 & 5.5 the vortex did not detach (figure 8e,f ). The
volume of the rising vortex was now comparatively larger relative to the fountain body;
contrast the scales of the vortex to the fountain in figure 8(d) and figure 6(d). As
the vortex rose fluid fell back from it onto the trailing fountain (figure 8d–f ) thus
suppressing the rise of the fountain body. The body turbulently entrained ambient fluid
prior to reaching initial rise height, after which the vortex continued to rise. Fluid
falling from the vortex continued to suppress the fountain body as the vortex fell back
under gravity and the momentum exchanged between the falling fluid and the fountain
body temporarily reduced the fountain’s height to a local minimum, which was similar
in height to the lowest height subsequently observed once the fountain was in steady
state (figure 8h). The fountain then rose again to fluctuate around the steady-state rise
height.

The rise heights in steady state are well fitted by zss/r0 = 2.46Fr0, figure 11.
The initial rise height, zi, of forced fountains is lessened by the presence of fluid
falling from the vortex as is evident from the relatively low rise height ratios
in figure 14 in § 3.3; this effect is most clearly observed for Fr0 ≈ 2.8 (a value
marked by the continuous vertical line). For increasing source Froude numbers (within
2.8 . Fr0 . 5.5) the initial height is less and less affected by the fluid falling from
the vortex. As such, for low source Froude number the initial rise height is less than
the steady rise height (figure 14). For Fr0 ≈ 2.8 we find λ ≈ 0.8, and for increasing
Fr0 the rise height ratio increases towards the constant value λ = 1.45 as observed for
highly forced fountains.

3.1.3. Intermediate fountains, 1.7 . Fr0 . 2.8
The top of the cap rose a number of source radii in height and fluid again wrapped

up and circulated within the cap (figure 9b). The cap rose atop a stem of fluid which
narrowed just beneath the cap to a neck. Towards the lower-Froude-number end of
the intermediate fountain range, Fr0 ≈ 1.7, the neck occurred immediately above the
source whilst towards the upper end, Fr0 ≈ 2.8, the cap rose further and additional
vortices formed along the stem which developed a ribbed appearance (figure 9c). The
fountain rose to an initial height, which was the maximum height observed, before
slumping back and fluctuating about the lower steady height. Turbulent entrainment
was not a feature of intermediate fountains until after the fountain had reached initial
rise height (figure 10d,e).

The steady rise height is well fitted by the zss/r0 ∝ Fr2
0 relationship deduced in Kaye

& Hunt (2006). For rising Fr0 in the range 1.7 6 Fr0 6 2.8 the initial rise height
increases slightly whilst the rise height ratio, λ, decreases from λ ≈ 1.4 for Fr0 ≈ 1.7
to λ≈ 1.0 for Fr0 ≈ 2.2, before increasing to λ≈ 1.3 for Fr0 ≈ 2.8 (figure 14).

3.1.4. Weak fountains, 1.0 . Fr0 . 1.7
The fountain started to rise and then stalled at a height between r0 . z . 1.5r0

either pausing at this height or dipping slightly below it. This stalling forms a local
maximum and the initial rise height, zi, is observed. The fountain then continued to
rise to greater heights (figure 5b). During the initial rise no circulation was visible
within the cap and a neck did not form above the source (contrast images (b) of
figures 10 and 9).

A symmetrical downflow was observed for a short period after the initial rise height
was reached and subsequently the ordered nature of the return flow broke down.
Fluid slumped in bulk amounts from the fountain producing an unstable teetering
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FIGURE 9. Intermediate fountain typical of the class 1.7 . Fr0 . 2.8. Time series (top) and
images (a–h) for Fr0 = 2.5 and Re0 = 2670. Plotted on the time series are the timing of
images (a) to (h), the initial rise height (—) and the steady rise height (- - -) for which
(T1 = 8.2 s,T2 = 233.2 s). Image (d) (darker frame) is captured at the initial rise height,
zf (t)= zi.

appearance. Figure 10(h and i) and I show a weak fountain in ‘steady state’, the vast
bulk of fluid is above and to the left of the nozzle at the instant the images were
captured. Entrainment of ambient fluid into the fountain did occur but to a much lesser
extent than for intermediate and forced fountains. Entrainment was only apparent after
the fountain had entered (quasi-) steady state. The scaled height fluctuations of weak
fountains were approximately double those observed for any other fountain class, with
fluctuations in excess of 40 % being observed, figure 15.
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FIGURE 10. Weak fountain typical of the class 1.0 . Fr0 . 1.7. Time series (top) and
images (a–i) for Fr0 = 1.4 and Re0 = 1891. Plotted on the time series are the timing of
images (a) to (i), the initial rise height (—) and the steady rise height (- - -) for which
(T1 = 10.8 s,T2 = 209.7 s). Image (b) (darker frame) is captured at the initial rise height,
zf (t)= zi.

Weak and intermediate fountains exhibit the same dependence of steady rise height
on source Froude number, zss/r0 ∝ Fr2

0, with the best fit to our experimental data being
zss/r0 = 0.86Fr2

0, (as plotted in figure 11). Increasing Fr0 across the weak fountain
range hardly increases zi/r0 whilst λ decreases dramatically (figure 14). The initial rise
height is always below the maximum rise height, with initial rise heights as low as
half the steady rise height (λ≈ 0.5 for Fr0 ≈ 1.7). This finding was not anticipated, as
the steady rise height of a fountain is expected to be less than the initial rise height,
given the exchange of momentum between the upflow and the downflow. Based on
observation weak fountains do not appear able to form a vortex in the initial rise;
however, whilst in steady state these vortices do appear. When formed these vortices
significantly increase the fountain height and the failure of the vortex to form in the
weak fountain’s initial rise leads to the low initial rise heights recorded. Initially the
source fluid is ejected into a quiescent ambient whilst subsequently the fluid ejected
enters an environment where, due to the prior running of the fountain, there is an
induced flow present in the ambient. For weak fountains we argue that the presence
or absence of this induced flow is enough to alter whether these vortices are able to
form or not – the quiescent ambient appears to dampen the flow so the vortex does not
form whilst the presence of the induced flow assists the formation of the vortex. This
provides some reasoning for the initial rise height being less than the maximum rise
height and explains the scale of height fluctuations observed as the periodic formation
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FIGURE 11. Steady rise height zss/r0 (•) plotted against Fr0. The thick solid lines show
fits to the Froude number dependences given in Kaye & Hunt (2006), zss/r0 = 0.81Fr2/3

0 for
0.4 6 Fr0 6 1.0, zss/r0 = 0.86Fr2

0 for 1.0 6 Fr0 6 2.8 and zss/r0 = 2.46Fr0 for Fr0 > 2.8.
Five error bars are plotted at zss/r0 = 17.

Class Fr0 range Re0 range Steady height
dependency

Very weak 0.4–1.0 924–2171 zss/r0 = 0.81Fr2/3
0

Weak and intermediate 1.0–2.8 1015–2780 zss/r0 = 0.86Fr2
0

Forced and highly
forced

>2.8 969–4022 zss/r0 = 2.46Fr0

TABLE 1. Summary of steady rise height dependence on source Froude number.

of these vortices in steady state would cause the large fountain height fluctuations
observed.

3.1.5. Very weak fountains, Fr0 . 1.0
The flow rose to an initial peak height just above the nozzle before collapsing

back with an almost symmetrical counterflow. Figure 12(f ) shows a very weak
fountain exhibiting the maximum (albeit small) asymmetry observed for the 32
very weak fountain experiments performed; table 1 in § 4 details the range of Re0

examined. Whilst the returning flow is not entirely symmetrical, significant downflow
is maintained over the entire circumference of the nozzle. There was never any visible
entrainment into the fountain. Rise height fluctuations whilst in the steady state are far
less than for weak fountains, the scaled height fluctuations being approximately 10 %
(figure 15).

The steady rise height agrees well with the zss/r0 ∝ Fr2/3
0 scaling in Kaye & Hunt

(2006) and the best fit to our data, zss/r0 = 0.81Fr2/3
0 is plotted in figure 11. The rise

height ratio for very weak fountains is approximately constant at λ≈ 1.2.
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FIGURE 12. Very weak fountain typical of the class Fr0 . 1.0. Time series (top) and
images (a–h) for Fr0 = 0.7 and Re0 = 1276. Plotted on the time series are the timing of
images (a) to (h), the initial rise height (—) and the steady rise height (- - -) for which
(T1 = 4.2 s,T2 = 161.0 s). Image (b) (darker frame) is captured at the initial rise height,
zf (t)= zi.

3.2. Vortex rise height

Although not plotted on figure 7, all the maximum vortex rise heights fell below
zv/r0 ≈ 8Fr0 suggesting that the maximum rise height of an ‘optimal’ vortex, zov,
follows the relationship zov/r0 = 8Fr0. Due to the challenges in reproducing zv
consistently, our results demonstrate significant variation beneath this upper bound.
This variation was investigated and was found not to result from changes in the source
conditions over the ranges (table 1) of Fr0 and Re0 investigated.

Successful formation of a vortex required a rapid initial acceleration of the source
fluid and a sharp density interface at the nozzle exit. Considerable efforts were made
to maximise the occurrence of an ‘optimal’ vortex by monitoring the ramp-up time,
tr/ti, along with the diffusive and settling time scales; procedural details are provided
in § 2.3 and these ensured our experiments provided repeatable fountain dynamics
and repeatable vortex formation. This was confirmed by a repeatability study on six
fountains all of Fr0 = 10.0. This included three fountains of nominally identical source
conditions and three fountains of varied r0, w0 and g′0 so that the source Reynolds
number was altered between the three experiments, 1343 6 Re0 6 3212. Taking the
coefficient of variation as a measure of spread between the six experiments, zss varied
by less than 3 %, zi by less than 4 %, yet zv was found to vary by more than
20 %. Moreover, the heights zss, zi and zv all showed no sensitivity to Re0. As a
further indicator of the repeatability of the initial formation and rise of the vortex
we examined the height at which the vortex pinched off from the fountain body; this
height varied by less than 5 %.

Thus the majority of the spread in the results of zv (figure 7) cannot be attributed to
the source conditions directly but to disturbances influencing the vortex after pinch-off.
These disturbances are likely to grow from those initiated during pinch-off or from
weak disturbances in the ambient. The vortex would often ride atop the fountain
to heights of around 30r0 before separating from the main body (figure 6c) and
post separation the vortex travelled to heights of up to 140r0 (figure 7). The large
distances travelled, combined with the diffuse nature of the fluid when high above the
fountain body (figure 6f ) allowed any fractional disturbance to influence the vortex.
Any disturbance in the pinched-off vortex caused it to depart from a vertical trajectory
or to break up prior to attaining the rise height of an optimally formed vortex, zov.
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FIGURE 13. Fountain body front zf ( t̂ )/r0 (—) and vortex zv( t̂ )/r0 (· · ·) rise heights plotted
against time for a typical highly forced fountain. Times indicated are of: the appearance of
a distinct fountain body and vortex, t̂b; the vortex separation, t̂s; the commencement of the
downflow, t̂c; the maximum initial rise height, t̂i, and of the maximum vortex rise height,
t̂v . The three superimposed images of the fountain are located at their times of capture.
The source conditions of the fountain pictured were: Fr0 = 11.8,w0 = 21.1 cm s−1, g′0 =
4.2 cm s−2 and r0 = 0.8 cm. The path of a projectile of parabolic form z = c1w0t − c2g′0t2,
where the coefficients were determined by a least-squares fit to the actual path of the
separated vortex, is illustrated (- - -).

Figure 13 plots the vertical position of the vortex top and fountain body top against
scaled time ( t̂ = t g′0/w0) for a single fountain. The behaviour shown is typical
of highly forced fountains. The rise of the separated vortex is well predicted by
modelling it as a projectile. We denote the time at which the height of the fountain
body becomes distinguishable from the vortex height as t̂ = t̂b (≈0.1 in figure 13)
and the time the vortex separates from the fountain body as t̂s. Figure 13 shows the
potential to divide the evolution of zf ( t̂ ) into three distinct regions. For t̂b 6 t̂ 6 t̂s

the vortex and the body rise at the same near-constant velocity. During this initial
development the vortex dominates the rise of the fountain; note that at t̂ = t̂b the vortex
velocity is unchanged and the fountain-top velocity is that of the vortex. The beginning
of the second region, t̂s 6 t̂ 6 t̂c, is marked by a clear decrease in the gradient of
zf ( t̂ ), which corresponds to an increased vertical separation between the fountain-top,
zf ( t̂ ), and the vortex, zv( t̂ ). The end of the second region, at t̂ = t̂c, corresponds to
the time at which the development of the counterflow commences. Within the third
region, t̂c 6 t̂ 6 t̂i, the fountain-top continues to decelerate as it rises towards the initial
maximum height, zi.

3.3. Weak to intermediate fountains, Fr0 ≈ 1.7, and the λ jump
The transition from weak to intermediate fountains on increasing Fr0 is marked by a
sudden jump in the initial rise height at Fr0 ≈ 1.7, a jump which causes the rise height
ratio to increase suddenly from λ ≈ 0.5 to λ ≈ 1.5 (figure 14). This step change in
λ is the result of the physics of the fountain’s initial rise. This is in contrast to the
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FIGURE 14. Rise height ratios λ (•) and λv (×) plotted against Fr0. Five error bars are
plotted at λ=0.2.

other apparent step change in rise height ratio at Fr0 ≈ 2.8, which results only from
the onset of recording the vortex height and fountain height separately.

The jump in λ, at Fr0 ≈ 1.7, is driven by a sudden change in the initial rise height,
zi (note that figure 11 shows the steady-state height continuously increasing over the
range of 1.5 6 Fr0 6 2.0). We hypothesise that this step change in the initial rise
height results from the source forcing being just sufficient to form a vortex. As a
consequence the fluid released wraps up above the nozzle, increasing the rise height,
rather than spilling over the nozzle perimeter. Gharib, Rambod & Shariff (1998)
report the formation number of neutrally buoyant vortices as L/D ≈ 4, L denoting
the length and D the diameter of a column of fluid which comprises the volume of
the starting vortex. The volume of this column is then 8πr3

0. Given that both weak
and intermediate fountains show no signs of entrainment during their initial rise we
might expect this volume of fluid to be the volume of the initial vortex. A torus of
minor radius rt and major radius rt is the likely shape of the initial vortex and this
would contain a volume of fluid 2π2r3

t . Setting the two volumes to be equal gives
rt/r0 = (4/π)1/3 ≈ 1.08. Given this, the height of the torus would be 2rt = 2.16r0.
Should the initial rise of the fountain exceed 2.16r0 the vortex can form above the
height of the nozzle whilst if the initial rise of the fountains is below 2.16r0 the
circulation of the vortex would be interrupted by the external wall of the nozzle. The
λ jump at Fr0 ≈ 1.7 corresponds to a change in the initial rise height from zi ≈ 1.8r0

to zi ≈ 3.5r0 spanning the height 2.16r0. This indicates that once the fountain reaches
a height close to 2.16r0 the formation of the vortex allows the fountain to attain much
greater initial rise heights and thus supports the claim that the λ jump is caused by the
successful formation of an initial vortex.

3.4. Fountain height fluctuations
The fluctuation of fountain height in steady state (scaled on the mean steady height)
was found to be a maximum for weak fountains, 1.0 . Fr0 . 1.7, which agrees well
with the results of Friedman (2006). Figure 15 plots the scaled height fluctuation
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FIGURE 15. Rise height fluctuations (zpe − ztr)/zss (•) and source volume flux fluctuations
(Qpe − Qtr)/Q(t) (×) plotted against Fr0.

Fr0

5 10 15 20 25 30 35 40 450
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FIGURE 16. Mean rise height fluctuations scaled on steady fountain width plotted against
Fr0. The horizontal solid line (zpe − ztr)/2bss(zss) = 0.92 is the mean value for Fr0 > 2.8 (i.e.
for forced fountains). The dotted horizontal lines represent 10 % above and below the mean.

against Fr0 and shows that for Fr0 & 5.5 fluctuations are independent of Fr0, i.e.
as these are relatively highly forced fountains (for which zss/r0 ∝ Fr0) the absolute
height fluctuations scale linearly with Fr0. Also plotted in figure 15 are the variations
in source volume flow rate, Q0, associated with each experiment. The variation in
Q0 shows no correlation with the height fluctuations and we can conclude that the
fluctuations were not caused by variations in the volume flow rate.
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The cause of the dominant height fluctuations is expected to be large-scale eddies
periodically forming at the top of the fountain. We expect the scale of these
fluctuations, zpe − ztr, to be comparable with the scale of the largest eddy able to
form at the top of the fountain, the length scale of this eddy being the width of the
fountain-top.

Figure 16 plots the height fluctuations, zpe − ztr, scaled on fountain-top width,
2bss(zss). For Fr0 > 2.8 the plot illustrates that (zpe − ztr)/2bss(zss) shows no clear
dependence on Fr0 with the mean value being (zpe − ztr)/2bss(zss) = 0.92 and over
70 % of all experiments falling within 10 % of this mean value. This demonstrates that
for fountains of Fr0 > 2.8 the scale of fountain height fluctuations is approximately
the fountain-top width, thus supporting the proposal that large-scale eddies at the
fountain-top are the dominant cause of fountain height fluctuations.

4. Discussion
Our measurement of saline fountains support the experimental and theoretical work

of previous studies (for example Turner 1966; Baines et al. 1990; Kaye & Hunt 2006).
Our study, in addition to providing a substantial dataset which clarifies previous
results, also highlights new rise height behaviours. The steady-state rise height
dependence across the range of source Froude numbers investigated (0.4 6 Fr0 6 45)
are summarized in table 1. The new rise height behaviours have identified the need
to classify axisymmetric turbulent fountains into five regimes based on the dynamics
of the initial transients and those of the (quasi-) steady state. The rise height ratio
was found to vary by a factor of four (figure 14) with the trends for each of the five
fountain classes detailed in table 2.

An exhaustive study of the effects of Re0 on λ was not carried out as the intention
of this study was to examine fountains of sufficiently high Re0 that both zi and zss

were insensitive to Re0. However, the fountains studied did vary in source Reynolds
number over a relatively wide range, detailed in table 1. For the entire range of Fr0

and Re0 examined the steady rise height was found to be insensitive to Re0 (§ 2.3).
Furthermore, this was also the case for the initial rise heights of the very weak, forced
and highly forced fountains studied (§ 3.2). For weak and intermediate fountains close
to the transitional value of Fr0 ≈ 1.7 the formation, or otherwise, of the initial vortex
was found to be affected by Re0. This in turn affected the initial rise height attained
and thus λ. The formation of the initial vortex and its dependence on Re0 is apparent
within figure 14 through the overlapping trends in λ at Fr0 ≈ 1.7. This transitional
value of λ may itself be sensitive to Re0. These transitional fountains form the basis of
an ongoing study.

Weak fountains stall on their initial rise yielding an initial maximum height lower
than the maximum rise heights observed once in steady state. We argue this is due
to the failure of a vortex to form during the initial rise thus reducing the initial rise
height, whilst the successful formation of the vortex in steady state occurs periodically
thus producing the elevated heights observed in steady state. In the steady state,
these weak fountains experience height fluctuations of approximately 0.4zss, this being
around twice the magnitude of fluctuations observed for any other fountain class.

The fact that for highly forced fountains, a vortex forms at the fountain’s front
which pinches off, separates from and then rises high above the fountain body,
changes the dynamics of the initial transients compared with fountains of lower Fr0

and adds an additional rise height (the vortex rise height) to consider. The sensitivity
of this vortex to the initial conditions in the nozzle, the acceleration profile of the
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Class Fr0
range

λ (low and
high Fr0)

Trend for increasing Fr0 Relative rise
heights

Very weak 0.4–1.0 1.1 and 1.0 Approximately constant zi > zss
Weak 1.0–1.7 1.0 and 0.5 Strongly decreasing zi 6 zss
Intermediate 1.7–2.8 1.4 and 1.3 Decreasing (to λ≈ 1.0)

then increasing
zi > zss

Forced 2.8–5.5 1.0 and 1.45 Weakly increasing zi > zss, zv > zi
Highly forced 5.5–45 1.45 and 1.45 Constant zi > zss, zv > zi

TABLE 2. Summary of rise height ratio, λ, trends for the five fountain classes.

pump and any residual motion in the ambient conditions make detailed analysis
challenging. Our results for the vortex height are well bounded by an upper limit
of zv/r0 6 8Fr0 but demonstrate significant variation below this limit. The initial
vortex is also visible in both intermediate and forced fountains. Whilst for these
fountains the vortex fails to separate, its presence plays a central role in the transients.
Given the number of previous studies of turbulent fountains it is perhaps surprising to
find so few references to vortices separating from the fountain’s front. Moreover, few
previous studies of fountains provide details of the initial acceleration of the source
fluid. Notably, Marugán-Cruz et al. (2009) in their study of laminar starting fountains
analysed the initial accelerations achieved and observed the initial vortex separating.

5. Conclusions
For fountains of Fr0 & 2.8 (i.e. forced and highly forced) our results show the

dominant scale of the height fluctuations to be approximately the width 2bss(zss) of the
fountain near its top. The width 2bss(zss) is also the characteristic length scale of the
largest eddying motion able to form in this region. Thus we conclude that large-scale
eddies periodically forming at the fountain-top are the dominant cause of fountain
height fluctuations in the (quasi-) steady state.

We conclude it is inappropriate to consider the rise height ratio constant at λ= 1.43
except for highly forced fountains. In order to clarify the rise height behaviours of
axisymmetric turbulent Boussinesq fountains we have classified them into five fountain
classes, see table 2.

This work was motivated, in part, by Carazzo et al. (2010) highlighting the lack of
data on the variation, or otherwise, of the rise height ratio with Fr0 and so we finish
by considering the implications of our measurements for the results of their model,
specifically that λ = zi/zss ∝ √αss/αi. Our results show that λ = f(Fr0), see figure 4,
which in turn requires that αss/αi = f(Fr0). Whether the variation in the ratio of
entrainment coefficients with Fr0 is sufficient to alone account for the wide variation
observed in λ, a variation by a factor of four, remains an open question as the ratio of
entrainment coefficients would be required to vary by a factor of sixteen.

Considering highly forced fountains, αi ≈ αjet as fluid projected is jet-like over
the majority of the initial rise height (see the Appendix). Furthermore, the projected
fluid reaches relatively large rise heights before falling as a plume with zero source
momentum flux so that entrainment by the falling fluid can be assumed similar to
that of a pure plume, i.e. αss ≈ αp. Finally, as we determined that, for these fountains,
λ = 1.45 we can write 1.45 ∝√αss/αi. Taking αi ≈ αjet = 0.0535 (Fischer et al. 1979)
and αss ≈ αp = 0.0833 (Fischer et al. 1979) we have λ= zi/zss ≈ 1.16

√
αss/αi.
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FIGURE 17. Contours of constant Froude number showing the vertical height at which: (i)
Fr = 0, i.e. the initial rise height, zi; (ii) Fr = 1, marking the transition from weak to very
weak, zvw; and (iii) Fr = 3, marking the transition from forced to weak, zw. The relative
vertical extents of the three shaded regions for a given Fr0 indicate the fraction of the
initial rise height from (A 1) over which the Froude number is locally forced, weak and
very weak.
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Appendix. Relative fountain height at transitional local Froude numbers

The relative contribution of the three length scales to the overall initial fountain rise
height (Kaye & Hunt 2006, their equation (2.8)) may be expressed as

zi

r0
= A

∫ 0

Fr0

B(F) dF = A
∫ Frw

Fr0

B(F) dF︸ ︷︷ ︸
zw/r0

+A
∫ Frvw

Frw

B(F) dF︸ ︷︷ ︸
(zvw−zw)/r0

+A
∫ 0

Frvw

B(F) dF︸ ︷︷ ︸
(zi−zvw)/r0

(A 1)

where A= (2a/5)Fr0 (φ + aFr−2
0 )

3/10
, B(F)= F−2 (φ + aF−2)

−13/10 and a= 5π1/2/4α.
To obtain estimates of the relative heights to which a forced fountain rises before

the local Froude number decreases to values associated with a weak fountain, zw,
and a very weak fountain, zvw (the remaining rise height, zi − zvw, being the height
gained whilst the local Froude number is equivalent to those very weak fountains),
we take the transitional Froude numbers of Frw = 3 and Frvw = 1, respectively, with
φ = α/αjet = 1 (Kaye & Hunt 2006). The heights zw, zvw and zi scaled on the source
radius are illustrated in figure 17 for source Froude numbers spanning the three
fountain regimes. The plot highlights that for sufficiently highly forced fountains it is
the contribution of the momentum-jet length that dominates the initial rise height.
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