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Dynamo saturation down to vanishing viscosity:
strong-field and inertial scaling regimes
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We present analytical examples of fluid dynamos that saturate through the action
of the Coriolis and inertial terms of the Navier–Stokes equation. The flow is driven
by a body force and is subject to global rotation and uniform sweeping velocity.
The model can be studied down to arbitrarily low viscosity and naturally leads to
the strong-field scaling regime for the magnetic energy produced above threshold:
the magnetic energy is proportional to the global rotation rate and independent
of the viscosity ν. Depending on the relative orientations of global rotation and
large-scale sweeping, the dynamo bifurcation is either supercritical or subcritical. In
the supercritical case, the magnetic energy follows the scaling law for supercritical
strong-field dynamos predicted on dimensional grounds by Pétrélis & Fauve
(Eur. Phys. J. B, vol. 22, 2001, pp. 271–276). In the subcritical case, the system
jumps to a finite-amplitude dynamo branch. The magnetic energy obeys a magneto-
geostrophic scaling law (Roberts & Soward, Annu. Rev. Fluid Mech., vol. 4, 1972,
pp. 117–154), with a turbulent Elsasser number of the order of unity, where the
magnetic diffusivity of the standard Elsasser number appears to be replaced by
an eddy diffusivity. In the absence of global rotation, the dynamo bifurcation is
subcritical and the saturated magnetic energy obeys the equipartition scaling regime.
We consider both the vicinity of the dynamo threshold and the limit of large distance
from threshold to put these various scaling behaviours on firm analytical ground.

Key words: dynamo theory, geodynamo

1. Introduction
A key challenge in dynamo theory is to predict the strength of the generated

magnetic field. This is of obvious interest in an astrophysical context, where one
would like to estimate the magnetic fields of astrophysical objects, but also in the
context of laboratory experiments, where many questions arise regarding the saturation
mechanisms of instabilities arising over high-Reynolds-number background flows
(Pétrélis, Mordant & Fauve 2007; Gallet et al. 2012; Fauve et al. 2017). Predictions
of the intensity of the dynamo field mainly rely on dimensional analysis, and the
resulting scaling laws depend on the dominant balance at stake in the Navier–Stokes
equation: in simple viscous analytical models, the main balance is between the Lorentz
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972 K. Seshasayanan and B. Gallet

force and the viscous one, the magnetic energy being proportional to molecular
viscosity (Soward 1973; Gilbert & Sulem 1989; Nunez, Pétrélis & Fauve 2001). In
contrast with such viscous models, natural dynamos in planets and stars as well as
laboratory experiments operate at large Reynolds number. For such laboratory flows
(Gailitis et al. 2000; Monchaux et al. 2001; Stieglitz & Müller 2001), the dominant
balance is between the Lorentz force and the advective term. This leads to an ‘inertial’
or ‘turbulent’ scaling regime where the magnetic energy is independent of molecular
viscosity (Pétrélis & Fauve 2001; Pétrélis et al. 2007; Gallet, Berhanu & Mordant
2009).

The situation is even more complex for rapidly rotating flows, where a significant
fraction of the Lorentz force can be balanced by the Coriolis term. Motivated
by the geodynamo, Roberts put forward a detailed picture of the parameter space of
convectively driven rapidly rotating dynamos (Roberts 1978, 1988). He conjectured the
coexistence of two dynamo branches. As the Rayleigh number increases, a convective
flow sets in above a critical Rayleigh number Rac. Above some value Ram > Rac of
the Rayleigh number, the flow becomes dynamo-capable and a supercritical branch
of dynamo states arises. This supercritical branch is called the ‘weak-field’ branch,
as analytical examples of such supercritical convective dynamos indicate that the
magnetic energy is proportional to the small molecular viscosity on that branch
(Soward 1973). However, based on the linear stability analysis of thermal convection
subject to global rotation and uniform external magnetic field, Roberts conjectured
the existence of a second dynamo branch coexisting with the weak-field one in
parameter space. Indeed, because the combination of global rotation and uniform
magnetic field decreases strongly the threshold for convective motion, Roberts argues
that this second dynamo branch may appear through a saddle-node bifurcation even
below Rac. For this phenomenon to happen, the magnetic field must be large: it
is independent of molecular viscosity and proportional to the global rotation rate
(Roberts 1988; Roberts & Soward 1992). The corresponding dynamo branch is thus
referred to as the ‘strong-field’ one. On the strong-field branch, the dominant balance
in the Navier–Stokes equation cannot be purely between the Lorentz force and the
Coriolis term, because the latter does not do any work. A third force must come into
play to provide the energy that is dissipated ohmically. The dominant force balance
is thus between the Lorentz force, buoyancy force and Coriolis term. It is often
referred to as MAC balance, for magnetic-Archimedean-Coriolis. While these studies
were originally motivated by the geodynamo problem, both the inertial scaling regime
described above and the strong-field branch have been argued to bear some relevance
to stellar magnetic fields (Morin et al. 2011).

Testing these predictions in fully three-dimensional (3-D) direct numerical
simulations (DNS) is extremely challenging, because of the moderate-Reynolds-
number values achievable on modern supercomputers: 3-D DNS of the dynamo effect
remain strongly influenced by viscous effects (Oruba & Dormy 2014). Such numerical
studies are therefore in stark contrast with the few successful dynamo experiments,
all of which point towards a turbulent saturation regime. The most recent ones
clearly point towards a MAC balance in the bulk of the flow (Yadav et al. 2016;
Schaeffer et al. 2017), but they could not establish the independence of magnetic
energy with respect to viscosity (see Aubert, Gastine & Fournier 2017 for large-eddy
simulations). The problem of clearly identifying a strong-field dynamo branch remains
overwhelming, and efforts have therefore split into two kinds of studies:

(1) Some studies retain the full complexity of the convective dynamo problem,
and aim at reproducing the multiple-branch picture conjectured by Roberts.
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Dynamo saturation down to vanishing viscosity 973

These studies either consider the full set of convective magnetohydrodynamic
(MHD) equations, or focus on precise asymptotic limits to derive reduced sets of
equations that can be simulated at lower computational cost (Calkins et al. 2015,
2016; Plumley et al. 2018). In this quest for numerically tractable asymptotic
regimes, another line of work focused on the rapid-rotation limit in otherwise
viscous flows (Dormy 2016; Hughes & Cattaneo 2016; Cattaneo & Hughes 2017).
The latter two studies clearly evidenced dynamo states for which the Lorentz
force contributes to the dominant force balance. This results in very different
velocity fields during the kinematic and dynamic phases of dynamo action. The
study by Dormy (2016) clearly showed the coexistence of branches of weaker
and stronger magnetic field. However, in spite of the qualitative agreement with
Roberts’ picture, the agreement cannot be made quantitative as viscosity still
plays a central role in setting the magnetic field strength.

(2) Another approach to the problem consists in replacing the complex convective
flow by a body-forced one (see e.g. Moffatt 1972) or even a boundary-driven one
(Pétrélis & Fauve 2001). Such driving mechanisms are arguably more relevant
to dynamo experiments, but most importantly they allow for simpler analytical
treatment. The goal here is to reproduce the viscosity-independent scaling
behaviour of the magnetic energy at high Reynolds number. As for convective
systems, the body-forced equations can be studied in their full complexity, or
using reduced sets of asymptotic equations. As an example, we recently derived
a reduced set of quasi-2-D equations that is asymptotically valid in the limit
of rapid rotation and in the vicinity of the dynamo threshold. We could then
simulate these reduced equations down to very low values of the magnetic
Prandtl number, thereby showing that the magnetic energy transitions to the
turbulent scaling regime for low enough magnetic Prandtl number, Pm . 10−3

(Seshasayanan, Gallet & Alexakis 2017).

To summarize, studies of type (1) can recover the multiple-branch picture but cannot
achieve the viscosity-free scaling laws of a strong-field dynamo, whereas studies of
type (2) successfully realize these viscosity-free scaling laws, but cannot produce
Roberts’ multiple-branch picture. By extension, in several previous studies of type
(2) (Pétrélis & Fauve 2001), as well as in the present one, the ‘strong-field scaling
regime’ then refers to a dynamo branch where the magnetic energy is independent of
molecular viscosity and proportional to the global rotation rate, regardless of whether
the branch is subcritical or supercritical, and whether it coexists with a weaker-field
branch or not. In the context of laboratory experiments, studies of type (2) can be
relevant as such, while in the context of astrophysical dynamos the hope is that the
qualitative picture arising in studies of type (1) can be combined with the quantitative
scaling-laws arising in studies of type (2).

The following study belongs to type (2) above: in the present context of limited
numerical evidence, simple analytical examples of dynamos displaying the strong-field
or turbulent scaling regimes are highly desirable. We thus introduce body-forced flows
for which the dynamo saturation can be studied analytically down to arbitrarily low
viscosity. It is based on the standard G. O. Roberts flow, to which we add two
additional ingredients: in the presence of global rotation and/or uniform large-scale
sweeping flow, we show that the dynamo instability saturates through the action of the
Coriolis and/or inertial terms of the Navier–Stokes equation. The resulting magnetic
energy is independent of molecular viscosity when the latter is low enough, and it
is proportional to the global rotation rate for rapid rotation. It therefore reproduces
the scaling behaviour of a strong-field dynamo branch, without the full complexity
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974 K. Seshasayanan and B. Gallet

of thermal convection. Because mechanical forcing replaces the buoyancy force, the
standard MAC balance is replaced by a magnetic-forcing-Coriolis balance, or MFC
if one insists on using acronyms. This MFC balance arises directly at the beginning
of the dynamo branch when the bifurcation is subcritical, and at large distance from
threshold when the bifurcation is supercritical.

Our approach is fully nonlinear and relies on scale separation only: the length
scale of the flow is much less than that of the magnetic field. We therefore relax the
common assumption of weak departure from the dynamo threshold, which provides
an analytical avenue to study the magnetic energy produced far from threshold. The
resulting dynamo branch depends on whether global rotation is present:

(i) Without global rotation but in the presence of a large-scale sweeping flow, the
dynamo instability is subcritical. The magnetic energy is independent of viscosity
and corresponds to a regime of equipartition between kinetic and magnetic energy.
It is therefore independent of both viscosity and magnetic diffusivity.

(ii) When both global rotation and large-scale sweeping flow are present, the nature
of the dynamo bifurcation (supercritical or subcritical) depends on their relative
orientations and strengths. The magnetic energy is proportional to the global
rotation rate and independent of viscosity, therefore achieving the strong-field
scaling regime. Far away from threshold, it is also independent of the magnetic
diffusivity: the ratio of kinetic to magnetic energy is then simply given by the
Rossby number, which corresponds to the ‘magneto-geostrophic’ scaling law
proposed in Roberts & Soward (1972).

In § 2 we introduce the theoretical set-up and derive the nonlinear α-effect in the
presence of sweeping flow, background rotation, viscosity and magnetic feedback
through the Lorentz force. In § 3 we present the linear stability and weakly nonlinear
analyses of the resulting equations for the large-scale magnetic field. We derive the
scaling behaviour for the magnetic energy in the vicinity of the dynamo bifurcation.
We then study the dynamo branches at arbitrary distance from threshold in § 4,
establishing regimes where the magnetic energy is independent of both viscosity
and magnetic diffusivity. Section 5 is devoted to a discussion of three important
points: the case of a large-scale zonal flow, the stability of the present analytical
solutions and the criteria to achieve viscosity-independent scaling regimes in dynamo
simulations (low Ekman number versus low magnetic Prandtl number).

2. Theoretical set-up
2.1. Body-forced flow subject to sweeping and rotation

We consider an electrically conducting Newtonian fluid of density ρ and kinematic
viscosity ν inside a cubic periodic domain of side length λ. A steady body force F∗
drives a small-scale flow of G. O. Roberts geometry (Roberts 1972):

F∗ =
F∗

2

eiy∗/`

eix∗/`

ieix∗/`
− ieiy∗/`

+ c.c., (2.1)

where (x∗, y∗, z∗) denote standard Cartesian coordinates, ` � λ and F∗ > 0. Such
small-scale body forces are routinely used to drive helical flows in dynamo studies
(Moffatt 1972). At larger scale, mechanical forcing is becoming increasingly popular
as an alternate driving mechanism of some astrophysical dynamos (Le Bars, Cébron &
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FIGURE 1. (Colour online) An electrically conducting fluid is stirred by a steady body
force. We represent the projection of the force-field lines in an (x, y) plane, together
with the sign of the z component. Light-colour lines rotate counterclockwise, while
dark-coloured lines rotate clockwise. The flow is subject to global rotation with rotation
vector Ω , and advection by a uniform sweeping velocity U . We describe in detail the
situation where Ω and U are collinear, the case of a zonal flow U perpendicular to Ω
being left for the discussion section.

Le Gal 2015). The cubic domain lies in a frame rotating with a rotation vector Ω =
ω/2(ex + ey). Additionally, we consider the presence of a uniform time-independent
sweeping velocity U = U(ex + ey). Such a sweeping flow can be specified at the
outset, just as we specify global rotation: because of momentum conservation, the
uniform velocity U is unaffected by the smaller-scale flow driven by the mean-zero
field F∗. The total velocity field therefore reads u = U + v∗, where v∗ denotes the
small-scale velocity field driven by F∗. We focus on the situation where the large-scale
sweeping flow is parallel to the direction of global rotation; the case of a zonal flow,
perpendicular to Ω , is left for the discussion § 5.1. A similar combination of cellular
flow and sweeping velocity was considered by Tilgner (2008), who focuses on the
kinematic dynamo problem for small-scale dynamo modes in the absence of global
rotation. By contrast, the present study focuses on fully nonlinear dynamos operating
in the limit of scale separation `� λ.

We non-dimensionalize the equations using the length scale ` and the time scale
`2/η, where η= 1/µ0σ is the magnetic diffusivity, with µ0 the magnetic permeability
of vacuum and σ the electrical conductivity of the fluid. We denote as B∗ the
(dimensional) magnetic field. We introduce the dimensionless variables:

x=
x∗

`
, t=

t∗η
`2
, v =

v∗`

η
, F=

F∗`3

η2
, B=

B∗`
√
ρµ0η

, (2.2a−e)

where the quantities with a ∗ are dimensional, while the quantities without a ∗ are their
dimensionless counterparts. In terms of the dimensionless variables, the Navier–Stokes
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976 K. Seshasayanan and B. Gallet

and induction equations read:

∂tv + R[(ex + ey) · ∇]v +
R
Ro
(ex + ey)× v + (v · ∇)v

=−∇p+ Pm∇2v + (B · ∇)B+F, (2.3)

∂tB+ R[(ex + ey) · ∇]B=∇× (v×B)+∇2B, (2.4)

where p is the generalized pressure, and we have introduced the following
dimensionless parameters:

R=
U`
η
, Ro=

U
`ω
, Pm=

ν

η
, (2.5a−c)

ν being the kinematic viscosity of the fluid. R is a magnetic Reynolds number built
with the sweeping flow – it is also the dimensionless sweeping velocity – and Ro is a
Rossby number built with the sweeping flow, the global rotation rate and the forcing
scale. The second term on the left-hand side of (2.3)–(2.4) corresponds to advection by
the sweeping flow U , while the third term of the Navier–Stokes equation (2.3) is the
Coriolis force associated with Ω . The flow being incompressible, equations (2.3)–(2.4)
are supplemented by the divergence-free constraints:

∇ · v = 0 and ∇ ·B= 0. (2.6a,b)

2.2. Scale separation
We follow the standard procedure of the mean-field dynamo framework, making use
of scale separation: the scale ` of the forcing is much smaller than the extension λ
of the domain, and we define the small parameter ε = `/λ� 1. We introduce a slow
time scale, together with a slowly varying vertical coordinate:

T = ε2t, Z = εz. (2.7a,b)

We consider the following scalings for the small-scale flow, large-scale flow, global
rotation rate and forcing:

v =O(
√
ε), R=O(1), Ro=O(1), F=O(

√
ε). (2.8a−d)

In appendix A, we reproduce the standard multiple-scale expansion leading to the
concept of α-effect, with the addition of global rotation and large-scale sweeping flow:
the magnetic field B decomposes into an O(1) large-scale magnetic field B(Z, T)
that depends on the slow time and space variables only, together with a weaker
O(
√
ε) small-scale magnetic field b(x, y, Z, t, T) that depends on both fast and slow

coordinates. These two fields obey the following set of equations:

∂tb+ R[(ex + ey) · ∇x]b= (B · ∇x)v +∇
2
xb, (2.9)

∂TB= ε−1
∇X × 〈v× b〉 +∇2

XB, (2.10)

where ∇x= (∂x, ∂y,0), ∇X= (0,0, ∂Z) and 〈·〉 denotes an average over the fast variables
x, y and t. Even though there is a factor ε−1 in the first term on the right-hand side of
(2.10), we stress the fact that all the terms of this equation arise at the same order in
the asymptotic expansion for the appropriately scaled fields (see details in appendix A).
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Dynamo saturation down to vanishing viscosity 977

The incompressibility constraint yields ∇x · b = 0 and ∇X · B = 0. These induction
equations are supplemented by an equation governing the evolution of the small-scale
velocity field:

∂tv + R[(ex + ey) · ∇x]v +
R
Ro
(ex + ey)× v

=−∇xp+ Pm∇2
xv + (B · ∇x)b+F, (2.11)

together with the incompressibility constraint ∇x · v = 0. An important outcome of
this approach is that the nonlinearity (v · ∇)v of the Navier–Stokes equation (2.3) is
subdominant and does not appear in (2.11). The set of (2.9)–(2.11) is a closed set of
equations from which one can compute the dynamo branches of the system.

2.3. Solution for the small-scale fields
The first step of the dynamo computation consists in assuming the existence of a large-
scale field B. Because ∇X ·B= 0, this field has no component along z and we write
B = (Bx, By, 0). Substitution into (2.9) and (2.11) leads to a set of linear equations
for the small-scale fields b and v. Neglecting the short transient, we focus on the
t-independent solutions to these equations. To eliminate pressure, one can take the curl
of the Navier–Stokes equation, ∇x× (2.11), which yields:

R[(ex + ey) · ∇x](∇x × v)−
R
Ro
(∂xv + ∂yv)=F+∇x × [(B · ∇)b] + Pm∇2

x(∇x × v),

(2.12)
where we used the identity ∇x×F=F. The solution for the small-scale velocity field
is of the form:

v =

ũeiy

ṽeix

w̃(x)eix
+ w̃(y)eiy

+ c.c., (2.13)

where c.c. denotes the complex conjugate, and the coefficients ũ, ṽ, w̃(x) and w̃(y) will
be determined shortly. They are independent of x, y and t but may depend on Z and T .
Substitution of this form into (2.9) leads to the expression of the small-scale magnetic
field b in terms of v:

b=
i

1+ iR

Byũeiy

Bxṽeix

Bxw̃(x)eix
+Byw̃(y)eiy

+ c.c. (2.14)

We finally insert expressions (2.13) and (2.14) into the vorticity equation (2.12) to
determine ũ, ṽ, w̃(x) and w̃(y):

ũ=
F

2

[
iR(1− Ro−1)+ Pm+

B2
y

(1+ iR)

] , (2.15)

ṽ =
F

2
[

iR(1− Ro−1)+ Pm+
B2

x

(1+ iR)

] , (2.16)
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w̃(x)
=

iF

2
[

iR(1− Ro−1)+ Pm+
B2

x

(1+ iR)

] , (2.17)

w̃(y)
=

−iF

2

[
iR(1− Ro−1)+ Pm+

B2
y

(1+ iR)

] . (2.18)

This completes the determination of the small-scale velocity and magnetic fields in
terms of the large-scale magnetic field B.

2.4. The α-effect and evolution of the large-scale magnetic field
The goal is now to write a closed equation for the evolution of the large-scale
magnetic field B. From the expressions of the small-scale fields v and b, we compute
the mean electromotive force 〈v × b〉 appearing in the large-scale induction equation
(2.10). We obtain:

〈v× b〉 =

αxxBx
αyyBy

0
, (2.19)

where the α-effect coefficients are:

αxx;yy =
−F2

(1+ R2)

( B2
x;y

(1+ R2)
+ Pm

)2

+ R2

(
1− Ro−1

−
B2

x;y

(1+ R2)

)2
 . (2.20)

Dynamo computations are more easily compared to experiments using velocity
scales. We therefore introduce the dimensional root-mean small-scale kinetic energy
per unit mass of fluid V∗ =

√
〈v∗2〉/2. We denote as Rm the magnetic Reynolds

number based on V∗:

Rm=
V∗`
η
=

√
〈v2〉

2
, (2.21)

evaluated for the non-magnetic solution. Setting Bx = By = 0 in expressions (2.15)–
(2.18), we obtain the expression of F in terms of Rm:

F= Rm
√

R2(1− Ro−1)2 + Pm2, (2.22)

which, after substitution into (2.20), leads to:

αxx;yy =−
Rm2

1+ R2
×

(Ro−1
− 1)2 +

1
Re2(

B2
x;y

R(1+ R2)
+

1
Re

)2

+

(
Ro−1
− 1+

B2
x;y

1+ R2

)2 , (2.23)

where we have introduced the sweeping Reynolds number Re= U`/ν.
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Dynamo saturation down to vanishing viscosity 979

The limit of vanishing sweeping flow and global rotation is obtained by taking
(R, Re)→ (0, 0) with R= PmRe and fixed Ro. In this limit, we recover the standard
expression of the viscously quenched α-effect:

αxx;yy→
−Rm2(

1+
B2

x;y

Pm

)2 , (2.24)

which leads to the viscous regime of dynamo saturation (Gilbert & Sulem 1989). The
present study focuses on the opposite limit: in the following we show that large-scale
sweeping flow and global rotation respectively lead to the inertial and strong-field
scaling regimes of dynamo saturation.

2.5. Neglecting viscous effects
One can readily learn much about the saturation of the dynamo instability by studying
the nonlinear α-effect coefficients (2.23). Of particular interest is the regime where
viscous effects can be neglected. This amounts to neglecting the terms involving the
Reynolds number in (2.23). At the numerator and in the B-independent terms of the
denominator, the condition to neglect such terms is:

1
Re
� |Ro−1

− 1|. (2.25)

Without global rotation, the condition simply becomes Re�1 and Re�R−1. However,
for rapid global rotation |Ro| � 1 the criterion becomes:

ν

`2ω
� 1. (2.26)

In other words, these viscous contributions can be neglected provided the Ekman
number is low enough. A closer look at the quadratic term in B at the denominator
of (2.23) gives an additional criterion to neglect viscosity in the quenching of the
α-effect: in the limit of rapid rotation, the viscous contribution to this term can be
neglected provided:

ν

`2ω
� R. (2.27)

Here the Ekman number must be small compared to the magnetic Reynolds number
associated with the large-scale flow. To summarize, provided the Ekman number is
low enough, viscosity can be neglected in the expression (2.23) of the nonlinear α-
effect, and the dynamo saturation will not involve viscosity. The importance of a low
Ekman number was recently highlighted by Dormy (2016) (see also Dormy, Oruba
& Petitdemange 2018): he suggests that an efficient strategy to achieve strong-field
dynamo saturation in DNS is to reduce the Ekman number even more rapidly than
the magnetic Prandtl number Pm= ν/η (see the discussion section). In the following
we assume that these criteria are met, and we neglect the viscous contributions to the
nonlinear α-effect. Removing the terms involving the Reynolds number leads to the
simpler form:

αxx;yy =
−Rm2

B4
x;y

R2(Ro−1 − 1)2
+ 2

B2
x;y

Ro−1 − 1
+ 1+ R2

. (2.28)

We now study the magnetic field arising through this nonlinear α-effect.
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980 K. Seshasayanan and B. Gallet

3. Linear instability and vicinity of the dynamo threshold
The x and y components of the large-scale induction equation (2.10) are:

∂TBx =−ε
−1∂Z(αyyBy)+ ∂ZZBx, (3.1)

∂TBy = ε
−1∂Z(αxxBx)+ ∂ZZBy, (3.2)

where the inviscid α-effect coefficients are given by (2.28). The fields and coefficients
appearing in these two equations depend on Z and T only. To alleviate the algebra, we
therefore unambiguously switch back to the standard unscaled variables z and t, using
∂T = ε

−2∂t and ∂Z = ε
−1∂z. In terms of these unscaled variables, the fields Bx(z, t) and

By(z, t) obey the following set of equations:

∂tBx =−∂z(αyyBy)+ ∂zzBx, (3.3)
∂tBy = ∂z(αxxBx)+ ∂zzBy. (3.4)

The remainder of the analysis is concerned with the solutions to this set of equations,
with particular emphasis on the scaling behaviour of the magnetic energy above the
dynamo threshold.

3.1. Linear instability
Let us first study the linear stability of the system (3.3)–(3.4): we consider
infinitesimal perturbations (Bx,By)� 1 and linearize the equations by substituting the
expression (2.28) of the α-effect coefficients evaluated for Bx =By = 0. This leads to
a linear set of equations with z-independent coefficients:

∂tBx =
Rm2

1+ R2
∂zBy + ∂zzBx, (3.5)

∂tBy =−
Rm2

1+ R2
∂zBx + ∂zzBy, (3.6)

the solution to which can be sought in the form of a single Fourier mode in z. We
therefore introduce the complex variable:

Bx + iBy = A(t) exp
(

i
2π`

λ
z
)
, (3.7)

where λ/` is the dimensionless vertical wavelength of the perturbation, λ being the
dimensional one. The dynamo threshold is attained when the set of linear equations
admits non-zero time-independent solutions for A, which leads to the following critical
magnetic Reynolds number Rmc for linear instability:

Rmc

√
λ

`
=

√
2π(1+ R2). (3.8)

As in the standard G. O. Roberts dynamo, the threshold for instability is best
expressed in terms of a critical magnetic Reynolds number based on the harmonic
mean

√
λ` between the small and large scales: Rm

√
λ/`= V∗

√
λ`/η. The large-scale

sweeping flow is detrimental to the linear instability: the threshold (3.8) for linear
instability increases with the magnetic Reynolds number R associated with the
large-scale velocity U . It is interesting to compare this result to those of Tilgner
(2008), who studied the same kinematic dynamo problem but focused on small-scale
modes with λ ∼ `: for such small-scale dynamo action, strong sweeping is also
detrimental to the dynamo effect, but a weak sweeping flow was shown to decrease
the threshold magnetic Reynolds number.
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Dynamo saturation down to vanishing viscosity 981

3.2. Saturation near the dynamo threshold: strong-field scaling regime
In the vicinity of the dynamo threshold, the saturation of the dynamo instability is
governed by the quadratic term in B at the denominator of (2.23). If this term is
positive, the magnitude of the α-effect is reduced as the field grows, leading to a
supercritical bifurcation. By contrast, if this term is negative, the first nonlinearities do
not saturate the instability and we expect a subcritical bifurcation. These arguments
can be made more precise by computing the normal form in the vicinity of the
instability threshold, using standard asymptotic methods. The multiple-scale expansion
is described in appendix B and leads to:

dA
dt
=

4
√

2π3/2

√
1+ R2

(
`

λ

)3/2

(Rm− Rmc)A−
6π2

(1+ R2)(Ro−1 − 1)

(
`

λ

)2

A2Ā, (3.9)

where Ā denotes the complex conjugate of A.
The nature of the bifurcation crucially depends on the sign of Ro−1

− 1:

(i) For Ro−1 < 1, the cubic term in (3.9) does not saturate the instability and
the bifurcation is subcritical. One way to study the dynamo saturation would
be to push this expansion to higher order, hoping that the next nonlinear term
saturates the instability. However, for some parameter values even the fifth-degree
monomial in A does not saturate the instability. In the next section, we therefore
follow another route than perturbative expansion and directly compute the
expression of the steady dynamo branch, which remains valid at finite distance
from threshold.

(ii) For Ro−1 > 1, the cubic nonlinearity saturates the instability, which therefore
becomes a supercritical pitchfork bifurcation.

Seeking stationary solutions to the normal form in the latter case, we obtain the
magnetic energy in the vicinity of the instability threshold:

|A|2 =
2
3

√
2(1+ R2)

π
|Ro−1

− 1|

√
λ

`
(Rm− Rmc). (3.10)

In the large rotation limit |Ro|� 1, this corresponds to the strong-field scaling regime,
where the magnetic energy is proportional to ω and independent of ν:

B∗2`2

ρµ0η2
∼
`ω

U
√

1+ R2

√
λ

`
(Rm− Rmc). (3.11)

We stress the fact that in these relations η can be replaced by V∗`
√
λ/`, using the fact

that Rm' Rmc. For instance, if R� 1, we can rewrite this expression in the simpler
form:

B∗2

ρµ0
∼ V∗λω(Rm− Rmc). (3.12)

This expression corresponds to the scaling law proposed by Pétrélis & Fauve (2001)
for supercritical dynamos saturating through the action of the Coriolis force. As noted
by these authors, the scaling-law (3.12) resembles the strong-field scaling regime in
the sense that the magnetic energy is proportional to the global rotation rate ω and
independent of viscosity. However, because the scaling law is valid close to threshold,
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982 K. Seshasayanan and B. Gallet

a key difference between (3.12) and a strong-field dynamo regime is that the Lorentz
force is much weaker than both the Coriolis term and the body force driving the
fluid (because of the factor Rm− Rmc in (3.12)). By contrast, subcritical bifurcations
do arise in this model when Ro−1 < 1, and when Ro−1 has a large negative value
the resulting dynamo branch is in magnetic-forcing-Coriolis balance, as expected
for a body-forced strong-field dynamo branch. In the next section we compute the
bifurcated dynamo branches at arbitrary distance from threshold, therefore shedding
light on the saturation of these subcritical dynamos. We will see that both the
supercritical and subcritical dynamos achieve MFC balance at large distance from
threshold, provided |Ro| � 1.

4. Dynamo branches at finite distance from threshold

In contrast with most existing analytical nonlinear dynamo models, our approach
does not require the magnetic Reynolds number to be close to threshold. This opens
an analytical avenue to study dynamo saturation at large distance from threshold,
the goal being twofold: first, we will characterize the subcritical dynamo branches
identified in the previous section. Second, we will study the behaviour of the magnetic
energy far away from the dynamo threshold, providing an analytical example of
equipartition between kinetic and magnetic energy in the absence of global rotation,
and an example of the magneto-geostrophic scaling regime of Roberts & Soward
(1972) for rapid rotation.

As a word of caution, we stress the fact that we focus on the saturation of the
large-scale dynamo. The precise regime in which the computation is valid is Rm� 1,
Rm
√
λ/`∼ 1. The flow is then subject to a large-scale dynamo instability only, that

arises through the α-effect (2.28). In particular, this range of parameters rules out
small-scale dynamo action: the latter arises for even faster flows with Rm=O(1) and
is characterized by the growth and saturation of magnetic-field modes at the scale `
of the cellular flow (Vainshtein & Cattaneo 1992; Cattaneo & Hughes 1996; Tilgner
2008; Ponty & Plunian 2011; Cameron & Alexakis 2016; Seshasayanan & Alexakis
2016).

4.1. Bifurcated dynamo branches
We look for steady solutions to (3.3)–(3.4). After one integration in z we obtain:

dBx

dz
=

−Rm2R2By

B4
y

(Ro−1 − 1)2
+ 2R2 B2

y

Ro−1 − 1
+ R2(1+ R2)

, (4.1)

dBy

dz
=

Rm2R2Bx

B4
x

(Ro−1 − 1)2
+ 2R2 B2

x

Ro−1 − 1
+ R2(1+ R2)

. (4.2)

The integration constants have been set to zero. This is a necessary condition if one
integrates the equations over one spatial period in z, demanding that the eigenmode
transforms as B→−B when shifted by half a period in z.

We first focus on the case Ro−1 < 1, the changes to be made when Ro−1 > 1
being discussed after (4.10). Dividing the two equations by

√
1− Ro−1 makes it clear

that the magnetic field and Rossby number only enter the equations through the
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combinations Gx;y=Bx;y/
√

1− Ro−1, which already shows that the saturated magnetic
energy will depend on the Rossby number only through a prefactor 1− Ro−1. Gx(z)
and Gy(z) obey the system of equations:

dGx

dz
=

−Rm2R2Gy

G4
y − 2R2G2

y + R2(1+ R2)
, (4.3)

dGy

dz
=

Rm2R2Gx

G4
x − 2R2G2

x + R2(1+ R2)
. (4.4)

Upon multiplying (4.3) and (4.4) we obtain:

Gx

G4
x − 2R2G2

x + R2(1+ R2)

dGx

dz
−

Gy

G4
y − 2R2G2

y + R2(1+ R2)

dGy

dz
= 0, (4.5)

which we integrate into:

arctan
(

G2
x

R
− R

)
+ arctan

(
G2

y

R
− R

)
= const., (4.6)

and after taking the tangent, using the formula for tan(a + b) and rearranging leads
to

(G2
x +G2

y)

(
1
R
− C
)
= 2R+ C

(
1− R2

−
G2

xG2
y

R2

)
, (4.7)

where C is a z-independent constant. To determine its value, we denote as M the
maximum magnitude attained by Gx (and Gy) over one oscillation in z. Because Gx
and Gy are in quadrature, Gy vanishes when Gx=M. Substituting into (4.7) we obtain
C as a function of M:

C =
M2
− 2R2

R(1+M2)− R3
. (4.8)

From equation (4.7) we extract Gx as a function of Gy:

Gx =±

√
G2

y(C − 1/R)+ 2R+ C(1− R2)

1/R− C + CG2
y/R2

. (4.9)

Substituting this expression into the right-hand side of (4.4) leads to a differential
equation where the variables z and Gy can be separated. We can then integrate this
expression to get z as a function of Gy, with the boundary condition Gy(z = 0) = 0.
The resulting expression gives the spatial structure of the dynamo magnetic field.

If we set z= λ/4`, where λ still denotes the dimensional wavelength along z, then
Gy = M. We therefore obtain Rm2λ/` as a function of M = maxz{Bx}/

√
1− Ro−1,

which is the bifurcation curve we are looking for:

Rm2λ

`
=

8i
√

R4 + R2(M4
+ R2
− 2M2R2

+ R4)M2

R2(M4 − 2M2R2)3/2

×

M2E

i

√
M4 − 2M2R2

R2 + R4
; i

√
R2 + R4

M4 − 2M2R2
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FIGURE 2. (Colour online) Dynamo bifurcation curves at fixed R. (a) Ro−1 < 1. The
dynamo bifurcation is subcritical. For Rm such that two non-zero values of B are solution,
the lower value is unstable while the greater one is stable. (b) Ro−1 > 1. The dynamo
bifurcation is supercritical. Symbols are results from numerical simulations: •, R= 0.5; ∗,
R= 2.0 (see appendix D for details).

+ (R2
−M2)F

i

√
M4 − 2M2R2

R2 + R4
; i

√
R2 + R4

M4 − 2M2R2

, (4.10)

where F and E are the incomplete elliptic integrals of the first and second kinds
in Jacobi form, whose precise definitions are given in appendix C. Expression (4.10)
above is valid when Ro−1< 1. The expression for Ro−1> 1 is obtained by substituting
M2
=−N2 in expression (4.10), with N =maxz{Bx}/

√
|Ro−1 − 1|.

The square root of (4.10) is the reciprocal of the bifurcation curve. From this
expression, we can plot the bifurcation curves maxz{Bx} versus Rm

√
λ/`. Examples

of such curves are shown in figure 2 for both signs of Ro−1
− 1. As expected, the

dynamo is subcritical for Ro−1 < 1 and supercritical for Ro−1 > 1. In both cases the
departure from M = 0 is well captured by the normal form (3.9). The magnetic field
structure is displayed in figure 3: close to onset, both components are sinusoidal in
z, in agreement with the analysis in § 3.1. As we move further away from onset
the magnetic field becomes more and more anharmonic as a consequence of the
nonlinearities. To confirm the theoretical results, we have performed a few direct
numerical simulations of the complete MHD equations (2.3)–(2.4). The details of the
numerical code and parameters used are given in appendix D. After some transient,
these simulations reach a steady state. The symbols in figure 2 indicate the magnitude
of the corresponding magnetic field.

4.2. Scaling behaviour of the magnetic energy
Close to the threshold of a supercritical dynamo bifurcation, the magnetic energy
crucially depends on the magnetic diffusivity: a slight change in magnetic diffusivity
has a strong impact on the distance from the dynamo threshold, and therefore on the
magnetic energy. By contrast, when the dynamo bifurcation is subcritical, or when the
system is far away from threshold, the situation is less clearly established: does the
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FIGURE 3. (Colour online) Saturated dynamo state for R= 0.5 and several values of
Rm, in the case Ro−1 < 1: solid line, Bx/

√
1− Ro−1; dashed line, By/

√
1− Ro−1.

magnetic energy still depend strongly on the magnetic diffusivity? Or does it reach
a regime where magnetic diffusivity is irrelevant, in a similar fashion to kinematic
viscosity in standard hydrodynamic turbulence?

Consider the subcritical dynamo branches in the figure 2(a). The value of maxz{Bx}/√
|Ro−1 − 1| at the beginning of the dynamo branch (the left-most point of each

curve) scales with R. For rapid global rotation and in terms of dimensional quantities,
we obtain:

B∗ 2

ρµ0ηω
∼ R. (4.11)

For R=O(1), this corresponds to an Elsasser number of the order of unity. However,
for arbitrary R, substituting the definition of R leads to:

B∗ 2

ρµ0`Uω
∼ 1. (4.12)

This dimensionless number is a ‘turbulent’ Elsasser number in which the magnetic
diffusivity has been replaced by an effective diffusivity `U based on the sweeping
velocity. For rapid global rotation, this Elsasser number is of the order of unity on the
subcritical dynamo branch. The relation (4.12) corresponds to the ratio of magnetic
to kinetic energy being given by the inverse Rossby number, Ro−1. This scaling law
is called ‘magneto-geostrophic’ in Roberts & Soward (1972). Coming back to the
Navier–Stokes equation (2.3) and its solution (2.15)–(2.18), one can check that for
Ro � 1 the dominant balance is then between the Coriolis term, body force and
Lorentz force: this is the magnetic-forcing-Coriolis balance.
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986 K. Seshasayanan and B. Gallet

In the absence of global rotation, Ro−1
= 0, the scaling relation (4.12) for the

subcritical dynamo branch is replaced by:

B∗ 2

ρµ0U 2
∼ 1, (4.13)

which is the regime of equipartition between magnetic energy and kinetic energy.
To put these scaling laws on firm analytical ground, we focus on the asymptotic

behaviour of the dynamo branches at large distance from threshold. Indeed, our
asymptotic model allows us to reach a regime where the conductivity is large enough
for the large-scale dynamo to be far away from threshold, but small enough to prevent
any small-scale dynamo action: Rm� 1, but Rm

√
λ/`� 1. In this regime, we wish

to show that the magnetic energy behaves as:

max
z
{Bx}/

√
|Ro−1 − 1| ' Γ R, (4.14)

where Γ is a constant. We denote as β the following ratio of the magnetic Reynolds
numbers:

β =
R

Rm
√
λ/`
=

U
V∗
√
λ/`

. (4.15)

The limit of large distance from threshold is taken by considering |M|� 1, R� 1 and
Rm
√
λ/`� 1, keeping the ratios Γ and β constant. We stress the fact that this regime

can only be achieved for very small values of ε, in order to maintain the asymptotic
ordering: for instance, quantities that are O(1) in the expansion can be large, as long
as they remain much smaller than ε−1/2. In this limit and for Ro−1< 1, equation (4.10)
gives:

β =

∣∣∣∣ (Γ 2
− 2)3/4

2
√

2Γ |Γ 2 − 1|

[
iE
(

iΓ
√
Γ 2 − 2;

i

Γ
√
Γ 2 − 2

)
+

i(1− Γ 2)

Γ 2
F
(

iΓ
√
Γ 2 − 2;

i

Γ
√
Γ 2 − 2

)]−1/2
∣∣∣∣∣ . (4.16)

The corresponding expression for β in the case Ro−1 > 1 is obtained by substituting
Γ → iΓ in expression (4.16).

For a given value of the velocity ratio β, the relation above can be inverted to
extract the prefactor Γ of the scaling law (4.14) for the magnetic energy. This proves
that the approach is sound and confirms the ansatz (4.14). In figure 4 we plot the
prefactor Γ as a function of the velocity ratio β for the two signs of Ro−1

− 1. For
Ro−1 > 1, the prefactor Γ differs from zero only for β < 1/

√
2π. This is because

for β > 1/
√

2π the system remains stable to the dynamo instability regardless of the
value of η, see expression (3.8) for the dynamo threshold. The situation for Ro−1 < 1
is different: for β > 1/

√
2π, the system is linearly stable to magnetic perturbations,

but a stable subcritical dynamo branch coexists with the non-dynamo branch B =
0. The basins of attraction of these two stable states are separated by an unstable
dynamo branch, see figure 4. This study therefore highlights the crucial role of large-
scale sweeping flows in hindering the dynamo effect: for strong enough sweeping the
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FIGURE 4. (Colour online) Asymptotic limit of low resistivity: prefactor Γ of the scaling
law (4.14) for the magnetic energy, as a function of the velocity ratio β = U/(V∗

√
λ/`).

For Ro−1> 1 (dashed line), the flow induces a dynamo for β < 1/
√

2π only. For Ro−1< 1
(solid line), the flow induces a dynamo for β < 1/

√
2π, while it is bistable between a

dynamo and a non-dynamo state for β > 1/
√

2π.

system becomes linearly stable to magnetic perturbations, although subcritical dynamo
states exist for Ro−1 < 1.

More than the precise value of this prefactor, it is the scaling behaviour of the
magnetic energy that is of interest to us. We obtain:

B∗
√
ρµ0
∼ U

√
|Ro−1 − 1|, (4.17)

which shows clearly that the magnetic energy is independent of magnetic diffusivity.
In the case where the fluid is not rotating this relation reduces to the equipartition
scaling regime (4.13), while in the limit of rapid global rotation it reduces to the
magneto-geostrophic scaling relation (4.12), characterized by magnetic-forcing-Coriolis
balance.

5. Discussion

We have introduced simple dynamo flows exhibiting the ‘strong-field’ scaling law
for the saturated magnetic energy. Using a combination of global rotation, large-scale
sweeping flow and small-scale forcing, we showed that the magnetic energy is
independent of viscosity when the latter is small enough, and proportional to the
rotation rate for rapid rotation. Of course, because the flow is driven by a body
force and not by thermal convection, we do not reproduce the multiple-branch picture
conjectured by Roberts (Roberts 1978, 1988). In particular, the MAC balance of
a convective strong-field dynamo is replaced here by a magnetic-forcing-Coriolis
balance, which yields the magneto-geostrophic scaling law for the magnetic energy.
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Depending on the relative directions of global rotation and large-scale sweeping flow,
the dynamo transition is either subcritical or supercritical. We are not aware of other
analytical examples of subcritical dynamos: here the large-scale sweeping flow seems
to be the key ingredient for subcriticality.

As opposed to standard weakly nonlinear methods (Nunez et al. 2001; Seshasayanan
et al. 2017), our study is based on scale separation only and is not restricted to
the immediate vicinity of the dynamo threshold. We therefore studied the scaling
behaviour of the magnetic energy at large distances from threshold: when both the
Reynolds number and magnetic Reynolds number are large, the magnetic energy
is independent of both viscosity and magnetic diffusivity. In the absence of global
rotation, the resulting scaling law corresponds to equipartition between kinetic and
magnetic energy. With global rotation, the ratio of kinetic to magnetic energy – the
squared Alfvén number – is proportional to the Rossby number. This corresponds
again to the magneto-geostrophic scaling law (Roberts & Soward 1972), with a
‘turbulent’ Elsasser number of the order of unity.

The following subsections discuss the case of a large-scale zonal flow, the stability
of the analytical dynamo branches, and the criteria to achieve the strong-field regime
in DNS.

5.1. The case of a sweeping zonal flow
The main body of the present study deals with the situation where the global rotation
Ω and the large-scale sweeping flow U are collinear. We focused on this situation
because it leads to a variety of bifurcations, the dynamo being either subcritical
or supercritical. However, a situation of important astrophysical relevance is that
of a large-scale zonal flow, perpendicular to the global rotation vector Ω (Aubert
2005; Gómez-Pérez & Heimpel 2010; Schrinner, Petitdemange & Dormy 2012).
We therefore reproduced the present computations for a situation similar to that
of figure 1, except that the large-scale flow is now perpendicular to Ω: we write
U = U(ex − ey). The analysis is similar to the case developed above and we only
state the main results.

The dimensionless α-effect coefficients are:

αxx =−Rm2 (Ro2
− 1)2

Ro2 + 1
×

1
(1+ R2)(1− Ro)2 + 2B2

x Ro(1− Ro)+B4
x Ro2/R2

, (5.1)

αyy =−Rm2 (Ro2
− 1)2

Ro2 + 1
×

1
(1+ R2)(1+ Ro)2 − 2B2

y Ro(1+ Ro)+B4
y Ro2/R2

. (5.2)

Denoting the critical magnetic Reynolds number as Rm(zonal)
c , we obtain through linear

stability analysis:

Rm(zonal)
c

√
λ

`
=

√
2π(1+ R2)×

√
Ro2 + 1
|Ro2 − 1|

. (5.3)

The base flow differs from the standard G. O. Roberts flow and Rm(zonal)
c now

explicitly depends on the Rossby number. Once again, we can determine the nature
of the dynamo bifurcation using standard weakly nonlinear analysis. A straightforward
computation of the normal form shows that the dynamo bifurcation is always
subcritical in the presence of a large-scale zonal flow.
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5.2. Stability properties and turbulent regime
When analysis is pushed into the low-viscosity regime, a fair question arises as to
whether the corresponding flows are stable. In the present situation, we stress the
fact that there is indeed a region of parameter space where our dynamo solutions
should be stable. First of all, the present flow is not subject to the kinetic α effect
(Frisch, She & Sulem 1987), and its stability properties are therefore independent of
the scale separation λ/`. Instead, the flow goes unstable through a negative-viscosity
mechanism when the small-scale Reynolds number exceeds a threshold of the order
of unity (Sivashinsky & Yakhot 1985). Provided V∗`/ν . 1, the hydrodynamic flow
should therefore remain linearly stable. When the scale separation λ/` is large enough,
this viscous small-scale flow can trigger the dynamo instability discussed above, the
resulting magnetic energy being independent of viscosity at low Ekman number ν/`2ω
and/or large sweeping Reynolds number Re= U`/ν.

Another source of deviations from the computed dynamo branches could be
secondary instabilities from the bifurcated solution. Such instabilities probably arise at
large distance from threshold. However, we checked using a standard pseudo-spectral
solver that the solution to the full MHD equations (2.3)–(2.4) indeed corresponds to
the branch we computed at moderate distance from threshold. The full domain of
stability of our solutions could be investigated through extensive DNS, or possibly
analytically, using the approach of Courvoisier, Hughes & Proctor (2010). Even if
the strong-field dynamo branches of the present study did become unstable in some
region of parameter space, it is very unlikely that viscosity would come back into
play, and the magnetic energy should keep displaying a clear strong-field scaling
regime.

5.3. Criteria to achieve the strong-field regime: low Pm versus low Ekman number
There is currently a debate over the optimal strategy to reach astrophysically relevant
regimes in dynamo DNS. While the natural approach would be to try to reach
low magnetic Prandtl numbers, Dormy (2016) suggested that the Ekman number
should be lowered even more rapidly than Pm. It is interesting to notice that the
criterion to achieve the strong-field regime in the present study is precisely that of a
low Ekman number (see § 2.5). Whether Ekman or Pm is the right parameter in fact
depends very much on the geometry of the forcing: in a previous study (Seshasayanan
et al. 2017), we considered a forcing that is compatible with the Taylor–Proudman
constraint – i.e. a forcing that is invariant along Ω (Gallet 2015) – and showed that
the right criterion to neglect viscosity is a low magnetic Prandtl number, Pm � 1.
The magnetic field then achieves the inertial or turbulent scaling regime: the magnetic
energy is independent of viscosity but also of the global rotation rate. By contrast,
in the present situation the forcing directly shears Ω and is therefore incompatible
with the Taylor–Proudman constraint (Campagne et al. 2016). The right criterion to
neglect viscosity becomes a low Ekman number, and the magnetic energy obeys the
‘strong-field’ scaling regime.

We can summarize the findings of Seshasayanan et al. (2017) and of the present
study as follows: geostrophic base flows lead to the inertial scaling regime, with B2

independent of the rotation rate, whereas base flows that are not in geostrophic
balance can achieve the magneto-geostrophic scaling regime, with much larger
magnetic energy, proportional to the global rotation rate. In spherical geodynamo
simulations, which criterion should be retained to observe a ν-independent scaling
regime – and whether this scaling law involves the global rotation rate – may
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depend on the region of the sphere that contributes most to magnetic-field generation.
Low-Pm might be needed wherever the flow is quasi-two-dimensional (typically
outside the tangent cylinder), whereas low Ekman number may be the right criterion
wherever the flow varies rapidly along the axis of rotation (inside the tangent cylinder,
see Schaeffer et al. (2017)). The strong-field scaling regime would then arise from
dynamo saturation inside the tangent cylinder.
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Appendix A. Derivation of the reduced equations
Expand the magnetic field as:

B= B̂0(x, y, Z, t, T)+ ε1/2B̂1/2(x, y, Z, t, T)+ εB̂1(x, y, Z, t, T)+ · · · , (A 1)

where the quantities with a hat are O(1) and independent of ε. The velocity field is
scaled as:

v = ε1/2v̂1/2(x, y, Z, t, T)+ εv̂1(x, y, Z, t, T)+ · · · (A 2)

and the forcing amplitude as F= ε1/2F̂. The parameters R and Ro are O(1). The time
derivative and gradient operators become:

∂t = ∂t + ε
2∂T, (A 3)

∇=∇x + ε∇X, (A 4)

because we are using fast horizontal variables and a slow vertical one, the Laplacian
operator simplifies to:

∇
2
=∇

2
x + ε

2
∇

2
X. (A 5)

Collecting the terms of order O(1), the induction equation (2.4) yields:

∂tB̂0 + R[(ex + ey) · ∇x]B̂0 =∇
2
xB̂0. (A 6)

This is an unforced advection diffusion equation for B̂0. After a transient on the
short time scale t, B̂0 becomes independent of the small-scale variables x and y, and
therefore of t. Hence we write the solution in the long-time t limit as:

B̂0 =B(Z, T). (A 7)

Collecting the terms of order ε1/2, the induction equation (2.4) yields:

∂tB̂1/2 + R[(ex + ey) · ∇x]B̂1/2 −∇
2
xB̂1/2 = (B(Z, T) · ∇x)v̂1/2. (A 8)

This is an equation for B̂1/2, with a forcing on the right-hand side. The solution is
the sum of a particular solution, plus a solution to the homogeneous equation. The
latter has exactly the same form as B̂0, because the linear operator is the same in both
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(A 6) and (A 8). We can therefore include the solution to the homogeneous equation
into B(Z, T) and ask for the particular solution to have a vanishing average over x, y
and t:

〈B̂1/2〉 = 0. (A 9)

To obtain the equation governing the evolution of B, we collect terms of order ε2 in
the induction equation (2.4):

∂tB̂2 + ∂TB+ R[(ex + ey) · ∇x]B̂2 =∇x × (v̂1/2 × B̂3/2)+∇X × (v̂1 ×B)
+∇X × (v̂1/2 × B̂1/2)+∇

2
xB̂2 +∇

2
XB, (A 10)

before taking the average over x, y and t:

∂TB=∇X × (〈v̂1〉 ×B)+∇X × 〈v̂1/2 × B̂1/2〉 +∇
2
XB. (A 11)

We wish to show that the first term on the right-hand side vanishes. We expand it as:

∇X × (〈v̂1〉 ×B)= 〈v̂1〉(∇X ·B)− (〈v̂1〉 · ∇X)B+ (B · ∇X)〈v̂1〉 −B(∇X · 〈v̂1〉). (A 12)

The x and y average of the O(ε2) incompressibility constraint yields ∇X · 〈v̂1〉 = 0,
which, together with vertical momentum conservation, leads to 〈v̂1〉 · ez = 0. Hence
B(∇X · 〈v̂1〉)=0 and (〈v̂1〉 ·∇X)B=0. The x and y average of the O(ε) divergence-free
constraint for B yields ∇X ·B=0. Because we do not allow for a pre-existing uniform
background magnetic field in such a dynamo study, this leads to B · ez= 0, and finally
to (B ·∇X)〈v̂1〉= 0. We conclude that ∇X× (〈v̂1〉×B)= 0, and we write the evolution
equation for the large-scale magnetic field as:

∂TB=∇X × 〈v̂1/2 × B̂1/2〉 +∇
2
XB. (A 13)

Finally, we need to include the equation governing the evolution of v̂1/2. Collecting
terms of order ε1/2 in the Navier–Stokes equation (2.3), we obtain:

∂tv̂1/2 + R[(ex + ey) · ∇x]v̂1/2 +
R
Ro
(ex + ey)× v̂1/2

=−∇xp̂+ Pm∇2
xv̂1/2 + (B · ∇x)B̂1/2 + F̂, (A 14)

where we scaled the generalized pressure field as p = ε1/2p̂. To lowest order, the
divergence-free constraint becomes ∇x · B̂1/2 = 0.

In the main body of this study, we use the notations b= ε1/2B̂1/2 and v = ε1/2v̂1/2.
Equations (A 8), (A 13) and (A 14) then reduce to (2.9), (2.10) and (2.11).

Appendix B. Determination of the normal form
We consider the vicinity of the linear instability threshold and consider Rm=Rmc+

δRm1, where δ� 1. The domain is periodic in z with spatial period λ. The magnetic
field is expanded as:

Bx;y =
√
δ(B(0)

x;y(t, T)+ δB(1)
x;y(t, T)+ · · ·), (B 1)
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where we introduced the slow time T = δt. The dimensionless α-effect coefficients are
expanded as:

αxx;yy =−
Rm

1+ R2

(
1+

2B2
x;y

(1+ R2)(1− Ro−1)

)
. (B 2)

To order
√
δ, equations (3.3)–(3.4) lead to:

∂tB(0)
x =

Rm2
c

1+ R2
∂zB(0)

y + ∂zzB(0)
x , (B 3)

∂tB(0)
y =−

Rm2
c

1+ R2
∂zB(0)

x + ∂zzB(0)
y , (B 4)

and the only solution that does not rapidly decay to 0 as t increases is the marginally
stable one:

B(0)
x + iB(0)

y = A(T) exp
(

i
2π`

λ
z
)
. (B 5)

At order δ3/2, we obtain:

∂tB(1)
x − ∂zzB(1)

x −
Rm2

c

1+ R2
∂zB(1)

y =
2RmcRm1

1+ R2
∂zB(0)

y

+
2Rm2

c

(1+ R2)2(1− Ro−1)
∂z[(B(0)

y )
3
] − ∂TB(0)

x , (B 6)

∂tB(1)
y − ∂zzB(1)

y +
Rm2

c

1+ R2
∂zB(1)

x = −
2RmcRm1

1+ R2
∂zB(0)

x

−
2Rm2

c

(1+ R2)2(1− Ro−1)
∂z[(B(0)

x )
3
] − ∂TB(0)

y . (B 7)

Adding i times the second equation to the first one, we obtain:(
∂t − ∂zz +

iRm2
c

1+ R2
∂z

)
{B(1)

x + iB(1)
y } =

(
−∂T −

2iRmcRm1

1+ R2
∂z

)
{B(0)

x + iB(0)
y }

−
2iRm2

c

(1+ R2)2(1− Ro−1)
∂z[(B(0)

x )
3
+ i(B(0)

y )
3
].

(B 8)

The solvability condition is obtained by demanding that the right-hand side have no
terms proportional to exp(i(2π`/λ)z). After substituting B(0)

x =[A(T) exp(i(2π`/λ)z)+
Ā(T) exp(−i(2π`/λ)z)]/2 and B(0)

y = [A(T) exp(i(2π`/λ)z)− Ā(T) exp(−i(2π`/λ)z)]/
(2i) and collecting the terms proportional to exp(i(2π`/λ)z), we obtain the normal
form (3.9).

Appendix C. Definitions of the elliptic integrals
The results of this study are presented using elliptic integrals written in Jacobi form.

The definitions of the incomplete elliptic integrals are:

E(x; k)=
∫ x

0

√
1− k2t2
√

1− t2
dt, (C 1)

F(x; k)=
∫ x

0

dt
√
(1− t2)(1− k2t2)

. (C 2)
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Appendix D. Numerical simulations

With the goal of confirming the analytical solutions presented in figure 2, we have
performed numerical simulations of the full MHD equations (2.3)–(2.4). The code
uses a pseudo-spectral method with standard de-aliasing, the fields being decomposed
on a Fourier basis in all three directions inside a domain (2π`, 2π`, λ). We use a
semi-implicit second-order Runge–Kutta time-stepping scheme with adaptive time step.
After a transient, the simulations settle into a steady state. We extract M=maxz{〈B〉 ·
ex}/

√
|1− Ro−1| in this steady state, and we plot M as a function of Rm

√
λ/` in

figure 2. The dimensionless parameters for the three different sets of runs shown in
figure 2 are:

(i) Case 1: R= 0.5, Ro= 0.05, Re= 0.5, Pm= 1, λ/`= 32π.
(ii) Case 2: R= 2.0, Ro=−0.2, Re= 2.0, Pm= 1, λ/`= 128π.

(iii) Case 3: R= 2.0, Ro= 0.2, Re= 2.0, Pm= 1, λ/`= 128π.
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