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Abstract Let A and B be operators acting on infinite-dimensional complex Banach spaces. We say that
the Weyl spectral identity holds for the tensor product A⊗B if σw(A⊗B) = σw(A) ·σ(B)∪σ(A) ·σw(B),
where σ(·) and σw(·) stand for the spectrum and the Weyl spectrum, respectively. Conditions on A and
B for which the Weyl spectral identity holds are investigated. Especially, it is shown that if A and B are
biquasitriangular (in particular, if the spectra of A and B have empty interior), then the Weyl spectral
identity holds. It is also proved that if A and B are biquasitriangular, then the tensor product A ⊗ B is
biquasitriangular.
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1. Introduction

Given a pair of operators A and B, it is relevant to enquire whether the Weyl spectral
identity (WSI) holds. An example where this condition plays an important role is the
result that says that if A and B are isoloid, satisfy Weyl’s theorem, and the WSI holds,
then the tensor product A⊗B satisfies Weyl’s theorem [20, Theorem 1] (see also [24, Proof
of Theorem 1] and [19, Corollary 4]). The aim of this paper is to investigate the conditions
on A and B for which the WSI holds. The main result (Theorem 5.1) says that if A and
B are biquasitriangular operators (in particular, if the spectra of A and B have empty
interior), then the WSI holds, and this implies that biquasitriangularity is transferred
from the operators to their tensor product A ⊗ B.

2. Notation and terminology

Notation in this area is not standard. Thus, to begin with, we introduce the notation and
terminology that will be used throughout the text. By an operator we mean a bounded
linear transformation of a normed space into itself. Throughout this paper, T will denote
an arbitrary operator acting on a complex infinite-dimensional Banach space X , and
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I will denote the identity operator on X . Let the kernel and range of T be denoted
by N (T ) and R(T ), respectively, let X/R(T )− be the quotient space of X modulo the
closure of R(T ) (which in a Hilbert space is identified with N (T ∗)), let σ(T ) and σP(T )
stand for the spectrum and point spectrum (i.e. the set of all eigenvalues) of T , and let
σAP(T ) = {λ ∈ C : λI − T is not bounded below} be the approximate point spectrum of
T . Recall that σ(T ) is compact and non-empty. Set

σle(T ) = {λ ∈ C : R(λI − T ) is not closed or dim N (λI − T ) = ∞},

σre(T ) = {λ ∈ C : R(λI − T ) is not closed or dim X/R(λI − T ) = ∞},

the left and right essential spectra in a Hilbert space setting, or the upper and lower
semi-Fredholm spectra in a Banach setting; and let

σe(T ) = σle(T ) ∪ σre(T ) = {λ ∈ C : λI − T is not a Fredholm operator}

be the essential spectrum (also called the Fredholm spectrum) of T . Let

σw(T ) = {λ ∈ C : λI − T is not a Fredholm operator of index zero}

be the Weyl spectrum of T . Set

σ0(T ) = σ(T )\σw(T ),

the complement of the Weyl spectrum σw(T ) in the whole spectrum σ(T ). The pair of
sets {σw(T ), σ0(T )} forms a partition of the spectrum σ(T ). Observe that in a Hilbert
space, where T ∗ denotes the adjoint of T , we obtain

σ0(T ) = {λ ∈ σP(T ) : R(λI − T ) is closed and dim N (λI − T ) = dimN (λI − T ∗) < ∞}

(see, for example, [17, § 5.3]: in a Banach space the same result still holds with N (λI−T ∗)
replaced with the quotient space X/R(λI − T )−, the upper bar standing for closure).
Consider the set σPF(T ) of all eigenvalues of T of finite multiplicity,

σPF(T ) = {λ ∈ σP(T ) : dimN (λI − T ) < ∞},

so that σ0(T ) ⊆ σPF(T ), and set

π00(T ) = σiso(T ) ∩ σPF(T ),

where σiso(T ) denotes the set of all isolated points of the spectrum σ(T ). Its comple-
ment σacc(T ) in σ(T ) is the set of all accumulation points of the spectrum: σacc(T ) =
σ(T )\σiso(T ) (these are sometimes also denoted by iso σ(T ) and acc σ(T ), respectively).
One says that an operator T satisfies Weyl’s theorem if

σ0(T ) = π00(T ),

and it is said to satisfy Browder’s theorem if

σ0(T ) ⊆ π00(T ).

https://doi.org/10.1017/S0013091515000267 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000267


Weyl spectral identity and biquasitriangularity 365

Set
π0(T ) = σiso(T ) ∩ σ0(T ).

The set
σb(T ) = σ(T )\π0(T )

is referred to as the Browder spectrum of T , and so {σb(T ), π0(T )} forms another parti-
tion of the spectrum σ(T ). Recall that

σe(T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σ(T )

and
σw(T ) = σb(T ) if and only if T satisfies Browder’s theorem.

These are well-known results (see, for example, [17, Chapter 5]). An operator T is isoloid
if σiso(T ) ⊆ σP(T ) (i.e. if every isolated point of the spectrum is an eigenvalue).

3. Auxiliary results

In this section we explore the relationship among biquasitriangular operators, operators
without isolated points in their spectra and, at the other end, operators whose spectra
have empty interior, which will be needed in what follows. Let σ(T )◦ denote the interior
of the spectrum σ(T ) of T .

An operator T on a complex infinite-dimensional separable Hilbert space is quasi-
triangular if there is a sequence {Pn} of finite-rank projections that converges strongly
to the identity operator I and {(I − Pn)TPn} converges uniformly to the null opera-
tor [10, § 2]. If both T and T ∗ are quasitriangular, then T is biquasitriangular (BQT ).
Biquasitriangular operators are equivalently described as

T is BQT if and only if σle(T ) = σre(T ) = σe(T ) = σw(T )

(see [2, Theorem 5.4], [3, Theorem 2.1] and also [21, p. 37]), which means that [18, § 4]

T is BQT if and only if σe(T ) has no holes and no pseudo-holes

(see Lemma 3.1 (e)). Thus, we take the above equivalent statement as the definition of a
BQT operator on a Banach space. By the above characterization, if there is an operator
on a complex infinite-dimensional separable Hilbert space without a non-trivial invariant
subspace, then it must be biquasitriangular [21, p. 47]. Indeed, since σ(T )\σe(T ) ⊆
σPF(T )∪σPF(T ∗)∗, σle(T )\σre(T ) ⊆ σP(T )\σPF(T ), σre(T )\σle(T ) ⊆ σP(T ∗)∗\σPF(T ∗)∗

(see, for example, [17, Theorem 5.16 and Corollary 5.18]), and recalling that σle(T ) ∪
σre(T ) = σe(T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σ(T ), we obtain

σle(T ) = σre(T ) = σe(T ) = σw(T ) = σb(T ) = σ(T )

whenever σP(T ) = σP(T ∗) = ∅. In particular,

σP(T ) = σP(T ∗) = ∅ implies that T is BQT .
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Equivalently,
σ(T ) = σC(T ) implies that T is BQT ,

where σC(T ) = σ(T )\(σP(T )∪σP(T ∗)∗) stands for the continuous spectrum of T . Recall-
ing that if T has no non-trivial invariant subspace, then σ(T ) = σC(T ), it follows that if
T has no non-trivial invariant subspace, then T is BQT .

Lemma 3.1. Let T be an arbitrary operator.

(a) If σiso(T ) = ∅, then σb(T ) = σ(T ).

(b) If σ0(T ) = ∅, then σw(T ) = σb(T ) = σ(T ).

(c) If σiso(T ) = σ0(T ) = ∅, then T satisfies Weyl’s theorem.

(d) If σ0(T ) = ∅ and σe(T ) has no holes, then σe(T ) = σw(T ) = σb(T ) = σ(T ).

(e) σe(T ) has no holes and no pseudo-holes if and only if T is BQT .

Proof. If σiso(T ) = ∅, then π0(T ) = ∅, and hence (a) σb(T ) = σ(T ). Recall
that σe(T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σ(T ). If σ0(T ) = σ(T )\σw(T ) = ∅, then (b)
σw(T ) = σb(T ) = σ(T ) (which implies that T satisfies Browder’s theorem). If, in addi-
tion, σiso(T ) = ∅, then (c) T satisfies Weyl’s theorem as well (since π00 = ∅ triv-
ially). Since σw(T ) is the union of σe(T ) and its holes (the Schechter theorem: see, for
example, [17, Theorem 5.24]), we get (d) from (b). Consequently, σe(T ) has no holes
(which means that σe(T ) = σw(T )) and the pseudo-holes σ+∞(T ) = σle(T )\σre(T ) and
σ−∞(T ) = σre(T )\σle(T ) (see, for example, [17, Theorem 5.16]) of σe(T ) are empty (so
that σle(T ) = σre(T ) = σe(T )) if and only if σle(T ) = σre(T ) = σe(T ) = σw(T ), which
means that T is BQT . �

Lemma 3.2. Suppose that σ(T )◦ = ∅. Then

(a) σle(T ) = σre(T ) = σe(T ) = σw(T ) = σb(T ) (i.e. T is BQT and satisfies Browder’s
theorem),

(b) σle(T ) = σre(T ) = σe(T ) = σw(T ) = σb(T ) = σ(T ) if and only if σ0(T ) = ∅.

Proof. Recall that σ0(T ) = τ0(T ) ∪ π0(T ), where τ0(T ) = σ0(T )\π0(T ) is an open
set in C (see [17, Corollary 5.20]). Suppose that σ(T )◦ = ∅. Then σ0(T ) = π0(T ), which
is equivalent to saying that σw(T ) = σb(T ) (i.e. T satisfies Browder’s theorem: see, for
example, [17, Corollary 5.41]). Moreover, since the holes of σe(T ) are open sets, the
Schechter theorem (see, for example, [17, Theorem 5.24]) ensures that σe(T ) = σw(T ).
Furthermore, the pseudo-holes of σe(T ) are also open sets, so that σle(T ) = σre(T ) =
σe(T ) (see, for example, [17, Theorem 5.16]). This concludes the proof of (a). From (a),
σ0(T ) = ∅ (i.e. σw(T ) = σ(T )) if and only if σle(T ) = σre(T ) = σe(T ) = σw(T ) =
σb(T ) = σ(T ) (since σw(T ) ⊆ σb(T ) ⊆ σ(T )), and so we get (b). �
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Remark 3.3.

(a) Let T act on X . Recall that

σe(T ) = σle(T ) ∪ σre(T ) = (σle(T ) ∩ σre(T )) ∪ σ+∞(T ) ∪ σ−∞(T );

that σle(T ), σre(T ), σe(T ), σw(T ) and σb(T ) are subsets of σ(T ) that are all closed
in C; and also that the pseudo-holes of σe(T ), namely, σ+∞(T ) = σle(T )\σre(T )
and σ−∞(T ) = σre(T )\σle(T ), which are holes of σre(T ) and σle(T ), are open
in C. Therefore, it can be verified (see [17, Theorem 5.16, Corollary 5.18,
Remarks 5.15 (a), 5.27 (a) and 5.40 (a)]) that assertions (i)–(iii) below are pairwise
equivalent.

(i) dimX = ∞.

(ii) One of the sets σle(T ), σre(T ), σe(T ), σw(T ) or σb(T ) is not empty.

(iii) All the sets σle(T ), σre(T ), σe(T ), σw(T ) and σb(T ) are not empty.

(b) Thus, the sets in Lemma 3.2 (a) are non-empty. If σiso(T ) = σ(T ), then #σ(T ) < ∞
(# means cardinality), and so σ(T )◦ = ∅, implying the assumption of Lemma 3.2.

(c) The result in Lemma 3.2 (b) also holds if T is BQT . That is, if T is BQT , then
σle(T ) = σre(T ) = σe(T ) = σw(T ) = σb(T ) = σ(T ) if and only if σ0(T ) = ∅.

(d) The converse of Lemma 3.2 (a) fails: σle(T ) = σre(T ) = σe(T ) = σw(T ) = σb(T )
does not imply σ(T )◦ = ∅. Example 6.H (Part 2) of [16] exhibited a Hilbert space
operator such that σ(T ) = σC(T ) = D, the closed unit disc, and so σP(T ) =
σP(T ∗) = ∅, which implies that σle(T ) = σre(T ) = σe(T ) = σw(T ) = σb(T ) =
σ(T ).

4. Weyl spectral identity

By a tensor product space X ⊗ Y of (complex infinite-dimensional) Banach spaces X and
Y, we mean the completion endowed with a reasonable uniform cross norm [22, § 6.1]
of the algebraic tensor product of X and Y [5, pp. 22–25], [25, § 3.4]. Let the (bounded
linear) operator A⊗B on X ⊗Y denote the tensor product of (bounded linear) operators
A on X and B on Y. (A and B will always stand for operators on Banach spaces.) As
far as tensor product properties used in this paper are concerned, there will be no fuss
in considering tensor products either in a Banach or in a Hilbert space setting [15, § 2].
For instance, that the spectrum of a tensor product coincides with the product of the
spectra of the factors

σ(A ⊗ B) = σ(A) · σ(B)

was proved in a Hilbert space setting [4, § 1], but it is well known (see [23, Theorem 2.1],
[11, Theorem 4.13] and [9, Theorem 3.2]) that this has a natural extension to a Banach
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space setting (reasonably uniformly cross normed). For the essential and Browder spectra
it was proved in [12, Theorem 4.2 (a) and (c)] that

σe(A ⊗ B) = σe(A) · σ(B) ∪ σ(A) · σe(B),

σb(A ⊗ B) = σb(A) · σ(B) ∪ σ(A) · σb(B),

while for the Weyl spectrum it was also proved in [12, Theorem 4.2 (f)] that

σw(A ⊗ B) ⊆ σw(A) · σ(B) ∪ σ(A) · σw(B).

Until quite recently it remained an open question as to whether the above inclusion might
be an identity. This question was solved by using the counterexample from [14, § 3] (which
exhibits a pair of operators that satisfy Weyl’s theorem but whose tensor product does
not satisfy Browder’s theorem) together with a result from [19, Corollary 6] (which says
that Browder’s theorem is transferred from a pair of operators to their tensor product
if and only if the above inclusion is an identity). This ensures the existence of pairs of
operators for which the above inclusion is proper. If a pair of operators {A, B} is such
that

σw(A ⊗ B) = σw(A) · σ(B) ∪ σ(A) · σw(B),

then we say that the Weyl spectral identity (WSI) holds for A ⊗ B.
It is important to enquire whether the WSI holds. An example where this condition

plays a crucial role is the result that says that if A and B are isoloid, satisfy Weyl’s
theorem, and the WSI holds, then A ⊗ B satisfies Weyl’s theorem [20, Theorem 1] (also
see [24, Proof of Theorem 1] and [19, Corollary 4]).

In the next sections we investigate conditions on A and B for which the WSI holds.
We begin with a collection of intermediate results, exhibiting conditions that imply the
WSI or are implied by it, which are closely linked with Browder’s theorem.

Lemma 4.1. Let A and B be operators acting on infinite-dimensional spaces.

(a) If σw(A ⊗ B) = σb(A ⊗ B), then the WSI holds (i.e. if A ⊗ B satisfies Browder’s
theorem, then the WSI holds).

(b) In particular, if σ0(A⊗B) = ∅, then the WSI holds with σw(A⊗B) = σb(A⊗B) =
σ(A ⊗ B).

(c) If σe(A)\{0} = σw(A)\{0} and σe(B)\{0} = σw(B)\{0}, then the WSI holds with
σe(A ⊗ B) = σw(A ⊗ B).

(d) If σw(A) = σw(B) = {0}, then the WSI holds with σ0(A ⊗ B) = σ0(A) · σ0(B).

(e) If σw(A) = σ(A) or σw(B) = σ(B), and if the WSI holds, then σw(A⊗B) = σb(A⊗
B) = σ(A ⊗ B) and σ0(A ⊗ B) = σ0(A) · σ0(B) = ∅.

(f) If σw(A) = σb(A), σw(B) = σb(B) and the WSI holds, then σw(A⊗B) = σb(A⊗B)
(i.e. if A and B satisfy Browder’s theorem, and if the WSI holds, then the tensor
product A ⊗ B satisfies Browder’s theorem).
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Proof. (a) Since σw(T ) ⊆ σb(T ), if σw(A ⊗ B) = σb(A ⊗ B), we have

σw(A ⊗ B) ⊆ σw(A) · σ(B) ∪ σ(A) · σw(B)

⊆ σb(A) · σ(B) ∪ σ(A) · σb(B) = σb(A ⊗ B) = σw(A ⊗ B)

(see [12, Theorem 4.2 (a) and (f)]).

(b) Since σw(T ) ⊆ σb(T ) ⊆ σ(T ), if σ0(A ⊗ B) = ∅, or equivalently, if σw(A ⊗ B) =
σ(A ⊗ B), then σw(A ⊗ B) = σb(A ⊗ B), and we get back to item (a).

(c) Suppose that σe(A)\{0} = σw(A)\{0} and σe(B)\{0} = σw(B)\{0}, and recall that
σe(T ) ⊆ σw(T ). Therefore, since σw(A ⊗ B) ⊆ σw(A) · σ(B) ∪ σ(A) · σw(B) and σe(A ⊗
B) = σe(A) · σ(B) ∪ σ(A) · σe(B) [12, Theorem 4.2 (c) and (f)], we obtain

σw(A ⊗ B)\{0} ⊆ (σw(A) · σ(B))
∖
{0} ∪ (σ(A) · σw(B))

∖
{0}

= σw(A)\{0} · σ(B)\{0} ∪ σ(A)\{0} · σw(B)\{0}
= σe(A)\{0} · σ(B)\{0} ∪ σ(A)\{0} · σe(B)\{0}
= (σe(A) · σ(B))

∖
{0} ∪ (σ(A) · σe(B))

∖
{0}

= σe(A ⊗ B)\{0} ⊆ σw(A ⊗ B)\{0},

and so

σw(A ⊗ B)\{0} = σw(A)\{0} · σ(B)\{0} ∪ σ(A)\{0} · σw(B)\{0},

which in turn implies that the WSI holds, since 0 ∈ σ(A) ∪ σ(B) if and only if
0 ∈ σw(A ⊗ B), because 0 �∈ σ0(A ⊗ B) [19, Proposition 5 (a)].

(d) Recall that the Weyl spectrum is non-empty on infinite-dimensional spaces. Since
σw(A ⊗ B) ⊆ σw(A) · σ(B) ∪ σ(A) · σw(B), it follows that if σw(A) = σw(B) = {0},
then σw(A ⊗ B) = {0} (because 0 �∈ σ0(A ⊗ B)), and so the WSI holds. Moreover, since
σ(A ⊗ B) = σ(A) · σ(B) and σw(A ⊗ B) = σw(A) = σw(B) = {0}, it follows that
σ(A ⊗ B)\σw(A ⊗ B) = σ(A)\σw(A) · σ(B)\σw(B).

(e) If σw(A) = σ(A) (equivalently, if σ0(A) = ∅) and if the WSI holds, then

σw(A ⊗ B) = σw(A) · σ(B) ∪ σ(A) · σw(B) = σ(A) · σ(B) ∪ σw(A) · σw(B)

= σ(A) · σ(B)

= σ(A ⊗ B),

and hence σ0(A ⊗ B) = ∅, which leads to the claimed identities. Clearly, the assumption
σw(A) = σ(A) can be replaced with σw(B) = σ(B).

(f) If σw(A) = σb(A) and σw(B) = σb(B), and if the WSI holds, then

σw(A ⊗ B) = σw(A) · σ(B) ∪ σ(A) · σw(B) = σb(A) · σ(B) ∪ σ(A) · σb(B) = σb(A ⊗ B).

That is, if A and B satisfy Browder’s theorem, and if the WSI holds, then A⊗B satisfies
Browder’s theorem. �
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Remark 4.2. Lemma 4.1 (f) provides a way to look for operators for which the WSI
does not hold:

if A and B satisfy Browder’s theorem, and if A⊗B does not satisfy Browder’s
theorem, then the WSI does not hold.

The results in Lemma 4.1 (a) and Lemma 4.1 (f) were originally presented in [19, Propo-
sitions 6 (a) and 7 (a)], leading to the following equivalences (see [19, Corollary 6]).

(a) A and B satisfy Browder’s theorem
=⇒ {A ⊗ B satisfies Browder’s theorem ⇐⇒ the WSI holds}.

Equivalently,

(b) {A and B satisfy Browder’s theorem =⇒ A ⊗ B satisfies Browder’s theorem}
⇐⇒ the WSI holds.

Moreover, the following implication was shown in [19, Proposition 5].

(c) If the WSI holds, then σ0(A ⊗ B) ⊆ σ0(A) · σ0(B),

and the inclusion may be proper even if the WSI holds, with A, B and A⊗B being isoloid
operators satisfying Weyl’s theorem (see [19, Remark 2]). Lemma 4.1 (e) is a particular
case of (c) giving another way to verify whether the WSI does not hold:

if σ0(A) = ∅ and if σ0(A ⊗ B) �= ∅ for some B, then the WSI does not hold.

5. Biquasitriangular

The class of all biquasitriangular operators is quite a large class. For instance, let N ,
K, Alg, N il and QN il denote the classes of normal, compact, algebraic, nilpotent and
quasinilpotent operators, respectively. Let N + K be the class of all sums of normal plus
compact, which trivially includes N and K individually. These classes are included in
the class of biquasitriangular operators, and are related as follows (see, for example, [21,
pp. 37–40, 48]), where the upper bar stands for closure:

N + K ⊂ BQT , N il ⊂ Alg ⊂ Alg− = BQT , N il ⊂ QN il ⊂ N il− ⊂ BQT .

Theorem 5.1. Let A and B be operators acting on infinite-dimensional spaces.

(a) If A and B are BQT , then the WSI holds.

(b) If A and B are BQT , then the tensor product A ⊗ B is BQT as well.

Proof. (a) If A and B are BQT , then σe(A) = σw(A) and σe(B) = σw(B), so that
σe(A)\{0} = σw(A)\{0} and σe(B)\{0} = σw(B)\{0}, and therefore Lemma 4.1 (c)
ensures that the WSI holds.
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(b) Suppose A and B are BQT . This means that

σle(A) = σre(A) = σe(A) = σw(A) and σle(B) = σre(B) = σe(B) = σw(B).

Item (a) says that the WSI holds (the spectral identity holds for the Weyl spectrum).
Since the spectral identity always holds for the essential spectrum (and since A and B

are BQT , which implies that σe(A) = σw(B) and σe(A) = σw(B)), we obtain

σe(A ⊗ B) = σw(A ⊗ B).

Claim 5.2. If T is BQT , then σAP(T ) = σ(T ).

Proof. Recall that, for any operator T (see, for example, [17, p. 148]),

σAP(T ) = σle(T ) ∪ σPF(T ).

Therefore, if T is BQT , then

σAP(T ) = σw(T ) ∪ σPF(T ).

However, since σ(T )\σw(T ) = σ0(T ) ⊆ σPF(T ), it follows that

σ(T ) = σw(T ) ∪ σ0(T ) ⊆ σw(T ) ∪ σPF(T ) = σAP(T ) ⊆ σ(T ),

which concludes the proof of Claim 5.2. �

Now recall from [13, Theorem 4.4 (a) and (b)] that σAP(A ⊗ B) = σAP(A) · σAP(B)
and

σle(A ⊗ B) = σle(A) · σAP(B) ∪ σAP(A) · σle(B).

Thus, if A and B are BQT , then Claim 5.2 ensures that

σle(A ⊗ B) = σe(A) · σ(B) ∪ σ(A) · σe(B) = σe(A ⊗ B).

Dually, the above identity implies that if A and B are BQT , then

σre(A ⊗ B) = σe(A ⊗ B).

(The duality holds in any appropriate Banach space setting, and has a nice proof in a
Hilbert space setting. Indeed, since σe(T ) = σe(T ∗)∗, σre(T ) = σle(T ∗)∗, T is BQT
if and only if T ∗ is BQT and (A ⊗ B)∗ = A∗ ⊗ B∗; it follows that σre(A ⊗ B) =
σle((A ⊗ B)∗)∗ = σle((A∗ ⊗ B∗))∗ = σe((A∗ ⊗ B∗))∗ = σe((A ⊗ B)∗)∗ = σe(A ⊗ B).)
The outcome, then, is that

σle(A ⊗ B) = σre(A ⊗ B) = σe(A ⊗ B) = σw(A ⊗ B),

which means that A ⊗ B is BQT . �
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A note on the approximate WSI (a-WSI). The notion of the a-WSI is an extension of
the WSI. Take the set

σaw(T ) = {λ ∈ σAP (T ) : either λ ∈ σle(T ) or λI − T has positive index},

which we refer to as the approximate Weyl spectrum of an operator T . We say that
the a-WSI holds for a tensor product A ⊗ B if the original WSI holds with spectra
replaced with approximate point spectra and Weyl spectra replaced with approximate
Weyl spectra. In other words, the a-WSI holds for A ⊗ B if

σaw(A ⊗ B) = σaw(A) · σAP(B) ∪ σAP(A) · σaw(B).

(See [7, Theorem 1] for the approximate version of Remark 4.2 (a).) Now observe that

T ∈ BQT implies σAP(T ) = σ(T ) and σaw(T ) = σw(T ).

(Reason: Claim 5.2 in the proof of Theorem 5.1 ensures that σAP(T ) = σ(T ); moreover,
σle(T ) = σw(T ), and λI − T has index zero for λ ∈ σ0(T ) = σ(T )\σw(T ).) Hence, for
BQT operators, the a-WSI holds if and only if the WSI holds, and, in this case, the
results in Remark 4.2 (a) and those in [7, Theorem 1] are equivalent.

Corollary 5.3. Let A and B be operators acting on infinite-dimensional spaces.

(a) If σ(A)◦ = σ(B)◦ = ∅, then the WSI holds, and A, B and A ⊗ B are BQT and
satisfy Browder’s theorem.

(b) If σ(A)◦ = σiso(A) = ∅ and σ(B)◦ = σiso(B) = ∅, then (in addition) A, B and
A ⊗ B satisfy Weyl’s theorem with

σ0(A) = σ0(B) = σ0(A ⊗ B) = σiso(A ⊗ B) = ∅.

Proof. (a) If σ(A)◦ = σ(B)◦ = ∅, then A and B are BQT and satisfy Browder’s
theorem by Lemma 3.2 (a). Thus, Theorem 5.1 (a) ensures that the WSI holds, and
Theorem 5.1 (b) ensures that A ⊗ B is BQT . Since A and B satisfy Browder’s theorem
and the WSI holds, it follows that A ⊗ B satisfies Browder’s theorem by Lemma 4.1 (f).

(b) Recall that σ0(T ) ⊆ τ0(T ) ∪ σiso(T ), where τ0(T ) = σ0(T )\π0(T ) ⊆ σ(T ) is an
open subset of C (see [17, Corollary 5.20]). Hence,

σ(T )◦ = σiso(T ) = ∅ implies σ0(T ) = ∅,

and so σ(T )◦ = σiso(T ) = ∅ implies σiso(T ) = σ0(T ) = ∅, which in turn implies that
T satisfies Weyl’s theorem by Lemma 3.1 (c). Therefore, if σ(A)◦ = σiso(A) = ∅ and
σ(B)◦ = σiso(B) = ∅, then (i) both A and B satisfy Weyl’s theorem, and (ii) A and B

are isoloid (there are no isolated points in their spectra, and so no isolated point that is
not an eigenvalue). Since (a) ensures that the WSI holds, it follows by [20, Theorem 1]
that A ⊗ B satisfies Weyl’s theorem. Moreover, σiso(A) = σiso(B) = ∅ implies that
σiso(A ⊗ B) = ∅ (see, for example, [19, Proposition 3 (c)]) and, since the WSI holds,
σ0(A ⊗ B) ⊆ σ0(A) · σ0(B) (see Remark 4.2 (c)), so that σ0(A ⊗ B) = ∅. �
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The following are immediate consequences of Corollary 5.3 (a).

Corollary 5.4. Let A and B be operators acting on infinite-dimensional spaces.

(a) #σacc(A) < ∞ and #σacc(B) < ∞ imply that the WSI holds.

In particular,

(b) σ(A) = σiso(A) and σ(B) = σiso(B) imply that the WSI holds.

Remark 5.5. (a) If the WSI holds, then σ0(A ⊗ B) ⊆ σ0(A) · σ0(B), as we saw
in Remark 4.2 (c). Does the reverse inclusion imply that A and B are isoloid when
the WSI holds? In other words, is it true that if the WSI holds, and if σ0(A ⊗ B) =
σ0(A) · σ0(B), then A and B must be isoloid? Corollary 5.3 offers a negative answer to
this question. Indeed, take a pair of compact weighted bilateral shifts A and B on �2,
so that they are quasinilpotent and their spectra coincide with their continuous spectra,
σ(A) = σC(A) = σ(B) = σC(B) = {0}, and hence they are not isoloid. Moreover, σ(A ⊗
B) = σ(A) · σ(B) = {0}. Since A and B act on infinite-dimensional spaces, their Weyl
spectra are not empty, and so σw(A ⊗ B) = σw(A) = σw(B) = {0}, which implies that
σ0(A ⊗ B) = σ0(A) · σ0(B) = ∅. Furthermore, Corollary 5.3 (a) ensures that the WSI
holds.

(b) The preceding question suggests the next one. Is it true that if A and B are isoloid,
then the WSI holds? Again, the very same setup discussed in § 4 offers a negative answer
to this question, too: the pair of operators that satisfy Weyl’s theorem but whose tensor
product does not satisfy Browder’s theorem, given in [14, § 3], are isoloid, and the WSI
does not hold for their tensor product according to [19, Corollary 6] (see Remark 4.2 (b)).
Such a pair of operators exhibited in [14, § 3] is constructed as follows. Let S be the
canonical unilateral shift on X = �2+ and consider the following operators A and B on
the (orthogonal) direct sum X ⊕ X = �2+ ⊕ �2+,

A = (I − SS∗) ⊕ ( 1
2S − I), B = −(I − SS∗) ⊕ ( 1

2S∗ + I),

whose spectra are given by

σ(A) = {0, 1} ∪ ( 1
2D − 1), σ(B) = {0,−1} ∪ ( 1

2D + 1),

where D is the closed unit disc centred at the origin of the complex plane, and take their
tensor product A ⊗ B acting on (X ⊕ X ) ⊗ (X ⊕ X ), so that σ(A ⊗ B) = σ(A) · σ(B) =
({0, 1} ∪ ( 1

2D − 1))·({0,−1} ∪ ( 1
2D + 1)). The operators A and B satisfy Weyl’s theorem,

while their tensor product A ⊗ B does not satisfy Browder’s theorem [14, § 3]. Hence,
according to [19, Corollary 6] (see Remark 4.2 (b)), the WSI does not hold. However,
observe that the isolated points 0 and 1 of σ(A) and −1 and 0 of σ(B), are eigenvalues
of A and B, and so A and B are isoloid.

Remark 5.6. An operator T is said to have the single-valued extension property
(SVEP) at a point μ ∈ C if, for every open neighbourhood Λμ ⊆ C of μ, the only analytic
solution f : Λμ → X to the equation

(λI − T )f(λ) = 0 for every λ ∈ Λμ
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is the null function (f = 0). Clearly, every operator T has the SVEP at every point of
the resolvent set ρ(T ) = C\σ(T ), and at every point in the boundary of σ(T ), and so
at every isolated point of the spectrum σ(T ). An operator T is said to have the SVEP
if it has the SVEP at every μ ∈ σ(T ). A countable spectrum implies the SVEP, and,
if T has no eigenvalues (i.e. if σP(T ) = ∅), then T has the SVEP; dually, if T ∗ has
no eigenvalues (i.e. if σP(T ∗) = ∅), then T ∗ has the SVEP. It can be verified (see, for
example, [1, Theorems 3.16 and 3.17, Corollary 3.19]) that the following result holds
true.

If T and T ∗ have the SVEP at every point in σ0(T ) = σ(T )\σw(T ), then T

is BQT and satisfies Browder’s theorem (i.e. σw(T ) = σb(T )).

In such a case, σb(T ) = σ(T ) if and only if T has no isolated eigenvalues of finite
multiplicity (see Lemma 3.2 (b)). Observe that for a decomposable operator T , both T

and T ∗ have the SVEP [1, Theorem 6.21], and so T is BQT . According to the above
displayed result we obtain the following consequence of Theorem 5.1 and Lemma 4.1 (f).

If A and A∗ have the SVEP on σ0(A), and if B and B∗ have the SVEP
on σ0(B), then the WSI holds, and A, B and A ⊗ B are BQT and satisfy
Browder’s theorem.

In particular, if A, B, A∗ and B∗ have the SVEP, then the WSI holds, and A, B and
A ⊗ B are BQT and satisfy Browder’s theorem (compare with Corollary 5.3 (a)).

Remark 5.7. Let A and B be arbitrary operators and consider the (bounded linear)
transformers LA and RB , the left and right multiplication, defined by LA(X) = AX and
RB(X) = XB for every operator X. Recall that the transformers δA,B (the generalized
derivation) and ΔA,B (the elementary operator) are given by δA,B = LA − RB and
ΔA,B = LARB − I, where I stands for the identity: I(X) = X. The following corollary
of Theorem 5.1 was verified in [6, Corollary 1].

(a) If A and B are BQT , then σw(LARB) = σ(A) · σw(B) ∪ σw(A) · σ(B).

(b) If A and B are BQT , then LARB is BQT .

Note that the identity σw(LARB) = σ(A) · σw(B) ∪ σw(A) · σ(B) is the analogue of
the WSI (which was defined for tensor products), replacing A ⊗ B with LARB . The
above result implies, in particular, that if A is BQT , then LA and RA are BQT . It
was also shown in [6] that if A and B are BQT , then δA,B = LA − RB is BQT , and
σw(δA,B) ⊆ (σ(A) − σw(B)) ∪ (σw(A) − σ(B)). (Also see [8].)
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