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We study forced, rapidly rotating and stably stratified turbulence in an elongated domain
using an asymptotic expansion at simultaneously low Rossby number Ro � 1 and large
domain height compared with the energy injection scale, h = H/�in � 1. The resulting
equations depend on the parameter λ = (hRo)−1 and the Froude number Fr. An extensive
set of direct numerical simulations (DNS) is performed to explore the parameter space
(λ,Fr). We show that a forward energy cascade occurs in one region of this space, and
a split energy cascade outside it. At weak stratification (large Fr), an inverse cascade
is observed for sufficiently large λ. At strong stratification (small Fr) the flow becomes
approximately hydrostatic and an inverse cascade is always observed. For both weak and
strong stratification, we present theoretical arguments supporting the observed energy
cascade phenomenology. Our results shed light on an asymptotic region in the phase
diagram of rotating and stratified turbulence, which is difficult to attain by brute-force
DNS.
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1. Introduction

Rotating and stratified flows abound in the universe, from distant planets and stars to the
Earth’s atmosphere and oceans (Salmon 1998; Pedlosky 2013; Vallis 2017), motivating
a large number of theoretical and experimental studies in the past (Trustrum 1964;
Maxworthy & Browand 1975; Gibson 1991; Davidson 2013). Typically these flows are
turbulent, since they are characterised by large values of the Reynolds number Re, defined
as the ratio of inertial forces to viscous forces. Also, the Péclet number Pe, given by the
advective rate of change of temperature over the diffusive rate of change, is typically large.
In a rotating system a Coriolis force arises, whose magnitude relative to the inertial force
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is measured by the Rossby number Ro = U/Ω�, where U, � are typical flow velocity
and length scales and Ω is the rotation rate. Density stratification and gravity give rise
to buoyancy forces, whose strength relative to inertial forces is measured by the Froude
number Fr = U/N�, where N is the buoyancy frequency. For Ro < ∞ and/or Fr < ∞,
the isotropy of three-dimensional (3-D) turbulence is broken, since the rotation axis and
gravity impose a direction in space. When Ω is large, i.e. in the limit Ro → 0, rotation
suppresses variations of the motion along the axis of rotation and thus makes the flow
quasi-two-dimensional (quasi-2-D), an effect described by the Taylor–Proudman theorem
(Hough 1897; Proudman 1916; Taylor 1917; Greenspan et al. 1968). Similarly, when N is
large, vertical motions are suppressed, and quasi-horizontal layers, so-called ‘pancakes’,
are favoured (Herring & Métais 1989; Waite & Bartello 2004; Brethouwer et al. 2007). A
review of rotating and stratified flows is given in Pouquet et al. (2017).

Turbulent energy transfer strongly depends on the dimension of space. In homogeneous
isotropic 3-D turbulence, energy injected at large scales is transferred, by nonlinear
interactions, to small scales in a direct energy cascade (Frisch 1995). In the 2-D
Navier–Stokes equations, both energy and enstrophy are inviscid invariants and this fact
constrains the energy transfer to be from small to large scales in an inverse energy cascade
(Boffetta & Ecke 2012). Anisotropic turbulence, such as rotating and stratified turbulence
in a finite layer, combines features of the 2-D and 3-D cases. For example, for forced
(non-rotating, uniform-density) turbulence in a thin layer, there is a critical value hc of
the parameter h = H/�in, with layer height H and forcing scale �in. At h < hc the flow
becomes quasi-2-D and an inverse energy cascade forms (Celani, Musacchio & Vincenzi
2010; Xia et al. 2011; Benavides & Alexakis 2017; Musacchio & Boffetta 2017). In this
state, part of the injected energy is transferred to larger scales and another part to smaller
scales, forming a so-called bidirectional or split cascade (Alexakis & Biferale 2018). If the
layer has a finite horizontal extent, in the absence of a large-scale damping mechanism, the
inverse energy transfer leads to the formation of a condensate, where most of the energy
is concentrated at the largest available scale (van Kan & Alexakis 2019; van Kan, Nemoto
& Alexakis 2019; Musacchio & Boffetta 2019), a behaviour that has also been confirmed
experimentally (Xia, Shats & Falkovich 2009). Similar transitions from a forward to an
inverse cascade and to quasi-2-D motion have also been observed in other systems such as
magneto-hydrodynamic turbulence (Alexakis 2011; Seshasayanan, Benavides & Alexakis
2014; Seshasayanan & Alexakis 2016) and helically constrained flows (Sahoo & Biferale
2015; Sahoo, Alexakis & Biferale 2017), among others (see the articles by Alexakis &
Biferale (2018) and Pouquet et al. (2019) for recent reviews).

Forced rotating turbulence in fluids of homogeneous density within a layer of finite
height displays a similar transition when Ro is decreased below a threshold Roc, giving rise
to a split cascade and quasi-2-D flow. The transition to a bidirectional cascade has been
studied systematically by (Smith, Chasnov & Waleffe 1996; Deusebio et al. 2014; Pestana
& Hickel 2019), while the transition to a condensate regime was investigated by (Alexakis
2015; Yokoyama & Takaoka 2017; Seshasayanan & Alexakis 2018). Bidirectional energy
cascades in rotating turbulent flows have also been measured experimentally (Campagne
et al. 2014). Recently, van Kan & Alexakis (2020) provided evidence that in the limit
of simultaneously small Ro and large h = H/�in, the transition to a bidirectional cascade
occurs at a critical value of the parameter λ = (hRo)−1 = λc ≈ 0.03. That study used
direct numerical simulations (DNS) of an asymptotically reduced set of equations derived
from the rotating Navier–Stokes equations to achieve extreme parameter regimes that are
difficult to reach using a brute-force approach. In the present paper, we extend the results
of van Kan & Alexakis (2020) to the case of rotating and stably stratified flow.
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For purely stratified flows, Sozza et al. (2015) provided numerical evidence showing that
there is a threshold height Hc, below which a split energy cascade appears, with Hc ∝ 1/N
for Fr � 1 and H � �in. In the case of combined rotating and stratified turbulence, there
are numerous investigations reporting the observation of a split energy cascade (Smith
& Waleffe 2002; Waite & Bartello 2006; Kurien, Wingate & Taylor 2008; Marino et al.
2013, 2014; Marino, Pouquet & Rosenberg 2015; Rosenberg et al. 2015; Oks et al. 2017;
Thomas & Daniel 2021). For unstable stratification in the presence of rotation, an inverse
cascade has been reported, which leads to the formation of large-scale condensates (Favier,
Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014; Rubio et al. 2014; Guervilly &
Hughes 2017; Julien, Knobloch & Plumley 2018). Despite these numerous studies, little
is known for the phase diagram of rotating stratified turbulence. Such a phase diagram is
particularly hard to obtain since it implies coverage of the 3-D parameter space (h,Ro,Fr).
Furthermore, if rotation and stratification are misaligned by an angle θ , as is the case
for most geophysical applications, a fourth parameter enters the system. It is thus not
surprising that rotating and stratified turbulence is far from understood. For instance, it
is unknown whether there exists a critical surface separating a bidirectional cascade and
a forward cascade in this space. To make progress, it is thus worth looking at particular
limits.

Here, we investigate the aligned case θ = 0 and focus on the asymptotic regime of deep
layers h → ∞ and fast rotation Ro → 0, with hRo = const. ≡ λ−1, and Fr = O(1). We
rely on an asymptotic expansion, similar to that used in Julien, Knobloch & Werne (1998)
and van Kan & Alexakis (2020), which reduces the problem to a 2-D parameter space
(λ,Fr). For Fr → ∞, the problem further simplifies to the purely rotating case studied
in van Kan & Alexakis (2020), for which the transition is critical. In the following, we
explore the (λ,Fr) parameter space by means of an extensive set of DNS.

The remainder of this paper is organised as follows. In § 2, we discuss the theoretical
underpinnings of this study, in § 3 we describe our numerical set-up and in § 4 we present
our numerical results. Finally, in § 5 we discuss our findings and conclude.

2. Theoretical background

2.1. From the Boussinesq system to the reduced equations
The starting point of our investigation is given by the Boussinesq equations in a frame
of reference rotating at a constant rate Ω = Ω ê‖, for a linear background density
profile ρ(x, t) = ρ0 − α(x · ê‖)+ δρ(x, t), with position x, time t, background density
ρ0 = const., stratification strength α > 0, and |ρ − ρ0| � ρ0. Gravity and stratification
are taken to be parallel to the rotation axis. In their dimensional form, these equations read

∂tu + u · ∇u + 2Ω ê‖ × u = −∇p + Nφê‖ + ν∇2u + f , (2.1)

∂tφ + u · ∇φ = −Nu‖ + κ∇2φ, (2.2)

∇ · u = 0, (2.3)
with velocity u, pressure (divided by ρ0 and including centrifugal and hydrostatic
contributions) p, kinematic viscosity ν, forcing f (only acting on momentum), buoyancy
frequency N = √

gα/ρ0 = const., rescaled density perturbation φ(x, t) = Nδρ/α and
diffusivity κ . The domain considered here is the cuboid of dimensions 2πL × 2πL ×
2πH, depicted in figure 1, with periodic boundary conditions. For any vector F , we define
the parallel and perpendicular components as F ‖ = (F · ê‖)ê‖ = F‖ê‖ and F⊥ = F − F ‖.

In the present study, we will explore the regime of simultaneously large h and small
Ro with Fr = O(1). Brute-force simulations at small Ro are costly, since very small time
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Figure 1. The long, rapidly rotating domain with stratification (indicated by the grey to black colour gradient).
The black arrow pointing upwards indicates the rotation axis, the red arrow pointing downwards indicates
gravity.

steps are required to resolve fast inertio-gravity waves. Instead, we exploit an asymptotic
expansion based on the Boussinesq equations, first introduced in Julien et al. (1998), which
allows one to investigate the properties of the transition to a split cascade in an efficient
manner. We consider a stochastic forcing, injecting energy at a constant mean rate into
both perpendicular and parallel motions 〈 f ⊥ · u⊥〉 = 〈 f‖u‖〉 = εin/2, where 〈·〉 denotes
an ensemble average over infinitely many realisations of then noise. The forcing is chosen
to be 2-D (independent of the parallel direction), for simplicity, and filtered in Fourier
space to act only on a ring of perpendicular wavenumbers centred on |k| = kf = 1/�in.
A similar 2-D forcing at intermediate length scales, smaller than the domain and larger
than dissipative scales, has been widely used in previous studies on the transition toward
an inverse cascade (Smith et al. 1996; Celani et al. 2010; Deusebio et al. 2014; van Kan
& Alexakis 2020), and has the attraction of simplicity. In realistic geo- and astrophysical
flows, kinetic energy is typically injected in 3-D motions, for instance of a convective
nature. In general, the transition to an inverse cascade can depend on the choice of forcing.
Recent work in thin-layer turbulence by Poujol, van Kan & Alexakis (2020) suggests
that a 3-D forcing, which includes non-zero parallel wavenumbers, is less efficient at
generating an inverse cascade and delays the onset. Furthermore, some recent results on
2-D turbulence with varying Re indicated that the nature of the transition can depend on
the energy injection mechanism (Linkmann, Hohmann & Eckhardt 2020). Here, however,
we leave investigations on the effect of the forcing dimensionality for future studies and
focus on the aforementioned 2-D forcing.

The forcing imposes a length scale �in, as well as a time scale τin = (�2
in/εin)

1/3,
and thus a velocity scale (εin�in)

1/3. In terms of these scales, the Rossby number is
given by Ro = (τinΩ)

−1. The typical scale of parallel variations is H, rather than �in.
Non-dimensionalising the equations with these scales, we consider the limit h = H/�in =
933 A11-4
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1/ε with 0 < ε � 1 and Ro = O(ε), such that λ = (hRo)−1 = O(1) is independent of ε.
A multiple-scale expansion (Sprague et al. 2006), or a heuristic derivation analogous to
that presented in van Kan & Alexakis (2020), can be used to obtain a set of asymptotically
reduced equations for the parallel components of velocity u‖ and vorticity ω‖ = (∇ × u) ·
ê‖, whose dimensionless form reads

∂tu‖ + u⊥ · ∇⊥u‖ = −2λ∂‖∇−2
⊥ ω‖ − 1

Fr
φ + 1

Re
∇2

⊥u‖ + f‖, (2.4)

∂tω‖ + u⊥ · ∇⊥ω‖ = +2λ∂‖u‖ + 1
Re

∇2
⊥ω‖ + fω, (2.5)

∂tφ + u⊥ · ∇⊥φ = 1
Fr

u‖ + 1
Pe

∇2
⊥φ, (2.6)

where ∂‖ = ê‖ · ∇, ∇⊥ = ∇ − ê‖∂‖, and the non-dimensional parameters Fr =
(εin/�

2
in)

1/3/N, λ = (hRo)−1 = �
5/3
in Ω/(ε

1/3
in H), Re = (εin�

4
in)

1/3/ν, Pe = (εin�
4
in)

1/3/κ

and fω = ê‖ · (∇ × f ). The perpendicular velocity u⊥ is divergence free to leading
order, ∇⊥ · u⊥ = 0, which permits us to write it in terms of a stream function ψ , such
that u⊥ = ê‖ × ∇ψ and ω‖ = ∇2

⊥ψ . These non-dimensional equations are valid in the
rescaled domain 2πΛ× 2πΛ× 2π, with Λ = L/�in. Importantly, in (2.4) and (2.5), all
the information about H,Ω is contained in the single parameter λ.

2.2. Conservation laws
In the inviscid and non-diffusive case (ν = κ = 0), the system conserves the total energy
E = 1

2

∫
(u2 + φ2) d3x. In addition, the potential vorticity

q = 2λ∂zφ − ω‖/Fr + (∂yu‖)(∂xφ)− (∂xu‖)(∂yφ) (2.7)

(in Cartesian coordinates, with the parallel direction being z) is conserved along each
fluid parcel trajectory. Equation (2.7) is a simplified, Boussinesq version of Ertel’s full
potential vorticity (Ertel 1942) (the full form applies to compressible flow). The material
conservation of q implies that Cn = ∫

qn d3x is conserved for all n, where the special
case n = 2 is known as potential enstrophy. In 2-D turbulence, energy and enstrophy are
both quadratic functionals of the stream function, with enstrophy containing higher spatial
derivatives. The simultaneous conservation of the two quantities constrains the energy
cascade to be to larger scales, and the enstrophy to smaller scales. By contrast, C2 is not
directly related to the kinetic or potential energy, and does not imply a straightforward
constraint for cascade directions, except in a special case, which shall be discussed later.

Equations (2.4), (2.5) and (2.6) are closely related to well known models in geophysical
fluid dynamics. Since the leading-order perpendicular velocity is in geostrophic balance,
and only the perpendicular velocity appears in the advection terms, the model resembles
the classical quasi-geostrophic (QG) equations valid in thin layers (Pedlosky 2013). Indeed
(2.4)–(2.6) have been referred to as generalised QG equations (Julien et al. 2006). Variants
of the reduced equations have been applied in a variety of contexts, such as rotating
turbulence (Nazarenko & Schekochihin 2011), rapidly rotating convection (Sprague et al.
2006; Grooms et al. 2010; Julien et al. 2012a,b; Rubio et al. 2014; Maffei et al. 2021), as
well as dynamos driven by rapidly rotating convection (Calkins et al. 2015).
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2.3. Inertio-gravity waves and slow modes
A fundamental property of rotating and stratified flows is that they support inertio-gravity
waves. In the full Boussinesq equations (2.1)–(2.3), the dispersion relation of these waves
reads

σ 2(k) =
4Ω2k2

‖ + N2k2
⊥

k2 , (2.8)

where σ is the wave frequency, Ω is the rotation rate, N is the buoyancy frequency, k
is the wavevector, k‖ is the component of the wavevector along the rotation axis, k⊥ the
component perpendicular to the rotation axis and k2 = k2

‖ + k2
⊥. In the framework of the

reduced equations of motion (2.4)–(2.6), this simplifies, in non-dimensional form, to

σ 2(k) = 4λ2
k2
‖

k2
⊥

+ 1
Fr2 , (2.9)

where σ and the wavenumber components are non-dimensional. At large Ω , (2.8) implies
high wave frequencies, requiring a small time step to be resolved numerically. In the
reduced equations, all parameters are of order one, which makes numerical simulation
more efficient by filtering the fast inertio-gravity waves.

The full set of linear modes of rotating stratified flow has been studied in great detail
(Leith 1980; Bartello 1995; Sukhatme & Smith 2008; Herbert, Pouquet & Marino 2014).
Here we just summarise some relevant results. Formally, linearising (2.4)–(2.6), one
obtains an equation of the form Ż(k) = L(k)Z(k), with Z(k) = (k⊥ψ̂(k), û‖(k), φ̂(k))
with hats denoting Fourier transforms, and a 3 × 3 matrix L. The eigenvalues of
L are +σ(k),−σ(k), 0, with σ(k) > 0 given by (2.9). Thus, in addition to waves
with frequencies ±σ , one also finds linear eigenmodes with zero frequency at every
wavenumber. The corresponding normalised eigenvector is

Z0(k) = 1
σ(k)k⊥

(−ik⊥Fr−1, 0, 2λk‖), (2.10)

which notably has a vanishing û‖ component. These slow modes with zero frequency span
the so-called slow manifold. The normalised eigenvectors of L with eigenvalues ±σ(k)
are

Z±(k) = 1√
2σ(k)k⊥

(2λk‖, ±σ(k)k⊥, −ik⊥Fr−1), (2.11)

which has a non-vanishing û‖ component. We highlight that the wave modes have zero
potential vorticity at the linear level. The slow modes are thus the vortical modes of the
flow.

In order for wave modes to interact efficiently with the slow modes, the inverse wave
frequency of the slowest waves must be comparable to the eddy turnover time scale of
the turbulent 2-D flow τin. In the purely rotating case (Fr → ∞), this argument was
successfully used by van Kan & Alexakis (2020) to predict the dependence of the energy
cascades on λ: forward cascade at λ < λc ≈ 0.03 and inverse cascade at λ > λc. For the
rotating and stratified case, two cases can be anticipated based on (2.9).

2.4. Weak stratification: the passive-scalar limit
At weak stratification (Fr > 1), the system is likely to be close to the purely rotating
case, such that a transition should occur when λ > λc(Fr). While we do not predict
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the dependence of λc(Fr), one expects that λc = (HcRoc)
−1 increases with stratification.

This is because as the weak stratification is increased (while remaining weak), kinetic
and potential energy become more strongly coupled, and more kinetic energy will be
converted to potential energy, which behaves approximately like a passive scalar at weak
stratification. For passive scalars, it is well known that scalar variance (potential energy)
cascades forward (to small scales) (Warhaft 2000; Falkovich, Gawedzki & Vergassola
2001; Celani et al. 2004). Therefore, stratification will counteract the inverse cascade.
Thus it appears reasonable that faster rotation, i.e. higher λ, should be required at weak
stratification for generating an inverse energy flux. A similar effect has been observed
in thin-layer turbulence, where a decrease of the critical height has been observed with
increased stratification (Sozza et al. 2015).

2.5. Strong stratification: the hydrostatic limit
For strong stratification (Fr � 1) and large λ, the dominant balance in (2.4) is given by

2λ∂‖∇−2
⊥ ω‖ = −φ/Fr. (2.12)

Equation (2.12) is a form of hydrostatic balance, which is common in geophysical flows
(Vallis 2017). To see this, one can identify the stream function of the perpendicular flow
as ∇−2

⊥ ω‖ = ψ , which follows from u⊥ = ê‖ × ∇ψ . Comparing the latter relation with
geostrophic balance, between the Coriolis force and perpendicular pressure gradient, one
further deduces that ψ is proportional to the pressure. Hence (2.12) is a balance between
the vertical (parallel) pressure gradient and gravity, i.e. hydrostatic balance.

Note that for λ� Fr−1 the dynamic hydrostatic balance just corresponds to a
two-dimensionalisation of the flow. This is because hydrostatic balance implies small ∂‖ψ
in this limit. However, when Fr is of order one or smaller the flow is not necessarily 2-D.
For small or O(1) values of λ, the dynamic hydrostatic balance limit is expected to hold
when the wave frequency is much larger than typical eddy turn over time, i.e. Fr � 1. We
highlight the fact that the combination λFr ∝ Fr/Ro ∝ Ω/N, which has been identified
as a control parameter in previous studies (Smith & Waleffe 2002; Marino et al. 2015),
appears naturally here in (2.12).

We note that modes in the slow manifold defined in § 2.3 correspond to balanced motion
in the sense that they satisfy (2.12) at the linear level. At the nonlinear level, even if the flow
starts at hydrostatic balance, its nonlinear evolution can disrupt it. However, in the limit of
high wave frequencies one can expect that the inertio-gravity waves will decouple from the
slow manifold, which will therefore evolve independently, always satisfying (2.12). Such
a limit can be formally captured by letting λ→ λ/ε, Fr−1 → Fr−1/ε, u‖ → εu‖, with
ε � 1, while ω‖, φ → ω‖, φ. This is the stratified QG limit (Charney 1971): the potential
vorticity defined in (2.7) simplifies to give

q = −Fr−1[(2λFr)2∂2
‖ + ∇2

⊥]ψ + O(ε) ≡ −Fr−1∇̄2ψ + O(ε), (2.13)

where we identified the rescaled Laplace operator ∇̄2 ≡ (2λFr)2∂2
‖ + ∇2

⊥, which contains
2λFr = Ω�in/(NH) = Bu−1/2, where Bu is the Burger number (Cushman-Roisin &
Beckers 2011). The QG potential vorticity remains conserved along particle trajectories
in the inviscid unforced case, i.e.

(∂t + u⊥ · ∇⊥)q = 0 (+forcing and dissipation). (2.14)

The theory of QG dynamics is commonly discussed in much detail in textbooks on
geophysical fluid dynamics, such as Salmon (1998) and chapter 5 of Vallis (2017).
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A particular advantage of this formulation is the inversion principle: only a single scalar
variable q needs to be advected, which gives ψ by inverting the elliptic operator ∇̄2,
and thus u⊥ by geostrophic balance, φ from hydrostatic balance, and u‖ can be found by
combining these relations in the form of an omega equation (Hoskins, Draghici & Davies
1978; Hoskins, Pedder & Jones 2003). In the QG limit, at leading order

C2 = Fr−2
∫
(∇̄2ψ)2d3x + O(ε) (2.15)

while the total energy becomes, at leading order,

E = 1
2

∫ (∇̄ψ)2 + O(ε2), (2.16)

and it has been well known since the early contributions of Charney (1971), Rhines (1979)
and Salmon (1980) that turbulent QG flow produces an inverse energy cascade as a
result. This has also been confirmed by numerical simulations (Hua & Haidvogel 1986;
McWilliams 1989; Vallgren & Lindborg 2010). Since ψ and φ are directly linked by the
hydrostatic balance, both kinetic and potential energy cascade inversely.

3. Numerical set-up and methodology

In this section, we describe the numerical set-up used in the present study. The partial
differential equations that we solve numerically in a domain 2πΛ× 2πΛ× 2π are given
by (2.4), (2.5) and (2.6) with modified dissipative terms

∂tu‖ + u⊥ · ∇⊥u‖ + 2λ∂‖∇−2
⊥ ω‖ = − φ

Fr
− (−∇2

⊥)
nu‖

Re⊥
−
(−∂2

‖ )
mu‖

Re‖
+ f‖, (3.1)

∂tω‖ + u⊥ · ∇ω‖ − 2λ∂‖u‖ = −(−∇2
⊥)

nω‖
Re⊥

−
(−∂2

‖ )
mω‖

Re‖
+ fω, (3.2)

∂tφ + u⊥ · ∇φ = +u‖
Fr

− (−∇2
⊥)

nφφ

Pe⊥
−
(−∂2

‖ )
mφφ

Pe‖
. (3.3)

Note that there is no large-scale friction term, such that an inverse cascade can develop
unhindered and accumulate energy the scale of the box. Moreover, the density perturbation
field φ is not forced directly in our simulations. As in van Kan & Alexakis (2020), the
parallel dissipation terms, which do not appear in (2.4), (2.5) and (2.6), are added for
numerical reasons, suppressing the formation of exceedingly large parallel wavenumbers.
We choose the hyperviscosity exponents n = m = nφ = mφ = 4 for all simulations.

Equations (3.1)–(3.3) are controlled by seven non-dimensional parameters. In addition to
Λ, λ and Fr, which are defined identically to (2.4)–(2.6), there are two Reynolds numbers
and two Péclet numbers associated with perpendicular and parallel diffusion terms,

Re⊥=ε
1/3
in �

2n−2/3
in
νn

, Re‖ = ε
1/3
in �

2m−2/3
in
μm

,

Pe⊥=ε
1/3
in �

2nφ−2/3
in
κn

, Pe‖ = ε
1/3
in �

2mφ−2/3
in
κmφ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4a–d)

with hyperviscosities νn, νm and hyperdiffusivities κnφ , κmφ .
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Energy cascades in rapidly rotating, stratified turbulence

We solve (3.1)–(3.3) in the triply periodic domain using a pseudospectral code based on
the geophysical high-order suite for turbulence (known as GHOST), including 2/3-aliasing
(see Mininni et al. 2011). A total of 71 runs were performed at a resolution of 5123

withΛ = 32, of which 63 runs at Re⊥ = Re‖ = Pe⊥ = Pe⊥‖ = 9200, for different values
of Fr and λ, and an additional eight runs at Re‖ = Pe‖ = 4600 halved, with Re⊥,Pe⊥
unchanged, to verify that our results do not depend on the parallel dissipation terms
added for numerical reasons. For completeness, one run was also performed at 5122 ×
1024 and Re⊥ = Re‖ = Pe⊥ = Pe⊥‖ = 9200 to verify well-resolvedness, and another at
5122 × 1024 and Re‖ = Pe‖ = 18 400 with Re⊥,Pe⊥ unchanged, verifying that the results
are independent of Re‖,Pe‖.

In order to characterise the energy cascades, we measure several quantities in every run,
which are defined below. The 2-D kinetic energy spectrum is defined as

Ekin(k⊥, k‖) = 1
2

∑
k⊥−1/2≤p⊥<k⊥+1/2

(
|ω̂‖(p⊥, k‖)|2

k2
⊥

+ |û2
‖(p⊥, k‖)|2

)
(3.5)

and the 2-D potential energy spectrum as

Epot(k⊥, k‖) = 1
2

∑
k⊥−1/2≤p⊥<k⊥+1/2

|φ̂(p⊥, k‖)|2, (3.6)

where hats denote Fourier transforms. The one-dimensional (1-D) energy spectrum is
obtained by summing the 2-D spectra over k‖,

Ekin(k⊥) =
∑
k‖

Ekin(k⊥, k‖) ≡ E⊥
kin(k⊥)+ E‖

kin(k⊥), (3.7)

Epot(k⊥) =
∑
k‖

Epot(k⊥, k‖), (3.8)

where E⊥
kin contains all terms involving ω̂‖ and E‖

kin contains all terms involving û‖. In
addition, we define the total energy spectrum Etot = Ekin + Epot.

The 2-D dissipation spectra are defined as

Dkin(k⊥, k‖) =
∑

k⊥−1/2≤p⊥<k⊥+1/2

(νnp2n
⊥ + νmk2m

‖ )

(
|ω̂‖(p⊥, k‖)|2

k2
⊥

+ |û2
‖(p⊥, k‖)|2

)
,

(3.9)

Dpot(k⊥, k‖) =
∑

k⊥−1/2≤p⊥<k⊥+1/2

(κnφp
2nφ
⊥ + κmφk

2mφ
‖ )|φ̂(p⊥, k‖)|2, (3.10)

giving the total dissipation spectrum Dtot = Dkin + Dpot. Finally, the spectral energy fluxes
in the perpendicular direction through a cylinder of radius k⊥ in Fourier space are defined
as

Π⊥
kin(k⊥) = 〈(u⊥)<k⊥ · [(u⊥ · ∇⊥)u⊥]〉, (3.11)

Π
‖
kin(k⊥) = 〈(u‖)<k⊥[(u⊥ · ∇⊥)u‖]〉, (3.12)

Πpot(k⊥) = 〈φ<k⊥[(u⊥ · ∇⊥)φ]〉, (3.13)
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with the total energy flux defined as Πtot ≡ Π⊥
kin +Π

‖
kin +Πpot, where for any field A,

A<k⊥(x) ≡
∑

p
p⊥<k⊥

Â(p) exp(ip · x). (3.14)

Every run is initialised at a random small-energy configuration, and continued until:

(1) an inverse energy flux is observed, with kinetic energy piling up at the large scales;
(2) or a purely forward cascade is observed and the system has reached steady state.

4. Simulation results

4.1. Overview of parameter space
First we provide an overview of the runs. Figure 2(a) shows a regime diagram indicating
for which values of λ and Fr an inverse cascade in kinetic energy was observed.
Two regions can be discerned: a finite region (red diamonds) near the origin in terms
of (λ,Fr−1), where an only forward-cascading state is observed; and a surrounding
region (blue circles) at larger λ (faster rotation/shallower box) and larger Fr−1 (strong
stratification), where an inverse energy cascade arises. The boundary between the two is
tentatively shown by the dashed lines. Figure 2(b) shows the rate energy cascades to the
large scales εinv normalised by the energy injection rate εin as a function of Fr−1 for four
different values of λ. Simulations with εinv > 0.01εin were titled as inverse cascading in
figure 2(a). Note that the transition from one state to the other appears to be sharp, although
further investigations would be required to determine the behaviour close to the onset of
the inverse cascade.

The boundary between the two regions is consistent with our expectations from § 2.
First, for Fr > 1 (weaker stratification), there is a (roughly linear) increase in λc, i.e. the
critical value of (Roh)−1, with Fr−1. While we do not offer a theoretical prediction for
the linear scaling, an identical scaling hc ∝ 1/N has been suggested for strongly stratified
turbulence in a thin layer (Sozza et al. 2015). Second, when Fr is lowered beyond Fr ≈ 1,
the system enters the hydrostatic regime, and a direct energy cascade turns into an inverse
cascade. We note that the QG limit strictly applies for large λ, while the boundary in
figure 2 appears independent of λ and the inverse cascade persist even for small values of
λ. The inverse cascade predicted for the QG limit appears thus to extend beyond its range
of validity. This behaviour is possibly related to the isolation of the slow modes when the
inertio-gravity waves become very fast, which occurs for Fr−1 � 1 independently of the
value of λ, based on (2.9).

4.2. Spectra
In the following, we illustrate three different representative cases highlighted in figure 2:

(i) λ = 0.03 Fr−1 = 0.5 (no inverse cascade);
(ii) λ = 0.07, Fr−1 = 0.5 (weak stratification, inverse cascade);

(iii) λ = 0.045, Fr−1 = 3.5 (strong stratification, inverse cascade).

The results shown below are from the simulations at 5123. The simulation results
at higher resolution and different Reynolds and Péclet numbers showed no qualitative
differences. The 1-D energy spectra are shown in figure 3. For case (i), in the
forward-cascading regime, there is a spectral maximum in both perpendicular and parallel
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Figure 2. (a) Regime diagram showing the direction of the kinetic energy cascade for various values of the
parameters (λ,Fr−1). A tentative boundary between forward and split cascading states is shown by the dashed
line. The labels (i), (ii) and (iii) indicate the three states to be examined in more detail below. (b) Fraction of
injected energy cascading inversely versus Fr−1 at four different values of λ.

kinetic energy at k⊥ ≈ kf /2. A similar phenomenon is reported in van Kan & Alexakis
(2020) for the purely rotating case, where an instability mechanism was suggested as the
cause for this secondary maximum. The potential energy spectrum is peaked at yet larger
scales k⊥ < kf /2. While we do not offer a theoretical explanation for the local spectral
maxima at scales larger than the forcing scale, the similarity with the phenomenology
of the rotating case suggests that a related instability mechanism may be at play. The
potential energy spectrum is comparable to the parallel kinetic energy spectrum, except at
the largest scales, where it is comparable to the perpendicular kinetic energy, and at the
forcing scale, where it is smaller, since potential energy is not directly forced. For case
(ii), where an inverse cascade is present at weak stratification, the perpendicular kinetic
energy spectrum shows a maximum at the largest scale k⊥ = 1, where it dominates the
total energy. The parallel kinetic energy and the potential energy, by contrast, do not show
a maximum at the largest scales. Finally, in case (iii), where an inverse cascade is present
at strong stratification, both the perpendicular kinetic energy spectrum and the potential
energy spectrum shows maximum at k⊥ = 1, with a clear power-law range at k⊥ < kf . The
shape of the potential energy spectrum is strikingly similar to the perpendicular kinetic
energy, only differing by constant factor of around 0.3 over two decades in k⊥. One also
observes a peak at the forcing scale, although the potential energy is not directly forced.
These observations indicate that the density field and the parallel vorticity are non-trivially
related to each other for all scales but the very smallest. As discussed in § 2, this can occur
as a consequence of hydrostatic balance. This will be examined in § 4.5. In case (iii), the
parallel kinetic energy does not show a secondary maximum. We stress that in cases (ii)
and (iii), the results shown are from the transient state where the inverse cascade continues
to develop, by contrast with case (i) where a stationary state is reached.

The 2-D kinetic energy spectra (sum of perpendicular and parallel contributions) are
shown in figure 4. In case (i), the spectral maximum at k⊥ ≈ kf /2 is seen to extend to
k‖ > 0. In cases (ii) and (iii), the spectral maximum at k⊥ = 1 is seen to stem primarily
from contributions at k‖ = 0. The 2-D potential energy spectrum is shown figure 5. For
cases (i) and (ii), there is a maximum at intermediate k⊥, with k‖ = 1. By contrast, for
case (iii) there is a clear build-up of potential energy at k⊥ = 1, and maximum at k‖ = 1
(and some contributions from k‖ = 2). In case (iii), there is only little potential energy
at k‖ = 0, even though the kinetic energy spectrum peaks at k‖ = 0, which is compatible
with hydrostatic balance (2.12).
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Figure 3. Double logarithmic plots of the contributions to the 1-D energy spectra according to (3.7) and (3.8)
for (a) case (i), (b) case (ii), (c) case (iii). The inset in panel (a) applies to all panels. The dashed line shows a
−5/3 power law for reference.
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Figure 4. Filled contour plots of the 2-D kinetic energy spectrum Ekin(k⊥, k‖) defined in (3.5), as a function
of k⊥, k‖ for cases (i) to (iii) (a–c).
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Figure 5. Filled contour plots of 2-D potential energy spectrum Epot(k⊥, k‖) defined in (3.6) versus k⊥, k‖ for
cases (i) to (iii) (a–c).

4.3. Energy fluxes
Figure 6 shows the different components of the energy flux (normalised by the injection
rate) for the three cases. In case (i), the total flux vanishes at k⊥ < kf , while it is positive
at k⊥ > kf . At k⊥ > kf , the flux of perpendicular kinetic energy is close to zero, and
negligible compared with the large forward (positive) fluxes of parallel kinetic energy
and potential energy. At the largest scales, all fluxes vanish, i.e. no energy is transferred
to or from the large scales by nonlinear interactions. For intermediate scales between
k⊥ = kf and k⊥ ≈ 5, there is a wavenumber range over which there is a flux loop leading
to zero net flux: the flux of perpendicular kinetic energy is negative, i.e. inverse, while
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Figure 6. Average energy fluxes (non-dimensionalised by the injection rate ε) for cases (i) (a), (ii) (b) and (iii)
(c). The shaded area around curves shows one standard deviation of fluctuations about the average. In (b), the
inset shows a close-up of the negative-flux range.

the kinetic energy in the parallel components of velocity and the potential energy show a
positive (i.e. forward) flux, with the sum of the three cancelling out. In case (ii), the flux
loop persists at these intermediate scales, but the net flux is slightly negative (inverse),
rather than zero. This inverse flux, which amounts to approximately 3 % of the energy
injection rate, reaches all the way to the largest scales k⊥ = 1, as the inset in figure 6
shows. The parallel kinetic energy and potential energy fluxes are very similar to case (i),
being positive definite everywhere. In case (iii), there is a strong net inverse flux, making
up around 30 % of energy injection rate. Remarkably, while the dominant contribution to
this inverse flux stems from the perpendicular kinetic energy, there is also an inverse flux
of potential energy. In cases (i) and (ii), by contrast, the potential energy flux is positive
definite. The strong stratification in case (iii) breaks the passive-scalar-like evolution of
the potential energy mentioned in § 2, which otherwise constrains the potential energy to
cascade to small scales only. Moreover, the fact that both perpendicular kinetic energy and
potential energy cascade inversely is compatible with the φ and ω‖ fields being linked by
hydrostatic balance, which is shown to be the case in § 4.5.

4.4. Well-resolvedness
For each run, we verify well-resolvedness by inspecting the total dissipation spectrum
Dtot = Dkin + Dpot defined in (3.9), (3.10). For cases (i) to (iii), it is shown in figure 7.
The integral over k⊥, k‖ of Dtot expresses the total dissipation rate. The simulations are
well-resolved if the maximum of the dissipation rate lies in the interior of the wavenumber
domain (as opposed to being found at the boundaries of the wavenumber domain). For
wavenumbers larger than the location of this maximum, the dissipation spectrum drops
exponentially, implying exponential convergence: an increase of the resolution by a factor
of n will decrease the error due to spatial discretisation by a factor of e−bn, for some
positive b. Note that the presence of both vertical and horizontal viscosity/diffusivity is
necessary for exponential convergence to exist. The maximum of Dtot is clearly in the
wavenumber domain in figure 7. This was also the case for all additional simulations at
different Reynolds and Péclet numbers.

The fact that we do not examine higher values of λ, and smaller Fr, in figure 2 is due
to the criterion of well-resolvedness described above. At higher λ, the dissipation spectra
showed significant dissipation at the largest k‖ and the simulations were thus not well
resolved. Therefore, these parameter values were not accessible at the present resolution.
Simulations at higher resolution will be needed to confirm the tentative shape of the phase
boundary between forward an inverse cascades at large λ drawn in figure 1.
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Figure 7. Filled contour plots of 2-D dissipation spectra versus k⊥, k‖ for cases (i) to (iii) (a–c) The runs are
well-resolved since the maximum of dissipation is in the interior of the wavenumber domain.

ê‖
(a) (b) (c)

Figure 8. Visualisation of the φ field for (a) case (i), (b) case (ii), (c) case (iii). The black arrow indicates the
parallel direction, it is the same for all other visualisations. The colour scale is the same in all three images,
with blue colours representing negative values and red colours positive values.

Finally, besides examining numerical convergence of our simulations it is also important
to examine if our results are converged in Re, Pe. For this we also repeated some of our
runs in larger grid sizes doubling Re and Pe, and verifying that the amplitude of the inverse
flux did not change. Thus, up to the resolutions we were able to achieve, our results are
robust.

4.5. Spatial structures
Figure 8 shows a visualisation of the density perturbation field φ. For case (i) there is
large-scale organisation in the perpendicular direction, and there is some visible alignment
in the parallel direction, in agreement with the 2-D spectra. In case (ii), the rotation rate
is stronger, leading to a more pronounced alignment in the vertical direction. However,
the perpendicular scales in the φ field remain small. In case (iii), the amplitude of the
φ field is much higher than in cases (i) and (ii), and there is a clearly visible large-scale
organisation in the parallel and perpendicular directions. In the parallel direction, there is a
layering of density in approximately two layers, which is compatible with the 2-D potential
energy spectra. In the perpendicular direction, one can see that the energy is at the largest
scale k⊥ = 1, since there is one large patch of positive φ, and one of negative φ (periodic
boundaries).

Figure 9 shows a visualisation of the vorticity field. In case (i), one sees no large-scale
organisation in the perpendicular direction, and there is some rotation-induced alignment

933 A11-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1083


Energy cascades in rapidly rotating, stratified turbulence

(a) (b) (c)

Figure 9. Visualisation of the vorticity field for (a) case (i), (b) case (ii), (c) case (iii). The colour scale is the
same in all three images, with blue colours representing negative values and red colours positive values.

(a) (b)

Figure 10. Visualisation of the two terms involved in the hydrostatic balance relation (2.12). Red colours
correspond to positive values and blue colours to negative values. Panel (a) shows 2λ∂‖ψ and panel (b) −φ/Fr.
The two fields are clearly correlated.

along the parallel direction. In case (ii), the parallel alignment is more pronounced, since
λ is larger, equivalent to faster rotation. In the perpendicular direction, the condensation
at the large scales has not yet proceeded far enough to be visible by eye, but the 1-D
spectrum in figure 3 unequivocally shows that energy is piling up at large scales. Finally,
in case (iii), there is a clearly visible, high-amplitude pair of counter-rotating vortices
on a small-scale background in the perpendicular direction. In the parallel direction, the
alignment is weakened by the stronger stratification. We do not show visualisations of the
parallel velocity field, since there it features only small-scale structures in all cases. We
stress once more that in cases (ii) and (iii), what is shown is the transient state where the
inverse cascade continues to develop, by contrast with the stationary state in case (i).

Figure 10 shows visualisations of the two terms involved in hydrostatic balance (2.12):
parallel pressure gradient 2λ∂‖ψ and the buoyancy force −φ/Fr. The two fields are visibly
highly correlated. Together with the spectra and fluxes above, this validates the proposed
explanation of the phenomenology of case (iii) based on hydrostatic balance in the QG
limit.

5. Discussion

In this paper we investigated energy cascades in stably stratified, rapidly rotating
turbulence within an elongated domain. Using a large number of numerical simulations
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of a reduced system, we constructed a phase diagram of the system marking the regions in
phase space where inverse cascade is met. Two different behaviours were noted. First, for
weak stratification, an inverse cascade appears above a threshold λc that is an increasing
function of Fr−1. For Fr−1 = 0 it recovers the non-rotating threshold. In this limit, the
energy of the in-plane velocity components u⊥ cascades inversely while potential energy
and kinetic energy related to u‖ cascade forward. For strong stratification, inverse cascades
appear for Fr−1 � Fr−1

c where this second threshold Frc is independent of λ and Frc � 1.
In this limit we found that approximate hydrostatic balance holds, leading to a non-trivial
inverse cascade of both potential and kinetic energy.

Our approach was based on asymptotic reduction, allowing us to reliably achieve the
parameter regime of interest at comparatively moderate numerical cost. The validity of
this approximation and its limitations, however, need to be discussed. We remind the
reader that in our approach the limits Ro → 0 and h → ∞ are taken while keeping the
product λ−1 = Roh and all other parameters, Re,Pe,Fr, L/�in, fixed. First we would like
to comment that with this limiting procedure, weak wave turbulence is not met in our
simulations. Weak turbulence requires taking the tall-box limit h → ∞ first and then
Ro → 0, so that λ = 1/hRo → 0. Weak wave turbulence (for Fr−1 = 0) predicts only
forward cascade (Galtier 2003) and this is indeed what we find for λ→ 0. Thus, the two
regimes (the present asymptotic result and weak wave turbulence prediction) appear to
commute for the weak stratification limit. For Fr−1 > 0, up to our knowledge, there is no
theoretical result. It is of particular interest to know if the inverse cascade observed in the
present limit for Fr−1 > 1 persists or not as λ is decreased below the range of validity of
the present approximation and into the rotating and stratified wave turbulence regime. If
not, this would imply that the shape of the phase boundary will change as smaller values
of λ (or order O(ε)) are approached. This needs to be investigated by future theoretical
work and numerical simulations of the full Boussinesq equations. A second issue that
needs to be discussed is whether the limits Ro−1, h → ∞ and Re,Pe → ∞ also commute.
Generally, one is interested in the large-Reynolds-number and large-Péclet-number limits.
The energy fluxes obtained upon taking these limits first, and then taking Ro−1, h → ∞
will not necessarily give the same result as when the order is reversed. A particular
limitation of the asymptotically reduced equations is that the perpendicular motions are
required to be geostrophically balanced. In the full system at large Reynolds numbers,
this balance may be broken at the small scales for which isotropy might be restored. This
could alter the energy transfer properties of the system. In particular, it is known that the
presence of stratification leads to smaller and smaller vertical scales (Billant & Chomaz
2001) that have been argued to hinder the inverse cascade. However, we need to note that
the scale at which geostrophic balance is broken becomes smaller and smaller as Ro is
decreased, so that for sufficiently small Ro the separation between the inversely cascading
geostrophically balanced scales and the forward cascading isotropic scales will increase
and the interaction between the two scales will become weak. Finally we need to also
discuss the limit of large Λ = L/�in. If an inverse cascade is present in the horizontal
plane, larger and larger horizontal scales are reached. When these scales become of the
order 1/ε the present approximation also ceases to be valid for these scales. All these
limitations call for investigation in the future, also at finite values of the parameters using
the full rotating and stratified Navier–Stokes equations.

Concluding, we would like to note that for the purely rotating problem, Di Leoni et al.
(2020) undertook a step in this direction, showing that metastable vortex-crystal states
appear near the transition to an inverse cascade, while such states were not seen in the

933 A11-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
83

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1083


Energy cascades in rapidly rotating, stratified turbulence

reduced equations. It is therefore a possibility that the complete phase diagram of rapidly
rotating and stratified turbulence is more complex than anticipated.
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