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It is well known that a graph with m edges can be made triangle-free by removing (slightly less
than) m/2 edges. On the other hand, there are many classes of graphs which are hard to make
triangle-free, in the sense that it is necessary to remove roughly m/2 edges in order to eliminate
all triangles.

We prove that dense graphs that are hard to make triangle-free have a large packing of pairwise
edge-disjoint triangles. In particular, they have more than m(1/4 + cβ) pairwise edge-disjoint tri-
angles where β is the density of the graph and c � 1

100 is an absolute constant. This improves upon
a previous m(1/4 − o(1)) bound which follows from the asymptotic validity of Tuza’s conjecture
for dense graphs. We conjecture that such graphs have an asymptotically optimal triangle packing
of size m(1/3 − o(1)).

We extend our result from triangles to larger cliques and odd cycles.

AMS 2010 Mathematics subject classification: Primary 05C70

1. Introduction

All graphs in this paper are finite, undirected, and simple. A triangle edge cover in a graph
is a set of edges meeting all triangles. In other words, the removal of a triangle edge cover
results in a triangle-free graph. Dually, a triangle packing in a graph is a set of pairwise edge-
disjoint triangles. We denote by τ3(G) the minimum size of a triangle edge cover and by ν3(G)

the maximum size of a triangle packing of a graph G. It is easily observed that

ν3(G) � τ3(G) � 3ν3(G).

The first inequality follows from the fact that one must delete at least one edge from each triangle
in a triangle packing in order to obtain a triangle-free graph. The second inequality follows
from the fact that deleting all edges of all triangles in a maximum triangle packing results in a
triangle-free graph. A long-standing conjecture of Tuza [6] states that this second inequality is
not optimal.

Conjecture 1.1 (Tuza [6]). τ3(G) � 2ν3(G).
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This conjecture, if true, is best possible, as can be seen by taking, say, G = K4 or G = K5.
The best upper bound for τ3(G) is due to Haxell [2], who proved that τ3(G) � (3 − 3

23
)ν3(G).

However, there is an important setting where, asymptotically, Tuza’s conjecture holds. This is
the dense graph setting. To state this result we need first to consider the fractional relaxations
of τ3(G) and ν3(G). A fractional triangle edge cover assigns non-negative weights to the edges
so that the resulting weight of each triangle (being the sum of the weights of its edges) is at
least 1. Dually, a fractional triangle packing assigns non-negative weights to the triangles so that
the resulting weight of each edge (being the sum of the weights of the triangles it meets) is at
most 1. The goal is thus to minimize the sum of the weights of a fractional triangle edge cover
and to maximize the sum of the weights of a fractional triangle packing. Therefore let τ∗

3(G)

and ν∗
3 (G) be the fractional relaxations of τ3(G) and ν3(G) respectively. By linear programming

duality we have τ∗
3(G) = ν∗

3 (G), and, trivially, τ3(G) � τ∗
3(G) and ν3(G) � ν∗

3 (G). Krivelevich [5]
proved that Tuza’s conjecture holds in a mixed fractional-integral setting. Namely, he proved the
following result.

Theorem 1.2 (Krivelevich [5]). For any graph G we have τ3(G) � 2ν∗
3 (G) and τ∗

3(G) � 2ν3(G).

The inequality τ∗
3(G) � 2ν3(G) is tight (e.g., K4) and the inequality τ3(G) � 2ν∗

3 (G) is known
to be asymptotically tight. A few years later, Haxell and Rödl [3] (see also [7]) proved that
|ν3(G) − ν∗

3 (G)| = o(n2) for n-vertex graphs G. In other words, in graphs that contain a quadratic
number of pairwise edge-disjoint triangles, ν3(G) and ν∗

3 (G) are asymptotically the same. These
results imply the following theorem.

Theorem 1.3. τ3(G) � 2ν3(G) + o(n2).

In light of the fact that Tuza’s conjecture is optimal, it is interesting to ask whether the
constant 2 in Theorem 1.3 is also optimal (notice that this question becomes non-trivial for dense
graphs with τ3(G) = Θ(n2)). Perhaps the most interesting case to consider is when τ3(G) is as
large as one can expect it to be.

It is well known that every graph with m edges can be made bipartite by removing from it
less than m/2 edges (see [1] for the tightest known bounds). In particular, τ3(G) � m/2 − o(m).
On the other hand, there are many different types of graphs that are hard to make triangle-free,
that is, graphs for which τ3(G) � m/2 − o(m). For example, complete graphs are hard to make
triangle-free, and (sufficiently dense) random graphs are hard to make triangle-free. It is also easy
to construct many other families of graphs that are hard to make triangle-free. Let us formalize
this notion. We say that a graph G is (1 − δ)-hard to make ∆-free if τ3(G) � (1 − δ)(m/2).

The following is an immediate consequence of Theorem 1.3.

Corollary 1.4. Let G be a graph with m edges that is (1 − on(1))-hard to make ∆-free. Then,

ν3(G) � m

4
− o(n2).

We conjecture that Corollary 1.4 is not optimal, and that m/4 can be replaced with m/3.
Formally, we conjecture the following.

https://doi.org/10.1017/S0963548312000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000235


954 R. Yuster

Conjecture 1.5. For every ε > 0 and β > 0 there exist N = N(ε, β) and δ = δ(ε, β) such that,
for all graphs with n > N vertices and with m � βn2 edges that are (1 − δ)-hard to make ∆-free,

ν3(G) � (1 − ε)
m

3
.

Since for any m-edge graph we have ν3(G) � m/3, Conjecture 1.5 states that dense graphs
that are hard to make ∆-free have an asymptotically optimal triangle packing: all but a negligible
fraction of the edges are packed.

A weakened, but still challenging version of Conjecture 1.5 asks for a constant improvement
over the 1/4 bound in Corollary 1.4.

Conjecture 1.6. There exists α > 0 so that for all β > 0 there exist N = N(β) and δ = δ(β)

such that, for all graphs with n > N vertices and with m � βn2 edges that are (1 − δ)-hard to
make ∆-free,

ν3(G) � (1 + α)
m

4
.

A further weakening of Conjecture 1.6 allows the improvement α to depend on the density
β. The main result of this paper proves that such an improvement always exists. Hence, for any
fixed density, our main result shows that the constant 1/4 in Corollary 1.4 is not optimal, and can
be replaced with a larger constant.

Theorem 1.7. For every β > 0 there are N = N(β) and δ = δ(β) such that, for all graphs with
n > N vertices and with m � βn2 edges that are (1 − δ)-hard to make ∆-free,

ν3(G) �
(

1 +
β

100

)
m

4
.

The constant 100 in Theorem 1.7 is by no means optimal and it can be somewhat reduced at
the price of complicating the calculations. Since this has no qualitative impact on the statement
of Theorem 1.7, we make no effort to optimize it. We also note that δ = δ(β) is a moderate
function. As shown in the proof, it suffices to take δ = β2/99.

The next section contains the proof of Theorem 1.7. Section 3 considers larger cliques. We
prove a bound for the edge-covering number of Kk in terms of the fractional edge-covering
number of Kk, and then use it to extend Theorem 1.7 to larger cliques. Section 4 contains some
concluding remarks: a sketch of a generalization of Theorem 1.7 to larger odd cycles, and an
improved integrality gap for the problem of determining the ‘maximal triangle-free subgraph’ in
dense graphs.

2. Packing triangles in graphs that are hard to make triangle-free

Since ν∗
3 (G) = τ∗

3(G), and since by the result of Haxell and Rödl mentioned earlier we have
ν∗
3 (G) � ν3(G) + o(n2), the following theorem immediately implies Theorem 1.7.
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Theorem 2.1. For every β > 0 there exists an integer N = N(β) such that, for all graphs with
n > N vertices and with m � βn2 edges that are (1 − β2/99)-hard to make ∆-free,

τ∗
3(G) �

(
1 +

β

99

)
m

4
.

We will therefore prove Theorem 2.1, and hence obtain a proof for Theorem 1.7 as well.
We first need to recall some known facts from linear programming. For a graph G, let E(G)

and T (G) denote the sets of edges and triangles of G, respectively. Let f : E(G) → [0, 1] be a
minimum fractional triangle edge cover so that

∑
e∈E(G) f(e) = τ∗

3(G), and let g : T (G) → [0, 1]

be a maximum fractional triangle packing so that
∑

t∈T (G) g(t) = ν∗
3 (G). Then, the duality the-

orem of linear programming states that τ∗
3(G) = ν∗

3 (G) and (one of) the complementary slackness
conditions states that

f(e) > 0 implies
∑
t�e

g(t) = 1. (2.1)

We designate two sets of edges.

• Let F0 ⊂ E(G) be F0 = {e | f(e) = 0}.
• Let F1 ⊂ E(G) be F1 = {e | f(e) = 1}.

The proof of Theorem 2.1 is split into three cases, according to the cardinalities of F0 and F1.
The first two cases are easy. The first is when F1 is relatively large and the second is when F0

is relatively small. The remaining case, where F1 is relatively small and F0 is relatively large,
is more difficult. It will be convenient to assume, without loss of generality, that m = βn2.
Observe that this immediately implies the proof for m � βn2. We also set δ = β2/99 so that
the assumption in Theorem 2.1 is that the graph is (1 − δ)-hard to make ∆-free.

Case 1: |F1| > (δ + β
99

)m/2. Define G1 = G(V , E \ F1) to be the graph obtained from G by
deleting the edges having weight 1. We observe that

τ3(G1) � τ3(G) − |F1|, (2.2)

τ∗
3(G1) � τ∗

3(G) − |F1|, (2.3)

τ∗
3(G1) � 1

2
τ3(G1). (2.4)

Indeed, (2.2) holds since we have deleted |F1| edges, (2.3) holds since the total deleted weight is
|F1|, and (2.4) holds by Theorem 1.2. Using these inequalities and the assumption on the size of
F1, we have

τ∗
3(G) � τ∗

3(G1) + |F1|

� 1

2
τ3(G1) + |F1|

� 1

2
(τ3(G) − |F1|) + |F1|

=
1

2
τ3(G) +

1

2
|F1|
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� 1

2
(1 − δ)

m

2
+

(
δ +

β

99

)
m

4

=

(
1 +

β

99

)
m

4
.

Case 2: |F0| < (1 − 3β
99

)m/4. The complementary slackness condition (2.1) implies that
∑

e∈E\F0

∑
t�e

g(t) = m − |F0|.

As each triangle is counted at most three times, we have that

τ∗
3(G) = ν∗

3 (G) � 1

3
(m − |F0|).

Using the assumption on the size of F0, we obtain

τ∗
3(G) � 1

3

(
m −

(
1 − 3β

99

)
m/4

)
=

(
1 +

β

99

)
m

4
.

Case 3: |F0| � (1 − 3β
99

)m/4 and |F1| � (δ + β
99

)m/2. Since β � 1/2, our assumptions in this
case imply in particular that

|F0| � 0.246m, (2.5)

|F1| � βm/99. (2.6)

For a subset of vertices A ⊂ V , let E(A) denote the set of edges of G with both endpoints in A. If
A and B are disjoint subsets of vertices, then E(A,B) denotes the set of edges with one endpoint
in A and the other in B.

Lemma 2.2. G contains two disjoint subsets of vertices A and B such that

|E(A,B)| − |E(A)| − |E(B)| > β2m

99
.

Proof. Consider the graph H = G(V , F0) consisting only of the edges of G having weight
zero. Notice that H is still dense as it has at least 0.246m edges, and that H is triangle-free since
otherwise f would not have been a fractional triangle edge cover.

Consider a random subset C of c = �1/(0.246β)� vertices. We say that a vertex x is dominated
by C if some vertex of C is a neighbour of x in H . Clearly, the probability that a vertex is not
dominated by C is less than (1 − c/n)dx , where dx is the degree of x in H . Let Q denote the set
of all edges of H that are incident with vertices that are not dominated by C. Hence, the expected
size of Q satisfies

E[|Q|] <
∑
x∈V

dx

(
1 − c

n

)dx

�
∑
x∈V

dxe
−dxc/n �

∑
x∈V

n

ec
=

n2

ec
.
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In particular, there exists a choice of C such that after removing from H the vertices that are not
dominated by C, we remain with a subgraph H ′ whose number of edges is at least

0.246m − n2

ec
� 0.246m − 0.246βn2

e
� 0.246m − 0.246m

e
= 0.246(1 − 1/e)m.

As each vertex of H ′ is dominated by C, let us select for each vertex of H ′ a vertex of C that
dominates it. This partitions the vertices of H ′ into c parts {Au | u ∈ C}, where Au consists of
the vertices of H ′ that chose u as their dominating vertex. Observe also that each Au induces
an independent set in H , since otherwise we would have, together with u, a triangle in H ,
contradicting its triangle-freeness. As ∪u�=v∈CE(Au, Av) contains all the edges of H ′ and no edge
is counted more than once, we have∑

u�=v∈C
|E(Au, Av)| � 0.246(1 − 1/e)m. (2.7)

Moreover, E(Au) contains only edges of F1. Indeed, if we had an edge (a, a′) ∈ E(Au) with
f((a, a′)) < 1, then the triangle (a, a′, u) would have weight less than 1 (the edges (u, a) and
(u, a′) have weight 0 as they both belong to F0). But a triangle cannot have weight less than 1

since f is a fractional triangle edge cover. It follows that∑
u∈C

|E(Au)| � |F1|. (2.8)

Using (2.7) and (2.8) we have∑
u�=v∈C

[|E(Au, Av)| − |E(Au)| − |E(Av)|] � 0.246(1 − 1/e)m − (c − 1)|F1|.

It follows that there is a particular choice of pair Au, Av for which

|E(Au, Av)| − |E(Au)| − |E(Av)| � 1(
c
2

)0.246(1 − 1/e)m − 2

c
|F1| � β2m

54
− β2m

200
>

β2m

99
,

where we have used (2.6) and c = �1/(0.246β)�.

Let A and B be disjoint subsets satisfying Lemma 2.2. To complete the proof of Case 3, we
proceed as follows. We split the vertices of V \ (A ∪ B) into two parts X and Y at random. We
consider the cut (A ∪ X, B ∪ Y ) and compute the expected number of edges crossing it. Each
edge of E(A,B) crosses it by definition. On the other hand, each edge with at least one endpoint
in X ∪ Y crosses it with probability 1/2. The expected size of this cut is therefore

|E(A,B)| +
1

2
(m − |E(A,B)| − |E(A)| − |E(B)|) > m

2
+

β2m

198
.

Hence, such a cut exists, implying that we can remove from G the non-edges of this cut to obtain
a triangle-free (in fact, bipartite) subgraph. The number of edges thus removed is less than

m − m

2
− mβ2

198
=

m

2

(
1 − β2

99

)
=

m

2
(1 − δ),

contradicting the assumption that τ3(G) � m
2
(1 − δ). This completes the proof of Theorem 2.1,

which, as noted earlier, implies Theorem 1.7.

https://doi.org/10.1017/S0963548312000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000235


958 R. Yuster

3. Larger cliques

Throughout this section we fix k � 4, we let τk(G) denote the minimum size of a Kk edge cover,
and let νk(G) denote the maximum size of a Kk-packing of a graph G. The trivial bounds in this
case are νk(G) � τk(G) �

(
k
2

)
νk(G).

Denoting by τ∗
k(G) and ν∗

k (G) the respective (and equal) fractional parameters, Krivelevich’s
proof for triangles [5] can be generalized to yield

τk(G) �
((

k

2

)
− 1

)
τ∗
k(G). (3.1)

We omit the details of this easy generalization since the bounds we shall obtain in this section
are better.

As for the case of triangles, the theorem of Haxell and Rödl [3] asserts that |νk(G) − ν∗
k (G)| =

o(n2). Thus, an immediate corollary analogous to Theorem 1.3 is as follows.

Corollary 3.1. τk(G) � (
(
k
2

)
− 1)νk(G) + o(n2).

The goal of this section is to prove a significantly better bound, replacing
(
k
2

)
− 1 with a much

smaller value. We shall do that by improving upon (3.1).

Theorem 3.2. τk(G) � �k2/4
τ∗
k(G).

Proof. Consider the following process which creates a sequence of spanning subgraphs Gi of
G, starting with G = G0. Each Gi is obtained from its predecessor Gi−1 by deleting a single edge
according to the rule specified below. We will halt this process once the rule cannot be applied.
We denote the final graph in our sequence by Gt. Hence we have 0 � t � m.

Let fi and gi be a minimum fractional Kk edge cover and a maximum fractional Kk-packing of
Gi, respectively. Assume first that some Kk of Gi contains

(
k
2

)
− �k2/4
 edges that are assigned

weight 0 by fi. This means that the total weight of the remaining �k2/4
 edges of this Kk is at
least 1, so there is some edge ei with fi(ei) � 1/�k2/4
. We let Gi+1 = Gi − {ei}. If no Kk of
Gi contains

(
k
2

)
− �k2/4
 edges that are assigned weight 0 by fi, then we halt the sequence and

Gi = Gt is the final graph in the sequence.
We observe the following inequalities:

τk(Gt) � τk(G) − t, (3.2)

τ∗
k(Gt) � τ∗

k(G) − t

�k2/4
 , (3.3)

τ∗
k(Gt) � τk(Gt)(

k
2

) . (3.4)

Indeed, (3.2) holds since we have deleted t edges to get from G to Gt, (3.3) holds since

τ∗
k(Gi+1) � τ∗

k(Gi) − 1/�k2/4
,
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and (3.4) is the trivial bound. Using these inequalities we have

τ∗
k(G) � τ∗

k(Gt) +
t

�k2/4


� τk(Gt)(
k
2

) +
t

�k2/4


� τk(G) − t(
k
2

) +
t

�k2/4


=
τk(G)(

k
2

) − t(
k
2

) +
t

�k2/4
 . (3.5)

Let 0 � α � 1 be chosen such that Gt has α(m − t) edges that are assigned weight 0 by
ft. Thus, (1 − α)(m − t) edges of Gt are assigned positive weight and, using complementary
slackness as in (2.1), we obtain∑

e:fi(e)>0

∑
H�e

gi(H) =
∑

e:fi(e)>0

1 � (1 − α)(m − t).

(Here the internal sum ranges over all graphs H in Gt that are isomorphic to Kk.) Since Kk has(
k
2

)
edges, this implies, in particular,

τ∗
k(Gt) = ν∗

k (Gt) � (1 − α)(m − t)(
k
2

) .

By (3.3) we have

τ∗
k(G) � (1 − α)(m − t)(

k
2

) +
t

�k2/4
 . (3.6)

The spanning subgraph P of Gt consisting of the edges having positive weight has
(1 − α)(m − t) edges. Since any graph can be made bipartite by removing less than half of its
edges, we can delete from P a subset F of less than (1 − α)(m − t)/2 edges to make P bipartite.

We claim that the spanning subgraph Q of Gt obtained by removing F from Gt is Kk-free.
Assume that Q has a Kk. The edges with positive weight form a bipartite subgraph on k vertices
inside this Kk. The number of such edges is clearly at most �k2/4
. This implies that this Kk

contains at least
(
k
2

)
− �k2/4
 edges with zero weight, contradicting the fact that Gt was the last

graph in the sequence and has no copy of Kk with this number of zero weight edges. We have
therefore proved

τk(Gt) � (1 − α)(m − t)

2
.

By (3.2) we have

τk(G) � (1 − α)(m − t)

2
+ t. (3.7)

By (3.6) and (3.7) we have

τ∗
k(G) � 2τk(G) − 2t(

k
2

) +
t

�k2/4
 . (3.8)
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So, (3.5) and (3.8) both supply lower bounds for τ∗
k(G) in terms of τk(G) and t. In particular, the

maximum of both bounds can be used as a lower bound for τ∗
k(G). For k � 4 observe that (3.5)

increases as t increases and (3.8) decreases as t increases. Hence, the maximum of both bounds
is minimized when they are equal which, in turn, happens when t = τk(G). In this extremal point
we have

τ∗
k(G) � τk(G)

�k2/4
 .

Thus, τk(G) � �k2/4
τ∗
k(G), proving the theorem.

Theorem 3.2 immediately implies the following improvement of Corollary 3.1.

Corollary 3.3. τk(G) � �k2/4
νk(G) + o(n2).

It is well known that every graph with m edges can be made (k − 1)-partite by removing
from it less than m/(k − 1) edges. One just considers a random partition of the vertex set into
k − 1 parts and observes that the probability of an edge having both of its endpoints in the
same part is less than 1/(k − 1). In particular, τk(G) � m/(k − 1) − o(m). As for the case of
triangles, there are many different types of graphs that are hard to make Kk-free, that is, graphs
for which τk(G) � m/(k − 1) − o(m). We thus say that a graph G is (1 − δ)-hard to make Kk-free
if τk(G) � (1 − δ)m/(k − 1).

The following is an immediate consequence of Corollary 3.3.

Corollary 3.4. Let G be a graph with m edges that is (1 − on(1))-hard to make Kk-free. Then,

νk(G) � m

(k − 1)�k2/4
 − o(n2).

Observe that for, say, K4 we get that dense graphs that are hard to make K4-free have roughly
m/12 edge-disjoint copies of K4. As each K4 has 6 edges, this implies that a fraction of roughly
1/2 of the edges can be packed with edge-disjoint copies of K4. More generally, for Kk, we get
that a fraction of 2/k of the edges can be packed with edge-disjoint copies of Kk (if k is odd then
this fraction is a bit larger). It is plausible that Conjecture 1.5 can be extended from triangles to
larger cliques. That is, all but a negligible fraction of the edges can be packed with edge-disjoint
copies of Kk.

4. Concluding remarks

The proof of Theorem 1.7 can be extended to other odd cycles. Denoting the edge-covering and
packing numbers by τCk

(G) and νCk
(G) respectively, the analogous result states that for β-dense

graphs that are (1 − δ)-hard to make Ck-free, we have

νCk
(G) � (1 + cβ)

m

2k − 2
,

where c is an absolute constant. Observe that for any graph G we have νCk
(G) � m/k.
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The proof is essentially the same, with the following minor differences. We use a straightfor-
ward extension of the result of Krivelevich for cycles of length k, which states that τCk

(G) �
(k − 1)τ∗

Ck
(G) (see also [4] for this observation), and the result of Haxell and Rödl applied to Ck

stating that |νCk
(G) − ν∗

Ck
(G)| = o(n2). As in the proof of Theorem 2.1, we split into three cases

according to the relative sizes of F0 and F1/(k−2), where the latter are all edges with weight at
least 1/(k − 2). Observe that this coincides with the definition of F1 for the case of triangles. The
only real difference is in Case 3. In Lemma 2.2 we can no longer claim that H is triangle-free.
Rather, it is Ck-free. This means that any neighbourhood of a vertex is no longer forced to be
an independent set, but rather it is forced not to contain a path of length k − 2. But this, in turn,
implies that each neighbourhood in H is sparse and has only a linear number of edges, which is
negligible in the dense setting. Also, when using Lemma 2.2, by looking at the subgraph induced
by A ∪ B in G, we can no longer claim that it contains only edges of F1/(k−2) with both endpoints
in A or both endpoints in B. However, it certainly does not contain a path of length k − 2 of edges
not in F1/(k−2) with both endpoints in the same class. Thus, there are only a negligible (linear)
number of edges not in F1/(k−2) that are inside A or inside B. Hence, the same argument as in
Case 3 for triangles also holds here.

Theorem 3.2 supplies, in particular, an efficient approximation algorithm for the NP-hard
problem of computing τk(G). Its approximation ratio is �k2/4
. It also bounds the integrality
gap of this problem by �k2/4
.

Consider the problem of finding a maximal triangle-free subgraph. Its fractional relaxation is
thus to assign weights in [0, 1] to the edges, so that for each triangle the sum of the weights is no
larger than 2. The goal is to maximize the sum of the weights of such an assignment. Denoting the
corresponding parameters by ρ3(G) and ρ∗

3(G) we have, by definition, ρ3(G) = m − τ3(G) and
ρ∗

3(G) = m − τ∗
3(G). The (asymptotic) integrality gap of this problem is known to be between

1.5 and 4/3. The lower bound comes from the complete graph. The integral solution is n2/4(1 −
o(1)), while the fractional solution comes from assigning a weight of 2/3 to each edge, thereby
obtaining a total weight of n2/3(1 − o(1)). The upper bound follows from Krivelevich’s result
τ3(G) � 2τ∗

3(G) after some easy arithmetic manipulations.
Our proof of Theorem 2.1 improves upon the upper bound for dense graphs. Suppose that G is

a graph with m = βn2 edges. Assume first that τ3(G) � (1 − δ)m/2. By Theorem 2.1, ρ∗
3(G) �

3m/4 − mβ/396. On the other hand, for any graph we have ρ3(G) � m/2. Thus, the integrality
gap in this case is at most 3/2 − β/198. Consider next the case τ3(G) � (1 − δ)m/2. Hence,
ρ3(G) � (1 + δ)m/2. By Krivelevich’s result, we have

ρ3(G) = m − τ3(G) � m − 2τ∗
3(G) = 2ρ∗

3(G) − m.

This implies that the integrality gap is at most 1/2 + m/(2ρ3(G)). In our case this implies an
integrality gap of 1/2 + 1/(1 + δ) = 3/2 − δ/(1 + δ). Recall that Theorem 2.1 already holds
for δ = β2/99.
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