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THE UNDECIDABILITY OF THE DEFINABILITY OF PRINCIPAL
SUBCONGRUENCES

MATTHEWMOORE

Abstract. For each Turing machine T , we construct an algebra A′(T ) such that the variety generated
by A′(T ) has definable principal subcongruences if and only if T halts, thus proving that the property of
having definable principal subcongruences is undecidable for a finite algebra. A consequence of this is that
there is no algorithm that takes as input a finite algebra and decides whether that algebra is finitely based.

§1. Introduction. Given a variety V , the residual bound of V is the least cardinal �
that is strictly larger than the cardinality of every subdirectly irreducible (=SI)
member of V . If such a � exists we write κ(V) = �, and if no such � exists, then we
write κ(V) = ∞. If V = V(A) is the variety generated by the algebra A, we define
κ(A) = κ(V(A)). The RS-conjecture (see [4]) is the conjecture that κ(A) ≥ �
implies κ(A) =∞ for finiteA. McKenzie [7] disproves this conjecture by exhibiting
an algebra with residual bound precisely �. This algebra is used by McKenzie as a
basis for his groundbreaking paper [6], inwhich to eachTuringmachineT an algebra
A(T ) is associated such that κ(A(T )) < � if and only if T halts, thus proving that
the property of having a finite residual bound is an undecidable property of a finite
algebra.
The problem of algorithmically determining whether κ(A) < � is closely related
to a problem due to Alfred Tarski, called Tarski’s finite basis problem. An algebra
A is said to be finitely based if the infinite set of identities which are true in A can
be derived from a finite subset of them. Tarski’s problem is the question: is there an
algorithm that takes as input a finite algebra and determines whether it is finitely
based?McKenzie [8] uses a construction similar to hisA(T ) construction to provide
a negative answer to this question, and Willard [10] shows that, in fact, the original
A(T ) is finitely based if and only if T halts. Thus, there is no algorithm that decides
whether an algebra is finitely based for every finite algebra.
An algebra A is finitely based if and only if V(A) (the variety generated by A) is
finitely axiomatizable. One approach to proving that V(A) is finitely axiomatizable
is to first show that κ(A) < �, and then to show that V(A) has definable principal
congruences. These two features are sufficient to imply that V(A) is finitely axiom-
atizable. A formula �(w, x, y, z) defined in an algebraic first-order language L is
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said to be a congruence formula if � is existential positive and for every model A
of L and for all a, b, c, d ∈ A, A |= �(a, b, c, d ) implies that (a, b) belongs to the
congruence generated by the pair (c, d ). A class C of algebras of the same type is
said to have definable principal congruences (DPC) if there is a congruence formula
� such that for every A ∈ C and every a, b ∈ A the formula �(x, y, a, b) defines the
relation “(x, y) ∈ ConB(a, b)”. McKenzie [5] shows that if a variety V has definable
principal congruences and κ(V) < �, then V is finitely based.
Baker andWang [2] generalize DPC by saying that a class of algebras C (all of the

same type) has definable principal subcongruences (DPSC) if there are congruence
formulas Γ and � such that for all A ∈ C and all a, b ∈ A, if a �= b then there exist
c, d ∈ A such that c �= d ,A |= Γ(c, d, a, b), and�(−,−, c, d ) defines CgA(c, d ). It is
convenient to observe that if the type of C is finite, then there is a first-order formula,
Π�(y, z) so that A |= Π�(c, d ) (where A is any algebra of this type) if and only
if {(a, b) | A |= �(a, b, c, d )} is the congruence generated by (c, d ). In symbols, a
class C of algebras of the same finite type hasDPSC if there are congruence formulas
Γ(w, x, y, z) and �(w, x, y, z) such that for all A ∈ C,

A |= ∀a, b
[
a �= b → ∃c, d

[
c �= d ∧ Γ(c, d, a, b) ∧Π�(c, d )

]]
.

See Figure 1. Baker and Wang [2] use the fact that congruence distributive vari-
eties have definable principal subcongruences to give a new proof of K. Baker’s
Finite Basis Theorem [1]: if A is a finite algebra of finite type and V(A) is con-
gruence distributive, then A is finitely based. Willard [11] extends Baker’s theorem
by showing that if the variety has finite type, is residually finite, and is congruence
∧-semidistributive (V(A(T )) has these features if T halts), then the variety is finitely
based. Since V(A(T )) is finitely axiomatizable if and only if T halts, and finitely
axiomatizability is so closely related to DPC and DPSC, it is natural to consider
whether the failure of finite axiomatizability when T does not halt is related to a
failure of DPC or DPSC in V(A(T )).
The main result of this paper is to construct an algebra A′(T ) based on

McKenzie’s A(T ) and to show that A′(T ) has definable principal subcongruences

∀ Cg(a, b)

∀ Cg(c, d )

A |= �(c, d, a, b)

Con(A)
∀ Cg(a, b)

∃ Cg(c, d )

∀ Cg(r, s)

B |= Γ(c, d, a, b)

B |= �(r, s, c, d )

Con(B)

Figure 1. A has DPC via �, and B has DPSC via Γ and �.
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if and only if T halts. Since the halting problem is undecidable, this proves that the
property of having DPSC is undecidable (i.e., there is no algorithm that takes as
input a finite algebra and giving as output the correct answer to the question: “does
the variety generated by this algebra have DPSC?”). The proof of this involves
many cases, an exploration of “A′(T )-arithmetic”, and a fine analysis of the poly-
nomials of A′(T ). We begin in Section 2 with a description of the algebra A′(T ).
Section 3 details the modifications to McKenzie’s original argument that are nec-
essary to show that κ(A′(T )) < � if and only if T halts. Section 4 then gives a
detailed description of the subdirectly irreducible algebras of V(A′(T )) that will be
needed throughout. The proof that DPSC is undecidable is broken into two cases,
depending on whether T does or does not halt. The case where T halts is addressed
in Section 5, and is quite complicated, involving many subcases. The case where
T does not halt is addressed in Section 6, and a short negative answer to Tarski’s
problem using the undecidability of definable principal subcongruences is given in
this section as well.
The results in this paper originated with the examination of properties of A(T ).
Finite axiomatizability is closely related to the properties of definable principal con-
gruences and definable principal subcongruences, and there was a natural question
of whether McKenzie’s negative answer to Tarski’s finite basis problem was the
consequence of a more primitive result concerning either DPC or DPSC. Although
it is true that this is the situation for A′(T ), it was recently shown by the author
in [9] that the original A(T ) does not have DPSC. This is the first known example
of a congruence ∧-semidistributive variety with finite residual bound that does not
have DPSC. The methods used to prove the undecidability of definable principal
subcongruences do not appear to be amenable to proving the undecidability of
definable principal congruences, but the overall structure of the argument and the
fine analysis of polynomials in V(A′(T )) may provide a foundation for proving the
undecidability of DPC as well.

§2. Defining A′(T ). We define a Turing machine T to be a finite list of 5-tuples
(s, r, w, d, t), called the instructions of T , and interpreted as “if in state s and reading
r, then write w, move d , and enter state t.” The set of states is finite, r, w ∈ {0, 1},
and d ∈ {L,R}. A Turing machine takes as input an infinite bidirectional tape
� : Z → {0, 1} that has finite support (i.e., �−1({1}) is finite). If T stops computation
on some input, then T is said to have halted on that input. For this reason, we say
that the Turing machine halts (without specifying the input) if it halts on the empty
tape �(x) = 0. We enumerate the states of T as {�0, . . . , �n}, where �1 is the initial
(starting) state, and �0 is the halting state (which might not ever be reached). T has
no instruction of the form (�0, r, w, d, t) but for every pair (i, r) with 1 ≤ i ≤ n and
r ∈ {0, 1} does have precisely one instruction of the form (�i , r, w, d, t).
Given a Turing machine T with states {�0, . . . , �n}, we associate to T an algebra

A
′(T ). We will now describe the algebra A′(T ). Let

U = {1, 2,H}, W = {C,D, ∂C, ∂D}, A = {0} ∪U ∪W,
V sir = {Csir,Dsir ,Mri , ∂C sir , ∂Dsir , ∂Mri } for 0 ≤ i ≤ n and {r, s} ⊆ {0, 1},

Vir = V 0ir ∪ V 1ir , Vi = Vi0 ∪ Vi1, V =
⋃

{Vi | 0 ≤ i ≤ n}.
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The underlying set of A′(T ) is A′(T ) = A ∪ V . In the operations defined below,
the “∂” is taken to be a permutation of order 2 with domainV ∪W (e.g. ∂∂C = C ),
and is referred to as “bar”. It should be mentioned that ∂ is not an operation of
A′(T ). We now describe the fundamental operations of A′(T ). The algebra A′(T )
is a height 1 ∧-semilattice (i.e., it is “flat”) with bottom element 0:

x ∧ y =
{
x if x = y,
0 otherwise.

x1 x2 · · ·

0

This semilattice structure induces an order, ≤, on algebras in V(A′(T )). There is a
binary nonassociative “multiplication”, defined by

2 ·D = H · C = D, 1 · C = C,
2 · ∂D = H · ∂C = ∂D, 1 · ∂C = ∂C,

and x · y = 0, otherwise. The next operations play the role of controlling the
production of large SI’s (i.e., those SI’s not contained inHS(A′(T ))) in McKenzie’s
original argument. Such SI’s are fully described in Section 4. Define

J (x, y, z) = (x ∧ ∂y ∧ z) ∨ (x ∧ y) =

⎧⎪⎨
⎪⎩
x if x = y,
x ∧ z if x = ∂y ∈ V ∪W,
0 otherwise,

J ′(x, y, z) = (x ∧ y ∧ z) ∨ (x ∧ ∂y) =

⎧⎪⎨
⎪⎩
x ∧ z if x = y,
x if x = ∂y ∈ V ∪W,
0 otherwise,

and

K(x, y, z) = (∂x ∧ y) ∨ (∂x ∧ ∂y ∧ z) ∨ (x ∧ y ∧ z)

=

⎧⎪⎨
⎪⎩
y if x = ∂y ∈ V ∪W,
z if x = y = ∂z ∈ V ∪W,
x ∧ y ∧ z otherwise.

(In expressions like x∧∂y∧z, if y does not lie in the domain of ∂ , then we take ∂y to
be 0.)Aswewill see, the J and J ′ operations force a certain easy-to-analyze structure
on the SI’s of the variety, and theK operation allows us to simplify certain kinds of
polynomials in the SI’s in HS(A′(T )) (i.e., the small SI’s). This simplification of
polynomials will be the key to showing that V(A′(T )) has DPSC when T halts.
Define

S0(u, x, y, z) =

{
(x ∧ y) ∨ (x ∧ z) if u ∈ V0,
0 otherwise,

S1(u, x, y, z) =

{
(x ∧ y) ∨ (x ∧ z) if u ∈ {1, 2},
0 otherwise,

S2(u, v, x, y, z) =

{
(x ∧ y) ∨ (x ∧ z) if u = ∂v ∈ V ∪W,
0 otherwise.
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The operation of leftmultiplication by y, �y(x) = y ·x, is, in general, not injective.
The next operation will allow us to produce “barred” elements (i.e., produce ∂x
from x) in cases when �y is not injective. Let

T (w, x, y, z) =

⎧⎪⎨
⎪⎩
w · x if w · x = y · z and (w, x) = (y, z),
∂(w · x) if w · x = y · z �= 0 and (w, x) �= (y, z),
0 otherwise.

Next, we define operations that emulate the computation of the Turing machine
on some tape. First, we define an operation that when applied to certain elements
of A′(T )Z will produce something that represents a “blank tape”:

I (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C 010 if x = 1,
M 01 if x = H,
D010 if x = 2,
0 otherwise.

For each instruction of T of the form (�i , r, s,L, �j) and each t ∈ {0, 1} define an
operation

Lirt(x, y, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cs
′
jt if x = y = 1 and u = Cs

′
ir for some s

′,

Mtj if x = H, y = 1, and u = C tir ,
Dsjt if x = 2, y = H, and u =M

r
i ,

Ds
′
jt if x = y = 2 and u = D

s′
ir for some s

′,

∂v if u ∈ V and Lirt(x, y, ∂u) = v ∈ V by the above lines,
0 otherwise.

Let L be the set of all such operations. Similarly, for each instruction of T of the
form (�i , r, s,R, �j) and each t ∈ {0, 1} define an operation

Rirt(x, y, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cs
′
jt if x = y = 1 and u = Cs

′
ir for some s

′,

C sjt if x = H, y = 1, and u =Mri ,
Mtj if x = 2, y = H, and u = Dtir ,
Ds

′
jt if x = y = 2 and u = D

s′
ir for some s

′,

∂v if u ∈ V and Rirt(x, y, ∂u) = v ∈ V by the above lines,
0 otherwise.

Let R be the set of all such operations.
When applied to certain elements from A′(T )Z, these operations simulate the
computation of the Turing machine T on different input tapes. Certain other ele-
ments of {1, 2,H}Z serve to track the position of the Turing machine’s head when
operations from L ∪ R are applied to elements of A′(T )Z that encode the con-
tents of the tape. Define a binary relation ≺ on {1, 2,H} by x ≺ y if and only
if (x, y) = (2, 2), (x, y) = (2,H), or (x, y) = (1, 1). For F ∈ L ∪ R note that
F (x, y, z) = 0 except when x ≺ y. As with the multiplication operation, operations
of the form m(x) = F (u, v, x) with F ∈ L ∪ R are not injective. The next two
operations are very much like the T operation in that they allow us to produce
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barred elements in some situations, wherem(x) fails to be injective. For F ∈ L∪R
define operations

U 0F (x, y, z, u) =

⎧⎪⎨
⎪⎩
∂F (y, z, u) if x ≺ z, x �= y, and F (y, z, u) �= 0,
F (y, z, u) if x ≺ z, x = y, and F (y, z, u) �= 0,
0 otherwise.

U 1F (x, y, z, u) =

⎧⎪⎨
⎪⎩
∂F (x, y, u) if x ≺ z, y �= z, and F (x, y, u) �= 0,
F (x, y, u) if x ≺ z, y = z, and F (x, y, u) �= 0,
0 otherwise.

The operations of A′(T ) are{
0,∧, (·), J, J ′, K, S0, S1, S2, T, I

}
∪ L ∪R ∪

{
U 0F ,U

1
F | F ∈ L ∪R

}
.

Observe that all operations ofA′(T ) aremonotonicwith respect to the order induced
by the semilattice structure.TheA(T ) algebra from [6] has the sameunderlying set as
A′(T ), and all of the same operations except forK . McKenzie proved the following
theorem.

Theorem 2.1 (McKenzie [6]). κ(A(T )) < � if and only if T halts.
The fact that V(A′(T )) has only finitely many subdirectly irreducible algebras,
all finite, if T halts is needed to prove that this variety has definable principal
subcongruences. Since we have modified the algebra that this theorem refers to,
we must show that this theorem as well as other important properties of A(T ) still
hold.

§3. ModifyingMcKenzie’s Argument. McKenzie’s argument is quite detailed and
long, and fortunately only needs to be added to, not changed. In this section we will
detail the specific additions to the arguments in papers [7] and [6] that are needed,
in order to prove that the large subdirectly irreducible algebras in V(A′(T )) satisfy
K(x, y, z) = x ∧ y ∧ z and are otherwise precisely the same as the large subdirectly
irreducible algebras in V(A(T )) as described in [6].
Lemma 3.1. Suppose that B ∈ V(A′(T )) is flat and B |= S2(u, v, x, y, z) ≈ 0.

Then

(1) B |= K(x, y, z) ≈ x ∧ y ∧ z, and
(2) B |= J ′(x, y, z) ≈ x ∧ y ∧ z.
Proof. We begin with item (1). B ∈ V(A′(T )), so say B = C/	, where C ≤

A′(T )L and 	 ∈ Con(C). Suppose that B �|= K(x, y, z) ≈ x ∧ y ∧ z. Then there are
a, b, c ∈ C withK(a, b, c) � 	 (a ∧b ∧ c). In particular, from the definition ofK this
means that at least 2 of a, b, c lie in distinct 	-classes, and by flatness, (a∧b∧c) 	 0.
We therefore have thatK(a, b, c) � 	 0.
Let α = K(a, b, c). From the definition of K and since K(a, b, c) �= (a ∧ b ∧ c),

for each l ∈ Supp(α) we have a(l) ∈ {α(l), ∂α(l)}. If α 	 a, then since A′(T ) |=
K(x, y, z) ∧ x ≈ K(x, y, z) ∧ x ∧ y ∧ z,

K(a, b, c) = α 	 α ∧ a = K(a, b, c) ∧ a = K(a, b, c) ∧ a ∧ b ∧ c.
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By the flatness of B, this implies K(a, b, c) 	 (a ∧ b ∧ c), which contradicts
observations in the first paragraph. It follows that α � 	 a, so (α ∧ a) 	 0. From the
definition ofK , the hypothesis thatB |= S2(u, v, x, y, z) ≈ 0, and these observations,

0 	 S2(a, α, a, a, a) = K(α, a, 0) 	 K(α, a, α ∧ a) =
{
a(l) for l ∈ Supp(α),
0 for l �∈ Supp(α).

Let a′ = K(α, a, α ∧ a). Then K(a, b, c) = K(a′, b, c) 	 K(0, b, c) = 0, a
contradiction.
We will now prove item (2) from item (1). Assume to the contrary that B �|=
J ′(x, y, z) ≈ x ∧y ∧ z. Then there are d, e, f ∈ B such that J ′(d, e, f) �= d ∧ e ∧f.
If d ∧ e ∧ f �= 0, then by the flatness of B it follows that d = e = f. In this case
J ′(d, e, f) = d ∧ e ∧f by definition, so it must be that d ∧ e ∧f = 0. Thus, we are
assuming that J ′(d, e, f) �= 0.
Since A′(T ) |= K(x, y, x) ≈ J ′(x, y, x) ≥ J ′(x, y, z), for any d, e, f ∈ B by the
proof of item (1) above we have

d ∧ e = K(d, e, d ) = J ′(d, e, d ) ≥ J ′(d, e, f).
B is flat, andby the previous paragraph J ′(d, e, f) �= 0. Thismeans that J (d, e, f) =
d ∧ e �= 0. Therefore d = e, and

J ′(d, e, f) = J ′(d, d, f) = d ∧ d ∧ f = d ∧ e ∧ f,
a contradiction. �
Many additions to McKenzie’s argument occur where induction on polyno-
mial complexity is used, and the following lemma is the crux of the additional
argumentation in most of these instances.

Lemma 3.2. Let L be an index set and suppose that B ≤ A′(T )L and C ⊆ B are
such that
(1) if c ∈ C then c(l) �= 0 for all l ∈ L (we will say that c is nowhere 0), and
(2) if c ∈ C and a ∈ B are such that c(l) ∈ {a(l), ∂a(l)} for all l ∈ L, then
c = a.

Iff1(x), f2(x), f3(x) are polynomials ofB such that for all i eitherfi(x) is constant
or f−1

i (C ) ⊆ C , then the polynomial f(x) = K(f1(x), f2(x), f3(x)) is also either
constant in B or f−1(C ) ⊆ C .
Proof. Let f1(x), f2(x), f3(x) be as in the statement of the lemma, and let
f(x) = K(f1(x), f2(x), f3(x)). We will show that f(x) is either constant or
f−1(C ) ⊆ C . Suppose that a ∈ B and f(a) ∈ C . Since
f(a) = K(f1(a), f2(a), f3(a))

= (∂f1(a) ∧ f2(a))∨(∂f1(a) ∧ ∂f2(a) ∧ f3(a)) ∨ (f1(a) ∧ f2(a) ∧ f3(a)),
and f(a) is nowhere 0 and A′(T ) is flat, for each l ∈ L
• ∂f1(a)(l) = f2(a)(l) = f(a)(l), or
• ∂f1(a)(l) = ∂f2(a)(l) = f3(a)(l) = f(a)(l), or
• f1(a)(l) = f2(a)(l) = f3(a)(l) = f(a)(l).
For b ∈ {f1(a), f2(a)} it follows from these formulas that b(l) ∈ {f(a)(l),
∂f(a)(l)} for all l ∈ L. Hypothesis (2) implies that f(x) = f1(a) = f2(a),
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and then f(a) ≤ f3(a). Since f(a) is nowhere 0, we have f(a) = f3(a) as well.
Thus, fi(a) ∈ C for i ∈ {0, 1, 2}. Thus, finally, if a �∈ C , then each fi is constant
on B, and then so is f. �

Definition 3.3. Let C be a class of algebras of the same type whose reduct to
{0,∧} is a meet semilattice. C is said to be 0-absorbing if for every fundamental
operation F (x1, . . . , xn), every A ∈ C, and every a1, . . . , an ∈ A,

0 ∈ {a1, . . . , an} implies F (a1, . . . , an) = 0.

C is said to commute with ∧ if for every fundamental operation F of some arity n,
C |= F (x1, . . . , xn) ∧ F (y1, . . . , yn) ≈ F (x1 ∧ y1, . . . , xn ∧ yn).

We now enumerate the needed additions to McKenzie’s proofs in papers [7]
and [6]. To avoid needlessly long definitions and discussions, the additions will be
presented assuming that the reader has the appropriate paper on hand to reference.
Overall, we will proceed through the main argument in [6] and divert to [7] when
the main argument makes reference to it.

(1) In general, we note that K is monotonic, and if A ∈ V(A′(T )) is flat and
A |= S2(u, v, x, y, z) ≈ 0, thenA |= J ′(x, y, z) ≈ K(x, y, z) ≈ x∧y∧z. This
is Lemma 3.1.

(2) In [6] in the proof of Lemma 4.1, elements αn and �n of A′(T )Z are defined
as

αn(k) =

⎧⎪⎨
⎪⎩
1 if k < n,
H if k = n,
2 if k > n,

and �n(k) =

{
C if k < n,
D if k ≥ n.

Let Γ be the subuniverse of the algebra generated by these elements, Σ the
set of all configuration elements generated by the αn (that is, the set of all
nowhere 0 outputs of L ∪ R ∪ {I }), and Γ0 the subset of Γ consisting of
elements that are 0 at some coordinate. It is necessary to prove that the set

Γ′ = Γ0 ∪ Σ ∪ {αn, �n | n ∈ Z}
is closed under the operationK . By construction, if u ∈ Γ′ \Γ0, then for each
l ∈ L, u(l) cannot be a barred element (e.g. ∂C , ∂D, ∂C sir , etc.). From the
definition ofK , we have that if a, b, c ∈ Γ′\Γ0, thenK(a, b, c) = a∧b∧c ∈ Γ.
ThusK(Γ′ \Γ0,Γ′ \Γ0,Γ′ \Γ0) ⊆ Γ′. The set Γ0 contains elements that have
a value of 0 at some coordinate. SinceK is 0-absorbing in its first and second
coordinates,K(Γ0,Γ′,Γ′)∪K(Γ′,Γ0,Γ′) ⊆ Γ0. Furthermore, if a, b ∈ Γ′\Γ0
and c ∈ Γ0 then since a(l) �= ∂b(l) for any l ∈ Z (Γ′ \Γ0 contains no barred
elements), we have thatK(a, b, c) = a ∧ b ∧ c, so in this caseK(a, b, c) ∈ Γ0
since w ∈ Γ0. ThereforeK(Γ′ \Γ0,Γ′ \Γ0,Γ0) ⊆ Γ0. We have now show that
K(Γ′,Γ′,Γ′) ⊆ Γ′, so we are done.

(3) The proof of Lemma 5.3 in [6] needs only a few added words at the end of
the first full paragraph on page 41 to demonstrate that our new operation K
can be dealt with the same way as the operations J and J ′ are handled in this
proof.

(4) Prior to the statement of Lemma 5.5 in [6], it is written that the lemma
is a restatement of Lemmas 6.7-6.9 of [7]. All of these lemmas go through
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without modification, except for Lemma 6.8. Lemma 6.8 concerns itself with
a subalgebra B of A′(T )L and a subset B1 of B defined by

B1 =
{
u ∈ B | u = p or x0x1 · · ·xn = p and u ∈ {x0 . . . , xn}

}
(p is a fixed element of B that has the property, amongst many others, of
being nowhere 0). The product in x0x1 · · ·xn in the definition ofB1 associates
to the right. At the very start of the proof of Lemma 6.8, induction on the
complexity of polynomials is used to prove that if u ∈ B and f(u) ∈ B1 then
f(x) is either constant or u ∈ B1. Lemma 6.6 in [7] states that B1 consists of
elements that are nowhere 0 and having the property that if u ∈ B1 and v ∈ B
are such that u(l) ∈ {v(l), ∂v(l)} for all l ∈ L, then u = v. TakingC = B1 in
Lemma 3.2 above, the inductive step of the proof for theK operation follows.

(5) In [6] in the proof of Lemma 5.7 part (iii), induction on the complexity of
polynomials is used to prove that if f(x) is a nonconstant polynomial of B
and f(u) ∈ B1 for some u ∈ B, then u ∈ B1. This is the same argument that
appears in the previous item above.

(6) A consequence of these lemmas is that every large SI of V(A′(T )) is flat and
models Si(u, x, y, z) ≈ 0 for every i ∈ {0, 1, 2}. By Lemma 3.1, we have
that K(x, y, z) ≈ x ∧ y ∧ z in large SI’s (in fact, in large SI’s K(x, y, z) ≈
x ∧ y ∧ z ≈ J (x, y, z)). Therefore, the addition of the K operation does not
change the structure of the large SI’s of V(A′(T )).

This completes the changes that are needed to adapt McKenzie’s description of
large SI algebras in V(A(T )) to V(A′(T )). We will now give an explicit description
of exactly what these algebras look like.

§4. Subdirectly irreducible algebras in V(A′(T )). Define terms e0, e1, e2 in
V(A′(T )) by

e0(m,x) = S0(m,x, x, x), e2(m, n, x) = S2(m, n, x, x, x),

e1(m,x) = S1(m,x, x, x).
(4.1)

The argument in the previous section shows that large SI’s model ei(y, x) ≈ 0 for all
i ∈ {0, 1, 2}. The small subdirectly irreducible algebras break into two categories:
those that satisfy ∃n[ei(n, x) ≈ x] for some i ∈ {0, 1, 2}, and those that do not
(in which case they satisfy ei(y, x) ≈ 0 for all i ∈ {0, 1, 2}). As we will see in
Lemma 5.4, all SI algebras that do model ∃n[ei(n, x) ≈ x] for some i ∈ {0, 1, 2}
have Jónsson polynomials and are thus congruence distributive, andby an argument
due to Baker and Wang [2], these algebras will also have DPSC.
There are only three different isomorphism types for small SI algebras satisfying
ei(y, x) ≈ 0 for all i ∈ {0, 1, 2}. Two of these small SI’s are subalgebras of A′(T )),
and the remaining one is the 4-element quotient

W = 〈H,C 〉 /Cg(M 01 , 0) = {0,H,C,D,M 01 }/Cg(M 01 , 0) (4.2)

(this will be proved in Lemma 4.1). The fundamental operations of A′(T ) are all
identically 0 in W except for ∧, which makes 〈W ;∧〉 a flat semilattice, and the
following operations:
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x · y = 0 except for H · C = D,
T (w, x, y, z) = 0 except for T (H,C,H,C ) = D,

J (x, y, z) = x ∧ y, and J ′(x, y, z) = K(x, y, z) = x ∧ y ∧ z.

Lemma 4.1. Let B ∈ HS(A′(T )) be nontrivial and subdirectly irreducible and such
that B |= ei(y, x) ≈ 0 for all i ∈ {0, 1, 2}. Then B is isomorphic to the two element
subalgebra {0, C} ≤ A′(T ), the three element subalgebra {0,H,M 01 } ≤ A′(T ), or to
the four element quotientW.

Proof. We will first consider subalgebras. Suppose that B ≤ A
′(T ) is SI. Since

B |= Si(n, x, x, x) ≈ 0 for all i , we have ({1, 2} ∪V0) ∩ B = ∅ and {x, ∂x} �⊆ B for
x ∈W ∪V (i.e., the “bar-able” elements of A′(T )). It follows that all fundamental
operations are identically 0 except for ∧ and

I (x) = 0 except for I (H ) =M 01 ,

x · y = 0 except for H · C = D andH · ∂C = ∂D,
J (x, y, z) = x ∧ y,

K(x, y, z) = J ′(x, y, z) = x ∧ y ∧ z, and
T (w, x, y, z) = (w ∧ y) · (x ∧ z). (4.3)

There are two cases depending upon whether or notH is an element ofB. For the
first case, suppose that H �∈ B. Then x · y = T (w, x, y, z) = I (x) = 0, so B is a
flat semilattice. It follows that if x, y ∈ B are distinct and nonzero, then CgB(x, 0)
and CgB(y, 0) are distinct and cover 0 in Con(B), and hence B is not subdirectly
irreducible. Therefore B = {0, x}, so B is isomorphic to the subalgebra {0, C}.
For the second case, suppose that H ∈ B. Then I (H ) = M 01 ∈ B as well.

If F (x) is a fundamental translation of B, then F (M 01 ) = M
0
1 or F (M

0
1 ) = 0 (see

the description of the fundamental operations above). Two consequences of this
are that CgB(M 01 , 0) is the monolith of B and that if Cg

B(a, 0) = CgB(M 01 , 0) then
a =M 01 .
We will now show that B = {0,H,M 01 }. Suppose that x ∈ B \ {0,H,M 01 }.

If x = C , thenH ·C = D, soD ∈ B as well. An argument similar to the one in the
previous paragraph will show that CgB(D, 0) covers 0. Likewise, if x = ∂C , then
CgB(∂D, 0) covers 0. Both of these possibilities are contradictions. If x �∈ {C, ∂C}
then CgB(x, 0) also covers 0, again contradicting B being subdirectly irreducible.
Therefore it must be that B \ {0,H,M 01 } = ∅. It follows that the only subdirectly
irreducible subalgebras of A′(T ) are isomorphic to either {0, C} or {0,H,M 01 }.
We now examine the situation when B is a proper quotient of a subalgebra of

A′(T ). Suppose that B = B1/	 ∈ HS(A′(T )) is subdirectly irreducible. In the
quotient B, the equations (4.3) hold by the same argument appearing at the start
of the proof. Since A′(T ) is a flat semilattice, the only possibly nontrivial class of
	 is the one containing 0. As before, we have two cases to consider, depending on
whether B contains a nonzeroH/	. IfH �∈ B1 or (H, 0) ∈ 	, then B is a subdirectly
irreducible flat semilattice (i.e., all the operations are 0 except for ∧), so B must be
isomorphic to the 2-element subalgebra {0, C} of A′(T ).
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Suppose now thatH ∈ B1 and (H, 0) �∈ 	. There are three cases to consider:
• (M 01 , 0) �∈ 	,
• (M 01 , 0) ∈ 	 and [ C �∈ B1 or (C, 0) ∈ 	 ], or
• (M 01 , 0) ∈ 	 and [C ∈ B1 and (C, 0) �∈ 	 ].
If (M 01 , 0) �∈ 	 then CgB(M 01 , 0) is the monolith of B, so by the last paragraph B is
isomorphic to the 3-element subalgebra {0,H,M 01 } ofA′(T ). If instead (M 01 , 0) ∈ 	
and [ C �∈ B1 or (C, 0) ∈ 	 ], then CgB(H, 0) must cover 0, so B is isomorphic to
the 2-element subalgebra {0, C}. Suppose now that (M 01 , 0) ∈ 	 and [ C ∈ B1 and
(C, 0) �∈ 	 ]. If (D, 0) ∈ 	, then both CgB(H, 0) andCgB(C, 0) cover 0, contradicting
the subdirect irreducibility. If (D, 0) �∈ 	, then CgB(D, 0) covers 0. An argument
similar to when B is a subalgebra shows that x �∈ B1 or (x, 0) ∈ 	 for all x ∈
B1 \ {0,H,C,D}. When this happens B is isomorphic to the algebraW described
in (4.2) above. �
Large subdirectly irreducible algebras in V(A′(T )) come in two types: sequential
and machine. Both of these types of algebras model the identities Si (n, x, y, z) ≈ 0,
J (x, y, z) ≈ x, and J ′(x, y, z) ≈ K(x, y, z) ≈ x ∧ y ∧ z. Sequential algebras
are distinguished as additionally modeling the identities I (x) ≈ F (x, y, z) ≈
UεF (w, x, y, z) ≈ 0 for all F ∈ L ∪ R and all ε ∈ {0, 1}. Machine algebras are
distinguished as modeling the identities x · y ≈ T (w, x, y, z) ≈ 0.
We begin the description of the sequential algebras by describing an algebra

SZ in which every sequential algebra is embeddable (but which may not belong
to V(A′(T ))). The algebra SZ has underlying set SZ = {0, ai , bi | i ∈ Z} and
fundamental operations of SZ are the same asA′(T ), but are all identically 0 except
for ∧, (·), T , J , J ′, and K . The operation ∧ is defined so that 〈SZ;∧〉 is a flat meet
semilattice with bottom element 0. The operation (·) is defined so thatan ·bn+1 = bn,
and 0 otherwise. The operations T , J , J ′, and K are defined

J (x, y, z) = x ∧ y, J ′(x, y, z) = K(x, y, z) = x ∧ y ∧ z,
T (w, x, y, z) = (w · x) ∧ (y · z).

DefineS� to be the subalgebra of SZwith universe {0, ai , bi | i ≥ 0}, anddefineSn to
be the subalgebra of SZ with universe {0, a0, b0, . . . , an, bn}. The algebras S� and Sn
are subdirectly irreducible, with monoliths Cg(b0, 0). With the additions described
earlier in Section 3, McKenzie’s argument in [6] proves that SZ ∈ V(A′(T )) if and
only if T does not halt, and that T halts if and only if there is somemaximumN ∈ N

such that SN ∈ V(A′(T )). SZ, S� , and Sn for n ∈ N are the sequential algebras,
but only Sn and S� are subdirectly irreducible.
Next, we restate the description of machine algebras given by McKenzie [6].
We begin the description of machine algebras by defining an algebra (possibly
not in V(A′(T ))) that will have a quotient isomorphic to our hypothetical machine
algebra. LetN ⊆ Zbe a nonempty interval and letQ = 〈�, j, 〉 be any configuration
of the Turing machine T (here � is the tape function, j ∈ N is the head position, and
 is the state of themachine).We say thatQ is an initial configuration if � is the blank
tape (the tape consisting of all 0’s, written as �0 below) and  = �1 (the starting
state). We say thatQ is a halting configuration if  = �0 (the halting state). Let ΩN
denote the set of all configurations 〈�, j, 〉 with j ∈ N and �(Z \N) = {0}. Write
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P ≤N Q if there is a finite sequence Q = Q0, . . . ,Qm = P with Qi ∈ ΩN and such
thatQi+1 = T (Qi).
Let ΣN = {an | n ∈ N}, and assume that ΣN , ΩN , and {0} are pairwise disjoint.

Let PN be the algebra where

• the universe is PN = {0} ∪ ΣN ∪ΩN ,
• the operations (·), S0, S1, S2, T are identically 0,
• ∧ makes 〈PN ,∧〉 a flat semilattice,
• J (x, y, z) = x ∧ y and J ′(x, y, z) = K(x, y, z) = x ∧ y ∧ z,
• I (an) = 〈�0, n, �1〉 ∈ ΩN and I (x) = 0 otherwise (here �0 is the tape consisting
of all 0’s),

• if F = Lirε ∈ L where �irsL�j is an instruction of T and Q = 〈�, n + 1, �i〉
is a configuration in ΩN , then F (an, an+1,Q) = T (Q) provided that n ∈ N ,
T (Q) ∈ ΩN , �(n + 1) = r, and �(n) = ε. In all other cases F (x, y, z) = 0.
The case when F = Rirε ∈ R is defined analogously,

• if F ∈ L ∪R and n, n + 1 ∈ N , we have

U 0F (an, an+1, an+1, x) = F (an, an+1, x) = U
1
F (an, an, an+1, x),

andUjF (w, x, y, z) = 0 otherwise.

Next, we describe the congruence of PN which we will quotient by. Assume the set
Φ ⊆ ΩN and the element P ∈ Φ satisfy the following conditions.

• For all Q ∈ Φ we have P ≤N Q.
• If Q ∈ Φ and P ≤N T (Q) then T (Q) ∈ Φ.
• If Q ∈ ΩN is an initial configuration and P ≤N Q then Q ∈ Φ.
• If Q,Q′ ∈ ΩN , Q′ is a halting configuration, andQ′ ≤N Q thenQ �∈ Φ.
• |N | > 1 and for every n ∈ N , there is some 〈�, n, 〉 ∈ Φ.

Define Γ to be (ΩN \ Φ) ∪ {0} and let Θ(Φ) be the congruence of PN whose only
nontrivial class is Γ. McKenzie gives the following theorem at the end of [6], which
with the addition of the arguments above still holds for the modified A′(T ).
Theorem 4.2 (McKenzie [6]). Θ(Φ) is a congruence relation of PN and the algebra

PN/Θ(Φ) is a subdirectly irreducible algebra that belongs to V(A′(T )). Every large SI
in V(A′(T )) is either embeddable in S� or is isomorphic to PN/Θ(Φ) for some N and
Φ as above.

The above description of the SI algebras in V(A′(T )) extends to V(A′(T )) the
result that κ(A′(T )) < � if and only if T halts to A′(T ).
Theorem 4.3. κ(A′(T )) < � if and only if T halts.

§5. If T halts. The argument to show that V(A′(T )) has definable principal
subcongruences if T halts is quite long and intricate, so we will begin by giving an
description of the different cases.

Definition 5.1. Let F (x1, . . . , xn) be a fundamental operation of A′(T ), B ∈
V(A′(T )), and b1, . . . bn ∈ B. The polynomials

F (i)b1,...,bn (x) = F (b1, . . . ,
i

x̂, . . . , bn) for i ∈ {1, . . . , n}

are called fundamental translations of F .
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If h(x) is a polynomial of B that is generated under composition by fundamental
translations, we will say that h(x) is a primitive polynomial. The set of all primitive
polynomials of B will be denoted

P(B) = {h(x) ∈ Pol1(B) | h(x) is generated by fundamental translations}.
When the algebra B is clear from the context which h(x) is mentioned in, P(B) will
be shortened to just P .
If B is an algebra, then by Maltsev’s Lemma, (c, d ) ∈ CgB(a, b) if and only if
there is a sequence of elements, c = k1, k2, . . . , kn = d , terms f1, . . . , fn−1, and
constants e ∈ Bm such that {fi(e, a), fi(e, b)} = {ki , ki+1} for all i . Equivalently,
we can take the polynomials fi(e, x) to be generated by fundamental translations.
A congruence scheme, as in [3], is a first-order formula, ϕ(w, x, y, z), that asserts
the existence of such elements k1, . . . , kn and constants e for some fixed sequence
of terms. A disjunction of congruence schemes is a congruence formula, and every
(c, d ) ∈ CgB(a, b) satisfies some congruence scheme. Thus, showing that a principal
congruence is definable can be reduced to finding a finite number of schemes that
fully describe the congruence, and showing that a variety has definable principal
congruences can be reduced to show that there is a finite number of congruence
schemes that fully describe every principal congruence in every algebra in the variety.
Begin with an arbitrary B ∈ V(A′(T )) with subdirect representation B ≤∏
l∈LCl , where each Cl is subdirectly irreducible. Recall from the previous sec-
tion that ei (n, x) = Si (n, x, x, x), where n = n1 if i ∈ {0, 1} and n = (n1, n2)
if i = 2. The isomorphism types of the Cl come in 4 different flavors. If Cl is
subdirectly irreducible, then exactly one of the following holds:

(a) Cl |= ∃n[ei (n, x) ≈ x] for some i ∈ {0, 1, 2}. Any suchCl is necessarily small
(i.e., contained in HS(A′(T )) (see Lemma 5.2 in [6]). For fixed i ∈ {0, 1, 2}
and m ∈ B2 ∪ B, every model of ei(m,x) ≈ x is congruence distributive
(see the proof of Lemma 5.4), and the class of these models (for a single
fixed i) has definable principal subcongruences (see Lemma 5.4).

(b) Cl is small and Cl |= ei (y, x) ≈ 0 for all i ∈ {0, 1, 2}. In this case there are
just 3 isomorphism types (see Lemma 4.1).

(c) Cl is large (i.e., not contained in HS(A′(T ))) and Cl |= ei (y, x) ≈ 0 for all
i ∈ {0, 1, 2} and C |= I (x) ≈ F (x, y, z) ≈ 0 for all F ∈ L ∪R. In this case,
C is sequential. SI’s of this type were fully described in Section 4.

(d) Cl is large and C |= ei (y, x) ≈ 0 for all i ∈ {0, 1, 2} and C |= x · y ≈
T (w, x, y, z) ≈ 0, In this case, C is machine. SI’s of this type were fully
described in Section 4.

In order to show that V(A′(T )) has definable principal subcongruences, we will
produce congruence formulas Γ and � such that for any B ∈ V(A′(T )) and any
a′, b′ ∈ B there is (c, d ) ∈ CgB(a′, b′) witnessed by Γ(c, d, a′, b′) and such that
the relation “(x, y) ∈ CgB(c, d )” is defined by �(x, y, c, d ). Let B ≤

∏
l∈LCl be a

subdirect representation of B by subdirectly irreducible algebras. The way in which
(c, d ) is produced depends on the isomorphism types of theCl with l ∈ L such that
a′(l) �= b′(l). Our first step is to assume without loss of generality that a′ �≤ b′ and
to take a = a′ and b = a′ ∧ b′ so that b < a. Let K = {l ∈ L | a(l) �= b(l)}.
The case distinctions follow.
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(1) There is k ∈ K such thatCk |= ∃n[ei(n, x) ≈ x]. These are the SI’s described
in item (a) above.

(2) The previous case does not hold, and there is k ∈ K such thatCk is sequential.
In this case either a translation of the operation (·) will distinguish a and
b, or (a(l), b(l)) lies in the monolith of Cl for all l ∈ L. These are the SI’s
described in item (c) above.

(3) The previous cases do not hold, and there is k ∈ K such that Ck is machine,
and either a translation of one of the operations fromL∪R∪{I }will separate
a and b, or (a(l), b(l)) lies in the monolith of Cl for all l ∈ L. These are the
SI’s described in item (d) above.

(4) The previous cases do not hold, so itmust be that the only k ∈ K are such that
Ck is one of the three small SI’s that satisfy ei (n, x) ≈ 0 for all i ∈ {0, 1, 2}.
These are the SI’s described in item (b) above.

We begin the proof for Case 1 with a slightly specialized version of a theorem from
Baker and Wang [2].

Lemma 5.2. Let V be a locally finite variety and let

P(c) = {pj(c, x1, x2, x3) | 1 ≤ j ≤ K}

be terms in V with (a fixed number of ) constant symbols c. Suppose that J (c) is
the set consisting of the Jónsson identities for the polynomials P(c) in the variables
{x1, x2, x3}. Then the class

M =ModV(∃c J (c)) = {B ∈ V | B |= ∃c J (c)}

has definable principal subcongruences if κ(V) = N < �.
Proof. The notable modification of the proof given in [2] is at (5.1) below.
Let B ∈ M, let a, b ∈ B be distinct, and fix c ∈ Bn witnessing B |= J (c).

Let B ≤
∏
l∈LCl be a subdirect representation of B by subdirectly irreducible

algebras such that whenever k, l ∈ L and Ck ≡ Cl then Ck = Cl . Since κ(V) < �,
each Cl is finite and there are only finitely many distinct ones. We will construct a
finite subalgebra C ≤ B, and then find a pair (c, d ) ∈ CgC(a, b) such that c �= d
and CgB(c, d ) is uniformly definable (i.e., definable in a way that depends only on V ,
and not on B, c, or d ).
Choose k ∈ L such that a(k) �= b(k) and |Ck| is maximal with this property.

Choose preimage representatives s1, . . . sM ∈ B of Ck and let

C = 〈{a, b, c} ∪ {s1, . . . , sM}〉. (5.1)

Sinceκ(V) = N < � andV is locally finite, any suchChas size boundedby a number
depending only on N and the number of constants c. Since C has bounded size,
congruences are defined by a finite number of congruence schemes. By construction,
�k(C) = Ck and since any subalgebra of B containing c is congruence distributive
(any such subalgebra has Jónsson polynomials), C is congruence distributive.

Ck is subdirectly irreducible, so ker(�k|C) is completely meet irreducible in
Con(C) (the congruence lattice of C). Since C is congruence distributive, the inter-
val [0,ker(�k |C)] is a prime ideal and therefore the complement is a filter with a
least element, call it α, which is join-prime. Therefore α is a principal congru-
ence, say α = CgC(c, d ), and α is the least congruence not below ker(�k |C). Since
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CgC(a, b) �≤ ker(�k |C), by minimality of α we have α = CgC(c, d ) ≤ CgC(a, b).
By the previous paragraph, |C | is bounded by a number depending only on N and
the number of constants c. It follows that there is a congruence formula determined
entirely by this bound that witnesses (c, d ) ∈ CgC(a, b).
Let l ∈ L and suppose that c(l) �= d (l). Then CgC(c, d ) �≤ ker(�l |C) and
a(l) �= b(l). By the minimality of α = CgC(c, d ), it must be that ker(�l |C) ≤
ker(�k |C). Hence there is a surjective mapping

�l (C) ∼= C/ ker(�l |C)� C/ ker(�k|C) ∼= �k(C) = Ck.

Now, Ck was chosen to be maximal such that a(k) �= b(k), so the mapping must
also be injective since Cl is finite. Thus �l (C) = Ck .
Let r, s ∈ B be distinct with (r, s) ∈ CgB(c, d ). We shall construct a finite D
such that (r, s) ∈ CgD(c, d ). Let D = 〈C ∪ {r, s}〉. As with C, any such D has size
bounded by a number depending only onN and the number of constants c, and so
congruences in D are defined by a congruence formula determined entirely by this
bound. Since c ∈ Dn, we also have that D is congruence distributive. Let l ∈ L.
If c(l) �= d (l) then by the above paragraph �l (D) = �l(C) = Ck , so

(r(l), s(l)) ∈ Cg�l (C)(c(l), d (l)) = Cg�l (D)(c(l), d (l)).

On the other hand, if c(l) = d (l) then r(l) = s(l), so it follows that (r(l), s(l)) ∈
Cg�l (D)(c(l), d (l)) = 0�l (D). In either case, (r(l), s(l)) ∈ Cg

�l (D)(c(l), d (l)) for all
l ∈ L. To complete the proof we need only prove the following claim.
Claim. Let D be finite and congruence distributive and let D ≤

∏
i∈I Ci . Then

(r, s) ∈ CgD(c, d ) if and only if (r(i), s(i)) ∈ Cg�i (D)(c(i), d (i)) for all i ∈ I .
Proof of claim. One direction is clear, since the i-th projection map is a
homomorphism. For the other direction, we have

(r, s) ∈ CgD(c, d ) ∨ ker(�i) for each i.

The set Γ = {ker(�i) | i ∈ I } of congruences of D is finite since D is finite.
Let Γ = {ker(�j) | j ∈ J}, where J is a finite subset of I . Then by the congruence
distributivity of D,

(r, s) ∈
∧
j∈J

(
CgD(c, d ) ∨ ker(�j)

)
= CgD(c, d ) ∨

∧
j∈J
ker(�j),

= CgD(c, d ) ∨
∧
i∈I
ker(�i) = CgD(c, d ) ∨ 0D,

= CgD(c, d ),

as claimed. �
�

Let V = V(A′(T )) and define subclasses of V ,

Mi = ModV
(
∃m

[
ei (m,x) ≈ x

])
for i ∈ {0, 1, 2}.

We will make use of the fact that if C is subdirectly irreducible, then either C |=
∃n[ei(n, x) ≈ x] for some i ∈ {0, 1, 2} or C |= ei (y, x) ≈ 0 for all i ∈ {0, 1, 2}.
This fact follows from the description of SI’s in Section 4 and from the definition
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of the Si and the ei . In the case, where C |= ∃n[ei (n, x) ≈ x], McKenzie [6] proves
that since C is subdirectly irreducible it is necessarily small. The condition

“x ∈ ei(u,B) for some i ∈ {0, 1, 2} and some u ∈ B2 ∪ B”

and it’s negation will be referred to quite often in the upcoming argument, so we
now define an easier way to reference it.

Definition 5.3. We will say that S ⊆ B is unhappy if

∀i ∈ {0, 1, 2} ∀u ∈ B2 ∪ B
[
S �⊆ ei(u,B)

]
,

and S is happy otherwise. The element s ∈ B is unhappy (resp. happy) if {s} is
unhappy (resp. happy). The function h : Bn → B is unhappy (resp. happy) if
Range(h) is unhappy (resp. happy). Note that these definitions depend on the
algebra B, but the particular algebra something is happy or unhappy with respect
to will always be clear from the context.

Here are some useful (and straightforward) observations about happiness with
respect to an algebra B.

• If a set S only contains unhappy elements then this is a stronger property than
S being unhappy.

• The operations Si for i ∈ {0, 1, 2} are happy.
• If the function h : Bn → B is 0-absorbing in the ith variable position, then
it preserves happiness in the sense that if a1, . . . an ∈ B and ai is happy, then
h(a1, . . . , an) is happy as well.

• If c, d ∈ B, d ≤ c, and {d, c} is unhappy, then c must be unhappy.

Lemma 5.4. If T halts then eachMi has definable principal subcongruences.

Proof. Let i ∈ {0, 1, 2}. We will show that Mi satisfies the hypotheses of
Lemma 5.2 and thus has definable principal subcongruences. Let B ∈ Mi . Choose
m ∈ B2 ∪ B witnessing B |= ei(m,x) ≈ x. Now, B |= ei(m,x) ≈ x if and only if
B |= Si(m,x, y, z) ≈ (x ∧ y)∨ (x ∧ z). Therefore there existsm ∈ B2 ∪B such that
the following

p0(x, y, z) = x, p1(x, y, z) = Si(m,x, y, z) = (x ∧ y) ∨ (x ∧ z),
p2(x, y, z) = x ∧ z, p3(x, y, z) = Si (m, z, y, x) = (y ∧ z) ∨ (x ∧ z),
p4(x, y, z) = z,

are polynomials ofB and satisfy the Jónsson identities. If Ji(m) is the set of Jónsson
identities for these polynomials, then Mi ⊆ ModV(∃m Ji(m)). Since T halts,
κ(V(Mi )) ≤ κ(A′(T )) < �. By Lemma 5.2, it follows that Mi has definable
principal subcongruences. �
Let Γi0(w, x, y, z) and �

i
0(w, x, y, z) be the congruence formulas witnessing

definable principal subcongruences forMi . Define

�0(w, x, y, z) =
2∨
i=0

�i0(w, x, y, z) and Γ0(w, x, y, z) =
2∨
i=0

Γi0(w, x, y, z). (5.2)

Theorem 5.5. The classM0 ∪M1 ∪M2 has definable principal subcongruences
witnessed by the congruence formulas Γ0 and �0.
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Proof. Since Γi0 and�
i
0 are congruence formulas, so are Γ0 and�0. Let Π�0 (x, y)

be the formula expressing that the pair (x, y) generates a congruence that is defined
by �0(−,−, x, y) in V(A′(T )) (i.e., the formula asserting that �0(−,−, x, y) is
an equivalence relation, is invariant under fundamental translations, and that
�0(x, y, x, y) holds). Since each Mi has definable principal subcongruences and
Γ0 and�0 are the disjunctions of the formulas witnessing DPSC, Γ0 and �0 witness
definable principal subcongruences for the classM1 ∪M2 ∪M3. �
In symbols, Theorem 5.5 says

M1 ∪M2 ∪M3 |= ∀a, b
[
a �= b → ∃c, d

[
c �= d ∧ Γ0(c, d, a, b) ∧Π�0 (c, d )

]]
.

In terms of happiness, Theorem 5.5 means that if B is a happy algebra, then B has
DPSC witnessed by Γ0 and �0.
The next 5 lemmas provide the groundwork for analyzing the polynomials that
make up a hypotheticalMaltsev chain. Specifically, they describe the extent towhich
the non-0-absorbing operations commute with the other operations.

Lemma 5.6. Each of the following hold for every algebra B ∈ V(A′(T )).
(1) If f(x) is 0-absorbing, then g(x) = f(Sj(n, p, q, x)) is happy for all j ∈

{0, 1, 2}, n ∈ B2 ∪ B, and p, q ∈ B.
(2) If f(x) is happy, then there is j ∈ {0, 1, 2} and n ∈ B2 ∪ B such that

f(x) = Sj(n,f(x), f(x), f(x)).

(3) If f(x) is a polynomial, c, d ∈ B, d ≤ c, and {f(c), f(d )} is happy, then
there is j ∈ {0, 1, 2} and n ∈ B2 ∪ B such that the polynomial

g(x) = Sj(n,f(c), f(d ), f(x))

satisfies (g(c), g(d )) = (f(c), f(d )).

Proof. We begin with (1). Let B ≤
∏
l∈LCl be a subdirect representation of B

by subdirectly irreducible algebras and define

I = {l ∈ L | �l (Sj(n, p, q, B)) �= {0}} and J = L \ I.

Write a typical y ∈ B as y = (yI , yJ ), where yI = �I (y) and yJ = �J (y). Therefore
Sj(n, y, y, y) = ej(n, y) = (yI , 0), so

g(x) = f(Sj(n, p, q, x)) = f
(
(pI ∧ qI ) ∨ (pI ∧ xI )

0J

)

=
(
f((pI ∧ qI ) ∨ (pI ∧ xI ))

f(0J )

)
=

(
f((pI ∧ qI ) ∨ (pI ∧ xI ))

0J

)
∈ ej(B).

For (2), say that f(x) is happy because Range(f(x)) ⊆ ej(n,B) for some
j ∈ {0, 1, 2} and n ∈ B2∪B.Observing that ej(n,B) |= ej(n, x) ≈ x, the conclusion
follows.
For (3), say (as in (2)) that {f(c), f(d )} is happy because {f(c), f(d )} ⊆

ej(n,B) for some j ∈ {0, 1, 2} and n ∈ B2 ∪ B. The operations of A′(T ) are
monotonic, so f(d ) ≤ f(c). Therefore

g(c) = Sj(n,f(c), f(d ), f(c)) = (f(c) ∧ f(d )) ∨ (f(c) ∧ f(c)) = f(c),
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and likewise

g(d ) = Sj(n,f(c), f(d ), f(d )) = (f(c) ∧ f(d )) ∨ (f(c) ∧ f(d )) = f(d ). �

Lemma 5.7. Let {c, d} ⊆ B be happy with d ≤ c and let g(x) ∈ P . Then there
are constants p, q ∈ B such that
(1) if {g(c), g(d )} is happy, then there is j ∈ {0, 1, 2}, n ∈ B2 ∪ B, and a happy
polynomial h(x) ∈ P such that

g′(x) = Sj(n, p, q, h(x))

has (g(c), g(d )) = (g ′(c), g ′(d )).
(2) if {g(c), g(d )} is unhappy, then there are some fundamental translations
F1, . . . , FM and a happy polynomial h(x) ∈ P such that for some choice of
operationG ∈ {J, J ′, K}, the polynomial

g ′(x) = FM ◦ · · · ◦ F1 ◦G(p, q, h(x))

has (g(c), g(d )) = (g ′(c), g ′(d )) and the set

{Fk ◦ · · · ◦ F1 ◦G(p, q, h(c)) | 1 ≤ k ≤M} ∪ {G(p, q, h(c))}

contains only unhappy elements.

Proof. Item (1) is a restatement of Lemma 5.6.
Suppose that {g(c), g(d )} is unhappy. The polynomial g(x) is primitive, so there

are fundamental translations F1, . . . , FN such that g(x) = FN ◦ · · · ◦ F1(x). Define
a sequence of polynomials gl (x) and elements cl , dl by gl (x) = Fl ◦ · · · ◦F1(x) and
(cl , dl ) = (gl (c), gl (d )) with (c0, d0) = (c, d ). ChooseLmaximal such that {cL, dL}
is unhappy but {cL−1, dL−1} is happy. Since cL = FL(cL−1) and dL = FL(cL−1),
the translationFL must map some happy elements to unhappy elements (i.e., it does
not preserve happiness). The only way this can happen is if FL is non-0-absorbing
(by Lemma 5.6, 0-absorbing functions preserve happiness).
The only fundamental translations that are not 0-absorbing are the Sj in the last

2 variables, and J , J ′, and K in the last variable. If FL is such a translation of
an Sj operation, then it is happy, which contradicts the unhappiness of {cL, dL}.
Therefore

FL(x) ∈ {J (p, q, x), J ′(p, q, x), K(p, q, x)}

for some p, q ∈ B. Let the happiness of the set {cL−1, dL−1} be witnessed by
{cL−1, dL−1} ⊆ ej(n,B) for some j ∈ {0, 1, 2} and n ∈ B2 ∪ B, and define

g ′(x) = FM ◦ · · ·◦FL ◦h(x) where h(x) = Sj(n, cL−1, dL−1, FL−1 ◦ · · ·◦F1(x)).

The polynomial h(x) is clearly happy and primitive, and by the maximality of L
the set

{Fk ◦ · · · ◦ FL+1 ◦ FL(c) | L+ 1 ≤ k ≤ N} = {ck | L+ 1 ≤ k ≤ N}

contains only unhappy elements.
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The only assertion left to verify is (g ′(c), g ′(d )) = (g(c), g(d )). Since all
operations are monotone and d ≤ c, we have that dL−1 ≤ cL−1. Since
{cL−1, dL−1} ⊆ ej(n,B) and dL−1 ≤ cL−1,

FM ◦ · · · ◦ FL ◦ h
(
c
d

)
= FM ◦ · · · ◦ FL ◦ Sj

(
n, cL−1, dL−1, FL−1 ◦ · · · ◦ F1

(
c
d

))

= FM ◦ · · · ◦ FL ◦ Sj
(
n, cL−1, dL−1,

(
cL−1
dL−1

))

= FM ◦ · · · ◦ FL ◦
(
cL−1
dL−1

)

= FM ◦ · · · ◦ FL ◦ FL−1 ◦ · · · ◦ F1
(
c
d

)
= g

(
c
d

)
.

Therefore, (g ′(c), g ′(d )) = (g(c), g(d )). Reindexing FM, . . . FL+1 completes the
proof of (2). �
The next 3 lemmas quantify the extent to which the unhappy operations J , J ′,
andK in the polynomial g′(x) from the conclusion of Lemma 5.7 “commute” with
other unhappy fundamental operations.
Lemma 5.8. Let F1, . . . , FM be fundamental translations, h(x) a happy primitive
polynomial, and p, q, c, d ∈ B with d ≤ c such that the set

{Fk ◦ · · · ◦ F1(J (p, q, h(c))) | 1 ≤ k ≤M} ∪ {J (p, q, h(c))}
contains only unhappy elements. If g(x) = FM ◦ · · · ◦ F1 ◦ J (p, q, h(x)) then there
are constants p′, q′ ∈ B and a happy h′(x) ∈ P (actually having Range(h′) ⊆
e2(p′, q′, B)) such that the polynomial

g ′(x) = J (p′, q′, h′(x))

satisfies (g(c), g(d )) = (g ′(c), g ′(d )).
Proof. For convenience, let r = g(c) and s = g(d ). We begin by noting that

J (x, y, z) = (x ∧ y) ∨ (x ∧ ∂y ∧ z) = (x ∧ y) ∨ (x ∧ ∂y ∧ e2(x, y, z)),
from the definition of S2 (recall e2(x, y, z) = S2(x, y, z, z, z)) and J . Thus, it will be
sufficient to prove that the polynomial g′(x) in the statement of the lemma satisfies
g ′(c) = g(c) and g ′(d ) = g(d ) without any restrictions on the happiness of h′(x).

c

d

g(c)

g(d )

h′(c)

h′(d )

g(x) = FM ◦ · · · ◦ F1 ◦ J (· · · , h(x))

h′(x) J (· · · , x)

e2(p
′ , q′, B)

B

Figure 2. Lemma 5.8 illustration.
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We will prove the lemma in the restricted setting of M = 1 (i.e., when g(x) =
F ◦ J (p, q, h(x))). Repeated applications of the restricted proof will then prove the
lemma for generalM . Say that g(x) = F ◦ J (p, q, h(x)), where F is a fundamental
translation and g(c) = r is unhappy (and thus {r, s} is unhappy). Note thatF must
be unhappy since r = F ◦ J (p, q, h(c)) is unhappy. In particular, this means that F
is not a translation of an Si operation.
Composing the polynomial J (p, q, h(x)) with translations of operations from

{(·), I } ∪ L ∪ R produce either constant polynomials or the composition is com-
mutative (i.e., F (J (p, q, h(x))) = J (F (p), F (q), F ◦ h(x))). Thus the claim holds
for these operations.
Case ∧:We have that u ∧ J (p, q, h(x)) = J (p, q, h(x)) ∧ u = J (p ∧ u, q, h(x)).
Case J : The first translation is easy since J (x, y, z) ∧ w = J (x ∧ w, y, z) and
J (x, y, z) ≤ J (x, y, x). We have

J (J (p, q, h(x)), u, v) = J (p, q, h(x)) ∧ J (J (p, q, p), u, v)
= J (p ∧ J (J (p, q, p), u, v), q, h(x)).

For g(x) = J (u, J (p, q, h(x)), v), let

g ′(x) = J (r,K(r, p, q), S2(r,K(r, p, q), r, s, g(x))),

where g(d ) = s ≤ r = g(c). Let B ≤
∏
l∈LCl be a subdirect representation of

B by subdirectly irreducible algebras. We will show that g′(c) = r and g ′(d ) = s
componentwise. We have that

g(x) = (u ∧ p ∧ q) ∨ (u ∧ p ∧ ∂q ∧ h(x))
∨ (u ∧ ∂p ∧ ∂q ∧ v) ∨ (u ∧ ∂p ∧ ∂∂q ∧ ∂h(x)).

The argument at this point breaks down into many subcases, depending on whether
r(l) is equal to p(l), q(l), ∂p(l), or ∂q(l) (if r(l) �= 0, then by the flatness of Cl it
must take on one of these values). The easiest way to keep track of everything is
with a table. Since r(l) = 0 implies g′(x)(l) = 0 and s(l) = 0, we will assume that
r(l) �= 0. For ease of reading, in the table below we will omit the coordinate when
giving values of functions (i.e., “(l)” will be omitted from r(l)). Additionally, those
coordinates which permit r(l) �= s(l) have been indicated.
r K(r, p, q) S2(r,K(r, p, q), r, s, g(x)) g ′(x) r �= s
p = q p = r 0 r ∧ r N
p = ∂q q = ∂r (r ∧ s) ∨ (r ∧ g(x)) s ∨ (r ∧ g(x)) Y
∂p = ∂q p = ∂r (r ∧ s) ∨ (r ∧ g(x)) s ∨ (r ∧ g(x)) N
∂p = q q = ∂r (r ∧ s) ∨ (r ∧ g(x)) s ∨ (r ∧ g(x)) Y

Since r = g(c) and s = g(d ), we see that g ′(c)(l) = r(l) and g ′(d )(l) = s(l),
except for possibly when r(l) = p(l) = q(l). In this subcase, however, from the
description of g(x) in terms of ∧ and ∨ above we see that g(x)(l) is constant, so it
must be that

r(l) = g(c)(l) = g(d )(l) = s(l).

Therefore, g ′(c) = r and g ′(d ) = s , as claimed.
In the subcase where g(x) = J (u, v, J (p, q, h(x))), let

g ′(x) = J (u, v, S2(u, v, r, s, g(x))).
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The note in the first paragraph of the proof shows that g′(c) = g(c) = r and
g ′(d ) = g(d ) = s .

Case J ′: The first translation is similar to the case for ∧, and the second translation
reduces to the J case. We have

J ′(J (p, q, h(x)), u, v) = J (p, q, h(x)) ∧ J ′(J (p, q, p), u, v)
= J (J ′(J (p, q, p), u, v), q, h(x)), and

J ′(u, J (p, q, h(x)), v) = J (J ′(u, J (p, q, p), v), J (p, q, h(x)), J ′(u, J (p, q, p), v))†

[†: see Case J above]. For g(x) = J ′(u, v, J (p, q, h(x))), let

g ′(x) = J (r,K(r, v, q), S2(r,K(r, v, q), r, s, g(x))).

An argument similar to the one requiring the table above will show that g ′(c) =
g(c) = r and g ′(d ) = g(d ) = s .

Case Si : Since {r, s} is unhappy, we can exclude these translations.
Case K : For g(x) = K(J (p, q, h(x)), u, v), let

g ′(x) = J (r,K(r, p, q), S2(r,K(r, p, q), r, s, g(x))).

The approach is to take a subdirect representation of B and show that g ′(c) = r
and g ′(d ) = s componentwise, as in Case J above. Since

g(x) = (∂p ∧ ∂q ∧ u) ∨ (∂p ∧ ∂∂q ∧ ∂h(x) ∧ u) ∨ (∂p ∧ ∂q ∧ ∂u ∧ v)
∨ (∂p ∧ ∂∂q ∧ h(x) ∧ ∂u ∧ v) ∨ (p ∧ q ∧ u ∧ v)

∨ (p ∧ ∂q ∧ h(x) ∧ u ∧ v),

the l -th projection of the polynomial S2(r,K(r, p, q), r, s, g(x)) maps c(l) to r(l)
and d (l) to s(l) unless r(l) = (p∧q∧u∧v)(l). From the definition of J , it therefore
follows that g ′(c) = r and g ′(d ) = s .
For the two remaining subcases where either g(x) = K(u, J (p, q, h(x)), v) or
g(x) = K(u, v, J (p, q, h(x))), let

g ′(x) = J (r,K(r, u, q), S2(r,K(r, u, q), r, s, g(x))).

An argument similar to the previous subcase shows that g ′(c) = r and g ′(d ) = s .

Case T : Since T (w, x, y, z) = T (y, z, w, x), we need only consider translations
through the first two coordinates. The equation

T (J (p, q, h(x)), u, v, w) = T (p ∧ q, u, v, w)

holds in our variety, so we move on to the subcase g(x) = T (u, J (p, q, h(x)), v, w).
If g(x) = T (u, J (p, q, h(x)), v, w) then

r =
[
r ∧ (u · J (p, q, h(x)))

]
∨
[
r ∧ ∂(u · J (p, q, h(x)))

]
(x ∨ y is not a polynomial in our variety, but since A′(T ) is a height 1 semilattice,
if x, y ≤ z then the quantity x ∨ y is uniquely defined). From the above equation,

g ′(x) = J (r, J (u · p, u · q, u · h(x)), v ·w)

has g ′(c) = r and g ′(d ) = s and Case J applies again.
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Case F ∈ {U 0M,U 1M | M ∈ L ∪ R}: The only difficulty in this case arises
when g(x) = UiM (u, v,w, J (p, q, h(x)). In this subcase, let t = K(r,M (v,w, p),
M (v,w, q)) and g ′(x) = J (r, t, S2(r, t, r, s, g(x))).

This completes the proof of the restricted setting of M = 1. By repeatedly
applying this argument, the lemma is proved for generalM . �
The Lemma 5.7 shows that for 2 fixed inputs, the J operation can be taken to

commute in a very specific waywith the other fundamental operations. The situation
for J ′ is similar, but much more complicated, requiring a sequence of inputs and a
mix of the J and J ′ operations.

Lemma 5.9. Let F1, . . . , FM be fundamental translations, h(x) a happy primitive
polynomial, and p, q, c, d ∈ B with d ≤ c such that the set

{Fk ◦ · · · ◦ F1(J ′(p, q, h(c))) | 1 ≤ k ≤M} ∪ {J ′(p, q, h(c))}

contains only unhappy elements. If g(x) = FM ◦ · · · ◦ F1 ◦ J ′(p, q, h(x)) and (r, s) =
(g(c), g(d )), then there is a decreasing Maltsev chain g(c) = r1, r2, . . . , rn = g(d )
connecting g(c) to g(d ) with associated polynomials g1(x), . . . , gn−1(x) of the form

gk(x) = Gk(pk, qk, hk(x)), where Gk ∈ {J, J ′}, pk, qk ∈ B, hk(x) ∈ P happy.

Proof. For convenience, let r = g(c) and s = g(d ). As in Lemma 5.8, we
will prove the claim in the restricted setting of M = 1 (i.e., when g(x) = F ◦
J ′(p, q, h(x))). Repeated applications on the proof in the restricted setting and of
Lemma 5.8 will prove the lemma for generalM . Say that g(x) = F ◦J ′(p, q, h(x))),
where F is a fundamental translation and g(c) = r is unhappy (and thus {r, s} is
unhappy). Note that F must be unhappy since r = F ◦ J ′(p, q, h(c))) is unhappy.
In particular, this means that F is not a translation of an Si operation.
Composing the polynomial J ′(p, q, h(x)) with translations of operations from

{(·), I }∪L∪R produce either constant polynomials or the composition is commu-
tative (i.e., F ◦ J ′(p, q, h(x))) = J ′(F (p), F (q), F ◦ h(x))). Since these operations
are 0-absorbing, they are happiness preserving, and the claim holds for them.

Case ∧:We have that u ∧ J ′(p, q, h(x)) = J ′(p, q, h(x)) ∧ u = J ′(p ∧ u, q, h(x)).

g(c) = r1

r2

r3

g(d ) = r4

c

d

c

d

F ◦ J ′(· · · , h(x))

J (· · · , h1(x))

J (· · · , h2(x))

J ′(· · · , h1(x))

Figure 3. Lemma 5.9 illustration.
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Case J : The first translation is easy since J (x, y, z) ∧ w = J (x ∧ w, y, z) and
J ′(x, y, z) ≤ J ′(x, y, x). We have

J (J ′(p, q, h(x)), u, v) = J ′(p, q, h(x)) ∧ J (J ′(p, q, p), u, v)
= J ′(p ∧ J (J ′(p, q, p), u, v), q, h(x)).

For g(x) = J (u, J ′(p, q, h(x)), v) we must introduce a new “link” in our Maltsev
chain. Let

g1(x) = J (r,K(r, p, q), S2(r,K(r, p, q), r, s, g(x))) and

g2(x) = J ′(t1, K(t1, p, q), h(x)), where t1 = g1(d )

(recall that r = g(c) and s = g(d )). We have that

g(x) = (u ∧ p ∧ q ∧ h(x) ∧ v) ∨ (u ∧ p ∧ ∂q ∧ v)
∨ (u ∧ ∂p ∧ ∂q ∧ ∂h(x)) ∨ (u ∧ ∂p ∧ ∧q).

The argument at this point breaks down into many subcases, depending on whether
r(l) is equal to p(l), q(l), ∂p(l), or ∂q(l) (if r(l) �= 0, then by the flatness of Cl it
must take on one of these values). The easiest way to keep track of everything is
with a table. Since r(l) = 0 implies g ′(x)(l) = 0 and s(l) = 0, we will assume that
r(l) �= 0. For ease of reading, in the table below we will omit the coordinate when
giving values of functions (i.e., “(l)” will be omitted from r(l)). Additionally, those
coordinates which permit r(l) �= s(l) have been indicated.

r K(r, p, q) S2(r,K(r, p, q), r, s, g(x)) g1(x) r �= s
p = q p = r 0 r ∧ r Y
p = ∂q q = ∂r (r ∧ s) ∨ (r ∧ g(x)) s ∨ (r ∧ g(x)) N
∂p = ∂q p = ∂r (r ∧ s) ∨ (r ∧ g(x)) s ∨ (r ∧ g(x)) Y
∂p = q q = ∂r (r ∧ s) ∨ (r ∧ g(x)) s ∨ (r ∧ g(x)) N

Since r = g(c) and s = g(d ), we have that g1(c) = r, and t1(l) = g1(d )(l) = s(l)
except for possibly when r(l) = p(l) = q(l). It follows (by flatness) that s ≤ t1 ≤ r.
We will now show (with another similar table) that g2(c) = t1 and g2(d ) = s .
The first column of the table below corresponds to the 2nd-to-last column of the
table above evaluated at x = d .

t1 = g1(d ) K(t1, p, q) g2(x) t1 �= s
r = p = q p = t1 t1 ∧ h(x) Y
r = s = p = ∂q q = ∂t1 t1 N
s (p ∧ ∂s) = ∂t1 t1 N
r = s = ∂p = q q = ∂t1 t1 N

From the table we can see that g2(c)(l) = t1(l) in all subcases except for possibly
when r(l) = p(l) = q(l). In this event, from the definition of g(x) we have that
r(l) = h(c)(l), so g2(c)(l) = t1(l) (the previous table indicates that t1(l) = r(l)
when r(l) = p(l) = q(l)). Therefore, g2(c) = t1. Since t1(l) differs from s(l)
only when r(l) = p(l) = q(l), and since in this subcase h(d )(l) = s(l) (from the
definition of g(x) at the start of the case), it follows that g2(d ) = s .
In the case where g(x) = J (u, v, J ′(p, q, h(x))), let

g1(x) = J (u, v, S2(u, v, r, s, h(x))).
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An argument similar to the case for J (· · · , J (· · · , h(x))) in Lemma 5.8 will show
that g1(c) = g(c) = r and g1(d ) = g(d ) = s .

Case J ′:We have

J ′(J ′(p, q, h(x)), u, v) = J ′(p, q, h(x)) ∧ J ′(J (p, q, p), u, v)
= J ′(J ′(J (p, q, p), u, v), q, h(x)).

For g(x) = J ′(u, J ′(p, q, h(x)), v) we must again introduce a new “link” in our
Maltsev chain. Let

g1(x) = J (r,K(r, p, q), S2(r,K(r, p, q), r, s, g(x))) and

g2(x) = J ′(t1, K(t1, p, q), h(x)), where t1 = g1(d ).

An argument similar to the corresponding subcase of Case J will show that g1(c) =
r, g1(d ) = g2(c) = t1, and g2(d ) = s . For g(x) = J ′(u, v, J ′(p, q, h(x))), let

g1(x) = J ′(r,K(r, v, q), h(x)).

An argument similar to the one at the start of Case J above will show that g1(c) = r
and g2(d ) = s .

Case Si : Since {r, s} is unhappy, we can exclude these translations.
Case K : For g(x) = K(J ′(p, q, h(x)), u, v), let

g1(x) = J (r,K(r, p, q), S2(r,K(r, p, q), r, s, g(x))) and

g2(x) = J ′(t1, K(t1, p, q), h(x)), where t1 = g1(d ).

An argument similar to the one in Case J requiring the tables shows that g1(c) = r,
g1(d ) = g2(c) = t1, and g2(d ) = s . For the two remaining subcases where we have
either g(x) = K(u, J ′(p, q, h(x)), v) or g(x) = K(u, v, J ′(p, q, h(x))), let

g1(x) = J (r,K(r, u, p), S2(r,K(r, u, q), r, s, g(x))) and

g2(x) = J ′(t1, K(t1, u, q), h(x)), where t1 = g1(d ).

An argument similar to the one using the tables above will show that g1(c) = r,
g1(d ) = g2(c) = t1, and g2(d ) = s .

Case T : Since T (w, x, y, z) = T (y, z, w, x), we need only consider translations
through the first two coordinates. If g(x) = T (J ′(p, q, h(x)), u, v, w), then

r =
[
r ∧ (J ′(p, q, h(x)) · u)

]
∨
[
r ∧ ∂(J ′(p, q, h(x)) · u)

]
.

Therefore
g ′(x) = J ′(r, J ′(p · u, q · u, h(x) · u), v ·w)

has g(c) = r and g(d ) = s and Case J ′ applies. Similarly if we have g(x) =
T (u, J ′(p, q, h(x)), v, w), then

r =
[
r ∧ (u · J ′(p, q, h(x)))

]
∨
[
r ∧ ∂(u · J ′(p, q, h(x)))

]
.

Therefore
g ′(x) = J ′(r, J ′(u · p, u · q, u · h(x)), v ·w)

has g(c) = r and g(d ) = s and Case J ′ applies again.
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Case F ∈ {U 0M,U 1M |M ∈ L ∪R}: If g(x) = UiF (u, v,w, J ′(p, q, h(x))), then let

g ′(x) = J ′(r,U iF (u, v,w, q), U
i
F (u, v,w, h(x)));

if g(x) = UiF (u, v, J
′(p, q, h(x)), w), then let

g ′(x) = J ′(r,U iF (u, v, p,w), U
i
F (u, v, h(x), w));

if g(x) = UiF (u, J
′(p, q, h(x)), v, w), then let

g ′(x) = J ′(r,U iF (u, p, v,w), U
i
F (u, h(x), v, w));

if g(x) = UiF (J
′(p, q, h(x)), u, v, w), then let

g ′(x) = J ′(r,U iF (p, u, v,w), U
i
F (h(x), u, v, w)).

This completes the proof of the restricted setting of M = 1. By repeatedly
applying this argument and Lemma 5.8, the lemma is proved for generalM . �
In the Lemma 5.10, we see that the K operation behaves essentially the same as
the J ′ operation.

Lemma 5.10. Let F1, . . . , FM be fundamental translations, h(x) a happy primitive
polynomial, and p, q, c, d ∈ B with d ≤ c such that the set

{Fk ◦ · · · ◦ F1(K(p, q, h(c))) | 1 ≤ k ≤M, } ∪ {K(p, q, h(c))}

contains only unhappy elements. If g(x) = FM ◦ · · · ◦ F1 ◦ K(p, q, h(x)), then there
is a decreasing Maltsev chain g(c) = r1, r2, . . . , rn = g(d ) connecting g(c) to g(d )
with associated polynomials g1(x), . . . , gn−1(x) of the form

gk(x) = Gk(pk, qk, hk(x)), where Gk ∈ {J, J ′}, pk, qk ∈ B, hk(x) ∈ P happy.

Proof. Let g ′(x) = K(p, q, h(x)), where p, q and h(x) are as in the hypotheses
of the lemma, and let r = g ′(c) and s = g ′(d ). Define

f1(x) = J (r,K(r, p, q), S2(r,K(r, p, q), r, s, h(x))) and

f2(x) = J ′(t1, K(t1, p, q), h(x)), where t1 = f1(d ).

g(c) = r1

r2

r3

g(d ) = r4

c

d

c

d

F ◦ K(· · · , h(x))

J (· · · , h1(x))

J (· · · , h2(x))

J ′(· · · , h1(x))

Figure 4. Lemma 5.10 illustration.
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We will show that r = f1(c), t1 = f2(c), and s = f2(d ). Since s is unhappy and
s ≤ t1 ≤ r, the elements s , t1, and r are all unhappy.Using this fact and Lemmas 5.8
and 5.9, the conclusion will follow.
Let l ∈ L. The proof breaks into cases depending on whether r(l) = 0. Overall,

it is useful to note that J and J ′ are 0-absorbing in the first and second variables,
that s ≤ t1 ≤ r, and if r(l) �= 0, then r(l) = h(c)(l) or r(l) = ∂h(c)(l).
If r(l) = 0 then s(l) = 0 and t1(l) = 0. Thus r(l) = 0 = f1(x)(l) = f1(c)(l)

and t1(l) = s(l) = 0 = f2(x)(l) = f2(c)(l) = f2(d )(l). If r(l) �= 0, then by the
definition of K , either p(l) = ∂q(l), p(l) = q(l) = ∂r(l), or p(l) = q(l) = r(l).
In each of these cases, the equations f1(c)(l) = r(l), t1(l) = f2(c)(l), and s(l) =
f2(d )(l) are easily verified from the definitions. �
Lemma 5.11. Let c, d ∈ B be such that d ≤ c and {c, d} is happy. Suppose

that (r, s) ∈ CgB(c, d ) with s ≤ r is witnessed by the decreasing Maltsev sequence
r = u1, . . . , un = s with associated primitive polynomials �1(x), . . . , �n−1(x). Then
there is another decreasing Maltsev sequence, r = t1, . . . , tm = s , with associated
primitive polynomials g1(x), . . . , gm−1(x) such that for each k ∈ {1, . . . , m − 1},
one of

(1) gk(x) is happy,
(2) gk(x) = J (tk, qk, hk(x)) and hk(x) ∈ P is happy, or
(3) gk(x) = J ′(tk, qk, hk(x)) and hk(x) ∈ P is happy

holds for some constants qk ∈ B.
Proof. Select a consecutive pair, uk and uk+1 from the Maltsev sequence. We

will show that the claim holds for the pair, and by applying the argument to each
consecutive pair, it therefore must hold for the entire sequence. By Lemma 5.7,
we can assume that one of the following is true:

r = u1 = t2

t2

t3

t3

s = u3 = t5

u2

c

d

c

d

�1(x)

�2(x)

J ′(· · · , h1(x))

J ′(· · · , h2(x))

J (· · · , h3(x))

Sj (· · · , h4(x))

ei (m, B)

ei (m, B)

B

Figure 5. Lemma 5.11 illustration.
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(1) {uk, uk+1} is happy, so there is a happy primitive gk(x) with (uk, uk+1) =
(gk(c), gk(d )), or

(2) {uk, uk+1} is unhappy, so there are fundamental translations F1, . . . , FM and
a happy polynomial h(x) ∈ P such that for some G ∈ {J, J ′, K} and some
p, q ∈ B the polynomial

g ′k(x) = Fm ◦ · · · ◦ F1 ◦G(p, q, h(x))

has (uk, uk+1) = (g ′k(c), g
′
k(d )) and the set

{Fk ◦ · · · ◦ F1 ◦G(p, q, h(c)) | 1 ≤ k ≤M} ∪ {G(p, 1, h(c))}

contains only unhappy elements.

In the first possibility, we are done. In the second possibility, apply Lemma 5.8
(if G = J ), 5.9 (if G = J ′), or 5.10 (if G = K) to get a decreasing Maltsev
sequence uk = tk, tk+1, . . . , tk+m′ = uk+1 with associated primitive polynomials
gk(x), . . . , gk+m′−1(x) such that for all l ∈ {k, . . . , k +m′ − 1},

gl (x) = Gl (pl , ql , hl (x)) where Gl ∈ {J, J ′}, pl , ql ∈ B, hl (x) ∈ P happy.
This is almost the conclusion of the lemma. To finish, we observe that if f(x) =
G(p, q, h(x)) is a polynomial with G ∈ {J, J ′} and f(d ) ≤ f(c), then

f(c) = G(f(c), q, h(c)) and f(d ) = G(f(c), q, h(d )).

Applying this observation to the gl (x) and using the fact that tk, . . . , tk+m′ is a
decreasing sequence completes the proof. �
At this point,wehave established the tools necessary to transformgeneral decreas-
ing Maltsev chains into longer chains whose associated polynomials are of a very
specific form. Now, we move on to show that these longer chains can be shortened
and come in just 7 types, and that these 7 different types of chains are definable. The
following definition simplifies the discussion.

Definition 5.12. Let r1, . . . , rn ∈ B be a sequence of elements. We write

r1
F1 r2

F2 r3 · · · rn−1 Fn−1 rn
for Fi ∈ {J, J ′, S0, S1, S2} if both of the following hold
(1) if Fi ∈ {J, J ′}, then there exist constants pi , qi ∈ B and ni ∈ B2 ∪ B such
that

ri = Fi(pi , qi , eji (ni , ri)) and ri+1 = Fi(pi , qi , eji (ni , ri+1))

for some ji ∈ {0, 1, 2}, and
(2) if Fi ∈ {S0, S1, S2}, then there exists ni ∈ B2 ∪ B such that

ri = Fi(ni , ri , ri , ri ) and ri+1 = Fi(ni , ri+1, ri+1, ri+1).

Such a sequence will be referred to as an F1-F2-· · · -Fn−1 chain. If it is the case
that for all i , (ri , ri+1) ∈ CgB(c, d ) for some c, d ∈ B, then we will say that
(r1, rn) ∈ CgB(c, d ) is witnessed by an F1-. . .-Fn−1 chain.
Lemma 5.13. Let c, d ∈ ei(m,B) for some i ∈ {0, 1, 2} and m ∈ B2 ∪ B and
assume that the congruence formula �(−,−, c, d ) defines Cgei (m,B)(c, d ) in ei (m,B).
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Suppose that r, s ∈ ej(n,B) for some j ∈ {0, 1, 2} and n ∈ B2 ∪ B with s ≤ r. Then
(r, s) ∈ CgB(c, d ) if and only if

B |= �(ei(m, r), ei (m, s), c, d )

and r = Sj(n, r, s, ei (m, r)) and s = Sj(n, r, s, ei (m, s)).

Proof. Suppose first that (r, s) ∈ CgB(c, d ) and let B ≤
∏
l∈LCl be a subdirect

representation of B by subdirectly irreducible algebras in V(A′(T )). Define

I = {l ∈ L | ei(m,B)(l) �= {0}} and J = L \ I,

and write a typical element x ∈ B as x = (xI , xJ ), where xI ∈ �I (B) and xJ ∈
�J (B). Since c, d ∈ ei (m,B), we have c = (cI , 0J ) and d = (dI , 0J ). Hence, if
(r, s) ∈ CgB(c, d ), it must be that r = (rI , zJ ) and s = (sI , zJ ) (i.e., �J (r) = �J (s)).
From the definition of Si , we have that ei (m,−) is a homomorphism from B to

ei (m,B). Therefore (ei(m, r), ei (m, s)) ∈ Cgei (m,B)(c, d ), and

B |= �(ei (m, r), ei (m, s), c, d ),

since � is existentially quantified (it is a congruence formula) and ei(m,B) ≤ B.
Since r ∈ ej(n,B), if t ≤ r then t ∈ ej(n,B). Therefore

{ei(m, r), ei (m, s)} ⊆ ei (m, ej(n,B)) ⊆ ei(n,B).

It follows that

Sj(n, r, s, ei (m, r)) = Sj

(
n,

(
rI
zJ

)
,

(
sI
zJ

)
,

(
rI
0

))

=
((
rI
zJ

)
∧
(
sI
zJ

))
∨
((
rI
zJ

)
∧
(
rI
0

))
=

(
sI
zJ

)
∨
(
rI
0

)

=
(
rI
zJ

)
= r, and likewise

Sj(n, r, s, ei (m, s)) = Sj

(
n,

(
rI
zJ

)
,

(
sI
zJ

)
,

(
sI
0

))

=
((
rI
zJ

)
∧
(
sI
zJ

))
∨
((
rI
zJ

)
∧
(
sI
0

))
=

(
sI
zJ

)
∨
(
sI
0

)

=
(
sI
zJ

)
= s,

completing the forward direction.
Suppose now that B |= �(ei (m, r), ei (m, s), c, d ), and r = Sj(n, r, s, ei (m, r))

and s = Sj(n, r, s, ei (m, s)). Since � is a congruence formula and ei(m,−) is a
homomorphism from B to ei(m,B) and c, d ∈ ei (m,B), we have

ei(m,B) |= �(ei(m, r), ei (m, s), c, d ).

Thus, (ei (m, r), ei (m, s)) ∈ Cgei (m,B)(c, d ) ⊆ CgB(c, d ). By hypothesis, we also
have that r = Sj(n, r, s, ei (m, r)) and s = Sj(n, r, s, ei (m, s)), so it follows that
(r, s) ∈ CgB(c, d ). �
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In light of the Lemma 5.12, define

�S(w, x, y, z) =
2∨
i=0

2∨
j=0

∃m, n
[
y = ei (m, y) ∧ z = ei(m, z)

∧�0(ei (m,w), ei(m,x), y, z)
∧w = Sj(n,w, x, ei(m,w))
∧x = Sj(n,w, x, ei (m,x))

]
(5.3)

(recall that�0 was defined in (5.2)). If c, d, r, s satisfy the hypotheses of Lemma 5.13,
then (r, s) ∈ CgB(c, d ) if andonly ifB |= �S(r, s, c, d ). That is, if {c, d} and {r, s} are
happywith d ≤ c and s ≤ r, then (r, s) ∈ CgB(c, d ) if and only ifB |= �S(r, s, c, d ).
Lemma 5.14. Suppose that (r, s) ∈ CgB(c, d ) for some c, d ∈ B and that there
is a decreasing sequence r = r1 ≥ r2 ≥ · · · ≥ rn = s and some constants
p1, q1, . . . , pn−1, qn−1 ∈ B such that

ri = J (pi , qi , ri ) and ri+1 = J (pi , qi , ri+1)

for 1 ≤ i ≤ n − 1. Then there exists a constant � ∈ B such that r = J (r, �, r′) and
s = J (r, �, s ′), where r′ = e2(r, �, r) and s ′ = e2(r, �, s).
Since J (x, y, z) = J (x, y, e2(x, y, z)) ( from the definition of J ), this is equivalent
to the assertion that for each decreasing J -J -. . .-J chain (of any length), there is a
(length 1) J chain with the same endpoints.
Proof. Note that (r, s) ∈ CgB(c, d ) and the presence of a semilattice operation
implies (ri , ri+1) ∈ CgB(c, d ). Next, observe that since the chain is decreasing and
s ≤ r, if we replace qi with J (qi , pi , qi), then we can replace each pi with r. Thus,
we may assume that

ri = J (r, qi , ri ) and ri+1 = J (r, qi , ri+1).

The proof shall be by induction on n (the length of the chain). If n = 1, then

r = J (r, q1, r) and s = J (r, q1, s).

Therefore

r = (r ∧ ∂q1 ∧ r) ∨ (r ∧ q1) and s = (r ∧ ∂q1 ∧ s) ∨ (r ∧ q1).

r = r1

r2

s = r3

e2(r, �, r)

e2(r, �, s)

J

J

J (r, �, x)

e2(r, �, B)

B

Figure 6. Lemma 5.14 illustration.
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Hence without loss of generality, we can replace the last occurrence of r in r =
J (r, q1, r) with r′ = e2(r, q1, r), and the last occurrence of s in s = J (r, q1, s) with
s ′ = e2(r, q1, s). After making these replacements, the conclusion of the lemma
follows with � = q1.
Assume now that the lemma holds for all chains of length less than N , and

consider a chain of length N : r = r1, . . . , rN = s . Applying the inductive hypoth-
esis to the subchain r = r1, . . . , rN−1, there exists �1 ∈ B with r = J (r, �1, r′′)
and rN−1 = J (r, �1, r′′N−1), where r

′′ = e2(r, �1, r) and r′′N−1 = e2(r, �1, rN−1).
We therefore have

r = J (r, �1, r′′), rN−1 = J (r, �1, r′′N−1) = J (r, qN−1, rN−1),

s = J (r, qN−1, s). (5.4)

Let � = K(r, �1, qN−1), r′ = e2(r, �, r), and s ′ = e2(r, �, s). We will now show that
r = J (r, �, r′) and s = J (r, �, s ′), proving the lemma.
Let B =

∏
l∈LCl be a subdirect representation of B by subdirectly irreducible

algebras. We will analyze the polynomial J (r, �, x) coordinatewise, and as usual
it will be easiest to use a table. Before the table is constructed, however, we will
determine which coordinates permit r(l) �= s(l). Since s ≤ rN−1 ≤ r, either
r(l) �= rN−1(l) = s(l) = 0, or r(l) = rN−1(l) �= s(l) = 0. The equalities (5.4) give
us

r = (r ∧ �1) ∨ (r ∧ ∂�1 ∧ r′′), rN−1 = (r ∧ �1) ∨ (r ∧ ∂�1 ∧ r′′N−1),

rN−1 = (r ∧ qN−1) ∨ (r ∧ ∂qN−1 ∧ rN−1), s = (r ∧ qN−1) ∨ (r ∧ ∂qN−1 ∧ s).

Observe that r(l) = ∂�1(l) implies r(l) = e2(r, ∂�1, r)(l) = r′′(l). Assume first
that r(l) �= rN−1(l) = s(l) = 0. Under this assumption, it must be that r(l) =
∂�1(l) and r(l) = ∂qN−1(l). Assume now that r(l) = rN−1(l) �= s(l) = 0. Under
this assumption, it must be that r(l) = rN−1(l) ∈ {�1, ∂�1} and r = ∂qN−1.
We now assemble all of this in the table below. As usual, since r(l) = 0 implies
rN−1(l) = s(l) = 0, we assume that r(l) �= 0. In particular, this means that
r(l) ∈ {�1(l), ∂�1(l)}.

r � = K(r, �1, qN−1) J (r, �, e2(r, �, x)) r �= s
�1 = qN−1 r r N
�1 = ∂qN−1 qN−1 = ∂r e2(r, ∂r, x) Y
∂�1 �1 = ∂r e2(r, ∂r, x) Y

If r(l) = ∂�(l), then r′(l) = e2(r, �, r)(l) = r(l) and s ′(l) = e2(e, �, s)(l) = s(l).
Therefore, the table above show that J (r, �, r′) = r and J (r, �, s ′) = s . �
In light of the Lemma 5.13, define

�J (w, x, y, z) = ∃b
[
�S(e2(w, b,w), e2(w, b, x), y, z)

∧w = J (w, b, e2(w, b,w)) ∧ x = J (w, b, e2(w, b, x))
]
(5.5)

(�S was defined in (5.3)). From the Lemma 5.13, if B ∈ V(A′(T )), {c, d} is happy,
and s ≤ r, then (r, s) ∈ CgB(c, d ) is witnessed by a decreasing J -· · · -J , chain if and
only if B |= �J (r, s, c, d ).
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Lemma 5.15. Suppose that (r, s) ∈ CgB(c, d ) for some c, d ∈ B and that there
is a decreasing sequence r = r1 ≥ r2 ≥ · · · ≥ rn = s and some constants
p1, q1, . . . , pn−1, qn−1 ∈ B such that

ri = J ′(pi , qi , eji (ni , ri)) and ri+1 = J ′(pi , qi , eji (ni , ri+1))

for some ji ∈ {0, 1, 2} and ni ∈ B2 ∪ B. Then there exist constants, �, t ∈ B such
that

r = J ′(r, q1, ej1 (n1, r)), t = J ′(r, q1, ej1 (n1, s)) = J (t, �, r
′),

s = J (t, �, s ′),

where r′ = e2(r, �, r), and s ′ = e2(r, �, s).
That is, for every J ′-· · · -J ′ chain (of arbitrary length) there is a J ′-J chain with the
same endpoints.

Proof. Note that (r, s) ∈ CgB(c, d ) and the presence of a semilattice operation
implies (ri , ri+1) ∈ CgB(c, d ). The proof shall be by induction on n (the length of
the sequence). If n = 1, the lemma is trivially true. Assume now that the lemma
holds for all sequences of length less than N , and consider a sequence of length N :
r = r1, . . . , rN = s . Apply the inductive hypothesis to the subsequence r2, . . . , rN =
s to get

r2 = J ′(r2, q2, ej2 (n2, r2)), t1 = J ′(r2, q2, ej2 (n2, s)) = J (t1, �1, r
′
2)

s = J (t1, �1, s ′), where r′2 = e2(r2, �, r2) and s
′ = e2(r2, �, s)

for some constants �1, t1 ∈ B. Since the sequence is decreasing, by replacing q2
with J ′(q2, r2, q2) we are free to replace r2 with r. After doing this replacement
we have

r = r1

r2

r3

s = r4

t

ej1 (n1 , r)

ej1 (n1 , s) ej1 (n1 , r2)

ej2 (n2 , r2)

ej2 (n2 , r3)

ej3 (n3 , s)

ej3 (n3 , r3)

e2(r, �, s)

e2(r, �, r)

J ′

J ′(r, q1, x)

J (r, �, x)

J ′

J ′

ej1 (n1 , B)

e2(r, �, B)

ej2 (n2 , B)

ej3 (n3 , B)

B

Figure 7. Lemma 5.15 illustration.
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r = J ′(r, q1, ej1 (n1, r)),

r2 = J ′(r, q1, ej1 (n1, r2)) = J
′(r, q2, ej2 (n2, r2)),

t1 = J ′(r, q2, ej2 (n2, s)) = J (t1, �1, r
′
2), and

s = J (t1, �1, s ′).

We will analyze the subsequence r, r2, t1.
Let t = J ′(r, q1, ej1 (n1, t1)). We will show that

r = J ′(r, q1, ej1 (n1, r)), t = J ′(r, q1, ej1 (n1, t1)) = J (t, q1, r
′),

t1 = J (t, q1, t′1), for r′ = e2(r, q1, r) and t′1 = e2(r, q1, t1)

(that is, r J ′ r2 J
′
t J s implies r J ′ t J t1 J s). The only equalities that have not been

shown already are t = J (t, q1, r′) and t1 = J (t, q1, t′1). As usual, let B ≤
∏
l∈LCl be

a subdirect representation of B by subdirectly irreducible algebras. We will proceed
componentwise.
We begin by showing that t = J (t, q1, r′). Since J (t, q1, r′) ≤ t, by the flatness

of Cl , it will be sufficient to show that t(l) �= 0 implies J (t, q1, r′)(l) �= 0. Suppose
that t(l) �= 0. Since t = J ′(r, q1, ej1 (n1, t1)), either t(l) = q1(l) or t(l) = ∂q1(l).
If t(l) = q1(l), then J (t, q1, r′)(l) = (t ∧ q1)(l) = t(l). If t(l) = ∂q1(l), then
r(l) = t(l), sinceCl is flat and t ≤ r. Therefore, r′(l) = e2(r, q1, r)(l) = r(l) = t(l),
and so J (t, q1, r′)(l) = t(l). Hence J (t, q1, r′) = t.
Next, we show that t1 = J (t, q1, t′1). Again, we will assume that t(l) �= 0, since

t(l) = 0 implies that t1(l) = 0 and J (t, q1, t′1)(l) = 0. Since Cl is flat, if t(l) �= 0,
then t1(l) = t(l) and t(l) ∈ {q1(l), ∂q1(l)}. If t(l) = q1(l), then J (t, q1, t′1)(l) =
t(l) = t1(l). If t(l) = ∂q1(l), then t′1(l) = e2(r, q1, t1) = t1(l), so J (t, q1, t

′
1)(l) =

t′1(l) = t1(l). Hence J (t, q1, t
′
1) = t1.

We now have

r = J ′(r, q1, ej1 (n1, r)), t = J ′(r, q1, ej1 (n1, t1)) = J (t, q1, r
′),

t1 = J (t, q1, t′1) = J (t1, �1, r
′
2), s = J (t1, �1, s ′),

where r′ = e2(r, q1, r), t′1 = e2(r, q1, t1), r
′
2 = e2(t1, �1, t1), and s

′ = e2(r2, �1, s).
Apply Lemma 5.14 to the sequence t, t1, s (the part of the sequence in the range
of J ) to get an element � ∈ B such that t = J (t, �, t′′) and s = J (t, �, s ′′) for
t′′ = e2(t, �, t) and s ′′ = e2(t, �, s). Since t ≤ r, if r′ = e2(r, �, r) and s ′ = e2(r, �, s),
we have t = J (t, �, r′) and s = J (t, �, s ′). Finally, we now have

r = J ′(r, q1, ej1 (n1, r)), t = J ′(r, q1, ej1 (n1, s)) = J (t, �, r
′)

s = J (t, �, s ′), for r′ = e2(r, �, r) and s ′ = e2(r, �, s),

proving the lemma. �
In light of the Lemma 5.14, define

�J ′J (w, x, y, z) = ∃t
[
α(t, w, x, y, z) ∧ �(t, w, x, y, z)

]
, (5.6)

where

α(t, w, x, y, z) =
2∨
i=0

∃n, a
[
�S(ei (n,w), ei (n, x), y, z)

∧w = J ′(w, a, ei(n,w)) ∧ t = J ′(w, a, ei (n, x))
]
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and

�(t, w, x, y, z) = ∃b
[
�S(e2(w, b,w), e2(w, b, x), y, z)

∧t = J (t, b, e2(w, b,w)) ∧ x = J (t, b, e2(w, b, x))
]
.

Recall that �S was defined in (5.3). From the Lemma 5.14, if B ∈ V(A′(T )) and
c, d, r, s ∈ B with c < d and s ≤ r, then (r, s) ∈ CgB(c, d ) witnessed by a decreasing
J ′-· · · -J ′ chain implies that B |= �J ′J (r, s, c, d ). Conversely, B |= �J ′J (r, s, c, d )
implies that (r, s) ∈ CgB(c, d ) (although this is perhaps not witnessed by a J ′-· · · -J ′
chain).
At this point, we have the machinery necessary to change a general decreasing
Maltsev chain into a longer chain whose associated polynomials all have J , J ′, or
Sj as the outermost operations, and then to collapse repeated occurrences of J and
J ′ to either a single occurrence of J or the chain J ′-J . In order to fully collapse the
chain, we still need to address what happens when the chain has alternating J and
J ′ operations.

Lemma 5.16. Let r, t, s ∈ B be such that s ≤ t ≤ r and (r, t), (t, s) ∈ CgB(c, d )
for some c, d ∈ B. Suppose that for constants p1, p2, q1, q2 ∈ B,

r = J (p1, q1, r), t = J (p1, q1, t) = J ′(p2, q2, t′),

s = J ′(p2, q2, s ′),

for t′ = ei (n, t) and s ′ = ei (n, s) for some i ∈ {0, 1, 2} and n ∈ B2 ∪ B. Then there
exist constants �, u ∈ B such that

r = J ′(r, �, r′), u = J ′(r, �, s ′) = J (u, �, r′′),

s = J (u, �, s ′′),

where r′ = ei(n, r), r′′ = e2(r, �, r), and s ′′ = e2(r, �, s).
That is, for every J -J ′ chain there is a J ′-J chain with the same endpoints.

r

t

s

s

t

r

ei (n, t)

ei (n, s)

r

u

s

ei (n, s)

ei (n, r)

e2(r, �, r)

e2(r, �, s)

r

s

⇒

J

ei

J ′

J ′

J

ei

e2

ei (n, B)

ei (n, B)

e2(r, �, B)

B

Figure 8. Lemma 5.16 illustration.
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Proof. Since s ≤ t ≤ r, in the equations in the hypothesis by replacing q1 with
J (p1, q1, p1) and q2 with J ′(p2, q2, p2), we can replace p1 and p2 with r. Thus,

r = J (r, q1, r) = (r ∧ ∂q1 ∧ r) ∨ (r ∧ q1),
t = J (r, q1, t) = (r ∧ ∂q1 ∧ t) ∨ (r ∧ q1)
= J ′(r, q2, t′) = (r ∧ q2 ∧ t′) ∨ (r ∧ ∂q2), and
s = J ′(r, q2, s ′) = (r ∧ q2 ∧ s ′) ∨ (r ∧ ∂q2).

(5.7)

Let � = K(r, q1, q2) and u = J ′(r, �, s ′). Let B ≤
∏
l∈LCl be a subdirect repre-

sentation of B by subdirectly irreducible algebras. Note that from the definition of
K and the equations (5.7), for all l ∈ L, r(l) ∈ {�, ∂�, 0}. We will show that the
equalities in the conclusion of the lemma hold componentwise.
We begin by showing that r = J ′(r, �, r′). As usual, a table is the easiest way to

organize the proof. Since r(l) = 0 implies J ′(r, �, r′)(l) = 0, assume that r(l) �= 0.

r � = K(r, q1, q2) J ′(r, �, r′) r �= t
q1 = q2 q1 = q2 = r r ∧ r′ N
q1 = ∂q2 q2 = ∂r r N
∂q1 = q2 q1 = ∂r r Y
∂q1 = ∂q2 q1 = ∂r r N
q1 �∈ {q2, ∂q2} 0 0 N
∂q1 �∈ {q2, ∂q2} q1 = ∂r r Y

The only possibly problematic cases are when r(l) = q1(l) = q2(l) and when
r(l) = q1(l) �∈ {q2(l), ∂q2(l)}.
Case r(l) = q1(l) = q2(l): If r(l) = q1(l), then r(l) = t(l), by (5.7), so r(l) =
t(l) = t′(l). Since t′(l) ≤ r′(l) (because ei(n,−) is monotonic and t ≤ r), it follows
that r′(l) = r(l). Thus J (r, �, r′)(l) = r(l) in this case.

Case r(l) = q1(l) �∈ {q2(l), ∂q2(l)}: If r(l) = q1(l), then r(l) = t(l), but if
r(l) �∈ {q2(l), ∂q2(l)} then t(l) = 0 by (5.7), contradicting our assumption that
r(l) �= 0. Therefore, in this case J ′(r, �, r′)(l) = r(l) as well.
Next, we show that u = J (u, �, r′′). Since J (u, �, r′′) ≤ u and eachCl is flat, it will

be sufficient to show that when u(l) �= 0, J (u, �, r′′)(l) �= 0 as well. When u(l) �= 0,
since u ≤ r, it must be that u(l) = r(l). From the construction of �, if r(l) �= 0 either
r(l) ∈ {�(l), ∂�(l)}. If �(l) = r(l), then J (u, �, r′′)(l) = r(l) = u(l). Suppose now
that �(l) = ∂r(l). Then r′′(l) = e2(r, �, r)(l) = r(l) = u(l), so J (u, �, r′′)(l) = r(l).
Since �(l) = r(l) or �(l) = ∂r(l) for all l ∈ L, we have that u = J (r, �, r′′).
Finally, we show that s = J (u, �, s ′′). There are three possibilities: r(l) = u(l) =

s(l), r(l) = u(l) but s(l) = 0, or r(l) �= 0 but u(l) = s(l) = 0.
Case r(l) = u(l) = s(l): If �(l) = r(l), then J (u, �, s ′′) = (u ∧�)(l) = r(l) = s(l).
If �(l) = ∂r(l), then s ′′(l) = e2(r, �, s)(l) = s(l), so J (u, �, s ′′) = (u∧� ∧ s ′′)(l) =
s(l).

Case r(l) = u(l) but s(l) = 0: If �(l) = r(l), then r(l) = q1(l) = q2(l), so s(l) =
J ′(r, q2, s ′)(l) = J ′(r, �, s ′)(l) = u(l), contradicting u(l) �= 0. If �(l) = ∂r(l), then
s ′′(l) = e2(r, �, s) = s(l), so J (u, �, s ′′)(l) = s ′′(l) = s(l).
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Case r(l) �= 0 and u(l) = s(l) = 0: If �(l) = r(l), then J (u, �, r′′)(l) = u(l) =
J (u, �, s ′′)(l), so s(l) = J (u, �, s ′′). If �(l) = ∂r(l), then s ′′(l) = e2(r, �, s) = s(l),
so J (u, �, s ′′)(l) = s ′′(l) = s(l).

In all cases, we have J (u, �, s ′′)(l) = s(l), so it must be that J (u, �, s ′′) = s ,
completing the proof. �
Lemma 5.15 allows us to reduce a chain consisting of a string of J ′ operations to
a J ′-J chain. A chain of length 1 consisting of a single J ′ operation is an example
of a J ′-J chain since J (x, x, x) ≈ x in V(A′(T )).
Since ei(n,B) has the property that a ∈ ei (n,B) and b ≤ a implies b ∈ ei (n,B),
for any decreasing Maltsev chain, if any one of the intermediate elements is happy,
then all subsequent ones are happy as well. Thus, every Maltsev chain must termi-
nate in a (possibly length 0) Si chain, and Si chains do not appear anywhere else in
the chain except at the end. Lemma 5.13 allows us to collapse repeated Si links to
a single Si . Hence, to the already defined �S , �J , and �J ′J we add the following:

�JS(w, x, y, z) = ∃t
[
�J (w, t, y, z) ∧ �S(t, x, y, z)

]
, (5.8)

�J ′JS(w, x, y, z) = ∃t
[
�J ′J (w, t, y, z) ∧ �S(t, x, y, z)

]
(5.9)

(see equations (5.3), (5.5), and (5.6) for definitions of �S , �J , and �J ′J ,
respectively).

Lemma 5.17. Let {c, d} be happy. If (r, s) ∈ CgB(c, d ) is witnessed by a decreasing
Maltsev sequence whose associated polynomials are primitive, then (r, s) ∈ CgB(c, d )
is witnessed by one of the following chains:

(1) Sj for some j ∈ {0, 1, 2} and B |= �S(r, s, c, d ),
(2) J and B |= �J (r, s, c, d ),
(3) J ′-J and B |= �J ′J (r, s, c, d ),
(4) J -Sj for some j ∈ {0, 1, 2} and B |= �JS(r, s, c, d ), or
(5) J ′-J -Sj for some j ∈ {0, 1, 2} and B |= �J ′JS(r, s, c, d ).
Moreover, if B |= �G(r, s, c, d ) for G ∈ {J, J ′, J ′J, JS, J ′S, J ′JS} then (r, s) ∈
CgB(c, d ).

Proof. In all of the cases, that B models the claimed first-order formula follows
from the definition of the formula and the conclusion of the appropriate lemmas:
5.13 for formulas whose subscript ends in S, 5.14 for formulas whose subscript
begins in J , and 5.15 and 5.11 for formulas whose subscript begin with J ′. The
“moreover” part of the lemma follows from the fact that each �G is a congruence
formula.
Let r = r1, r2, . . . , rn = s be the decreasing Maltsev sequence witnessing (r, s) ∈
CgB(c, d ) and let �1(x), . . . , �n−1(x) be the primitive polynomials associated to
it. From Lemma 5.11, without loss of generality we may assume that for each
k ∈ {1, . . . , n − 1} one of the following holds
(1) �k(x) = Sjk (mk, rk, rk+1, hk(x)) for some jk ∈ {0, 1, 2} and mk ∈ B2 ∪ B
(i.e., �k is happy),

(2) �k(x) = J (rk, qk, hk(x)) for some qk ∈ B, or
(3) �k(x) = J ′(rk, qk, hk(x)) for some qk ∈ B,
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where the polynomials hk(x) are happy and primitive for all k. Since ei(n,B) has
the property that if q ∈ ei (n,B) and p ≤ q then p ∈ ei (n,B), if rk ∈ ei(n,B), then

r = r1 F1 r2 F2 r3 · · · rk−1 Fk−1 rk Si rk+1 Si rk+2 · · · rn−1 Si rn = s, Fi ∈ {J, J ′}.

Lemma 5.13 can be applied to the pair (rk, s) ∈ CgB(c, d ) to collapse the end of the
chain, and produce a new shorter chain of the form F1-F2-· · · -Si .
From Lemmas 5.14 and 5.15, subchains consisting of entirely J or J ′ can be

converted to subchains consisting of a single J or J ′-J , respectively:

J − J − · · · − J ⇒ J,
J ′ − J ′ − · · · J ′ ⇒ J ′ − J.

Thus, we need only consider chains in which the J and J ′ are mixed. We will show
that all such chains can be reduced to J ′ − J chains. We have

J − J ′ − J ′ ⇒ J − J ′ − J ⇒ J ′ − J − J ⇒ J ′ − J,
J ′ − J − J ′ ⇒ J ′ − J ′ − J ⇒ J ′ − J − J ⇒ J ′ − J,
J ′ − J ′ − J ⇒ J ′ − J − J ⇒ J ′ − J,
J ′ − J − J ⇒ J ′ − J,
J − J ′ − J ⇒ J ′ − J − J ⇒ J ′ − J, and
J − J − J ′ ⇒ J − J ′ ⇒ J ′ − J

(using Lemmas 5.14, 5.15, and 5.16). It follows that all mixed chains of J and J ′

can be reduced to a J ′-J chain. The conclusion of the lemma follows. �
Given the Lemma 5.16, let

�1(w, x, y, z) = �S(w, x, y, z) ∨�J (w, x, y, z) ∨�J ′J (w, x, y, z)
∨�JS(w, x, y, z) ∨ �J ′JS(w, x, y, z).

From Lemma 5.16, if {c, d} is happy and s ≤ r, then (r, s) ∈ CgB(c, d ) if and only
if B |= �1(r, s, c, d ).
All of the lemmas above required that s ≤ r. Since B is a semilattice, if (r, s) ∈

CgB(c, d ), then there is an intermediate element, t ≤ r ∧ s , such that (r, t), (t, s) ∈
CgB(c, d ) and there are decreasing Maltsev chains connecting r to t and s to t (this
will be proved in detail in Theorem 5.18). Therefore, define

�2(w, x, y, z) = ∃t
[
�1(w, t, y, z) ∧ �1(x, t, y, z)

]
. (5.10)

Finally, we will now use the above lemmas to prove that there is a congruence
formula Γ1 (defined in the theorem below) such that if a, b ∈ B are distinguished by
a polynomial of the form ei(n, x) for some i ∈ {0, 1, 2} and some n, then CgB(a, b)
has a subcongruence witnessed by Γ1(−,−, a, b) and that this subcongruence is
defined by �2.

Theorem 5.18. Let a, b ∈ B and suppose that there is i ∈ {0, 1, 2} andm ∈ B2∪B
such that ei(m, a) �= ei (m, b). Let

Γ1(w, x, y, z) =
2∨
j=0

∃n Γ0(w, x, ej(n, y), ej (n, z))
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(Γ0 was defined in (5.2)). The congruence CgB(a, b) has a principal subcongruence
witnessed by Γ1(−,−, a, b) and defined by �2. That is,

B |= ∃c, d
[
Γ1(c, d, a, b) ∧Π�2 (c, d )

]
.

Proof. From the definition of ei (4.1) and Lemma 5.4, ei (m,B) is congruence
distributive and has definable principal subcongruences witnessed by Γ0 and �0
(defined in (5.2)). Therefore there are c, d ∈ ei(m,B) such that

(c, d ) ∈ Cgei (m,B)(ei(m, a), ei (m, b))
is witnessed by Γ0 and Cgei (m,B)(c, d ) is defined in by �0. By Lemma, we have that
5.13, ei(m,B) |= Π�2 (c, d ). Summarizing,

ei(m,B) |= Γ0(c, d, ei(m, a), ei (m, b)) and ei (m,B) |= Π�2 (c, d ).
Since Γ0 is existentially quantified (it is a congruence formula) and ei(m,B) ≤ B,
B |= Γ1(c, d, a, b). It remains to be shown thatB |= Π�2 (c, d ) (that is, thatCgB(c, d )
is defined in B by �2).
Let r, s ∈ B and (r, s) ∈ CgB(c, d ). To show that B |= �2(r, s, c, d ), by Lemma
5.17 we need only show that there are decreasing Maltsev sequences connecting r
to some t and s to t and whose associated polynomials are primitive.
Let r = r1, . . . , rn = s be a Maltsev sequence connecting r to s with associated
primitive polynomials �1(x), . . . , �n1 (x). Let

ti =

{
r1 ∧ r2 ∧ · · · ∧ ri if i ≤ n,
ti−n ∧ ri−n+1 · · · ∧ rn if n ≤ i ≤ 2n,

and

�i(x) =

{
�i(x) ∧ ti if i < n,
�i−n ∧ ti+1 if n < i ≤ 2n.

Then the sequences r = t1, t2, . . . , tn and s = t2n, . . . tn+1 = tn are decreasing
Maltsev sequences witnessed by the primitive polynomials �i(x). Thus,

B |= �1(r, tn, c, d ) ∧ �1(s, tn, c, d ),
and hence B |= �2(r, s, c, d ). From the definition of �2, it is a congruence formula,
so if B |= �2(u, v, c, d ) then (u, v) ∈ CgB(c, d ). Therefore, B |= Π�2 (c, d ). �
Having completed the argument for the case when a, b ∈ B are distinguished by
a polynomial of the form ei(m,x) for some i ∈ {0, 1, 2} and some m ∈ B2 ∪ B, we
move on to the case where a, b are distinguished by an operation from a sequential
SI. The Lemma 5.19 is crucial for this case as well as the case for machine SI’s.

Lemma 5.19. Let c, d ∈ B be such that d ≤ c and ei(m, c) = ei(m, d ) for all
i ∈ {0, 1, 2} and all m ∈ B2 ∪ B. Suppose that

r = f1(c), t = f1(d ) = f2(c),

s = f2(d ),

for some polynomials f1(x) and f2(x). Then r = t or t = s .
Proof. Suppose that t �= s . We will show that r = t. Let B ≤

∏
l∈LCl be a

subdirect representation of B by subdirectly irreducible algebras. Since each Cl is
flat and s < t ≤ r, there is k ∈ L such that r(k) = t(k) �= 0, and s(k) = 0.
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Claim. if s(k) = 0 then d (k) = 0.

Proof of claim. Suppose to the contrary that d (k) �= 0 but 0 = s(k) =
f2(d )(k). Since Ck is flat, d (k) �= 0 implies that d (k) = c(k), so

t(k) = f2(c)(k) = f2(d )(k) = s(k) = 0.

This contradicts our choosing k such that t(k) �= s(k) = 0, and proves the
claim. �
By the above claim,we have that d (k) = 0, but since the onlyCl where d (l) �= c(l)

are 0-absorbing (see the description of SI’s in Section 4), this implies that either
f1(d )(k) = 0, contradicting t(k) = f1(d )(k) �= s(k) = 0, or that f1(c)(l) =
f1(d )(l) for all l such that Cl is 0-absorbing (i.e., f1(x) doesn’t depend on x in the
0-absorbing Cl ). Since c(l) and d (l) can only differ when Cl is 0-absorbing, this
means that f1(c) = f1(d ), implying that r = t. �
Our last remaining task is to address the case where a, b ∈ B differ at coordinate

that is one of the three small SI’s that model ei(y, x) ≈ 0. These algebras are
described in Section 4.

Lemma 5.20. Let B ≤
∏
l∈LCl be a subdirect representation of B by subdirectly

irreducible algebras, and suppose that c, d ∈ B are such that
(1) d ≤ c,
(2) ei(n, c) = ei(n, d ) for all i ∈ {0, 1, 2} and all n ∈ B2 ∪ B, and
(3) for each l ∈ L, CgCl (c(l), d (l)) lies in the monolith of Cl .

Let

C = {id(x)} ∪ {F1(a1, b1, F2(a2, b2, · · ·Fn(an, bn, x) · · · ))
| n ∈ N, Fi ∈ L ∪R, and ai , bi ∈ B}.

If g(x) is a primitive polynomial of B such that g(c) �= g(d ), then there is some
� ∈ B, some F (x) ∈ C, and some polynomial g ′(x) = J ′(g(c), �, F (x)) such that
(g(c), g(d )) = (g ′(c), g ′(d )).

Proof. Let B =
∏
l∈LCl be a subdirect representation of B by subdirectly

irreducible algebras Cl . We begin by proving a claim.

Claim. If h(x) = H (f(x)) for a fundamental translation H (x) and polynomial
f(x), then h′(x) = J ′(h(c), �, F (f(x))) satisfies (h(c), h(d )) = (h′(c), h′(d )) for
some � ∈ B and some F (x) ∈ C.
Proof of claim. For convenience, let r = h(c) and s = h(d ). The proof shall be

by cases, depending onwhich particular fundamental operationH is a translation of.
As usual, we shall proceed componentwise. The only possible l ∈ Lwith c(l) �= d (l)
are such that Cl |= ei (n, x) ≈ 0, by the second hypothesis, and the third hypothesis
implies that

B |=
[
x · c ≈ x · d

]
∧
[
c · x ≈ d · x

]
.

Therefore by Lemma 4.1 and from the hypotheses, the only fundamental transla-
tions that possibly do not collapse (c, d ) are translations of the operations ∧, J , J ′,
K , E, U 0E , andU

1
E , where E ∈ L∪R. In all cases except for operations from L∪R

we will take the F (x) ∈ C in the statement of the claim to be id(x).
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Before beginning with the cases, note that if h(x) = H (f(x)) ≤ f(x), then since
Cl is flat either r(l) = f(c)(l) or r(l) = 0, and likewise for s(l). The polynomial
h′(x) = J ′(r, r, f(x)) = r ∧ f(x) therefore has h′(c) = r(l) and h′(d ) = s(l).
Therefore in cases where h(x) ≤ f(x), taking � = r and F = id is sufficient.
Case ∧: If h(x) = u ∧ f(x), then h(x) ≤ f(x), so by the above remarks, take
� = r.
Case J : If h(x) = J (f(x), u, v), then h(x) ≤ f(x), so by the remarks at the start of
the cases let � = r. If h(x) = J (u,f(x), v), then let � = K(r, f(c), r). Sincemany of
the later cases are similar to this, we will carefully prove that h′(x) = J ′(r, �, f(x))
satisfies (h′(c), h′(d )) = (r, s). We have

h(x) = J (u,f(x), v) = (u ∧ f(x)) ∨ (u ∧ ∂f(x) ∧ v).
This yields the following table (assume that r(l) �= 0, since h′(x)(l) = 0 otherwise).

r � = K(r, f(c), r) h′(c) h′(d )
f(c) r r ∧ f(c) = r r ∧ f(d ) = s
∂f(c) f(c) = ∂r r r

The only possibly problematic case is when r(l) = ∂f(c)(l), but in this case we
have that s(l) = ∂f(d )(l), so r(l) = e2(r, f(c), r)(l) and s(l) = e2(r, f(c), s)(l),
contradicting hypothesis (2) in the statement of the lemma. It follows that h′(c) = r
and h′(d ) = s .
If h(x) = J (u, v, f(x)), then h(c)(l) and h(d )(l) agree whenever u(l) = v(l)
and can only possibly differ when u(l) = ∂v(l). Hence, if h(c) �= h(d ), then
e2(u, v, h(c)) �= e2(u, v, h(d )), contradicting hypothesis (2) again.
Case J ′: If h(x) = J ′(f(x), u, v), then h(x) ≤ f(x), so by the remarks at the
start of the cases let � = r. If h(x) = J ′(u,f(x), v) or h(x) = J ′(u, v, f(x)), let
� = K(r, f(c), r). An argument similar to the one in Case J will work.
Case K : If h(x) = K(f(x), u, v), then let � = K(r, f(c), r). If we have
h(x) = K(u,f(x), v), then let � = K(r, u, r). If h(x) = K(u, v, f(x)), then let
� = K(r, u, r). Arguments similar to the one in Case J will work.
Case E ∈ L ∪R: If g(x) = E(f(x), u, v) or g(x) = E(u,f(x), v) then hypothesis
(3) implies that when Cl is of machine type and f(c)(l) = g(c)(l) then c(l) is a
configuration element and therefore g(c)(l) = 0. Thus in this case, g(c) = g(d ),
a contradiction. Thus we need only examine g(x) = E(u, v, f(x)). In this case,
g ′(x) = J ′(r, r, f(x)) clearly works.

Case UiE for E ∈ L ∪ R and i ∈ {0, 1}: This case is quite similar to the previous
one. Use the fact that c(l) and d (l) only differ on sequential and machine Cl , that
UiE(w, x, y, z) ≈ 0 on sequential SI’s, and that
UiE(u, v,w, x) = 0 except for U 0E(v, u, v, x) = E(u, v, x) = U

1
E(u, u, v, x)

in the machine SI’s. �
The polynomial g(x) is primitive and therefore generated by fundamental trans-
lations. It follows that there is some fundamental translation G(x) such that
g(x) = G(f(x)). Apply the above claim to g(x) = G(f(x)) to get that there
is � ∈ B and F (x) ∈ C such that the polynomial g ′(x) = J ′(g(c), �, F (f(x)))
satisfies (g(c), g(d )) = (g ′(c), g ′(d )).
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Since g(x) = G(f(x)) is a primitive polynomial,f(x) is also primitive. Therefore
there is a fundamental translation H (x) such that f(x) = H (h(x)). Apply the
above claim to the f(x) in g ′(x) = J ′(g(c), �, F (f(x))) from the above paragraph
to get that there is �′ ∈ B and F ′(x) ∈ C such that the polynomial

g ′′(x) = J ′(g(c), �, F (J ′(f(c), �′, F ′(h(x)))))

satisfies (g ′′(c), g ′′(d )) = (g ′(c), g ′(d )) = (g(c), g(d )). The second claimwill show
how to reduce this polynomial to the form required by the conclusion of the lemma.

Claim. If h(x) = J ′(u, v, F (J ′(p, q,E(f(x))))) for constants u, v, p, q ∈ B and
F (x), E(x) ∈ C then there is some � ∈ B and E1 ∈ C such that

h′(x) = J ′(h(c), �, E1(f(x)))

has h′(c) = h(c) and h′(d ) = h(d ).

Proof of claim. Our first task will be to find another polynomial that agrees
with F (J ′(p, q,E(f(x)))) on {c, d} but has the form J ′(r1, �1, G(f(x))) for some
r1, �1 ∈ B.
If h1(x) = G1(J ′(p, q, f1(x))), whereG1(x) = G ′

1(a1, b1, x) forG
′
1 ∈ L∪R, then

there is �1 ∈ B such that h′1(x) = J ′(h1(c), �1, G1(f(x))) has h′1(c) = h1(c) and
h′1(d ) = h1(d ). To see this, let �1 = G1(q). We have

h1(x) = G1(J ′(p, q, f1(x))) = G1((p ∧ ∂q) ∨ (p ∧ q ∧ f1(x))),

and G1(∂x) = ∂G1(x) (this last equation is true because G ′
1 ∈ L ∪ R). Therefore,

h′1(x) = J
′(h(c), G1(q), G1(f1(x))) agrees with h1(x) on {c, d}.

By repeatedly applying the result of the above paragraph toF (J ′(p, q,E(f(x)))),
(and using the fact that F is a composition of translations of the form Fi(ai , bi , x)
for Fi ∈ R∪L), we obtain a polynomial of the form J ′(r1, �1, G(f(x))) that agrees
with F (J ′(p, q,E(f(x)))) on {c, d}.
At this point, we can take the polynomial h(x) = J ′(u, v, F (J ′(p, q,E(f(x)))))

in the statement of the claim and produce a polynomial

h1(x) = J ′(u, v, J ′(r1, �1, G(f(x))))

for some r1, �1 ∈ B and G ∈ mathcalC such that (h1(c), h1(d )) = (h(c), h(d )).
Next, we will show that there is some � ∈ B such that h′(x) = J ′(h(c),

�,G(f(x))) satisfies (h′(c), h′(d )) = (h1(c), h1(d )) = (h(c), h(d )). Let � =
K(h(c), v, �1). We have

h1(x) = J ′(u, v, J ′(r1, �1, G(f(x))))

= (u ∧ v ∧ r1 ∧ �1 ∧G(f(x))) ∨ (u ∧ v ∧ r1 ∧ ∂�1) ∨ (u ∧ ∂v).

This gives us the following table of cases (as usual, assume that r(l) �= 0 since
h1(x)(l) = 0 otherwise).

h1(c) = h(c) � = K(h(c), v, q) h′(c) h′(d ) h(c) �= h(d )
v = �1 h(c) h(c) ∧ G(f(c)) h(c) ∧ G(f(d )) Y
v = ∂�1 �1 = ∂h(c) h(c) h(c) N
∂v v = ∂h(c) h(c) h(c) N
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In the case where v(l) = �1(l) we also have that h(c)(l) = G(f(c))(l) and
h(d )(l) = G(f(d ))(l), so the table above indicates that h′(c) = h(c) and
h′(d ) = h(d ). �
Applying this claim to the previously computed

g ′′(x) = J ′(g(c), �, F (J ′(f(c), �′, F ′(h(x)))))

produces a polynomial g1(x) = J ′(g(c), �1, F1(h(x))) such that

(g1(c), g1(d )) = (g ′′(c), g ′′(d )) = (g(c), g(d )).

Repeating this argument with g1(x) proves the lemma. �
If a, b ∈ B differ at a coordinate that is sequential, then the Lemma 5.21 proves
that there is some polynomial that maps (a, b) coordinatewise into the monoliths
of the Cl (the subdirect factors of B) and does not collapse (a, b).

Lemma 5.21. There is a finite set of terms P depending only on V(A′(T )) such that
if a, b ∈ B are distinct, ei(n, a) = ei(n, b) for all i ∈ {0, 1, 2} and all n ∈ B2 ∪ B,
and there is p ∈ B with p · a �= p · b or a · p �= b · p, then there is t(y, x) ∈ P and
m ∈ Bn with the property that if c = t(m, a) and d = t(m, b) then
• c �= d ,
• x · c = x · d ,
• c · x = d · x,
• I (c) = I (d ),
• F (x, y, c) = F (x, y, d ),
• F (x, c, y) = F (x, d, y), and
• F (c, x, y) = F (d, x, y),
for F ∈ L ∪R and for all x, y ∈ B.
Proof. Let B ≤

∏
l∈LCl be a subdirect representation of B by subdirectly irre-

ducible algebras. The subdirectly irreducible algebras in V(A′(T )) can be divided
into two groups: either Cl |= ei(n, x) ≈ x for some i ∈ {0, 1, 2} and some
n ∈ C 2l ∪ Cl or Cl |= ei(n, x) ≈ 0 for all i ∈ {0, 1, 2}. Since ei(n, a) = ei(n, b), the
projections a(l) and b(l) must agree on all factors that satisfy Cl |= ei(n, x) ≈ x
for some i and some n, and can only possibly disagree on factors satisfying
Cl |= ei(n, x) ≈ 0 for all i .
Claim. There is a finite numberN ∈ N such that for all l ∈ L, ifCl |= e1(n, x) ≈ 0
then

Cl |= x1 · x2 · · ·xN−1 · xN ≈ 0.
Proof of claim. First recall that since T halts, there are only finitely many sub-
directly irreducible algebras, all finite. Therefore, if Cl does not model the identity
in the claim, there must exist nonzero elements r, s ∈ Cl such that r · · · r · s = s .
Considering Cl as a quotient of a product of subalgebras of A′(T ), this means that
there is some coordinate of the preimages (under the quotient map) of r and s
such that (r(i), s(i)) ∈ {(1, C ), (2, D)}. Therefore, e1(r, s) �= 0, contradicting our
assumption that Cl |= e1(n, x) ≈ 0. Let S be a finite set containing a representa-
tive of each isomorphism type of the subdirectly irreducible algebras of V(A′(T )),
and for C ∈ S, let nC ∈ N be minimal such that C |= x1 · · ·xnC ≈ 0. Taking
N = max{nC | C ∈ S} completes the proof of the claim. �
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Since the product (·) associates to the left, every polynomial of the form f(x) =
y1 · · · ym · x · ym+1 · · ·yM can be rewritten as f(x) = y1 · · · ym · x · z, where z =
ym+1 · · ·yM . Let

P = {f(y1, . . . , yM , x) = y1 · · ·yM · x,
g(y1, . . . , yM , x) = y1 · · · yM−1 · x · yM | 0 ≤M < N}.

Thus, there is a term t(y, x) ∈ P and constantsm ∈ Bn such that t(m, a) �= t(m, b)
and x ·t(m, a) = x ·t(m, b) and t(m, a) ·x = t(m, b) ·x for all x ∈ B. Furthermore,
sincep·a �= p·b ora·p �= b·p, the term t is not the identity.Therefore, t(m,x)(l) ≈ 0
whenCl is machine (recall thatmachineCl model x ·y ≈ 0). Thus for all x, y, z ∈ B
and all F ∈ L ∪R,
F (t(m, z), x, y) = F (x, t(m, z), y) = F (x, y, t(m, z)) = I (t(m,x)) = 0. �
Let the set P be as in Lemma 5.21 and define

Γ(·)(w, x, y, z) =
∨

t∈P∪{id(x)}

∃n
[
w = t(n, y) ∧ x = t(n, z)

]
. (5.11)

Given Lemmas 5.20 and 5.19, define

�(·)(w, x, y, z) = ∃t
[
w = J ′(w, t, y) ∧ x = J ′(w, t, z)

]
. (5.12)

If c, d ∈ B with d < c satisfy the conclusion of Lemma 5.21, then c, d also satisfy
the hypotheses of Lemma 5.20. In this situation, (r, s) ∈ CgB(c, d ) if and only if
B |= �(·)(r, s, c, d ). Since we will be employing a strategy similar to the proof of
Theorem 5.18, where a generalMaltsev sequence is divided into 2 strictly decreasing
sequences, let

�3(w, x, y, z) = ∃t
[
�(·)(w, t, y, z) ∧ �(·)(x, t, y, z)

]
. (5.13)

Theorem 5.22. Let a, b ∈ B be distinct and such that b ≤ a and ei(n, a) = ei(n, b)
for all i ∈ {0, 1, 2} and all n ∈ B2 ∪ B. If one of the following
(1) there is p ∈ B such that p · a �= p · b or a · p �= b · p, or
(2) for all u, v ∈ B and F ∈ L ∪ R each of the translations x · u, u · x, I (x),
F (u, v, x), F (u, x, v), and F (x, u, v) are constant for x ∈ {a, b}

holds, then the congruence CgB(a, b) has a principal subcongruence witnessed by the
formula Γ(·)(−,−, a, b) and defined by the formula �3:

B |= ∃c, d
[
c �= d ∧ Γ(·)(c, d, a, b) ∧Π�3 (c, d )

]
.

Proof. Let B =
∏
l∈LCl be a subdirect representation of B by subdirectly irre-

ducible algebras Cl . If (1) holds, then from Lemma 5.21 the pair (a, b) differs at
a coordinate that is sequential, and (a, b)(l) lies outside of the monolith of some
sequential Cl . Find t ∈ P and constantsm such that if c = t(m, a) and d = t(m, b)
then

• c �= d ,
• x · c = x · d ,
• I (c) = I (d ),
• c · x = d · x,
• F (x, y, c) = F (x, y, d ),
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• F (x, c, y) = F (x, d, y), and
• F (c, x, y) = F (d, x, y).
If (2) holds, then the pair (a, b) differ at a coordinate that is sequential, but (a, b)(l)
lies in the monolith of each sequential Cl . Let c = a and d = b. In both (1) and
(2), B |= Γ(·)(c, d, a, b) and c and d satisfy the hypotheses of Lemma 5.20.
Since b ≤ a and the operations of B are monotonic, d ≤ c. Suppose now that
(r, s) ∈ CgB(c, d ). Then using the same argument as in the proof of Theorem 5.18,
there are decreasing Maltsev chains r = r1, . . . , rm = t and s = s1, . . . , sn = t with
associated primitive polynomials. Using first Lemma 5.20 and the description of c
and d in the preceding paragraph, and then applying Lemma 5.19, we have that
there are constants � and �′ such that

r = J ′(r, �, c), t = J ′(r, �, d ) = J ′(s, �′, d ),

s = J ′(s, �′, c).

Hence B |= �(·)(r, t, c, d ) ∧ �·(s, t, c, d ) = �3(r, s, c, d ), completing the proof. �
Next, we move on to analyzing the case where a, b ∈ B differ at a machine
coordinate. We will employ a strategy similar to the sequential case, and produce
from (a, b) a pair (c, d ) such that (c, d )(l) lies in the monolith of Cl for each l ∈ L.
Lemma 5.23. There are finite sets of terms S and T depending only on V (A′(T ))
such that ifa, b ∈ B are distinct such that b ≤ a, ei(n, a) = ei(n, b) for all i ∈ {0, 1, 2}
and all n ∈ B2 ∪ B, one of
(1) there is F ∈ L ∪R and u, v ∈ B such that F (u, v, a) �= F (u, v, b), or
(2) there is F ∈ L ∪R and u, v ∈ B such that F (u, v, I (a)) �= F (u, v, I (b)),
(3) for all F ∈ L ∪R and all u, v ∈ B,
(a) I (a) = I (b),
(b) u · a = u · b and a · u = b · u, and
(c) F (u, v, a) = F (u, v, b),

holds, then there is t(y, x) ∈ S and constants m ∈ B such that if c = t(m, a) and
d = t(m, b) then for any n ∈ N and F1, . . . , Fn ∈ L ∪ R and any a1, . . . , a2n ∈ B
there is G(y, x) ∈ T and b ∈ Bm such that

F1(a1, a2, F2(a3, a4, . . . , Fn(a2n−1, a2n, c) . . .)) = G(b, c) and

F1(a1, a2, F2(a3, a4, . . . , Fn(a2n−1, a2n, d ) . . .)) = G(b, d ).

Furthermore, if B ≤
∏
l∈LCl is a subdirect representation of B by subdirectly

irreducible algebras then (c(l), d (l)) lies in the monolith of Cl for each l ∈ L.
Proof. We will begin by examining algebras whose only subdirect factors are
machine. If D is a machine SI, then using the notation from the discussion of large
SI’s in Section 4, the monolith of D is CgD(P , 0), and there are two possibilities for
its structure: either

• T (P) = 0, in which case the only nontrivial class of the monolith is {P , 0}, or
• there isN ∈ N such that T N (P) = T (T (· · · T (P) · · · )) = P (that is, theTuring
machine enters a nonterminating loop), in which case the only nontrivial class
of the monolith is {P ,T (P), . . . ,T N−1(P), 0}.
Let (Ck)k∈K be a family of machine SI’s and suppose that C ≤

∏
k∈K Ck and

that c, d ∈ C are such that c ≥ d and (c(k), d (k)) lies in the monolith of Ck for
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each k ∈ K . We now make two straightforward observations that follow from the
description of the monoliths of the machine SI’s in the above paragraph and in
Section 4 and from V(A′(T )) having finite residual bound:

• if F ∈ L ∪ R, k ∈ K , and a1, a2 ∈ Ck then F (a1, a2, c(k)) ∈ {0,T (c(k))}
(likewise for d in place of c), and

• the set T ′ = {T i(d ),T i(c) | 0 ≤ i <∞} is finite (we apply T coordinatewise).
We now define the set T . For each isomorphism type of a machine SI, D, let ND be
minimal such that T ND(P) ∈ {0,P}, and letN be the least common multiple of the
ND. Since V(A′(T )) has finite residual bound,N is finite. Define

T = {G1(y1, y2, G2(y3, y4, . . . , Gm(y2m−1, y2m, x) . . .)) | m ≤ N,Gi ∈ L∪R}∪{id(x)}.
A consequence of these observations and the definition of T is that for any n ∈ N,
F1, . . . , Fn ∈ L ∪ R, and a1, . . . , a2n ∈ C , there is G(y, x) ∈ T and b ∈ Cm such
that

F1(a1, a2, F2(a3, a4, . . . , Fn(a2n−1, a2n, c) . . .)) = G(b, c) and

F1(a1, a2, F2(a3, a4, . . . , Fn(a2n−1, a2n, d ) . . .)) = G(b, d ).

Next, we move on to the set S. V(A′(T )) is residually finite, so there is a finite
set of terms S depending only on V(A′(T )) such that for all C ≤

∏
k∈K Ck (recall

(Ck)k∈K is a family ofmachine SI’s) and allp, q ∈ C with q < p there is a term t ∈ S
and constants m ∈ Cm such that t(m,p) �= t(m, q) and (t(m,p)(k), t(m, q)(k))
lies in the monolith of Ck for each k ∈ K . Note that the set of terms S can be
taken to consist of the identity and a finite subset of terms generated by composing
operations from L∪R∪ {I (x)}. At this point we have produced S and T that will
work for algebras C whose subdirect factors are all machine.
We now examine algebras whose subdirect factors contain nonmachine SI’s.

Let B ≤
∏
l∈LCl be a subdirect representation of B by subdirectly irreducible

algebras. By the hypotheses, a(l) �= b(l) on some machine Cl . From the paragraph
above, it follows that there is a term t ∈ S and constants m ∈ Bm such that
(t(m, a), t(m, b))(l) lies in the monolith of Cl for all machine Cl . Let (c, d ) =
(t(m, a), t(m, b)). The term t is (if hypotheses (1) or (2) hold) a composition of
operations from L ∪ R ∪ {I (x)} or (if hypothesis (3) holds) the identity. Aside
from the identity, terms from S are constant in SI’s modeling ei (x, y) ≈ 0 except
for machine SI’s and the 3-element small SI {0,H,M 01 }. Therefore, c(l) = d (l) on
nonmachine Cl and (c, d )(l) lies in the monolith of Cl for machine Cl . Applying
the observations from above about the set T now proves the lemma. �
Let the sets S and T be as in Lemma 5.23 and define

ΓT (w, x, y, z) =
∨
t∈S

∃n
[
w = t(n, y) ∧ x = t(n, z)

]
. (5.14)

Given Lemmas 5.20 and 5.19, define

�T (w, x, y, z) = ∃t
[ ∨
G∈T

∃b
[
w = J ′(w, t,G(b, y)) ∧ x = J ′(w, t,G(b, z))

]]
.

(5.15)
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If c, d ∈ B satisfy the conclusion ofLemma5.23, then c, d also satisfy the hypotheses
of Lemma 5.20. Then (r, s) ∈ CgB(c, d ) if and only if B |= �T (r, s, c, d ). Since we
will be employing a strategy similar to the proof of Theorems 5.18 and 5.22, where
a Maltsev chain is broken into 2 decreasing segments, let

�4(w, x, y, z) = ∃t
[
�T (w, t, y, z) ∧ �T (x, t, y, z)

]
. (5.16)

Theorem 5.24. Let a, b ∈ B be distinct and such that b ≤ a and ei(n, a) = ei(n, b)
for all i ∈ {0, 1, 2} and all n ∈ B2 ∪ B. If
(1) there is F ∈ L ∪R and u, v ∈ B such that F (u, v, a) �= F (u, v, b), or
(2) there is F ∈ L ∪R and u, v ∈ B such that F (u, v, I (a)) �= F (u, v, I (b)),
(3) for all F ∈ L ∪R and all u, v ∈ B,
(a) I (a) = I (b),
(b) u · a = u · b and a · u = b · u, and
(c) F (u, v, a) = F (u, v, b),

holds, then the congruence CgB(a, b) has a principal subcongruence witnessed by
ΓT (−,−, a, b) and defined by �4. In symbols,

B |= ∃c, d
[
c �= d ∧ ΓT (c, d, a, b) ∧Π�4 (c, d )

]
.

Proof. By hypothesis, Lemma 5.23 holds. Let T and S be the finite sets of terms
and c, d ∈ B be the elements guaranteed by the conclusion of Lemma 5.23. Then
there is t ∈ S and m ∈ Bn such that c = t(m, a) and d = t(m, b). Furthermore, if

F (x) ∈ {id(x)} ∪ {F1(a1, b1, F2(a2, b2, . . . , Fn(an, bn, x) . . .)) |
n ∈ N, Fi ∈ L ∪R, and ai , bi ∈ B},

then there is G ∈ T and b ∈ Bn such that F (c) = G(b, c) and F (d ) = G(b, d )
(the existence of such elements is the conclusion of Lemma 5.23). Thus B |=
ΓT (c, d, a, b) and c and d satisfy the hypotheses of Lemma 5.20.
Since b ≤ a and the operations of B are monotone, d ≤ c. Suppose now that
(r, s) ∈ CgB(c, d ). Using the same argument as in the proof of Theorem 5.18, there
are decreasing Maltsev chains r = r1, . . . , rm = t and s = s1, . . . , sn = t with
associated primitive polynomials. Using first Lemma 5.20, and then Lemma 5.19,
we have that there are constants �, �′ ∈ B such that

r = J ′(r, �,G(b, c)), t = J ′(r, �,G(b, c)) = J ′(s, �′, G ′(b
′
, d )),

s = J ′(s, �′, G ′(b
′
, c))

for some G,G ′ ∈ T and constants b, b′ ∈ Bn . Hence B |= �T (r, t, c, d ) ∧
�T (s, t, c, d ), completing the proof. �
The last case where a, b ∈ B differ at a coordinate that is small but that does not
satisfy ∃n[ei(n, x) ≈ x] remains. From Lemma 4.1, we know that there are only
3 isomorphism types for such SI’s. If the coordinate is isomorphic to {0, C}, then
the lemmas used in the sequential case apply. We are therefore concerned with the
remaining two isomorphism types. To this end, let

ΓI (w, x, y, z) =

∃u, v
[(
u = I (y) ∧ v = I (z) ∧ Γ(·)(w, x, u, v)

)
∨ Γ(·)(w, x, y, z)

]
. (5.17)
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Lemma 5.25. Suppose that a, b ∈ B are distinct, but that I (x) is the only fun-
damental operation that distinguishes them. Then the congruence CgB(a, b) has a
principal subcongruence witnessed byΓI (−,−, a, b) and defined by�3 (see (5.13) and
(5.17)):

B |= ∃c, d
[
c �= d ∧ ΓI (c, d, a, b) ∧Π�3 (c, d )

]
.

Proof. Let B ≤
∏
l∈LCl be a subdirect representation of B by subdirectly irre-

ducible algebras. If a, b ∈ B are distinct and only distinguished by I (x), then
a(l) �= b(l) if and only if Cl ∼=W or Cl ∼= {0,H,M 01 } (see (4.2) and Lemma 4.1).
If a′ = I (a) and b′ = I (b), then a′ and b′ satisfy the hypotheses of Theorem 5.22

and thus CgB(a′, b′) has a principal subcongruence witnessed by Γ(·)(−,−, a′, b′)
and defined by �3. Therefore, CgB(a, b) has a principal subcongruence witnessed
by ΓI (−,−, a, b) and defined by �3, as claimed. �
Theorem 5.26. If T halts then V(A′(T )) has definable principal subcongruences.
Proof. Let

Γ(w, x, y, z) = Γ1(w, x, y, z) ∨ Γ(·)(w, x, y, z) ∨ ΓT (w, x, y, z) ∨ ΓI (w, x, y, z)
(see Theorem 5.18 and equations (5.11), (5.14), and (5.17) for definitions of these),
and

�(w, x, y, z) = �2(w, x, y, z) ∨�3(w, x, y, z) ∨�4(w, x, y, z)
(see equations (5.10), (5.13), and (5.16) for definitions of these). We claim that
V(A′(T )) has definable principal congruences witnessed by Γ and �. In symbols,

V(A′(T )) |= ∀a, b
[
a �= b → ∃c, d

[
c �= d ∧ Γ(c, d, a, b) ∧Π�(c, d )

]]
.

Let B ∈ V(A′(T )) with a, b ∈ B distinct and let B ≤
∏
l∈LCl be a subdirect

representation by subdirectly irreducible algebras. Since a and b are distinct, there
is some l ∈ L such that a(l) �= b(l). Let

K = {l ∈ L | a(l) �= b(l)}.
The case distinction breaks down as follows:

(1) There is some k ∈ K such that Ck |= ei(n, x) ≈ x for some i ∈ {0, 1, 2} and
some n ∈ C 2k ∪ Ck . In this case, Theorem 5.18 applies.

(2) The previous case does not apply, but there is some k ∈ K such that Ck is
sequential. If this is the case, there is some u ∈ B such that u · a �= u · b or
a · u �= b · u, or the machine operations L∪R cannot distinguish between a
and b. In this case, Theorem 5.22 applies.

(3) The previous cases do not apply, but there is some k ∈ K such that Ck is
machine. If this is the case, there is some machine operation in L ∪ R that
can distinguish between a and b. In this case, Theorem 5.24 applies.

(4) The previous cases do not apply, so there must be some k ∈ K such that
Ck is small and models ei(y, x) ≈ 0 for all i ∈ {0, 1, 2} (see Lemma 4.1).
If Ck = {0, C} or C ∼= W, then Theorem 5.22 applies. If Ck = {0,H,M 01 }
then either Theorem 5.22 applies (if a(k) = M 01 ) or Lemma 5.25 applies
(if a(k) = H ).

Since the SI’s of V(A′(T )) either satisfy ei(n, x) ≈ x for some i ∈ {0, 1, 2} and
n ∈ B2 ∪ B, are sequential, are machine, or are isomorphic to one of the 3 small
algebras given in Lemma 4.1, this completes the proof. �
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One of the interesting applications of definable principal subcongruences is in
defining the subdirectly irreducible members of some class of algebras. If C is a
class of algebras with definable principal subcongruences witnessed by congruence
formulas Γ and �, then

C |= ∀a, b
[
a �= b → ∃c, d

[
c �= d ∧ Γ(c, d, a, b) ∧Π�(c, d )

]]
,

and the sentence

� = ∃r, s
[
r �= s ∧ ∀a, b

[
a �= b → ∃c, d

[
Γ(c, d, a, b) ∧�(r, s, c, d )

]]]
defines the subdirectly irreducible algebras in C. Baker and Wang [2] use this to
prove the following theorem.

Theorem 5.27 (Baker, Wang [2]). A variety V with definable principal subcongru-
ences is finitely based if and only if the class of subdirectly irreducible members of V is
finitely axiomatizable.

In particular, if κ(V) < � then the class of subdirectly irreducible members of V
is finitely axiomatizable since there are only finitely many of them, all finite. This
observation and the above theorem yields a corollary to Theorem 5.26.

Corollary 5.28. If T halts, then V(A′(T )) is finitely based.

§6. If T does not halt. In the case where T halts, every sequential subdirectly
irreducible algebra is finite and there are only finitely many of them. In the case
where T does not halt, McKenzie [6] and the additions from Section 3 show that the
algebra SZ (defined in Section 4) is a member of V(A′(T )). McKenzie [8] uses SZ to
show that if T does not halt, then A(T ) is inherently nonfinitely based. Although
SZ is not subdirectly irreducible, it contains an infinite subalgebra S� which is, and
every finite sequentiable SI can be embedded in it. We will use the presence of SZ in
V(A′(T )) to show that if T does not halt, then V(A′(T )) doesn’t have DPSC.
An algebraC is said to be finitely subdirectly irreducible (FSI) if for all a, b, c, d ∈
C such that a �= b and c �= d , CgC(a, b)∩CgC(c, d ) �= 0 (i.e., 0 is meet irreducible).
Every SI is FSI, but not every FSI is SI.

Theorem 6.1. The class of finitely subdirectly irreducible algebras in V(A′(T )) is
not axiomatizable if T does not halt.
Proof. We will use an ultrapower argument. Suppose to the contrary that the
class of finitely subdirectly irreducible algebras in V(A′(T )) is axiomatizable, say by
Φ. T does not halt if and only if SZ ∈ V(A′(T )). Let S be an ultrapower of S� , so
that S satisfies all first-order properties of S� . In particular, since S� |= Φ, we have
that S |= Φ, so 0 is meet irreducible in Con(S). We will now give some first-order
properties of S� which we will make use of.
Let

A = {α ∈ S� | ∃�[α · � �= 0]} and B = {� ∈ S� | ∃α[α · � �= 0]}.

Then in S� , for each α ∈ A there is a unique � ∈ B such that α ·� �= 0, and for each
� ∈ B, there is a unique α ∈ A such that α · � �= 0. This gives us that |A| = |B|. We
also have

A ∩ B = ∅ and S� = A ∪ B ∪ {0}.
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For b ∈ B, let

An · b = {α1 · · ·αm · b | 0 ≤ m ≤ n and α1, . . . , αm ∈ A}.

Then |An · b| = n + 2. Furthermore, for b, c ∈ B,

if (An · b) ∩ (Am · c) �= {0} then b ∈ Am · c or c ∈ An · b.

Lastly, if F (x) is a fundamental translation in S� , then F (An · b) ⊆ An+1 · b. All of
these sets and properties are first-order definable and hold in S� , so their analogues
hold in S as well.
We will now begin to examine S. For b ∈ B, define the orbit of b to be

bA =
⋃
n∈N

An · b.

Since |An · b| = n + 2, the set bA is countable. Suppose now that there are b, c ∈ B
such that bA∩cA = {0}. Then by the properties above, CgS(b, 0) relates the orbit of
b to 0 and is the identity relation elsewhere. A similar statement is true of CgS(c, 0).
It follows that the two congruences meet to 0, which contradicts 0 being meet
irreducible in Con(S). It follows that for all b, c ∈ B, bA ∩ cA �= {0}.
Pick distinct b, c ∈ B. Then bA ∩ cA �= {0}, so by the properties above, we have

that either b ∈ cA or c ∈ bA. Without loss of generality, assume that b ∈ cA. There
is a finite number n and α1, . . . , αn ∈ A such that α1 · · ·αn · c = b, so since this is
true for all b, c, we have that

⋃
b∈B b

A is countable. Since B =
⋃
b∈B b

A, it must be
thatB is countable. The property that |A| = |B| andS = A∪B∪{0} therefore gives
us that S is also countable. Since nonprincipal ultrapowers of infinite structures are
uncountable, this implies that the ultrapower is principal and S ∼= S� . �
Corollary 6.2. V(A′(T )) does not have definable principal subcongruences if T

does not halt.

Proof. Suppose thatV(A′(T )) has definable principal subcongruences witnessed
by Γ and �, and let

� = ∀a, b, a′, b′
[
(a �= b) ∧ (a′ �= b′)→ ∃c, d, c′, d ′

[
Γ(c, d, a, b) ∧ Γ(c′, d ′, a′, b′)

∧∃r, s
[
r �= s ∧ �(r, s, c, d ) ∧�(r, s, c′, d ′)

]]]
.

For B ∈ V(A′(T )), we have that B |= � if and only if B is finitely subdirectly
irreducible (that is, FSI’s are axiomatized by �). This contradicts Theorem 6.1, so
V(A′(T )) cannot have definable principal subcongruences as we assumed. �

§7. Conclusion. Theorem 5.26 and Corollaries 5.28 and 6.2 yield the
Theorem 7.1.

Theorem 7.1. The following are equivalent.

(1) T halts.
(2) V(A′(T )) has definable principal subcongruences.
(3) V(A′(T )) is finitely based.

This completes the proof that DPSC is an undecidable property, and provides
another negative answer to Tarski’s well-known finite basis problem.
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