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improve the recovery of mature spermatozoa
in sub-fertile males

Chiara Fasano, Giuseppe D’Andolfi, Loredana Di Matteo, Claudia Forte,

Brian Dale and Elisabetta Tosti

Centro Fecondazione Assistita (CFA), Via Tasso 480, 80123 Naples, Italy

Summary

The integrity of chromatin in the spermatozoon is essential for reproductive outcome. The aim
of this study was to evaluate the most effective and cost-effective method to reduce the percent-
age of spermatozoa with defects in chromatin decondensation for use in assisted reproductive
technologies (ART) procedures. Sperm samples from 15 sub-fertile males were examined at
CFA Naples to determine the sperm decondensation index (SDI), using the aniline blue test,
before and after preparation, comparing density gradients with two different swim-up
approaches. All three techniques led to a reduction in decondensed spermatozoa with no stat-
istical difference (P> 0.05) between the control and the treated sperm. In contrast, we found a
highly significant decrease in SDI (P< 0.01) after the two swim-up methods in all the samples,
confirming the efficacy of these methods in lowering the percentage of chromatin compaction
damage. There was no statistical difference between the two swim-up methods, however swim-
up from the pellet led to improved count, motility and the percentage of normal condensed
spermatozoa. We suggest that swim-up from the pellet be used in ART on sub-fertile males,
both to reduce cell stress by multiple centrifugation and improve the recovery rate of mature
spermatozoa.

Introduction

Gametogenesis is the biological process of gamete formation occurring in the gonads and under-
lined by meiosis, the unique process of cell division whose final target is the production of
mature haploid gametes competent for fertilization. Spermatogenesis is a complex process of
proliferation and differentiation of spermatogonia, the male germ cell precursors give rise to
primary and secondary spermatocytes and round spermatids. During spermiogenesis, the last
phase of spermatogenesis, the spermatid undergoes a dramatic structural remodelling that
transforms it from a spherical shape to the typical one of a mature spermatozoon consisting
of the head, the neck and the tail. A crucial event associated with spermiogenesis is sperm
nuclear compaction due to the condensation state of chromatin. This packaging differs from
the chromatin in somatic cells (Ward and Coffey, 1991) and occurs by the replacement of
the DNA-linked histones with transition proteins in the spermatocyte that are later replaced
by basic protamines (P1 and P2). This process creates a specific protamine ratio and leads ulti-
mately to tightly packaged chromatin (Poccia, 1986; Curry and Watson, 1995; Balhorn et al.,
1999; Hao et al., 2019), with a compact and hydrodynamic nuclear structure aimed both to pro-
tect the sperm genomic integrity and to improve sperm motility (Evenson et al., 1978; Caron
et al., 2005). The mature chromatin contains ~85% protamines and 15% histones, whose reten-
tion is associated with epigenetic information regulating important gene expression involved in
embryo development (Ward, 2010; Ihara et al., 2014). In addition to the biological role of the
histone-bound chromatin, a protamine anomaly associated with an increased level of histones
may account for incorrect DNA chain folding.

Correct spermatogenesis and appropriate animal and human sperm chromatin conden-
sation are associated with spermmaturity, functionality and fertilization potential. Evidence
is provided that altered sperm chromatin condensation may affect the dynamics of DNA
methylation reprogramming in the male pronucleus and that both male and female pronu-
clei show a tendency of decreased size leading in turn to a lower fertilization rate (Rahman
et al., 2018). Furthermore, it is well documented that different degrees of decondensed chro-
matin in a sperm population may exert detrimental effects on normal embryo development,
ongoing and term pregnancy and live birth outcome (Sakkas et al., 1998; Esterhuizen et al.,
2000; Evenson and Jost, 2000; Agarwal and Said, 2003; Virro et al., 2004; Lin et al., 2008;
Kazerooni et al., 2009; Ward, 2010; Talebi et al., 2012; Booze et al., 2019; Jerre et al.,
2019; Kutchy et al., 2019).
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In ~50% of couples infertility is due to male factors (Daumler
et al., 2016). Clinical screening of sub-fertile men starts with the
evaluation of sperm parameters according to WHO guidelines
(World Health Organization, 2010). The conventional spermio-
gram investigates sperm concentration, motility and morphology.
However, over the latter decades there has been increasing evi-
dence that these parameters have poor prognostic value for fertili-
zation success and therefore it is recommended that a sperm
functionality test is associated with traditional semen analysis
(Lefièvre et al., 2007; Shamsi et al., 2011).

In particular, sperm genomic integrity has been shown to affect
sperm functionality together with fertilization and developmental
success and pregnancy outcome (Lewis and Aitken, 2005; Lewis
et al., 2008). Systematic reviews by Zini (Zini et al., 2008; Zini,
2011) have demonstrated that sperm genomic damage is associated
with reduced natural and intrauterine insemination (IUI), lower
in vitro fertilization (IVF) and pregnancy outcome, and higher risk
of recurrent pregnancy loss (Hammadeh et al., 1998; Esterhuizen
et al., 2002; Sreenivasa et al., 2012; Coughlan et al., 2015).

In assisted reproductive technologies (ART), IUI is the first
therapeutic treatment in couples with unexplained infertility
and/or in cases of normal male factors combined with mild female
factors (Tomlinson et al., 1996; Starosta et al., 2020). However, it is
common practice that, after three IUI attempts, IVF and/or intra-
cytoplasmic sperm injection (ICSI) is suggested. Currently ICSI is
the most common technique used to overcome severe male infer-
tility, giving rise to the birth of millions of babies worldwide since
the 1990s (Palermo et al., 2017; Haddad et al., 2021).

All techniques used in ART, from IUI through to IVF to ICSI,
require pre-preparation of the spermatozoa based on the removal
of seminal plasma and in vitro capacitation. Swim-up (SU) and
density gradient centrifugation (DGC) are the most widely used
techniques aimed to recover an enriched high-quality sperm pop-
ulation (Henkel and Schill, 2003). In this study, using the acidic
aniline blue staining test on human semen samples, we compared
three different sperm preparation methods to evaluate the best
protocol by which to enrich the population of mature spermatozoa
for use in ART.

Materials and methods

Patients and sperm preparation

In total, 15 seminal fluids from patients attending the Centre of
Assisted Fertilization (CFA, Naples, Italy) for primary infertility
and with written informed consent, were randomly selected on
the basis of the following parameters: normal pH, volume≥ 4 ml,
sperm number≥ 5 × 106/ml, normal morphology≥ 2% and
progressive motility > 10 %. Samples were collected by masturba-
tion after 2–5 days of sexual abstinence. Each sample was processed
after liquefaction at room temperature for at least 30 min and then
classified according to the reference values suggested by the WHO
(World Health Organization, 2010). Microscopic examination of
sperm number and velocity was quantified using a Makler count-
ing chamber (Sefi Medical Instruments). Sperm morphology was
evaluated using Papanicolaou stain-coated slides (TestSimplets,
Waldeck Gmbh, Germany) and scored according to the Krüger
strict criteria (Krüger et al., 1987). To avoid intravariability, sperm
concentration, motility and morphology were evaluated always by
the same experienced observer.

Each sample of seminal fluid was split into four aliquots as
follows: (i) raw ejaculate as control; (ii) ejaculate subjected to

discontinuous DGC; (iii) ejaculate subjected to swim-up from
the pellet after centrifugation (SU-P); (iv) direct swim-up from
the ejaculate (SU-E) without centrifugation (Fig. 1).

All the preparations and centrifugations were performed in
conical tubes and dilutions and pellet resuspensions were made
in Sperm Preparation Medium (SPM, ORIGIO, Måløv, Denmark).

DGC were performed by stratifying 1 ml of 40% gradient
(Origio, Måløv, Denmark) over 1 ml of 80% gradient. Next, 1
ml of ejaculate was then gently layered on the 40% gradient and
centrifuged at 200 g for 20 min at room temperature. The pellet
was then removed and resuspended in 0.4 ml of SPM.

SU-P were performed by mixing 1 ml of ejaculate with 2 ml of
SPM and centrifuged at 300 g for 3 min. Then the supernatant was
removed and 0.5 ml of SPM was gently stratified over the compact
pellet and incubated for 1 h at 37°C. Then 0.4 ml of the supernatant
containing spermatozoa was gently collected without disturbing
the interface between the pellet and the medium.

SU-E was performed by gently stratifying 0.5 ml of SPM on 1ml
of ejaculate and incubating for 1 h at 37°C. Next, 0.4 ml of the
upper layer containing spermatozoa was gently collected without
disturbing the interface between the ejaculate and the medium.

To obtain reproducible data and a consistency between the con-
trol and the treated samples, after the treatments, each sample was
observed for evaluating sperm concentration and motility to detect
the count and motility of spermatozoa to be submitted for the
decondensation test.

Nuclear chromatin decondensation test

This test allows the identification and discrimination of the ratio of
histones and protamines in sperm nuclei. Briefly, 10 μl of each ali-
quot was spread and smeared on a glass slide previously washed in
70% ethanol and allowed to dry at room temperature. Smears were
then fixed in 4% (v/v) buffered glutaraldehyde for 30 min and then
rinsed in phosphate-buffered saline (PBS; Sigma, Italy) and in dis-
tilled water for 20 s each. Slides were left to air dry at room temper-
ature and then stained with 5% aqueous aniline blue (Sigma, Italy)
5% mixed with 4% acetic acid for 15 min. Slides were then rinsed
twice in distilled water to remove the excess of aniline and air dried.
At least 200 spermatozoa were counted per slide using a phase-
contrast microscope (Nikon, ×1000 magnification). Three catego-
ries of head staining intensities were observed as unstained, parti-
ally stained and fully stained.

Three different operators blindly performed microscopic eval-
uations of either sperm count, motility and SDI and the mean val-
ues in each group were compared.

Statistical analysis

Statistical analysis was carried out using Systat 11.0 release. Before
the analyses, percentage values were transformed in arcsin and
homogeneity of variances and their normal distribution were
tested. Hypothesis testing was performed by parametric tests,
which included linear regression analysis (LRA) and analysis of
variance (ANOVA), Coefficients of correlation (R) were recorded
for each LRA model. A probability (P) value of≤ 0.05 was selected
as a criterion for a statistically significant difference; a P-value
of≤ 0.001 was selected for high significant difference.

Results

The average age of the patients involved in this study was 37.9 ± 2.0
years (range from 23 to 57 years). Seminal fluid selection was based
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on spermconcentration and forwardmotility.Only samples exhibiting
at least 5 × 106/ml and 10% forward motility were used in this study.
Concerning sperm morphology, from the 15 seminal fluids 13 had
normal morphology≥ 3%, whereas two had normal forms≥ 2%.

Using the aniline blue decondensation test, three types of sperm
head staining were evaluated as follows: (i) unstained pale blue for
normally condensed chromatin (NCC), (ii) partial pale and blue
stained for partially condensed chromatin (PDC), and (iii) intense
blue stained for highly decondensed chromatin (FDC) (Fig. 2). We
considered PDC as decondensed spermatozoa as this pattern may
reflect the amount of residue histones that however is a mandatory
epigenetic marking for embryo development.

The percentage of sperm exhibiting chromatin decondensation
was expressed as the sperm decondensation index (SDI) and evalu-
ated as the percentage of decondensed cells over the total number
of sperm examined.

Sperm number, progressive motility and SDI in control and
after the three preparation methods are summarized in Table 1.

Themean sperm concentration in the control decreased after all
three treatments, however, was not significantly different with
respect to the DGC (59.9 ± 12.8 vs 44.9 ± 15.4) and significantly
different to the other two treatments (59.9 ± 12.8 vs 14.5 ± 5.6 in
SU-E and vs 17.3 ± 4.2 in SU-P, respectively; P ≤ 0.001). No sig-
nificant differences were reported between the two SU treatments.
A different trend was observed for sperm progressive motility that
significantly increased between control and the three preparations
and between DGC and the two swim-up (41.3 ± 3.3 vs 61.0 ± 5.3 in
DGC, vs 80.0 ± 3.1 in SU-E and vs 84.0 ± 2.4 in SU-P; P≤ 0.001).
Similarly, for the sperm number no significant differences were
observed between SU-E and SU-P.

Nuclear chromatin decondensation rate (SDI, threshold
value > 30%) was evaluated in the freshly produced ejaculate
and after three different preparationmethods. From 15 semen con-
trol samples, 87% showed normal SDI in a range between 5 and 24
% whereas 13% showed abnormal SDI with percentage values of
35–36%. No significant correlation was observed between control
and DGC treatment (17.3 ± 2.6 vs 12.8 ± 2.3; P> 0.05), nor
between DGC and SU-E (12.8 ± 2.3 vs 8.1 ± 1.4; P> 0.05). In con-
trast, a high significant difference was observed between control
and both the two swim-up techniques (17.3 ± 2.6 vs 8.1 ± 1.4 in
SU-E and vs 6.4 ± 1.5in SU-P; P≤ 0.001).

Comparing the SDI decrease between DGC and the two swim-
up, these were significant only vs SU-P (P< 0.05) whereas no cor-
relation existed between DGC and SU-E (Fig. 3).

Discussion

It is well established that semen characteristics play a fundamental
role in the outcome of infertility treatments (Zhao et al., 2004). In
this study, we showed a significant effect of different sperm prepa-
ration methods with respect to sperm nuclear tertiary structure.

In particular, we highlighted the finding that the two different
SU methods represented the best techniques able to lower the SDI
in seminal fluids, showing variations in semen parameters as num-
ber, motility, morphology and SDI. According to Sellami and col-
leagues (Sellami et al., 2013), who suggested that chromatin
decondensation is independent of basic parameters, our samples
allowed us to evaluate the objective effect of the preparation meth-
ods on the SDI by excluding the interference of other conventional
sperm parameters. The role of the spermatozoon was to activate

Figure 1. Three sperm preparation techniques. Top panel: density gradient centrifu-
gation (DGC); middle panel: ejaculate subjected to swim-up from the pellet after cen-
trifugation (SU-P); and bottom panel: direct swim-up from the ejaculate (SU-E) without
centrifugation.
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the oocyte, probably via a soluble sperm factor, provide the cen-
trioles and deliver a haploid genome into the oocyte (Wilding
and Dale, 1997; Dale et al., 2010; Tosti and Ménézo, 2016). To
become a mature spermatozoon, the haploid spermatid undergoes
modifications leading to a striking compaction and remodelling of
the chromatin. Several techniques set up to detect the rate of chro-
matin compaction are based on either staining or binding. The
physiological method is based on the capacity to bind hyaluronic
acid via hyaladherins, which are expressed on the sperm surface
upon sperm maturation. Several studies have demonstrated that
the capacity to bind hyaluronic acid was correlated with low levels
of chromatin maturity and condensation (Torabi et al., 2017).

Nonetheless other methods have been tried such as erythrocyte–
sperm separation; staining with aniline blue was found to be the
most reliable, rapid and low cost method to identify condensation
due to correct spermiogenesis (Soygur et al., 2018).

Figure 2. Top panel: three categories of sperm head chromatin condensation: nor-
mally condensed sperm head (NCC); partially decondensed sperm head (PDC) and
fully decondensed sperm head (FDC). Bottom panel: phase-contrast photomicrograph
of a sperm population including the three categories of condensed/decondensed
sperm heads.

Table 1. Mean and standard error of sperm concentration, motility and
decondensation (SDI) observed in the three study groups

Number × 106/ml,
X ± SE (n= 15)

% progressive motility,
X ± SE (n= 15)

SDI X, ± SE
(n= 15)

Control 59.9 ± 12.8 41.3 ± 3.3 17.3 ± 2.6

DGC 44.9 ± 15.4 61.0 ± 5.3 12.8 ± 2.3

SU-E 14.5 ± 5.6 80.0 ± 3.1 8.1 ± 1.4

SU-P 17.3 ± 4.2 84.0 ± 2.4 6.4 ± 1.5

Figure 3. Sperm number (top panel), sperm forward motility (middle panel), and
sperm decondensation index (SDI) (bottom panel) for: fresh ejaculate control (CNT)
and after preparation by density gradient centrifugation (DGC), direct swim-up
from the ejaculate (SU-E) and ejaculate subjected to swim-up from the pellet after
centrifugation (SU-P). A vs B, P-value ≤ 0.001 (top and bottom panels). A vs B vs C,
P-value ≤ 0.001 (middle panel); A vs B, P-value ≤ 0.001; a vs b, P-value ≤ 0.05 (bot-
tom panel).
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There is evidence that a mature chromatin is essential for
fertility in humans and other mammals (Rathke et al., 2014),
in fact fertilization and ongoing pregnancy failure after ART have
been shown to positively correlate with abnormally condensed
sperm chromatin in the partner seminal fluid (Mohamed and
Mohamed, 2012; Irez et al., 2015, 2018). However, contrasting
data have been presented by other groups. In a prospective clini-
cal study, in fact, Gandini et al. (2004) obtained pregnancies and
normal delivery even in the presence of high levels of SDI in either
conventional IVF or ICSI. Similarly, results from 154 ICSI cycles
showed that abnormal chromatin condensation did not correlate
with fertilization rate, embryo score and/or pregnancy rate
(Karydis et al., 2005). In humans, seminal plasma is a collection
of spermatozoa with different characteristics of maturity, vitality,
morphology and genomic integrity. In the ART clinical practice
sperm, preparation methods have been developed to mimic the
natural selection process occurring in the female reproductive
tract by also using a medium that resembles the tubal environ-
ment. The further aims of these methods were to select sperma-
tozoa with ideal concentrations, motility and morphology to be
associated with functional fertilization competence (Vaughan
and Sakkas, 2019). However, both processing and incubation
conditions were shown to negatively affect the DNA integrity
of ejaculated human spermatozoa (Zini et al., 2000; Matsuura
et al., 2010).

To obtain a subpopulation of numerous and highly motile sper-
matozoa, the classical SU for sperm preparation based on a two-
step washing procedure was described by Bob Edwards in the late
1960s (Edwards et al., 1969, 1980). Later on, density gradients were
developed to process oligoasthenoteratozoospermic patients to
enhance sperm recovery and motility and to separate the so-called
‘good spermatozoa’ from immotile, senescent and dead spermato-
zoa, in addition from germinal line cells, leukocytes, epithelial cells
and cytoplasmic bodies (Gorus and Pipeleers, 1981; Gellert-
Mortimer et al., 1988; Henkel and Schill, 2003). Nonetheless,
sperm processing, a mandatory step for ART procedures, can itself
exert iatrogenic sperm damage compromising fertility potential
(Mortimer, 1991; Muratori et al., 2003). In fact, both these tech-
niques rely on centrifugation steps that are aimed at removing
the components of seminal plasma that may interfere with the
sperm capacitation process (Erel et al., 2000).

It is well established that sperm centrifugation may generate
oxidative stress due to the removal of antioxidants from seminal
plasma (Sabeti et al., 2016). In contrast, although centrifugation
also removes leukocytes that are themain source of reactive oxygen
species (ROS) it may, in turn, promote new ROS production due to
the centrifugation time and forces (Ghaleno et al., 2014).

ROS in elevated levels and the absence of antioxidant defences
may generate loss of sperm motility of membrane fluidity and a
mitochondrial potential decline, together with a generalized
impairment of fertilization success (Amaral et al., 2013; Zorn
et al., 2003). Among the main mechanisms by which ROS impairs
the sperm functionality, lipid peroxidation and DNA integrity
damage are included. Nonetheless, sperm vulnerability to ROS
has been shown since the 1940s; it is also well established that
low levels of ROS are necessary and beneficial for sperm capacita-
tion. Due to this clinical relevance, a balance between ‘good’ and
‘bad’ROS seems to be achieved by identifying pro- and antioxidant
management strategies in either in vivo or in vitro fertilization
(Aitken et al., 2012; Aitken, 2017). For sperm preparation, proce-
dures involving high intracellular ROS generation, among a vast
variety of antioxidants, have highlighted the key role of albumin

due to its ability to prevent DNA damage by neutralizing lipid per-
oxide-mediated impairment to either sperm plasma membrane
and chromatin (Twigg et al., 1998a).

Contrasting data have been reported for ROS production after
centrifugation-based sperm processing (Aitken and Clarkson,
1988; Aitken et al., 1992; Zalata et al., 1995; Twigg et al., 1998b;
Li et al., 2012) further highlighting the need to identify new pro-
cedures aimed at minimizing collateral DNA integrity damage. In
particular, Iwasaki and Gagnon (1992) showed that repetitive
washing and centrifugation increased ROS species formation by
20-fold to 50-fold; however, more recent studies have reported
no enhancement of oxidative stress following sperm preparation
(Takeshima et al., 2017).

A recent 2-year survey on more than 500 IVF cycles compared
single and double centrifugation gradient sperm preparationmeth-
ods, demonstrating good clinical outcomes in term of fertilization,
embryo and blastocyst formation, pregnancy and live birth rates.
However, an increased sperm DNA fragmentation index was
observed, along with reduced sperm concentration, progressive
motility and even normal morphology for the double centrifuga-
tion, suggesting that the latter subjected spermatozoa to excessive
mechanical stress with potential impairment of reproductive proc-
esses (Dai et al., 2020). In contrast, other similar clinical surveys on
high numbers of couples enrolled in IVF programmes showed that
sperm DNA damage levels were negatively correlated with IVF
pregnancy outcomes, corroborating the fact that spermDNA dam-
age is a useful parameter for predicting the clinical pregnancy rate.
Due to the frequent evidence that sperm with a high level of DNA
damage negatively correlate with the IVF outcomes, the contrast-
ing results may account for a possible DNA damage threshold that
should be reached for generating adverse fertilization, develop-
ment and pregnancy rates (Zhang et al., 2016, 2018).

Although the choice of the more suitable preparation method
should remain at the discretion of the operator and should be based
on the quality ‘in toto’ of the semen, in clinical practice DGC has
almost totally replaced the SU, being less time consuming and per-
mitting a higher concentration of sperm collected. In this study, we
demonstrated that the decrease in sperm SDI after DGC was not
significantly lower than the control, however high variability was
observed. In fact, in two of 15 samples SDI did not change and in
one sample SDI even increased. In light of these results DGC
should be avoided for sperm preparation due both to the lack of
improvement of the SDI ratio and because of potential damage
induced by the double centrifugation.

In contrast with the two SUmethods tested, we obtained a con-
sistent and highly significant decrease in chromatin decondensa-
tion in the recruited sperm population with respect to the
control. In the latter, only one of the 15 SDI values remained equal
to the control, whereas in the SU-E one in 15 SDI values remained
equal and one was greater than the control. From these data it is
worth noting that DGC is less capable of selecting normally con-
densed spermatozoa compared with the other two SU techniques.

Previous studies have demonstrated the efficiency of prepara-
tion techniques in eliminating decondensed spermatozoa. In
1994, it was shown that glass-wool filtration was a superior method
for separating normally condensed spermatozoa compared with
the SU procedures; however, several disadvantages were reported
such as a decreased sperm motility and damage due to the sample
contamination by glass-wool fragments (Henkel et al., 1994;
Sánchez et al., 1994; Henkel and Schill, 2003).

The effectiveness of the SU method in oligospermic samples
was observed, although a worse sperm number recovery was
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achieved (Adiga and Kumar, 2001), In contrast, Sakkas et al. (2000)
showed a decrease in poorly condensed chromatin evaluated by
chromomycin (CMA3) staining after PureSperm and Percoll gra-
dients techniques. In this study, we used aniline blue staining as
CMA3 use is rather controversial, in fact nonetheless some
authors have used CMA3 for evaluating sperm chromatin
decondensation. A recent study highlighted that CMA3 and
the terminal deoxynucleotidyl transferase dUTP nick end label-
ling (TUNEL) test for detection of sperm DNA fragmentation
have the same target, therefore giving rise to misleading results
(Manicardi et al., 1995; Ménézo, 2021).

To our knowledge this is the first study that compared the
effects of two different SU techniques on chromatin decondensa-
tion evaluated using an aniline blue test. In all the comparisons no
significant differences were detected between SU-E and SU-P,
however a trend of higher number and motility and SDI decrease
favoured the SU-P, which was also corroborated by a significant
SDI difference between DGC and SU-P. This may be attributed
to the fact that SU-P relies on the stratification of the medium
on a very compact pellet and the supernatant recovered is free from
the components of the ejaculate. In contrast, SU-E, with no net
interface between ejaculate and medium, may be more susceptible
to disturbing vortices exerted by the pipette when collecting the
supernatant. Therefore, when used for IUI and IVF, it should need
a further centrifugation step to eliminate possible harmful residues
in ejaculate components. This manipulative problem is strictly
related to the ability of the operator and the fluidity of the seminal
plasma. Consistently with other studies that suggested SU-P to be
the best option for minimizing spermDNA fragmentation (Volpes
et al., 2016), here SU-P appears to be the best selection method to
decrease decondensation, even in samples showing SDI values
within the threshold of 30%.

At present there are no recognized standard values for
chromatin decondensation suggested by the WHO (World
Health Organization, 2010). In ART, it was suggested that a normal
semen sample generally should contain less than 25% stained sper-
matozoa. Subsequently, other studies from clinical observations
identified a threshold value over 30%, as no pregnancy was
achieved following in vitro fertilization and ICSI with semen sam-
ples exceeding this percentage (Evenson et al., 1999, 2002; Ménézo
et al., 2007; Giwercman et al., 2010).

Furthermore, it was speculated that even the apparently nor-
mally condensed spermatozoa in the remaining 70% may be sus-
ceptible to alterations and multiple defects.

Large numbers of studies over the last decade have addressed
the problem of sperm genomic integrity and its repercussions
for fertilization potential and outcome in fertile and infertile cou-
ples. Most of these studies, however, have taken in consideration
DNA fragmentation and its effect on fertility and embryo develop-
ment and pregnancy outcome (Evenson and Wixon, 2006; Rex
et al., 2017; Simon et al., 2019). Fragmentation is the ‘other face’
of genome disorders and consists of a break in the filament of
DNA, mostly induced by apoptotic process and oxidative stress
(Muratori et al., 2015).

During spermiogenesis, DNA fragmentation is a physiological
process occurring to facilitate the nuclear ‘transition proteins’ in
the chromatin remodelling process. However, here, specific
enzymes are able to repair the interruptions (Boissonneault,
2002). A further DNA repair occurs also in the oocyte following
fertilization (Ménézo et al., 2010; Setti et al., 2021); however, to
our knowledge there is no similar repair mechanism for chromatin
decondensation. Chromatin decondensation needs to be evaluated

in couples with idiopathic infertility. In recent studies it was sug-
gested that centrifugation be eliminated in the swim-up method,
supporting our data that SU-P appears to be the best suited sperm
preparation (Saylan and Erimsah, 2019; Meitei et al., 2021).
However, as a light centrifugation was necessary in this study to
fully eliminate decapacitating factors in the seminal plasma, we
provide significant evidence that SU-P with short centrifugation
steps reduced SDI and increased the number and forward motility
of sperm recruited. This was irrespective of the technique to be
used, whether it be IUI, IVF or ICSI. In fact, for IUI, even if less
spermatozoa are recruited they are superior in their maturity,
and less exposed to centrifugation stress. Similarly, for ICSI, it
appears mandatory to lower the SDI in the sperm population suit-
able for injection, as damaged chromatin packaging may contrib-
ute to the failure of sperm nucleus decondensation and fertilization
(Sakkas et al., 1996).

Problems of sperm genomic integrity are increasing in both ani-
mals and humans due to the chemical–physical stress in our
present day environment. Sperm DNA damage may be generated
by a variety of different stressors. In humans, in particular, in addi-
tion to passive stress from the environment, an incorrect life style
and related diseases such as cancer, diabetes and obesity may also
impair gamete quality and functionality (Babakhanzadeh et al.,
2020; Gallo et al., 2020). Furthermore, the increase in the average
age of couples enrolled in IVF programmes leads to the well known
paternal effect that, by affecting the sperm quality, has serious con-
sequences on fertility, embryo development, pregnancy and the
offspring health (Simon et al., 2014; Gill et al., 2020; Couture
et al., 2021).

In conclusion, many studies have claimed that the structural
organization of sperm chromatin is vital for the functioning of
the spermatozoa, related fertilization success and embryo develop-
ment and quality (Bungum et al., 2007; Galotto et al., 2019). There
is a consensus associating sperm chromatin condensation test with
conventional semen analyses, indicating it as a diagnostic tool to
predict sperm fertilizing ability and reproductive success in the
routine of the ART laboratory (Lefièvre et al., 2007; Tosti and
Fortunato, 2012; Kim et al., 2013). New techniques for sperm selec-
tion in ART have been developed in the few last years such as
motile sperm organelle morphological examination, molecular
binding techniques, flow cytometry, Raman spectrometry, hori-
zontal sperm migration, migration sedimentation and rheotaxis
(Henkel, 2012; Oseguera-López et al., 2019; Baldini et al., 2020;
Meitei et al., 2021; Romero-Aguirregomezcorta et al., 2021).
Many of these techniques were also tested to see if they were able
to decrease DNA lesions in the final sperm sample used for IVF.
However, the original method, such as SU, remains the simplest,
most efficient and cheapest method in clinical practice for isolating
the most competent spermatozoa.

In this study, we compared three sperm selection techniques,
highlighting the highly significant efficacy of SU from pellet in
improving sperm number and motility and decreasing the sperm
decondensation rate in different populations of spermatozoa.
Other technical advantages of SU-P are the reduction in toxic com-
ponents from the seminal plasma and the fact that it may require
less centrifugation steps that should be avoided to reduce ROS
generation.
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