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Abstract

In this paper, a tri-band metamaterial (MTM) loaded compact monopole antenna is pro-
posed. In the first step of design procedure, a rectangular monopole antenna is improved
by replacing the corresponding rectangular patch with a ring resonator. As a result, the
first obtained operating frequency is decreased from 2.95 to 2.46 GHz. Then, this operating
frequency is reduced to 2.02 GHz utilizing an MTM geometry in the antenna structure.
The geometry parameters of the proposed antenna are optimized to provide the applicability
for 3G, WLAN, and WiMAX applications. The impedance bandwidths of 600, 1080, and 220
MHz are obtained at 2.02–2.62, 3.48–4.56, and 5.12–5.34 GHz, respectively. Moreover, the
equivalent circuit of the proposed antenna has been extracted. The proposed equivalent circuit
model is validated through a comparison with corresponding simulation results. The pro-
posed antenna is compact, low profile, via-less, and provides easy fabrication. Considering
the first resonance frequency, a compactness of 32% is achieved in comparison to the corre-
sponding unloaded monopole antenna.

Introduction

Modern wireless communication systems including Wireless Local Area Network (WLAN)
and Worldwide interoperability for Microwave Access (WiMAX) are heading toward design-
ing the characteristics of compact size, multiband, greater impedance bandwidth (super band
antenna), and omnidirectional pattern [1–3]. Designing antenna structures considering the
above-mentioned features is regarded as a major challenge [2–4].

The metamaterials (MTMs) are used in various structures to provide multiband and multi-
functional demanded features as well as increased bandwidth property [5, 6]. The adaption of
composite right/left-handed (CRLH) MTMs or simply MTM unit cells can lead to improved
antennas such as enhanced leaky-wave antennas [7], multifunctional antennas [8], and
resonator-type antennas [9, 10].

Low cost, low profile, and multiband operating capability features of monopole planar
structures make them a good candidate for WLAN and WiMAX applications. The negative
order resonances and reduced resonance frequencies of MTM microstrip patch antennas
result in size reduction and antenna miniaturization [11, 12]. Moreover, the multi-
frequency properties of MTM loaded antennas make them adequate for multiband appli-
cations [8, 13].

In this paper, a low profile CRLH loaded monopole antenna is proposed for 3G, 2.4 GHz
WLAN, and 2.55 GHz WiMAX (2.02–2.62 GHz), 3.5 GHz WiMAX (3.48–4.56 GHz), and 5.2
GHz WLAN (5.12–5.34 GHz) applications. To reduce the fabrication cost, a via-free CRLH
unit cell is taken into account. In comparison with a simple unloaded antenna, the utilized
MTM loading leads to distinct frequency bands with wide frequency bandwidths. A full-wave
simulator based upon the finite-element method solutions of Maxwell’s equations is used in
design procedure. Also, the equivalence circuit model of the proposed structure is proposed
[12–14]. The proposed MTM loaded antenna is fabricated whereas corresponding measure-
ments are compared with simulation results to ensure the enhanced performance
characteristics.

The paper is organized as follows. In section “Antenna design”, the antenna design proced-
ure is briefly described. In section “Equivalent circuit”, equivalent circuit of the proposed
antenna has been extracted. The current distributions of the proposed antenna are discussed
in section “Current distribution”. In section “Experimental results”, the measurement results
of the proposed antenna are presented whereas conclusion remarks are presented in section
“Conclusion”.
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Antenna design

The various design schematic evolutions of the proposed tri-band
antenna are shown in Fig. 1. All simulations and fabrications are
based on the utilization of an FR4 substrate with a thickness of
h = 1 mm, relative electric permittivity of εr = 4.4, and tanδ =
0.02. The design procedure is detailed as follows.

Unloaded monopole antenna

First, an unloaded monopole antenna is investigated to provide a
primary structure to which the next modified antennas are com-
pared. The monopole structure is demonstrated in Fig. 1(a) in
which the feed line is separated by a slot from the radiating
patch. The corresponding reflection coefficient is investigated in
Fig. 2 resulting in |S11|<−10 dB at 2.95–4.32 GHz with a resonant
frequency of 3.64 GHz.

Dual-band monopole antenna with a ring resonator

The first modified antenna is obtained by replacing the radiating
patch in Fig. 1(a) with a ring resonator demonstrated in Fig. 1(b).
Two distinct frequency bandwidths of about 430 and 750MHz
with corresponding resonance frequencies of around 2.68 and
5.11 GHz are obtained. Therefore, dual-band operation is
achieved together with 26% antenna geometry compactness.

Authors of articles published in the journal assign copyright to
Cambridge University Press and the European Microwave
Association (with certain rights reserved), and a copyright assign-
ment form must be completed on acceptance of your paper.

Proposed tri-band monopole antenna with MTM loading

In order to obtain a tri-band antenna and achieve more compact-
ness, the final configuration is proposed in Figs 1(c) and 1(d)
based on MTM loading. According to Fig. 2, the proposed
antenna operates around 2.32 GHz (2.02–2.62 GHz), 4.02 GHz
(3.48–4.56 GHz), and 5.23 GHz (5.12–5.34 GHz). In addition to
tri-band performance achievement, a compactness of 32% is
achieved considering the first resonance frequency.

The geometry parameters of the proposed MTM loaded
monopole antenna is demonstrated in Fig. 3. The full size of
the introduced monopole antenna is L ×W × hmm3 whereas
the overall size of the radiating patch is Lr ×Wrmm2.
According to Fig. 3(a), a slot separates the feed line from the
ring resonator as the main radiator. Moreover, the embedded
MTM structure is realized through an inductive thin strip con-
necting the rectangular patch to the ground plane.

These geometry parameters are optimized to achieve
demanded applicability for 3G, WLAN, and WiMAX applica-
tions. Moreover, the best geometry compactness is also consid-
ered. The finalized geometry parameters of the proposed MTM
loaded antenna are listed in Table 1.

Fig. 1. Design evolution for the proposed tri-band MTM antenna; (a) unloaded monopole antenna; (b) replacing patch with ring resonator; proposed tri-band
antenna with single-cell MTM loading: (c) top view and (d) bottom view.

Fig. 2. Simulated return loss of different antenna config-
urations in Fig. 1.
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Equivalent circuit

Here, the equivalent circuit model of the proposed via-free
antenna is investigated [12, 13, 15, 16]. According to Fig. 4, a
CRLH structure is obtained. Corresponding to Fig. 3, the strip
located at the antenna base is defined by L1 and R1 whereas C1
is considered to model the capacitance between this inductive
strip and ground plane. Moreover, the antenna radiation loss is
modeled with a resistance merged in R1. The tapered strip at
the end part of feed line is modeled through a transmission line
defined by Z1 and θ1. The embedded slot between tapered strip
line and ring resonator results in a left-handed series capacitance,
C2, whereas the ring resonator is modeled as a parallel tank circuit
including inductance L3 and capacitance C3.

The capacitance between the SRR and the rectangular patch
beneath it at the ground plane is modeled by C4. Moreover, the
mentioned rectangular patch at the ground plane is defined by
a transmission line represented by Z2 and θ2. Finally, L2 is
yielded from the resulting current flow on an inductive thin
strip connecting mentioned rectangular patch to the ground
plane. The circuit elements C2, C3, C4, and L2 provide the left-
hand property of the proposed antenna.

The corresponding values of these circuit elements are opti-
mized to achieve the best reflection coefficient in comparison to
simulations. The finalized extracted values for these circuit ele-
ments are detailed in Table 2. The reflection coefficient of the
introduced antenna is demonstrated in Fig. 5. A good agreement
between simulations performed by HFSS software and those
obtained by the present circuit model can be found in Fig. 5.
The observed differences can be justified as the disability of the

Fig. 3. Geometry parameters of the proposed MTM loaded monopole antenna: (a) top view and (b) bottom view.

Table 1. Dimensions of the proposed MTM antenna in Fig. 3

Parameters Values (mm) Parameters Values (mm)

L 45 Wr 8.2

Lm 22.5 r1 1

Lg 2 r2 2

Lr 13 r3 3

Ls 1.5 r4 4

W 40 g1 0.05

Wm 1.9 g2 0.5

Ws 4.1

Fig. 4. Equivalent circuit model of the proposed antenna in Fig. 3.

Table 2. Values of circuit elements in Fig. 4

Parameters Values Parameters Values

L1 2.438 nH C4 9.426 PF

L2 0.647 nH θ1 365°

L3 0.348 nH θ2 390°

C1 0.648 PF Z1 421.6Ω

C2 6.02 PF Z2 32.08Ω

C3 0.348 PF R1 29.92Ω
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Fig. 5. Return loss corresponding to extracted equivalent
circuit in Fig. 4.

Fig. 6. Current distribution on the proposed antenna in Fig. 3 for three resonant frequencies (a) 2.12 GHz, (b) 4.12 GHz, and (c) 5.16 GHz.
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Fig. 7. Fabricated antenna in Fig. 3 with a soldered
SMA connector; (a) top view and (b) bottom view.

Fig. 8. Measured and simulated reflection coefficients
of the proposed antenna in Fig. 3.

Fig. 9. Measured and simulated maximum gain of the
proposed antenna.
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circuit model for considering antenna radiation and simplified
couplings and losses presented in Fig. 4.

Current distribution

Current distributions on the proposed antenna at three resonant
frequencies, 2.12, 4.12, and 5.16 GHz are demonstrated in Fig. 6.
It is known that left-hand property overcomes right-hand feature
at low frequencies in MTM structures. The beneficial effect of the
inclusion of the left-handed structure is observed at 2.12 GHz.
The inductive thin strip and embedded slot corresponding to L2
and C2, respectively, are mainly involved according to Fig. 6(a).

Moreover, the proposed antenna behaves as a CRLH structure at
higher frequencies of 4.12 and 5.16 GHz, which is in accordance
with current distributions demonstrated in Figs 6(b) and 6(c).
According to Fig. 6, the main surface currents are along the
x-axis representing x-directed dipole radiating elements.
Therefore, a dipole-like radiation pattern is expected.

Experimental results

The proposed MTM-loaded tri-band monopole antenna is fabri-
cated on an FR4 substrate with a relative electric permittivity of

Fig. 10. Radiation patterns of the proposed antenna in
Fig. 3 at E- and H-planes considering (a) 2.15 GHz, (b)
4.26 GHz, and (c) 5.28 GHz.
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4.4 together with a loss tangent of 0.02 and a thickness of 1 mm
(Fig. 7). Simulated and measured reflection coefficients are plot-
ted in Fig. 8. A good agreement is observed between measured
and simulation results. The differences between measured and
simulated results are due to losses of the feeding network and uti-
lized FR4 substrate.

Moreover, a comparison between measured and simulated
maximum gain of the proposed antenna is shown in Fig. 9. The
measured gain values are about 1.7, 2.45, and 1.75 dB at 2.15,
4.26, and 5.28 GHz, respectively. It is noted that these frequencies
represent |S11| measurement resonances in Fig. 8.

Variation of simulated and measured normalized far-field radi-
ation patterns in yz-plane (H-plane) andxz-plane (E-plane) consider-
ing 2.15, 4.26, and 5.28 GHz is demonstrated in Fig. 10. As expected,
the proposed antenna exhibits a dipolar pattern at E-plane and near
omnidirectional pattern at the corresponding H-plane.

Table 3 summarizes the proposed antenna parameters compared
with various antenna configurations reported in [12, 17–21]. The
provided investigation confirms the efficiency of the designed
antenna structure. Utilizing the MTM in the proposed antenna
reduces the first resonant frequency and improves corresponding
bandwidth. Moreover, a reasonable gain and low profile structure
are achieved as well as via-less property of the proposed antenna
results in easy and low-cost fabrication.

Conclusion

A tri-band compactmonopole antenna is proposed for 3G,WiMAX,
andWLAN applications. The antenna consists of a small monopole
antenna loaded with a single via-free CRLH TL unit cell.
Additionally, the antenna exhibits a measured 10 dB return-loss
bandwidth at 2.02–2.62, 3.48–4.56, and 5.12–5.34 GHz. The main
features of the proposed antenna are achieved compactness, low pro-
file property, via-less structure, and easy integration with other
microwave circuits. A 32% antenna geometry compactness is
achieved in comparison to the corresponding unloaded monopole
antenna. The simulation andmeasurement results have been investi-
gated to evaluate the performance of the introduced antenna.
Moreover, the corresponding equivalent circuit has been extracted.
The validity of the proposed equivalent circuit model is investigated
using a comparison with corresponding simulation results.
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