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Fluid ratcheting by oscillating channel walls
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A laboratory experiment shows that fluid can be pumped from one end to another in a
narrow channel whose sawtooth walls vibrate transversely opposite to each other. The
phenomenon is referred to as ratcheting fluid. Inspired by this, we put forward here
a theory describing the rectified steady flow, and the net directional pumping. In a
conformally transformed plane, the induced steady streaming in the Stokes boundary
layer of the oscillatory flow is analysed, elucidating the driving mechanism that is due
to the nonlinearity and viscosity. The solution of the stream function is given, showing
the complex spatial structure of the induced steady flow and its spatial average that
is related to the directional pumping. Whereas the wall sawtooth shape is the primary
source of asymmetry, the difference in entrance and exit flow conditions due to the
geometries at channel ends is found to be a secondary source to break the left–right
symmetry of the system. This latter can affect the net directional transport of fluid, in
particular in short channels with a small number of sawteeth. Various influences on
the net pumping rate are analysed.

Key words: boundary-layer structure, channel flow, peristaltic pumping

1. Introduction

Motions rectified by symmetry-breaking mechanisms in oscillating flows have been
of great interest in biological locomotion and engineering applications (e.g. van
Oeveren & Houghton 1971; Mahadevan, Daniel & Chaudhury 2003; Spagnolie
& Shelley 2009). Thiria & Zhang (2010) demonstrated experimentally that in a
narrow channel between two parallel plates, with their facing sides lined with
asymmetrical sawteeth, fluid can be pumped from one end to the other in the
channel when the plates oscillate transversely against each other; see figure 1. Those
are one-dimensional periodical arrays of sawteeth. Since the directional transport
is achieved without valves, this demonstration of ratcheting fluid using geometric
asymmetry also offers an alternative idea for valveless pumps, which remain active
interests in applications of microfluidics and biomedical engineering (Auerbach,
Moehring & Moser 2004; Rinderknecht, Hickerson & Gharib 2005).

† Email address for correspondence: Jie.Yu.1@stonybrook.edu
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FIGURE 1. A two-dimensional model of the channel with oscillating walls, showing the
geometry and relevant scales.

In oscillating flows, the importance of viscosity in inducing a steady streaming
has long been known, since Rayleigh (1883) studied circulations induced by standing
oscillations in air. For propagating water waves, steady streaming in Stokes boundary
layers was first fully determined by Longuet-Higgins (1953), who also clarified
Eulerian and Lagrangian streaming. The latter is also known as mass transport. Owing
to nonlinear convective inertia, the time periodic fluctuations lead to a time-averaged
momentum flux (analogous to Reynolds stresses) which drives a secondary steady flow
against viscous resistance (Mei 1989). Of course, the rectification of time oscillations
does not necessarily provide a unidirectional transport of fluid, unless the spatial
symmetry is broken. In the case of standing waves, the oscillation intensity varies
between nodes and antinodes of the surface envelope, resulting in a spatially periodic
variation of the steady momentum flux. However, because of the left–right symmetry
in standing waves, the induced steady flow in the Stokes boundary layer consists of a
pair of closed circulating cells between two adjacent nodes (or antinodes). This steady
circulation flow field has zero spatial average, producing no net transport of fluid
mass in either direction. In contrast, the induced steady flow in the boundary layer
under a traveling wave is unidirectional because the time oscillation is associated with
a spatial ‘bias’ set by the wave propagation. This unidirectional flow causes mass to
drift in the direction of wave near the boundary. This action of mass transport is what
Longuet-Higgins (1983) referred to as the peristaltic pumping in water waves. The
mechanism is in fact shared by peristaltic transport occurring in many physiological
and biological applications.

For pure oscillatory motions over a non-flat boundary, e.g. a rippled seabed, the
oscillation intensity near the boundary is rendered to be non-uniform in space, leading
to a spatially varying steady momentum flux. As a result, steady circulations can be
induced in the Stokes layer. If the boundary structure is spatially symmetric, these
steady circulations would have zero spatial average, hence having no ability to
transport fluid unidirectionally. This is known from previous studies of symmetrical
sand ripples (e.g. Hara & Mei 1990; Mei & Yu 1997). With a ratchet-like (or
sawtooth) boundary structure, the spatial symmetry is broken, and the induced
secondary steady flow is expected to have a non-zero spatial average leading to a
pumping action. The ratcheting effect in Thiria & Zhang’s experiment is akin to this.
Motivated by the experiment, we here propose a theory to describe the ratcheting
effects of fluids in a narrow channel with its sawtooth walls subject to harmonic
oscillations normal to the channel centreline. To deal with large sawteeth, we shall
adapt the conformal transformation method that has recently been developed for wave
propagation over periodic topographies (Yu & Howard 2012). Whereas the method of
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Fluid ratcheting in oscillating flows 307

constructing the map applies to profiles of arbitrary shape and magnitude, we shall in
this study restrict our attention to cases where the sawteeth have large peak-to-trough
height but long wavelength relative to the mean channel width. Thus, we can invoke
a boundary-layer approximation which is ‘terrain-following’. The analytical solution
obtained elucidates the essential physics and clarifies various effects influencing the
net pumping.

The rest of the paper is organized as follows. In § 2, we present the equations
describing the problem and the conformal transformation. In § 3, an approximate
theory is formulated, and the solutions are given for the rectified steady flow field
and the net directional pumping rate. Some mathematical details are referred to
appendices. Discussions are made in § 4, examining various effects on the net flow
rate. Concluding remarks follow in § 5.

2. Mathematical description of the problem
Consider the motion of an incompressible fluid in a narrow channel between two

parallel strips of rigid plates whose facing sides are each lined with a periodic array
of sawteeth. The plates oscillate normal to the channel centreline and oppositely to
each other, driving fluid motions; see sketch in figure 1. Suppose the sawtooth profile
is one-dimensional, and described as y′=±y′s(x

′), where y′= 0 is the centreline of the
channel. The primes denote dimensional variables. For time-harmonic oscillations of
amplitude a and angular frequency ω, the movements of the plates are written as y′=
±y′s(x

′)± a cosωt′. The amplitude a should be set such that the opposite sawteeth do
not collide. In view of the symmetry with respect to the centreline, we shall consider
just one half of the flow domain, say y′ > 0.

Let u′ = u′i + v′ j be the velocity vector, whence

(u′, v′)=
(
∂ψ ′

∂y′
,−∂ψ

′

∂x′

)
, (2.1)

where ψ ′(x′, y′, t′) is the stream function. The vorticity ∇
′× u′=−∇2ψ ′k is a pseudo-

vector perpendicular to the (x′, y′) plane. We shall scale the problem to be π-periodic
by defining a wavenumber k=π/λs, where λs is the sawtooth wavelength, and choose
the following normalization:

x= kx′, y= ky′, t= t′ω, ψ =ψ ′/(aω/k). (2.2a−d)

This implies (u, v)= (u′, v′)(aω)−1. The dimensionless equation for the vorticity is

∂

∂t
∇2ψ − αβ ∂

(
ψ,∇2ψ

)
∂ (x, y)

= 1
2
σ 2β2∇2∇2ψ, 0< y< ys(x)+ αβ cos t, (2.3)

where the nonlinear convection terms are written using the notation of Jacobian
determinant ∂(ψ,∇2ψ)/∂(x, y). The parameters are defined as

α = a/h0, β = kh0, σ = δ/h0, (2.4a−c)

where δ=√2ν/ω is the Stokes boundary-layer thickness, ν is the kinematic viscosity,
and h0 is the mean half channel width in the absence of motion. At the centreline,

ψ = 0,
∂2ψ

∂y2
= 0, at y= 0. (2.5a,b)

At the channel wall,
∂ψ

∂y
= 0,

∂ψ

∂x
= sin t, at y= ys(x)+ αβ cos t. (2.6a,b)
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2.1. The conformal transformation
For periodic corrugations of arbitrary shape and amplitude, a conformal transformation
can be constructed to map the flow domain onto a uniform strip (Yu & Howard 2012).
This is adapted here. Let the undisturbed channel wall position be written as ys =
kh0
[
1+ εbf (x)

]
, where f (x) is the sawtooth profile, εb is a dimensionless amplitude

parameter. We shall require f (x) to have zero average in x, so that h0 is the mean
half channel width in the absence of motion. When f (x) is so normalized that the
peak-to-trough height is unity, εbh0 is the sawtooth height. We consider εb = O(1).
Following Yu & Howard (2012), the mapping between the physical plane (x, y) and
the mapped plane (ξ , η), is given by the transformation functions

x= ξ + εbkh
∞∑

j=1

(
bj sin 2jξ − cj cos 2jξ

)
cosh 2jη/sinh 2jkh, (2.7)

y= η+ εbkh
∞∑

j=1

(
bj cos 2jξ + cj sin 2jξ

)
sinh 2jη/sinh 2jkh, (2.8)

where kh, and the coefficients bj and cj are determined by the channel wall profile.
The Cauchy–Riemann conditions, ∂x/∂ξ = ∂y/∂η and ∂x/∂η=−∂y/∂ξ , can be readily
verified. The centreline y= 0 is mapped into η= 0. The periodicity of the problem is
preserved, as the map is periodic in x and in ξ with the same period π. By requiring
y= ys(x) to be mapped into a straight line η= kh, we get

kh0 + εbkh0 f (x)= kh+ εbkh
∞∑

j=1

(
bj cos 2jξ + cj sin 2jξ

)
(2.9)

with

x= ξ + εbkh
∞∑

j=1

(
bj sin 2jξ − cj cos 2jξ

)
coth (2jkh). (2.10)

Averaging (2.9) over a spatial period, recalling that f (x) has zero average in x and
using (2.10) to relate dx and dξ , we obtain

kh0 = kh+ (εbkh)2
∞∑

j=1

(
b2

j + c2
j

)
j coth 2jkh. (2.11)

Solving (2.9)–(2.11), we determine kh, bj and cj for the given profile f (x). Since y
is antisymmetric and x is symmetric in η, the opposite channel wall at y = −ys is
mapped into η=−kh. Under the transformation, the centreline remains to be a straight
line at η= 0, while the corrugated channel walls are stretched to become flat surfaces
at η = ±kh. It is thus clear that kh is the dimensionless half channel width in the
mapped plane, in the absence of wall movement. With the vibrations, the instantaneous
wall position y(x, t)= ys(x)+ αβ cos t is mapped into a curve η= ηsw(ξ , t), i.e. given[
x, y(x, t)

]
, the inverse of the map (2.7) and (2.8) gives [ξ, ηsw(ξ , t)]. For relatively

small amplitude of oscillations, this curve should be fairly close to η= kh.
The vorticity equation (2.3) is transformed into

∂

∂t
∇2ψ − αβ ∂

(
ψ, J−1∇2ψ

)
∂ (ξ, η)

= 1
2
σ 2β2∇2

(
J−1∇2ψ

)
, 0<η < ηsw(ξ , t), (2.12)

where

∇2 = ∂2

∂ξ 2
+ ∂2

∂η2
, (2.13)
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and the Jacobian of transformation is

J =
(
∂x
∂ξ

)2

+
(
∂x
∂η

)2

. (2.14)

Since

∂ψ

∂η
= ∂ψ
∂x

∂x
∂η
+ ∂ψ
∂y

∂y
∂η
,

∂ψ

∂ξ
= ∂ψ
∂x

∂x
∂ξ
+ ∂ψ
∂y

∂y
∂ξ
, (2.15a,b)

the boundary conditions at the channel wall are written from (2.6) as

∂ψ

∂ξ
= ∂x
∂ξ

sin t,
∂ψ

∂η
= ∂x
∂η

sin t, at η= ηsw(ξ , t). (2.16a,b)

From (2.6), the boundary conditions at the centreline η= 0 are

ψ = 0,
∂2ψ

∂η2
= 0, at η= 0. (2.17a,b)

2.2. The sawtooth wall profile
An iterative algorithm for calculating the map is given in Yu & Howard (2012)
which can determine the coefficients bj and cj, and kh with fairly good accuracy
and efficiency, even for non-smooth functions such as square wave and sawtooth
profiles. In this study, we shall smooth the ‘conventional’ sawtooth profile, avoiding
the sharp corners and jumps thus removing the discontinuity from the function and
its derivatives. This is to avoid the complications in the perturbation analysis, as
follows, rather than any concerns on the computation of the map. The procedure of
obtaining a smooth sawtooth profile that is exact to a prescribed map is as follows.

In one period −π/2 6 x 6 π/2, an antisymmetric function for the ‘conventional’
sawtooth profile is written as

f1(x)=

−(x+π/2)/(π− q) for −π/2 6 x 6−q/2,
x/q for −q/2 6 x 6 q/2,
−(x−π/2)/(π− q) for q/2 6 x 6π/2,

(2.18)

where q controls the skewness of the sawtooth. When q=π/2, f1(x) gives a symmetric
sawtooth profile. When q= 0, f1(x) becomes discontinuous at x= 0, having a jump of
magnitude 1. The Fourier series is

f1(x)=
∞∑

n=1

sin nq
n2(π− q)q

sin 2nx. (2.19)

Using the first few terms of (2.19), we get a preliminary smooth profile f̃1(x) for
which we shall construct the conformal map satisfying (2.9)–(2.11). If we wish to use
f̃1(x) as the actual wall profile, we would have to keep as many terms of bj and cj as
necessary, depending on the accuracy specified. We can also turn the problem around:
we truncate the map just constructed to the first few terms, treating it as the new
map and subsequently determining the shape of wall corrugations under this new map,
i.e. explicitly calculating

[
x(ξ , kh), f (x)

]
. In this way, we obtain a sawtooth profile

f (x) for which we have an exact map that is expressed in a closed form with finite
terms. The channel width kh0 in the physical plane, that corresponds to the chosen
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FIGURE 2. Sawtooth profiles at ys = kh0
[
1+ εbf (x)

]
: ——, conventional sawtooth f (x)=

f1(x) given by (2.18) with q= 0.2π, εb = 1.0, kh0 = 0.3142 (λs = 10h0); · · · · · · , smooth
profile f (x)= f̃1(x) given by the first five terms of (2.19), for which bj and cj are computed;
– – –, f (x) given by the map which consists of the first three terms of bj and cj, εb= 1.0,
kh0 = 0.3130; — · —, f (x) plotted in terms of ξ .

map and newly determined profile, is then evaluated from (2.11) using the appropriate
terms. An example is shown in figure 2, comparing the sawtooth profiles at different
stages of approximation. The parameter measuring the skewness q = 0.2π, meaning
that the section of steep slope is approximately 20 % of the wavelength. The smooth
sawtooth profile, given by the map consisting of the first three terms of bj and cj,
is fairly similar to the conventional sawtooth geometry given by (2.18), except for its
broadened troughs. In this example, the mean half channel width is kh0= 0.3130; with
εb = 1.0, the narrowest channel width at a sawtooth peak is approximately y = 0.17
from the centreline, and the maximum width at a sawtooth trough is approximately
y= 0.44.

3. An approximation for narrow channels and weak oscillations
The large sawtooth amplitude necessitates the assumption of small oscillation

amplitude to avoid collisions of sawtooth peaks. We shall focus on the cases in
which O(α) = O(β) � 1 and σ is finite, i.e. we consider the channel width h0
to be narrow compared with sawtooth wavelength, the oscillation amplitude to be
small compared with h0 and the frequency to be moderate such that δ ∼ h0. Since
the sawtooth amplitude is comparable to h0, the dominant slope of sawtooth is
subsequently of O(β). We also note that σ 2 = 2α/Re, where Re = aωh0/ν is the
Reynolds number based on the width h0 and velocity aω. The assumptions above
imply that Re=O(α) or smaller for the overall channel flow.

In view of the aspect ratio, we introduce the rescaling η̃ = η/β, and rewrite from
(2.12), (2.16) and (2.17)

∂

∂t
∇̃2ψ − α∂(ψ, J−1∇̃2ψ)

∂
(
ξ, η̃

) = 1
2
σ 2∇̃2(J−1∇̃2ψ), (3.1)

∂ψ

∂ξ
= ∂x
∂ξ

sin t,
∂ψ

∂η̃
= β ∂x

∂η
sin t, at η̃= β−1ηsw(ξ , t), (3.2a,b)

ψ = 0,
∂2ψ

∂η̃2
= 0, at η̃= 0, (3.3a,b)

where

∇̃2 = ∂2

∂η̃2
+ β2 ∂

2

∂ξ 2
. (3.4)
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The transformation functions are known and not rescaled, e.g. ∂x/∂η in (3.2a) is
unchanged. The undisturbed wall is at η̃= γ , where γ ≡ h/h0. For β� 1, it follows
from (2.14) that J(ξ , η)= J0(ξ)+O(β2), where

J0(ξ)= F2, F≡ 1+ εb

∞∑
j=1

(
bj cos 2jξ + cj sin 2jξ

)
. (3.5)

For α � 1, the instantaneous wall position η = ηsw(ξ , t) can be regarded as a
perturbation from the undisturbed position η= kh. Let us identify the points forming
the corrugated surface by their undisturbed positions (ξs, kh). Their positions at time
t are [ξ(t; ξs, kh), η(t; ξs, kh)]. For small α, using the Taylor expansion we get
ξ(t; ξs, kh)= ξs + α1ξ +O(α2) and η(t; ξs, kh)= kh+ α1η+O(α2), where

1ξ =−βJ−1
w xη|w cos t, 1η= βJ−1

w xξ |w cos t (3.6a,b)

and

xξ |w ≡ ∂x/∂ξ |η=kh, xη|w ≡ ∂x/∂η|η=kh, Jw ≡
(
xξ |w

)2 + (xη|w)2
. (3.7a−c)

The derivatives of the transformation function are readily obtained from (2.7). More
details can be found in appendix A. Using the Taylor expansions at η̃= γ (i.e. η= kh),
we approximate (3.2a,b) as

∂ψ

∂ξ
+ α

[
∂2ψ

∂ξ∂η̃
1η/β + ∂

2ψ

∂ξ 2
1ξ

]
+O(α2)= xξ |w sin t+O(αβ), at η̃= γ , (3.8)

∂ψ

∂η̃
+ α

[
∂2ψ

∂η̃2
1η/β + ∂2ψ

∂ξ∂η̃
1ξ

]
+O(α2)= βxη|w sin t+O(αβ2), at η̃= γ . (3.9)

Assuming the perturbation expansion

ψ =ψ0(ξ , η̃, t)+ αψ1(ξ , η̃, t)+ · · · (3.10)

we obtain from (3.1), (3.3), (3.9) and (3.8) the approximate equations for the first two
orders, as follows. At O(α0),

∂

∂t
∂2ψ0

∂η̃2
= 1

2
σ 2J−1

0
∂4ψ0

∂η̃4
, 0< η̃ < γ , (3.11)

ψ0 = 0,
∂2ψ0

∂η̃2
= 0, at η̃= 0, (3.12a,b)

∂ψ0

∂ξ
= xξ |w sin t,

∂ψ0

∂η̃
= 0, at η̃= γ . (3.13a,b)

At O(α),

∂

∂t
∂2ψ1

∂η̃2
−
∂

(
ψ0,

1
J0

∂2ψ0

∂η̃2

)
∂
(
ξ, η̃

) = 1
2
σ 2J−1

0
∂4ψ1

∂η̃4
, 0< η̃ < γ , (3.14)
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ψ1 = 0,
∂2ψ1

∂η̃2
= 0, at η̃= 0, (3.15a,b)

∂ψ1

∂ξ
=−J−1

w xξ |w ∂
2ψ0

∂ξ∂η̃
cos t, at η̃= γ , (3.16)

∂ψ1

∂η̃
=−J−1

w xξ |w ∂
2ψ0

∂η̃2
cos t+ α−1βxη|w sin t, at η̃= γ . (3.17)

It immediately follows from (3.13b) that ∂2ψ0/∂ξ∂η̃= 0 at η̃= γ , reducing (3.16) to

∂ψ1

∂ξ
= 0, at η̃= γ . (3.18)

3.1. The leading order solution
To the lowest order approximation, the fluid flow is primarily driven by the wall
velocity component normal to the corrugation surface, cf. (3.13a), as a result of the
sawtooth slope being of O(β). The solution is similar to that of an ordinary Stokes
boundary layer, except for a parametric dependence on ξ , representing the effects of
wall sawteeth. The solution is written as ψ0 = ψ̂0(ξ , η̃)e−it + c.c., where

ψ̂0(ξ , η̃)=C(ξ)
{

sinh
[
AF(ξ)η̃

]− η̃AF(ξ) cosh [AF(ξ)γ ]} , (3.19)

A ≡ (1 − i)σ−1, and C(ξ) is to be determined. It can be readily checked that (3.19)
satisfies (3.11), (3.12) and (3.13b). To satisfy (3.13a), ∂ψ̂0/∂ξ = (1/2)ixξ |w at η̃ = γ ,
which upon integrating in ξ leads to

C(ξ) {sinh [AF(ξ)γ ] − AF(ξ)γ cosh [AF(ξ)γ ]} = 1
2 i [xw(ξ)+C0] , (3.20)

where xw(ξ) ≡ x(ξ , kh) using (2.7). The constant of integration C0 is in general
complex. Since xw(ξ) measures the distance in x following the corrugated wall, C(ξ)
is overall proportional to x. As the fluid is pushed in and out of the channel due to
wall oscillations, the intensity of the flow field is expected to increase outwards from
the channel centre towards the ends. This is similar to the boundary-layer solution
when the channel walls are flat plates.

The arbitrary constant C0 can be determined by imposing lateral boundary
conditions at the channel ends. Consider a channel of finite length, whose two
ends, x = x0 and x = x1, are submerged in reservoirs of the same fluid. Suppose the
reservoirs are so large that no significant fluid motions are excited there, and have the
same fluid levels so that there is zero imposed pressure difference. Thus, the dynamic
pressure p at the two ends must vanish, i.e. p= 0 at x= x0, x1, or equivalently∫ x1

x0

∂p
∂x

dx= 0, along y= constant. (3.21)

The condition of zero mean pressure drop has been similarly used in some previous
studies on peristaltic transport (Yin & Fung 1971; Takagi & Balmforth 2011). The
pressure gradient along channel is obtained from the momentum equation. Since the
Stokes boundary layer follows the sawtooth profile, the pressure gradient ∂p/∂x varies
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FIGURE 3. Contours of stream functions in the half plane y > 0 for an asymmetrical
sawtooth wall profile: (a) the leading order flow ψ0 at t=π/2, 1ψ0=0.5, −8.22286ψ0 6
7.4852; (b) ψ0 at t=π near the reversal of the flow, 1ψ0= 0.05, −0.52686ψ0 6 0.1813;
(c) the induced steady streaming αψ10, α1ψ10 = 0.05, −0.1250 6 ψ10 6 1.0496. Dashed
lines indicate the negative contour values. Dimensionless parameters: oscillation amplitude
α = 0.2 and frequency σ = 0.6538, sawtooth wavelength β = 0.3130 and height εb = 1.0.

both in x and y even at the leading order approximation. On the other hand, lines y=
constant= ȳ are in general curves in the (ξ , η) plane. Thus, to carry out the integration
in (3.21), one must invert the map (2.7) and (2.8), finding the curve in (ξ, η) that
corresponds to y = ȳ. This is in general not convenient for an arbitrary choice of ȳ.
However, the centreline y= 0 corresponds to η= 0, along which dx= xξ |η=0 dξ . This
greatly simplifies the work to deal with the pressure condition (3.21).

Upon integrating (3.21) along η = 0, we obtain the condition for determining the
constant C0, i.e.

C0

∫ ξ1(0)

ξ0(0)

cosh (AFγ )
sinh (AFγ )− AFγ cosh (AFγ )

∂x
∂ξ

∣∣∣∣
η=0

dξ

=−
∫ ξ1(0)

ξ0(0)

xw(ξ) cosh (AFγ )
sinh (AFγ )− AFγ cosh (AFγ )

∂x
∂ξ

∣∣∣∣
η=0

dξ, (3.22)

where ξ0(0) and ξ1(0) correspond, respectively, to x0 and x1 at η = 0. For details, a
reader is referred to appendix B. As an example, contours of stream function ψ0 are
shown in figure 3(a,b) at different phases of an oscillation cycle, for the sawtooth
profile (dashed line) in figure 2. The increase of flow intensity towards the two ends
of the channel is particularly noted. Near the time of flow reversal, vortices are formed
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on the steeper sides of the teeth. Close to the channel ends, the vortices are strong,
rotating in opposite senses.

3.2. The rectified steady flow

At O(α), the stream function ψ1 =ψ10 + (ψ̂11e−it + ψ̂12e−2it + c.c.), in view of (3.14)
and (3.17). The zeroth and second time harmonics, ψ10 and ψ̂12, are induced by
the nonlinear convective inertia of the vorticity, as well as its interaction with the
wall movement. Owing to the sawtooth slope, the y velocity of wall motion has a
component tangential to the corrugated surface. This is the source for ψ̂11. The focus
here is ψ10, the induced steady streaming. From (3.14) to (3.18), the equations for
ψ10 are written, as follows:

1
2
σ 2 ∂

4ψ10

∂η̃4
=G(ξ , η̃), 0< η̃ < γ , (3.23)

ψ10 = 0,
∂2ψ10

∂η̃2
= 0, at η̃= 0, (3.24a,b)

∂ψ10

∂η̃
= B(ξ),

∂ψ10

∂ξ
= 0 at η̃= γ , (3.25a,b)

where

G(ξ , η̃) = 2Aσ−2C∗C′F3
[
2 cosh (A∗Fη̃)− cosh (A∗Fγ )

]
sinh (AFη̃)

− 4iσ−4F4C
d

dξ

[
C∗ cosh (A∗Fγ )

]
η̃ cosh (AFη̃)+ c.c. (3.26)

arises from the time average of nonlinear inertia, and

B(ξ) = −2σ−2J−1
w xξ |w F2 Im{C sinh (AFγ )}. (3.27)

Here ∗ denotes the complex conjugate and C′ = dC/dξ . Owing to the viscosity, the
fluid velocity near the wall has a phase shift with respect to the wall velocity. This
leads to the correlation between ∂2ψ0/∂η̃

2 and the wall displacement 1η, which is the
physical meaning of B(ξ). Derivations of (3.26) and (3.27) are detailed in appendix C.

The solution, that satisfies (3.23) and (3.24), is

ψ10 = f1(ξ) sinh (2σ−1Fη̃)+ f2(ξ) sin (2σ−1Fη̃)+ f3(ξ)η̃ cosh (AFη̃)
+ f4(ξ) sinh (AFη̃)+ f5(ξ)η̃

3 + f6(ξ)η̃+ c.c. (3.28)

where

f1(ξ)= 1
4 AF−1C∗C′, (3.29a)

f2(ξ)=−i 1
4 AF−1C∗C′, (3.29b)

f3(ξ)= 2iσ−2C
d

dξ

[
C∗ cosh (A∗Fγ )

]
, (3.29c)

f4(ξ)= AF−1

{
C∗C′ cosh (A∗Fγ )+ 4C

d
dξ

[
C∗ cosh (A∗Fγ )

]}
, (3.29d)

and f5 and f6 are to be determined by satisfying the wall boundary conditions. It
follows from (3.25b) that ψ10 = Q at η̃ = γ , where Q is an arbitrary constant,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

63
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.636


Fluid ratcheting in oscillating flows 315

indicating that the undisturbed channel wall position is effectively a streamline in the
sense of time average. Thus, from (3.25a,b) we get

3γ 2f5(ξ)+ f6(ξ)+ S1(ξ)+ c.c.= B(ξ), (3.30)
γ 3f5 + γ f6 + S2(ξ)+ c.c.=Q, (3.31)

where

S1(ξ) = 2σ−1F
[
f1 cosh (2σ−1Fγ )+ f2 cos (2σ−1Fγ )

]
+ ( f3 + AFf4) cosh (AFγ )+ AFγ f3 sinh (AFγ ), (3.32)

S2(ξ) = f1 sinh (2σ−1Fγ )+ f2 sin (2σ−1Fγ )
+ f3γ cosh (AFγ )+ f4 sinh (AFγ ). (3.33)

The physical interpretation of Q is as follows. The time-averaged volume flow rate
through a cross-section of the channel is a constant, independent of x, as the fluid is
incompressible. Denoting the time average by overlines, the net volume flow rate is

2
∫ ys(x)+αβ cos t

0

∂ψ

∂y
dy = 2ψ |ys(x)+αβ cos t = 2

(
ψ + αβ ∂ψ

∂y
cos t

)
y=ys(x)

+O(α2)

= 2ψy=ys(x) +O(α2)= 2αQ+O(α2), (3.34)

noting the boundary conditions (2.5a) and (2.6a). Thus, to the lowest order
approximation 2αQ represents the net volume flow rate averaged over one cycle,
at which the fluid is pumped from one end to another through the channel. By
satisfying the imposed condition of zero pressure drop between the channel ends, we
obtain the condition for determining Q.

Q
∫ ξ2(0)

ξ1(0)
3F−3 dx

dξ

∣∣∣∣
η̃=0

dξ =
∫ ξ2(0)

ξ1(0)

[
S3 + 3γF−3B

] dx
dξ

∣∣∣∣
η̃=0

dξ, (3.35)

where

S3 =− 4γ 3

σ 4F
C∗ cosh (AFγ )

d
dξ

[
C cosh (AFγ )

]+ 3F−3 (S2 − γ S1)+ c.c. (3.36)

Algebraic details can be found in appendix B. Once Q is determined, f5 and f6 follow
from (3.30) and (3.31), completing the solution ψ10. The flow pattern of the induced
steady streaming αψ10 is shown in figure 3(c). The overall steady flow in the positive
x direction is observed. Steady circulations of size smaller than sawtooth wavelength
are seen to attach to the teeth, with their strengths increasing as we move toward the
channel ends. The net transport of fluid in the +x direction is at a rate αQ= 0.3037
(over half channel width).

4. Results and discussions
It is here assumed that the channel length is an integer multiple of sawtooth

wavelength, and we take the skewness parameter 0 6 q 6 π/2, so that the sawteeth
are oriented as indicated in figure 2. The primary interest is the net transport of
fluid, both the rate and direction, induced by the geometric asymmetry in the system.
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FIGURE 4. Time averaged volume flow rate αQ varying with phase angle θ which
indicates the left end position: (a) symmetrical sawtooth with q= 0.5π. (b) Asymmetrical
sawtooth with q = 0.2π. Parameters: oscillation amplitude α = 0.3, sawtooth wavelength
β = 0.3130 and height εb = 1.0, and channel length Nπ, N = 10. Oscillation frequencies:
A, σ = 0.6524;E, σ = 0.8008;@, σ = 1.1325;u, σ = 1.6016.

The left–right asymmetry is clearly introduced by the shape of the sawtooth provided
q 6=π/2. However, even at q=π/2 with the sawteeth individually symmetrical, there
is a second source of asymmetry due to the difference in the entrance and exit
geometries at the channel ends, determined by their locations with respect to the
phase of sawtooth wave. The fluid enters from both ends of the channel during the
expansion half cycle of the oscillation and exits from both ends during the contraction
half cycle. The entrance and exit flow conditions are influenced by the end geometries.
As the flow intensity increases outward from the centre, cf. § 3.1, the nonlinearity is
expected to be the strongest near the channel ends. Both sources of asymmetry can
lead to a rectified steady flow with a net directional transport of fluid. The effects
due to both sources are, to some extent, independent but not exactly additive. We
shall first clarify the effects of channel ends, then examine the net pumping rate in
detail, focusing on the effects of sawtooth geometry.

4.1. Effects of flow conditions at channel ends
If the left end is taken at x0 + θ (and the right end then at Nπ + x0 + θ ), where θ
measures the phase of a sawtooth wave, by varying θ over a range of π we cover all
of the possibilities. Figure 4(a) shows the net pumping rate αQ varying with θ for
a symmetrical sawtooth q = π/2. When the ends are located on a peak (θ = −π/4)
or trough (θ =−3π/4, π/4) of the symmetrical sawtooth, the left–right symmetry is
restored and αQ is identically zero, as expected; but for other locations, αQ 6= 0. Here
the net non-zero pumping can only be caused by the different geometries at the two
channel ends. Figure 4(b) shows the case for an asymmetrical sawtooth with q= 0.2π.
While these are similar to those in figure 4(a), note that the net pumping is mostly
positive; slight negative pumping only occurs for large σ (low-frequency oscillation).
This is generally found when asymmetrical sawteeth are oriented as in figure 2. As
the oscillation frequency increases (σ decreases), the fluid velocity becomes greater,
and so the nonlinearity is stronger. Effects of channel ends and sawtooth asymmetry
are therefore both enhanced. In the case of symmetrical sawtooth, changing N does
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not alter the graphs in figure 4(a). In the case of asymmetrical sawtooth, however,
αQ changes in magnitude for different N; specifically, the positive pumping increases
and the negative pumping decreases (in magnitude) with N, indicating the cumulative
effects of sawteeth on breaking the left–right symmetry of the system. With N = 1 or
2 asymmetrical sawteeth, the negative minimum and positive maximum of the curve
αQ versus θ are comparable in magnitude, with the latter being slightly greater.

The flow intensity increases towards the ends, overall proportional to the distance
away from the channel centre, cf. § 3.1. As the channel length is increased, the flow
velocity and vortex activity become stronger, producing a greater difference between
the flow conditions at the two ends, if a difference in the end geometries is present.
On the other hand, the total wall friction is also greater for longer channels. In the
absence of sawtooth asymmetry, a state of rectified steady flow is established which
provides an overall viscous friction necessary to balance the effects of channel ends
such that the mean pressure drop is zero (as imposed). The volume flow rate of
this steady state, a manifestation of the spatially averaged velocity, is invariant to the
length N, given the end geometries and oscillation conditions. As a loose comparison,
this is analogous to the problem of a thin layer of viscous fluid on a slope, in which
the gravity–friction balanced steady flow is independent of the length of the slope.
The cumulative effects of sawtooth asymmetry are anticipated, and discussed in the
section that follows.

The flow patterns of the induced streaming ψ10 are shown in figure 5 for the case
of symmetrical sawtooth, using different end positions. For θ =−π/4 in figure 5(b),
both ends are at a peak, and the flow is left–right antisymmetric, having zero spatial
average. The end positions corresponding to the negative minimum and positive
maximum pumping rate in figure 4(a) are exactly the mirror reflection of each other,
and so are the flow patterns, cf. figure 5(a,c). It is found that the effects of entrance
and flow conditions in general induce a net pumping directed towards the end that
is closer to a sawtooth peak. Because the sawtooth height is large, the local channel
width at a sawtooth peak is much smaller than that at a trough. Therefore, a small
change in the phase θ near a sawtooth peak results in a larger relative change in the
local channel width than a similar change of θ near a trough. This perhaps is the
reason that the location of a peak is more sensitive in determining the direction of
net pumping caused by the end flow conditions. It also explains the sharp variation
in αQ between the positions θ corresponding to the negative minimum and positive
maximum αQ.

4.2. Net pumping rate
In the discussion that follows, the channel ends have been placed at or near the
positions corresponding to the maximum αQ in figure 4(b). The entrance and exit
geometries at the channel ends are the same as indicated in figure figure 3.

Given a sawtooth profile and oscillation amplitude, the net pumping rate αQ
increases rapidly as σ decreases (i.e. as the oscillation frequency increases or the fluid
viscosity decreases), as shown in figure 6(a). The rate of increase is approximately
exponential. Holding σ fixed, the pumping rate increases linearly with the oscillation
amplitude α, cf. figure 6(b), with the slope of the linear lines being Q and increasing
with N. From (3.35), Q is a function of channel length N, frequency σ and sawtooth
geometry. Noting that a appears in the normalization for ψ , cf. (2.2), the dimensional
pumping rate increases quadratically with oscillation amplitude. It is clear from
figure 6 that the channel length, in terms of the number N of sawteeth, has strong
influence on the net pumping, in particular for oscillations at high frequencies and
large amplitudes.
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FIGURE 5. Contours of the stream function αψ10 for a symmetrical sawtooth wall profile.
The left end position: (a) θ = −1.0996, −0.5933 6 αψ10 6 0.1958 and αQ = −0.2355;
(b) θ = −0.7854 (i.e. −π/4),−0.3773 6 αψ10 6 0.3773 and αQ = 0.0; (c) θ = −0.4712,
−0.1958 6 αψ10 6 0.5933 and αQ = 0.2355. The contour increment α1ψ10 = 0.05.
Parameters: oscillation amplitude α= 0.3 and frequency σ = 0.8008, sawtooth wavelength
β = 0.3130 and height εb = 1.0, and N = 5 for the channel length.
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FIGURE 6. Effects of oscillation on the net pumping rate αQ (for half channel width)
for an asymmetry sawtooth with q = 0.2π, wavelength β = 0.3130 and height εb = 1.0:
(a) αQ versus oscillation frequency σ for amplitude α = 0.3; (b) αQ versus α for σ =
0.9247. For channel lengths:E, N = 15;@, N = 10;A, N = 5.
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FIGURE 7. Effects of sawtooth geometry on the net pumping rate αQ (for half channel
width) for oscillation amplitude α= 0.3 and frequency σ = 0.8953. (a) Plots of αQ versus
N. Sawtooth height εb = 1.0, and wavelengths:u, β = 0.2090 (λs ' 15h0);A, β = 0.2506
(λs ' 12.5h0); E, β = 0.3130 (λs ' 10h0); @, β = 0.4166 (λs ' 7.5h0). (b) Plots of αQ
versus εb for β ' 0.31:E, N = 15;@, N = 10. The skewness parameter for the sawtooth
q= 0.2π.

The cumulative effect of sawteeth is illustrated in figure 7(a), in which αQ increases
with N, fixing all other parameters. The curves match with polynomial fitting of order
two. When we reduce β, holding εb fixed, we effectively make the sawtooth more
gently sloped while keeping the same sawtooth height relative to the channel width.
As a result, αQ decreases. For sufficiently small N, the effects of sawtooth asymmetry
on the flow cannot be fully developed during any half cycle of an oscillation due to
the short channel length, and are reversed during the other half of the cycle as the
flow directions are reversed. Thus, the sawtooth asymmetry is insufficient to produce
a net transport of fluid when there are only a few sawteeth in the channel. In such
a case, the net pumping rate αQ is dominantly influenced by the entrance and exit
flow conditions at the channel ends. This expectation is confirmed by the result in
figure 7(a) that αQ becomes independent of β as N is reduced while keeping the end
positions fixed with respect to the phase of the sawtooth wave. Given an oscillation
condition, αQ increases with the sawtooth height εb, following a polynomial fitting
of order four within the range of εb explored, cf. figure 7(b). We note that β varies
slightly from 0.3141 to 0.3120, as we fix the sawtooth wavelength while increasing
the height εb from 0.4 to 1.2. This is due to the fact that we choose the map and
adapt the wall geometry subsequently.

To fix the idea, let us take for example the sawtooth wavelength λs = 5 mm. For
the sawtooth profile (dashed curve) in figure 2, β = 0.3130 and εb = 1.0 correspond
to a half channel width h0 = 0.4982 mm and sawtooth height hs = 0.4650 mm. For
water, ν = 1 mm2 s−1. From figure 6(a), αQ= 0.6863 for α = 0.3, σ = 0.8953, N =
15. Thus, in a channel of length 75 mm, when the sawtooth channel walls oscillate
at an amplitude a = 0.1495 mm and frequency f = 1.60 Hz, the fluid is pumped in
the +x direction at a rate 2× (αQ)aωk−1 = 197.0 µL min−1mm−1 wall width. If the
sawtooth wavelength is increased to λs= 10 mm, subsequently the half channel width
h0 = 0.9964 mm and sawtooth height hs = 0.930 mm. With the oscillation amplitude
of 0.2990 mm but frequency of 0.4 Hz (keeping σ = 0.8953), the same pumping rate
can be achieved in a channel of length 150 mm. Similarly, we can also reinterpret
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the case by taking λs= 2.5 mm and reducing all other lengths by a factor of two but
increasing the frequency to f = 6.4 Hz.

In view of the discussion in § 4.1, the effects of entrance and exit flow conditions
have minimum contribution to the net directional pumping when both ends are placed
at a sawtooth peak or trough. On the other hand, to maximize the net pumping in the
positive x direction for the sawteeth oriented as indicated in figure 2, it is in one’s
interest to keep a peak closer to the right end from inside the channel. Starting with
the end positions as indicated in figure 3 which give the maximum positive αQ seen
in figure 4(b), if the right end is moved outward (corresponding to increasing θ ), the
pumping rate tends to be reduced but still positive; however, if the right end is moved
inward (corresponding to decreasing θ ), αQ decreases rapidly and could even become
negative depending on σ , as the sawtooth peak previously close to the right end is
disappearing from the channel and a sawtooth peak appears at the left end. The effects
of ends is less important for long channels in which the pumping rate and direction
are primarily determined by the effects of sawtooth asymmetry. However, very long
channels may not be of practical interest considering the power that is needed to
vibrate the channel walls against incompressible fluids.

At the time of writing, the experimental results referred to Thiria & Zhang (2010)
have not been published. While the pumping direction is not explicitly noted in the
report, a reference in Dupeux et al. (2011) indicates that the net transport of fluid in
Thiria & Zhang’s experiment is in the +x direction if the sawteeth are oriented as in
figure 2. A private communication with Professor R. Camassa seems to confirm the
author’s interpretation of the pumping direction in the experiment.

4.3. Power input and rate of viscous dissipation

To the lowest order approximation, the rate Ẇ at which the work is delivered to the
channel wall from outside means is

Ẇ = 1
2π

∫ x1

x0

∫ 2π

0

(
p0 − τny

)
sin t dt dx, along y= ys(x), (4.1)

averaged over the period of oscillation. Here τny is the y component of the normal
stress at the wall. When the channel walls are flat plates, τny = τyy = 0. Since there
is zero mean pressure drop between the channel ends, the rate at which the useful
energy is stored in the fluid is identically zero. Thus, the rate of work delivered to
the channel wall must be balanced entirely by the rate of viscous dissipation Ḋ in the
fluid,

Ḋ= 1
2
σ 2β2

∫ x1

x0

∫ y=ys(x)

0

[
2
(
∂u0

∂x

)2

+ 2
(
∂v0

∂y

)2

+
(
∂u0

∂y
+ ∂v0

∂x

)2
]

dy dx. (4.2)

This situation, Ẇ = Ḋ, similarly occurs in Takagi & Balmforth (2011), in which
pumping of viscous fluid is induced by steady peristaltic waves propagating down
an elastic tube. In those cases, the mechanical efficiency based on the rate of useful
energy stored in the fluid (flow rate × pressure drop against pumping) as in Shapiro,
Jaffrin & Weinberg (1969), is zero. Takagi & Balmforth defined an alternative
pumping efficiency which measures the fluid transport per unit input power. (This
definition does not have the appropriate dimensions for efficiency.) The concern, of
course, is a different one from that in fluid machinery. Here the question is how
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much energy is needed to achieve a desired transport of fluid, rather than the energy
efficiency of the transport mechanism.

The calculation of Ḋ, or Ẇ can be carried out using the solution in § 3.1, but
it is unavoidably tedious, attainable only by numerical evaluations because of the
wall geometry. In an averaged sense, it is reasonable to expect that Ẇ could be
characterized by Ẇf for flat channel walls with same oscillation frequency and
amplitude, but with a channel width kh seen in the mapped plane to account for
the effects of sawtooth shape and height. For simple purposes and an order of
magnitude estimate, this may be useful. The analytical expression for Ẇf is derived
in appendix D, for the benefits of readers who may be interested.

5. Concluding remarks
We have developed a theory describing the effects of ratcheting fluid in a narrow

channel between two facing sawtooth walls that undergo harmonic oscillations
opposing each other and normal to the channel centreline. Among the assumptions of
our theory are that the periodic sawtooth geometry has a large peak-to-trough height
and long wavelength, compared with the mean channel width, and the oscillations
are of small amplitude and moderate frequency.

A ‘terrain-following’ boundary-layer approach is formulated using a conformal
transformation. The analytical solutions are given for the induced steady flow field
and net pumping rate of fluid. The rectification of time harmonic motion is seen due
to (i) the steady momentum flux that arises from the nonlinear convective inertia
of the oscillating flow, and (ii) the interaction of vorticity with the wall motion,
that arises due to the fluid velocity near the wall being out of phase with the wall
velocity, as a result of viscosity. The geometric asymmetry renders these effects to be
spatially biased, leading to a unidirectional component in the steady flow. Effects on
the net pumping rate have been examined varying parameters representing oscillation
conditions and sawtooth geometry. We have also clarified the effects of entrance
and exit flow conditions due to the geometries at channel ends. This is a secondary
source of spatial asymmetry in the system, and can cause a net directional pumping
even when the sawteeth are individually symmetrical. Whereas the influences from
both sources of symmetry-breaking can be comparable in a short channel with a few
sawteeth, the accumulative effects of asymmetric wall profile become dominant as
the number of sawteeth increases, determining the net pumping (rate and direction)
of fluid in a long channel.

This work is a demonstration of judicious use of the conformal transformation
method, which was developed for potential flows in finite domains (Yu & Howard
2012), to study the vorticity dynamics. Here, a boundary-layer approximation is
invoked for the sake of obtaining an analytical solution. This can be relaxed if
numerical solutions are sought. The mapping functions can also be adapted to be
time-dependent to consider large-amplitude wall oscillations, providing an alternative
in numerical modeling of flows with complex boundary geometry.
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Appendix A. The instantaneous wall position
Consider a point (x, y) on the channel wall at a time t. In a small time interval

δt, it is displaced to (x, y+ δy), where δy=−(αβ sin t) δt. In the mapped plane, this
point is displaced from (ξ , η) to (ξ + δξ, η+ δη), where

0= ∂x
∂ξ
δξ + ∂x

∂η
δη, δy= ∂y

∂ξ
δξ + ∂y

∂η
δη. (A 1a,b)

Solving for δξ and δη, and in the limit as δt→ 0, we obtain a pair of parametric
equations

dξ
dt
= αβ 1

J
∂x
∂η

sin t,
dη
dt
=−αβ 1

J
∂x
∂ξ

sin t, (A 2a,b)

describing the trajectory of a point on the channel wall. From the instantaneous
positions of these points, the wall position η = ηsw(ξ , t) is found. In general, (A 2)
cannot be integrated analytically, as the right-hand side functions are highly nonlinear
in t.

Let us identify the points forming the corrugated surface by their undisturbed
positions (ξs, kh). Their positions at time t are [ξ(t; ξs, kh), η(t; ξs, kh)]. The
displacement of a point from its original position is(

αβ

∫ t

0

1
J
∂x
∂η

sin t dt, −αβ
∫ t

0

1
J
∂x
∂ξ

sin t dt
)
, (A 3)

where the integrands are to be evaluated at the instantaneous position (ξ , η). For
small-amplitude oscillations, the displacement is of O(α)� 1, and we can therefore
approximate the integrands above using Taylor expansions at the mean position
(ξs, kh), obtaining

ξ(t; ξs, kh)− ξs =−αβ
[

1
J
∂x
∂η

]
(ξs,kh)

cos t+O(α2), (A 4)

η(t; ξs, kh)− kh= αβ
[

1
J
∂x
∂ξ

]
(ξs,kh)

cos t+O(α2). (A 5)

These give the expressions in (3.6) where the subscript w indicates the evaluation of
functions at η= kh for a given ξs.

Appendix B. The pressure gradient along channel

Let the dynamic pressure be normalized as p = p′/(ρaω2k−1). The dimensionless
momentum equation along channel is

∂

∂t
∂ψ

∂y
− αβ

∂

(
ψ,

∂ψ

∂y

)
∂ (x, y)

=−∂p
∂x
+ 1

2
σ 2β2∇2

xy
∂ψ

∂y
, (B 1)

where

∇2
xy =

∂2

∂x2
+ ∂2

∂y2
. (B 2)
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Under the conformal transformation, ∇2
xy= J−1∇2, where ∇2 is the Laplacian operator

in the mapped plane, cf. (2.13). For any functions A and B

∂ (A, B)
∂ (x, y)

= ∂ (A, B)
∂ (ξ, η)

∂ (ξ, η)

∂ (x, y)
= J−1 ∂ (A, B)

∂ (ξ, η)
. (B 3)

Form (2.15),
∂ψ

∂y
= J−1Ψ , Ψ ≡ ∂ψ

∂η

∂x
∂ξ
− ∂ψ
∂ξ

∂x
∂η
. (B 4)

Thus, in terms of ξ and η, equation (B 1) is written as

∂p
∂x
=−1

J
∂Ψ

∂t
+ αβ 1

J
∂
(
ψ, J−1Ψ

)
∂ (ξ, η)

+ σ 2β2 1
2J
∇2
(
J−1Ψ

)
. (B 5)

Upon rescaling η̃= η/β, it becomes

β
∂p
∂x
=−1

J
∂Ψ̃

∂t
+ α 1

J

∂
(
ψ, J−1Ψ̃

)
∂
(
ξ, η̃

) + σ 2 1
2J
∇̃2
(

J−1Ψ̃
)
, (B 6)

where
Ψ̃ ≡ ∂ψ

∂η̃

∂x
∂ξ
− β ∂ψ

∂ξ

∂x
∂η
, (B 7)

and ∇̃2 is defined in (3.4). Note that x(ξ , η) and J are known functions and not
rescaled. Recall that for β� 1, J(ξ , η)= J0(ξ)+O(β2), ∂x/∂ξ = F(ξ)+O(β2), and
∂x/∂η=O(β), cf. (3.5), (2.7) and (2.8). Since O(β)=O(α), the appropriate expansion
for pressure is p= α−1p0 + p1 + αp2. . . . Inserting into (B 6) and using the expansion
(3.10) for ψ , we collect the equations for the first two orders. At O(α−1),

βα−1 ∂p0

∂x
=−F−1 ∂

∂t
∂ψ0

∂η̃
+ 1

2
σ 2F−3 ∂

3ψ0

∂η̃3
, (B 8)

and at O(α0),

β
∂p1

∂x
= −αF−1 ∂

∂t
∂ψ1

∂η̃
+ 1

2
ασ 2F−3 ∂

3ψ1

∂η̃3

+α
[

F−3 ∂ψ0

∂ξ

∂2ψ0

∂η̃2
− F−2 ∂ψ0

∂η̃

∂

∂ξ

(
F−1 ∂ψ0

∂η̃

)]
. (B 9)

At the leading order p0 = p̂0e−it + c.c. From (3.19),

∂ψ̂0

∂η̃
= CAF

[
cosh (AFη̃)− cosh (AFγ )

]
(B 10a)

∂2ψ̂0

∂η̃2
= C (AF)2 sinh (AFη̃) (B 10b)

∂3ψ̂0

∂η̃3
= C (AF)3 cosh (AFη̃) (B 10c)
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∂ψ̂0

∂ξ
= C′

[
sinh (AFη̃)− η̃AF cosh (AFγ )

]
+CAF′η̃

[
cosh (AFη̃)− cosh (AFγ )− AFγ sinh (AFγ )

]
. (B 10d)

Substituting into (B 8) and noting that A2 =−2iσ−2, we get

βα−1 ∂ p̂0

∂x
=−iCA cosh (AFγ ). (B 11)

Although it appears to depend only on ξ when expressed in terms of the mapped
variables, ∂ p̂0/∂x in fact varies both in x and y, as lines of ξ = constant correspond
to curves in the (x, y) plane. In the pressure condition (3.21), the integration has to
be done along y = constant = ȳ, given the definition of partial derivatives in x. We
could carry out this integration in function of x or transform it to function of ξ . In
either case, we have to invert the map (2.7) and (2.8), finding the curve in (ξ, η)
that corresponds to y = ȳ. This is in general not convenient for an arbitrary choice
of ȳ. However, the centreline y= 0 corresponds to η= 0, along which dx= xξ |η=0 dξ .
Thus, using C in (3.20), we integrate (B 11) along η= 0. Upon requiring the pressure
difference to vanish, we obtain the condition for determining the constant C0, as in
(3.22).

Let p1 = p10 + p̂11e−it + p̂12e−2it + c.c. From (B 9), the equation for steady-state
pressure p10 is written as

βα−1 ∂p10

∂x
= 1

2
σ 2F−3 ∂

3ψ10

∂η̃3
+ F−3

[
∂ψ̂0

∂ξ

∂2ψ̂∗0
∂η̃2
− F

∂ψ̂∗0
∂η̃

∂

∂ξ

(
1
F
∂ψ0

∂η̃

)
+ c.c.

]
. (B 12)

The condition of zero pressure drop means p10 = 0 at x= x0, x1, i.e.∫ x1

x0

∂p10

∂x

∣∣∣∣
y=0

dx=
∫ ξ1(0)

ξ0(0)

[
∂p10

∂x
∂x
∂ξ

]
η=0

dξ = 0, (B 13)

following (3.21). From (B 10b) and (B 10d), ∂ψ̂0/∂ξ = ∂2ψ̂0/∂η̃
2 = 0 at η̃ = 0. Thus,

for the nonlinear terms inside the square brackets in (B 12), we only need

−∂ψ̂
∗
0

∂η̃

∂

∂ξ

(
1
F
∂ψ0

∂η̃

)
=− 2

σ 2
C∗F

[
1− cosh (A∗Fγ )

] {
C′ − d

dξ

[
C cosh (AFγ )

]}
(B 14)

at η̃= 0. From (3.28),

∂3ψ10

∂η̃3
= 8
σ 3

F3
[
f1 cosh (2σ−1Fη̃)− f2 cos (2σ−1Fη̃)

]+ 3f3 (AF)2 cosh (AFη̃)

+ f3η̃ (AF)3 sinh (AFη̃)+ f4 (AF)3 cosh (AFη̃)+ 6f5 + c.c. (B 15)

hence at η̃= 0,

1
2
σ 2F−3 ∂

3ψ10

∂η̃3
= 4σ−1( f1 − f2)− 3iF−1f3 − iAf4 + 3σ 2F−3f5 + c.c. (B 16)

From (3.30) and (3.31),

2γ 3f5 = γB+ (S2 − γ S1 + c.c.)−Q. (B 17)
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Putting together (B 14), (B 16) and (B 17), and inserting into (B 12), we get, after some
algebra, at η̃= 0

βα−1 ∂p10

∂x
= 3σ 2

2γ 3F3

[
S2 − γ S1 + c.c.+ γB−Q

]
− 2
σ 2F

C∗ cosh (A∗Fγ )
d

dξ

[
C cosh (AFγ )

]+ c.c.

− 2
σ 2F

{
C∗

d
dξ

[
C cosh (AFγ )

]−C
d

dξ

[
C∗ cosh (A∗Fγ )

]}+ c.c.

(B 18)

Note that the terms in the curl brackets above are pure imaginary, hence cancel
out with their complex conjugates. Substituting into (B 13), we get the condition for
determining Q as in (3.35).

Appendix C. The derivations of G and B

The forcing for ψ10 in (3.23) is

G(ξ , η̃)=−∂ψ̂0

∂ξ

∂3ψ̂∗0
∂η̃3
+ J0

∂ψ̂∗0
∂η̃

∂

∂ξ

(
1
J0

∂2ψ̂0

∂η̃2

)
+ c.c.≡ I1 + I2. (C 1)

Using the derivatives in (B 10),

I1 = −∂ψ̂0

∂ξ

∂3ψ̂∗0
∂η̃3
+ c.c.

= {C′
[
η̃AF cosh (AFγ )− sinh (AFη̃)

]+CAF′η̃
[
AFγ sinh (AFγ )

+ cosh (AFγ )− cosh (AFη̃)
]}

A∗3F3C∗ cosh (A∗Fη̃)+ c.c.

= 4iσ−4C∗F3η̃ cosh (A∗Fη̃)
[
(CF)′ cosh (AFγ )+CFAF′γ sinh (AFγ )

]
+ 2σ−2AC∗C′F3 sinh (AFη̃) cosh (A∗Fη̃)+ c.c. (C 2)

In the above derivation, the terms associated with η̃ cosh (AFη̃) cosh (A∗Fη̃) are pure
imaginary, hence have no contribution to I1. Note that iA= A∗, and J0= F2, cf. (3.5).
Thus,

∂

∂ξ

(
1
J0

∂2ψ̂0

∂η̃2

)
=−2iσ−2 d

dξ

[
C sinh (AFη̃)

]
(C 3)

and

I2 = J0
∂ψ̂∗0
∂η̃

∂

∂ξ

(
1
J0

∂2ψ̂0

∂η̃2

)
+ c.c.

= −2iσ−2C∗A∗F3
[
cosh (A∗Fη̃)− cosh (A∗Fγ )

] d
dξ

[
C sinh (AFη̃)

]+ c.c.

= 2σ−2AF3C∗C′
[
cosh (A∗Fη̃)− cosh (A∗Fγ )

]
sinh (AFη̃)

+ 4iσ−4F3F′C∗C cosh (A∗Fγ ) cosh (A∗Fη̃)η̃+ c.c. (C 4)
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Adding (C 2) and (C 4), and noting that

4iσ−4F3F′C∗Cη̃
[
cosh (AFγ ) cosh (A∗Fη̃)+ cosh (A∗Fγ ) cosh (AFη̃)

]+ c.c.=0, (C 5)

we obtain G(ξ , η̃) as in (3.26).
From (3.17),

∂ψ10

∂η̃
=−J−1

w xξ |w
(

1
2
∂2ψ̂0

∂η̃2
+ c.c.

)
, at η̃= γ . (C 6)

Using (B 10b)

∂2ψ̂0

∂η̃2

∣∣∣∣∣
η̃=γ
+ c.c.=−2iσ−2F2C sinh (AFγ )+ c.c.= 4σ−2F2Im{C sinh (AFγ )}. (C 7)

Inserting into (C 6), we obtain B(ξ) as in (3.27).

Appendix D. The power input Ẇf for flat channel walls
The case of flat channel walls can be regarded as the limit with εb = 0. Here, the

map is the identity, i.e. ξ = x, η= y (and η̃= ỹ). Setting F(ξ)= 1, γ = 1 and xw(ξ)= x
in (3.19) and (3.20), and noting from (3.22) that C0 = 0, we get the stream function
for the case of flat channel walls

ψ̂0(x, y)= i 1
2 x
[
sinh (Aỹ)− Aỹ cosh A

]
/ [sinh A− A cosh A] , (D 1)

where A = (1 − i)/σ , cf. § 3.1. By directly solving the linearized vorticity equation
in the (x, y) plane, and invoking the boundary-layer approximation, one can obtain
the same solution as in (D 1) for small-amplitude oscillations. The velocity amplitudes
û0 = ∂ψ̂0/∂y and v̂0 =−∂ψ̂0/∂x. Thus,

û0 = i 1
2β
−1 (x/A)

[
1− cosh (Aỹ)/cosh A

]
, (D 2)

v̂0 =−i 1
2 A−1

[
ỹ− sinh(Aỹ)/(A cosh A)

]
. (D 3)

From the linearized momentum equation in the x direction, the leading order pressure
field is obtained:

p̂0 =− 1
2β
−1A−1

[
1
2 x2 − ( 1

2`
)2
]
. (D 4)

Here we have imposed the condition at the channel ends, p0 = 0 at x=±`/2, where
`= kL is the channel length.

The normal stress on the channel wall is zero, as ∂v/∂ ỹ = 0 at ỹ = 1. Thus, the
power delivered to the flat plate is

Ẇf = 1
2π

∫ `/2

−`/2

∫ 2π

0

(
p̂0e−it + c.c.

)
sin t dtdx, at ỹ= 1, (D 5)

averaged over one time cycle. The integrand is written from (D 4) as[
p̂0e−it + c.c.

]̃
y=1 sin t= 1

8β
−1
[
x2 − ( 1

2`
)2
]
(−i/A + c.c.)+ terms of e±2it, (D 6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

63
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.636


Fluid ratcheting in oscillating flows 327

where

A = 1− tan
[
(1− i)σ−1

]
(1− i)σ−1

. (D 7)

The terms of e2it and e−2it have zero time average, hence are suppressed. Substituting
into (D 5),

Ẇf = 1
8
β−1 (−i/A + c.c.)

∫ `/2

−`/2

[
x2 −

(
1
2
`

)2
]

dx= 1
6
β−1 (i/A + c.c.)

(
1
2
`

)3

. (D 8)

Upon working out the algebra for i/A + c.c., we get

Ẇf = 1
3β
−1σ (A1/A0)

(
1
2`
)3
, (D 9)

where ` is the channel length and

A0 =
[

1− σ sinh (1/σ) cosh (1/σ)
cosh2 (1/σ) cos2 (1/σ)+ sinh2 (1/σ) sin2 (1/σ)

]2

+
[

1− σ sin (1/σ) cos (1/σ)
cosh2 (1/σ) cos2 (1/σ)+ sinh2 (1/σ) sin2 (1/σ)

]2

, (D 10)

A1 = sinh (1/σ) cosh (1/σ)− sin (1/σ) cos (1/σ)
cosh2 (1/σ) cos2 (1/σ)+ sinh2 (1/σ) sin2 (1/σ)

. (D 11)

Note that Ẇf is scaled by ρa2ω3k−2 following (2.2), and β= kh is the channel width.
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