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On a family of torsional creep problems in
Finsler metrics
Maria Fărcăşeanu, Mihai Mihăilescu, and Denisa Stancu-Dumitru
Abstract. The asymptotic behavior of solutions to a family of Dirichlet boundary value problems,
involving differential operators in divergence form, on a domain equipped with a Finsler metric is
investigated. Solutions are shown to converge uniformly to the distance function to the boundary of
the domain, which takes into account the Finsler norm involved in the equation. This implies that
a well-known result in the analysis of problems modeling torsional creep continues to hold in this
more general setting.

1 Introduction and main results

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain, H ∶ RN → [0,∞) be a Finsler norm (see

Section 2.1 for details), and α ∶ Ω ×R→ (0,∞) be a continuous function for which
there exist two positive constants, λ and Λ, such that

0 < λ ≤ α(x , t) ≤ Λ < +∞, ∀ x ∈ Ω, ∀ t ∈ R.(1.1)

For each real number p ∈ (1,∞), we consider the following problem

{ −div(α(x , u)H(∇u)p−2H(∇u)) = f , x ∈ Ω,
u = 0, x ∈ ∂Ω,(1.2)

where f ∶ Ω → (0,∞) is a given continuous function and H ∶ RN → R
N is defined by

Hi(ξ) ∶= ∂
∂ξ i

( 1
2

H(ξ)2) , ∀ ξ ∈ RN , ∀ i ∈ {1, ..., N} .(1.3)

In the particular case, when α(x , t) and f (x) are positive constant functions and
H(⋅) = ∣ ⋅ ∣ is the Euclidean norm on R

N equation (1.2) reduces to the problem

{ −div(∣∇u∣p−2∇u) = c, x ∈ Ω,
u = 0, x ∈ ∂Ω ,(1.4)

with c as a positive constant. Equation (1.4) serves as a model for the so-called torsional
creep problem, which in the case when N = 2, has been proposed to describe the
behavior under torsion of a prismatic bar with cross section Ω ⊂ R
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period of time at high temperature, which is assumed to be constant (see, e.g.,
Bhattacharya et al. [7, p. 59] for details regarding the torsional creep problem based
on some models proposed by Kachanov [22, 23]). The analysis of the limiting case
when p →∞ is of particular interest in applications because it can model the perfect
plastic torsion. More precisely, denoting by up the unique solution of problem (1.4)
it can be proved that the family of solutions converges uniformly over Ω, as p →∞,
to the distance function to the boundary of Ω, i.e., δ(x) ∶= inf y∈∂Ω ∣x − y∣, for each
x ∈ Ω (see Bhattacharya et al. [7] or Kawohl [24]). Similar results were obtained in the
recent years when there were published a series of studies concerning the investigation
of different generalizations of the classical torsional creep problem to the case of
different types of inhomogeneous differential equations, e.g., Pérez-Llanos and Rossi
[28], Bocea and Mihăilescu [9], Fărcăşeanu and Mihăilescu [17], and Mihăilescu and
Pérez-Llanos [26].

Taking into account the above remarks, we can regard the general case of problem
(1.2) as an extension of the classical model to the situation when we deal with an
anisotropic material or with the case when the Euclidean distance in Ω is distorted
due to the presence of the Finsler norm (see Belloni and Kawohl [5] or Belloni et al.
[6] for similar interpretations of the use of Finsler norms). Moreover, the motivation
of the presence of a nonconstant function α(x , u), depending on u, in the divergence
operator involved in problem (1.2) is to take into account the reaction of this equation
to its own state (see, e.g., Chipot [11, p. 160]). In particular, the temperature which was
assumed to be constant in Kachanov’s model may vary in this new situation. Our goals
in this general setting will be, first, to show the existence of a solution of equation (1.2)
for each p > 1, and, next, to prove the uniform convergence of the family of solutions,
as p →∞, to a distance function to the boundary of Ω, which takes into account
the Finsler norm involved in the equation, i.e., δH(x) ∶= inf y∈∂Ω H0(x − y), for each
x ∈ Ω (note H0 stands for the dual norm of H; the definition of H0 is provided in
Section 2.1). In particular, our results complement the works of Ishibashi and Koike
[19], Belloni and Kawohl [5], Di Castro et al. [16], and Bianchini and Ciraolo [8].

The notion of solution for equation (1.2) will be understood in the weak sense. More
precisely, we work under the following definition.

Definition 1.1 We say that up is a weak solution of problem (1.2) if up ∈ W 1, p
0 (Ω) and

it satisfies the following relation

∫
Ω

α(x , up)H(∇up)p−2⟨H(∇up),∇φ⟩ dx = ∫
Ω

f φ dx , ∀ φ ∈ W 1, p
0 (Ω).(1.5)

The main results of this paper are given by the following theorems.

Theorem 1.1 Assume that condition (1.1) is fulfilled. Then, for each p ∈ (1,∞), problem
(1.2) has a weak solution up ∈ W 1, p

0 (Ω) such that up(x) ≥ 0 for a.e. x ∈ Ω.

Theorem 1.2 Assume that condition (1.1) is fulfilled. Let {pn}n ⊂ (N ,∞) be a sequence
of real numbers satisfying limn→∞ pn = ∞. For each n > 1 denote by upn ∈ W 1, pn

0 (Ω)
the weak, nonnegative solution of problem (1.2) with p = pn given by Theorem 1.1. Then,
the sequence {upn}n converges uniformly in Ω to the distance function to the boundary
of domain Ω given by δH(x) ∶= inf y∈∂Ω H0(x − y), for each x ∈ Ω.
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The rest of the paper is organized as follows: In Section 2, we present some auxiliary
results regarding the Finsler norms and some known facts on eigenvalue problems
involving Finsler norms. Sections 3 and 4 are devoted to the proofs of the main results:
Theorems 1.1 and 1.2, respectively.

2 Auxiliary results

The goal of this section is to present, on the one hand, the definition and the main
properties of the Finsler norms and, on the other hand, to recall some known results
regarding eigenvalue problems involving Finsler norms.

2.1 Finsler norms: definition, properties, and examples

Let H ∶ RN → [0,∞) be a convex function of class C2(RN/{0}), even and homoge-
neous of degree 1, i.e.,

H(tξ) = ∣t∣H(ξ), ∀ t ∈ R, ξ ∈ RN ,

such that H2 is strongly convex (in the sense that D2[H2](ξ) is positive definite for
ξ ∈ RN/{0}). We will refer to H as being a Finsler norm.

Set

K ∶= {x ∈ RN ∶ H(x) ≤ 1}

and

H○(x) ∶= sup
ξ∈K

⟨x , ξ⟩ .

We will refer to H○ as being the support function of K. It is easy to check that H○ ∶
R

N → [0,∞) is a convex homogeneous function, and, actually, a Finsler norm, too.
We will call H and H○ polar to each other in the sense

H○(x) ∶= sup
ξ≠0

⟨x , ξ⟩
H(ξ)

and

H(x) ∶= sup
ξ≠0

⟨x , ξ⟩
H○(ξ) .

The above relations yield

∣⟨x , ξ⟩∣ ≤ H(x)H○(ξ), ∀ x , ξ ∈ RN .(2.1)

Examples of Finsler norms.

1) The Euclidean norm: H(x) = ∣x∣ = (∑N
i=1 ∣x i ∣2)

1/2
;

2) H(x) = ⟨Ax , x⟩, where A is a symmetric, positive definite N × N matrix;
3) The p-norm H(x) = (∑N

i=1 ∣x i ∣p)
1/p

, with p ∈ (1,∞);

4) H(x) =
√√

x4
1 +⋯+ x4

N + x2
1 +⋯+ x2

N .
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We recall some important properties regarding functions H and H○ that will be
useful in our subsequent analysis

H(∇ξH○(ξ)) = 1 and H○(∇x H(x)) = 1 ,(2.2)

⟨∇x H(x), x⟩ = H(x) and ⟨∇ξH○(ξ), ξ⟩ = H○(ξ), ∀ x and ξ ∈ RN .(2.3)

We refer to [3] for the proofs of the above relations and to [12, p. 352] for some similar
relations obtained in the case when H is a more general Finsler norm.

Furthermore, let us also recall the so-called fundamental inequality regarding
Finsler norms, namely for each x ∈ RN we have

⟨ξ,∇H(x)⟩ ≤ H(ξ), ∀ ξ ≠ 0 ,(2.4)

and equality holds if and only if x = αξ for some α ≥ 0 (see [1, Theorem 1.2.2, relation
(1.2.3)] for more details).

Since any two norms are equivalent on R
N , we infer that for H defined as above

there exist two positive constants, a and b, such that

a∣x∣ ≤ H(x) ≤ b∣x∣, ∀ x ∈ RN(2.5)

(see, e.g., [4] or [2]).
Using a Finsler norm, we can define for each real number p ∈ (1,∞) a differential

operator that generalizes the classical p-Laplacian, namely

Qpu ∶=
N
∑
i=1

∂
∂x i

[H(∇u)p−2Hi(∇u)] ,

where H was defined in relation (1.3). Note that Qp is a particular case of the
differential operator involved in equation (1.2), which is obtained in the particular
case when α(x , u) = 1. Moreover, it is useful to observe that H(ξ) = H(ξ)∇H(ξ).

2.2 Eigenvalue problems involving Finsler norms

It is known (see, e.g., Belloni et al. [4] or Belloni et al. [6]) that for each real number
p ∈ (1,∞) the minimum of the Rayleigh quotient associated to the eigenvalue problem

{ −Qpv = λ∣v∣p−2v if x ∈ Ω
v = 0 if x ∈ ∂Ω,(2.6)

i.e.,

λ1(p) ∶= inf
v∈W 1, p

0 (Ω)/{0}

∫Ω H(∇v)p dx
∫Ω ∣v∣p dx

> 0 ,

stands for the lowest eigenvalue of problem (2.6), whose corresponding eigenfunc-
tions are minimizers of λ1(p) that do not change sign in Ω. Moreover, for p > 1, a
minimizer is C1-Hölder continuous.

In particular, for each p > 1, we have

∫
Ω

H(∇v)p dx ≥ λ1(p)∫
Ω
∣v∣p dx , ∀ v ∈ W 1, p

0 (Ω) .(2.7)
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Furthermore, define the distance function to the boundary of Ω with respect to the
dual of the Finsler norm H, i.e., δH ∶ Ω → [0,∞) given by

δH(x) ∶= inf
y∈∂Ω

H0(x − y), ∀ x ∈ Ω .

Recall that δH is Lipschitz continuous and satisfies H(∇δH(x)) = 1 for a.e. x ∈ Ω
(see, e.g., [6, Section 3] or [25] for a more involved discussion regarding the distance
function to the boundary in Finsler metrics). Define also

Λ∞ ∶=
∥H(∇δH)∥L∞(Ω)

∥δH∥L∞(Ω)
= ∥δH∥−1

L∞(Ω) .

By [6, Lemma 3.1] we know that

lim
p→∞

(λ1(p))1/p = Λ∞ .(2.8)

Note that, in the particular case, when we work with the Euclidean norm this result
was obtained by Juutinen et al. [21] and Fukagai et al. [18].

3 Proof of Theorem 1.1

Let p ∈ (1,∞) be an arbitrary but fixed real number. We start by establishing some
auxiliary results that will be useful in obtaining the conclusion of Theorem 1.1.

Lemma 3.1 For each v ∈ Lp(Ω), problem

{ −div(α(x , v)H(∇u)p−2H(∇u)) = f , x ∈ Ω,
u = 0, x ∈ ∂Ω(3.1)

has a unique weak solution u ∈ W 1, p
0 (Ω), i.e.,

∫
Ω

α(x , v)H(∇u)p−2⟨H(∇u),∇φ⟩ dx = ∫
Ω

f φ dx , ∀ φ ∈ W 1, p
0 (Ω) ,(3.2)

which satisfies u ≥ 0 a.e. in Ω.

Proof Step 1: Existence. Fix v ∈ Lp(Ω). By hypotheses (1.1) we get α(x , v) ∈ L∞(Ω).
Consider the energy functional associated to problem (3.1), J ∶ W 1, p

0 (Ω) → R

defined by

J(u) = 1
p ∫

Ω
α(x , v)H(∇u)p dx − ∫

Ω
f u dx .

Standard arguments imply that J ∈ C1(W 1, p
0 (Ω),R) with the derivative given by

⟨J′(u), φ⟩ = ∫
Ω

α(x , v)H(∇u)p−2⟨H(∇u),∇φ⟩ dx − ∫
Ω

f φ dx , ∀ u, φ ∈ W 1, p
0 (Ω) .

Thus, the weak solutions of problem (3.1) are exactly the critical points of J.
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By relations (1.1), (2.5), and (2.7), as well as using Hölder’s inequality, we deduce
that for each p ∈ (1,+∞) and u ∈ W 1, p

0 (Ω), we have

J(u) ≥ λap

p ∫
Ω
∣∇u∣p dx − ∥ f ∥Lp′(Ω)∥u∥Lp(Ω)

≥ λap

p
∥u∥p

W 1, p
0 (Ω)

− ∥ f ∥Lp′(Ω) (λ1(p))−1/pb ∥u∥W 1, p
0 (Ω)

,

where p′ = p
p−1 is the conjugate exponent of p. The above estimates show that J is

coercive. On the other hand, it is standard to check that J is weakly lower semi-
continuous. Then, the Direct Method in the Calculus of Variations (see, e.g., [29,
Theorem 1.2]) guarantees the existence of a global minimum point of J, say u ∈
W 1, p

0 (Ω). It is also standard to prove that u is a weak solution of problem (3.1).
Step 2: Uniqueness. Assume there are two weak solutions of problem (3.1), say

u1 , u2 ∈ W 1, p
0 (Ω), which means that u1 and u2 are critical points for functional J.

Standard regularity theory of elliptic operators assures that u1 , u2 ∈ C1,β(Ω), for some
β ∈ (0, 1). Define

Ω+ ∶= {x ∈ Ω ∶ u1(x) > u2(x)} .

The continuity of u1 and u2 assures that Ω+ is an open subset of Ω. Since ⟨J′(u1), φ⟩ =
0 and ⟨J′(u2), φ⟩ = 0 for all φ ∈ W 1, p

0 (Ω), working with the extension of (u1 − u2)+
to Ω by zero outside Ω+ as a test function it follows that

∫
Ω+

α(x , v)H(∇u1)p−2⟨H(∇u1),∇(u1 − u2)⟩ dx − ∫
Ω+

f (u1 − u2) dx = 0

and

∫
Ω+

α(x , v)H(∇u2)p−2⟨H(∇u2),∇(u1 − u2)⟩ dx − ∫
Ω+

f (u1 − u2) dx = 0 .

Subtracting these two equalities term by term, we obtain

∫
Ω+

α(x , v)⟨H(∇u1)p−2H(∇u1) − H(∇u2)p−2H(∇u2),∇u1 −∇u2⟩ dx = 0 .

By the strict convexity of the mapping R
N ∋ ξ → H p(ξ) we have ∇u1(x) = ∇u2(x)

for a.e. x ∈ Ω+. Since u1 = u2 on ∂Ω+ we find that Ω+ has measure zero. Similarly, the
set Ω− ∶= {x ∈ Ω ∶ u1(x) < u2(x)} has measure zero, which yields u1 = u2.

Step 3: Nonnegativity. Finally, note that since J(u) ≥ J(∣u∣), for all u ∈ W 1, p
0 (Ω)

and J possesses a unique critical point, we must have u = ∣u∣ ≥ 0 a.e. in Ω. The proof
of Lemma 3.1 is complete. ∎

Next, for each v ∈ Lp(Ω) let u = T(v) ∈ W 1, p
0 (Ω) ⊂ Lp(Ω) be the unique weak

solution of problem (3.1) given by Lemma 3.1. Thus, we can actually introduce an
application

T ∶ Lp(Ω) → W 1, p
0 (Ω)

associating to each v ∈ Lp(Ω) the unique weak solution of problem (3.1) denoted by
T(v) ∈ W 1, p

0 (Ω).
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Lemma 3.2 There exists an universal constant Cp > 0, which does not depend on v,
such that

∫
Ω

H(∇T(v))p dx ≤ Cp , ∀ v ∈ Lp(Ω).(3.3)

Proof Since T(v) is a weak solution of problem (3.1), taking φ = T(v) in (3.2) we
find

∫
Ω

α(x , v)H(∇T(v))p−2⟨H(∇T(v)),∇T(v)⟩ dx = ∫
Ω

f T(v) dx .

Using relations (1.1) and (2.3), Hölder’s inequality and (2.7), we deduce

λ ∫
Ω

H(∇T(v))p dx ≤ ∥ f ∥L∞(Ω)∫
Ω

T(v) dx

≤ ∥ f ∥L∞(Ω) ∣Ω∣(p−1)/p∥T(v)∥Lp(Ω)

≤ ∥ f ∥L∞(Ω) ∣Ω∣(p−1)/p (∫Ω H(∇T(v))p dx
λ1(p) )

1/p

,

where ∣Ω∣ stands for the Lebesgue measure of domain Ω. Thus, we have

(∫
Ω

H(∇T(v))p dx)
(p−1)/p

≤
∥ f ∥L∞(Ω)

λ
∣Ω∣(p−1)/p 1

λ1(p)1/p .

Taking

Cp ∶= (
∥ f ∥L∞(Ω)

λ
)

p/(p−1)

∣Ω∣ 1
λ1(p)1/(p−1) ,

we obtain inequality (3.3). The proof of Lemma 3.2 is complete. ∎
Remark 3.3 Using Lemma 3.2 and inequality (2.7), it follows that there exists a
positive constant, Dp , such that

∫
Ω
∣T(v)∣p dx ≤ (

∥ f ∥L∞(Ω)

λ
)

p/(p−1)

∣Ω∣ 1
λ1(p)p/(p−1) ∶=Dp , ∀ v ∈ Lp(Ω) .

Next, we point out an auxiliary result that will be used in establishing our next
lemma.

Remark 3.4 Let q ∈ (1,∞) and denote by q′ ∶= q/(q − 1) its Hölder conjugate.
Assume that ηn → η in Lq(Ω) and ψn ⇀ ψ in Lq′(Ω). Then,

lim
n→∞∫

Ω
ηn(ψn − ψ) dx = 0(3.4)

and

lim
n→∞∫

Ω
ηnψn dx = ∫

Ω
ηψ dx .(3.5)
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Proof First, we note that simple estimates combined with Hölder’s inequality imply

∣∫
Ω

ηn(ψn − ψ) dx∣ = ∣∫
Ω
(ηn − η)(ψn − ψ) dx + ∫

Ω
η(ψn − ψ) dx∣

≤ ∥ηn − η∥Lq(Ω)∥ψn − ψ∥Lq′(Ω) + ∣∫Ω
η(ψn − ψ) dx∣ .

Next, using Riesz’s representation theorem of linear and continuous maps on the
Lebesgue spaces and the hypothesis, we deduce that relation (3.4) holds true. Fur-
thermore, similar estimates yield

∣∫
Ω
(ηnψn − ηψ) dx∣ = ∣∫

Ω
ηn(ψn − ψ) dx + ∫

Ω
(ηn − η)ψ dx∣

≤ ∣∫
Ω

ηn(ψn − ψ) dx∣ + ∥ηn − η∥Lq(Ω)∥ψ∥Lq′(Ω) .

Combining the above pieces of information, we deduce that relation (3.5) holds true,
too. ∎
Lemma 3.5 The map T ∶ Lp(Ω) → W 1, p

0 (Ω) is continuous.

Proof Let {vn} ⊂ Lp(Ω) and v ∈ Lp(Ω) be such that {vn} converges to v in Lp(Ω).
It follows that, passing eventually to a subsequence, vn(x) converges to v(x) for a.e.
x ∈ Ω.

Set un ∶= T(vn) for any positive integer n. By Lemma 3.2 and relation (2.5), we infer

∫
Ω
∣∇un ∣p dx = ∫

Ω
∣∇T(vn)∣p dx ≤ 1

ap ∫Ω
H(∇T(vn))p dx ≤

Cp

ap , ∀ n,

that is, the sequence {un} is bounded in W 1, p
0 (Ω). It follows that there exists u ∈

W 1, p
0 (Ω) such that, up to a subsequence, {un} converges weakly to u in W 1, p

0 (Ω)
and {un} converges strongly to u in Lp(Ω). On the other hand, we have that un is a
weak solution of problem (3.1) and thus by (3.2), we get

∫
Ω

α(x , vn)H(∇un)p−2⟨H(∇un),∇φ⟩ dx = ∫
Ω

f φ dx , ∀ φ ∈ W 1, p
0 (Ω), ∀ n.

(3.6)

Testing with φ = un − u in (3.6) and taking into account the above pieces of informa-
tion, we find

lim
n→∞∫

Ω
α(x , vn)H(∇un)p−2⟨H(∇un),∇un −∇u⟩ dx = 0 .(3.7)

Next, since vn(x) → v(x) for a.e. x ∈ Ω and α is continuous on Ω ×R, we deduce that
α(x , vn(x)) → α(x , v(x)) for a.e. x ∈ Ω. Using that fact and Lebesgues’s dominated
convergence theorem, we infer that

α(x , vn)H(∇u)p−2H(∇u) → α(x , v)H(∇u)p−2H(∇u) in (Lp′(Ω))N ,
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where p′ ∶= p/(p − 1). On the other hand, we know that ∇un ⇀ ∇u in (Lp(Ω))N .
Then, using relation (3.4), from Remark 3.4, we get

lim
n→∞∫

Ω
α(x , vn)H(∇u)p−2⟨H(∇u),∇un −∇u⟩ dx = 0 .(3.8)

Combining (3.7) and (3.8), we find

lim
n→∞∫

Ω
α(x , vn)⟨H(∇un)p−2H(∇un) − H(∇u)p−2H(∇u),∇un −∇u⟩ dx = 0 .

In particular, α(x , vn)⟨H(∇un)p−2H(∇un) − H(∇u)p−2H(∇u),∇un −∇u⟩ ≥ 0
and it converges to 0 in L1(Ω). Thus, up to a subsequence, α(x , vn)⟨H(∇un)p−2

H(∇un) − H(∇u)p−2H(∇u),∇un −∇u⟩ → 0 a.e. in Ω. Therefore, ∇un → ∇u a.e.
in Ω.

Using the fact that ∇un → ∇u a.e. in Ω it follows that

H(∇un)p−2H(∇un) → H(∇u)p−2H(∇u) a.e in Ω .

On the other hand, using (2.2), we find that

H○(H(∇un)p−2H(∇un)) = H(∇un)p−1 ,

which shows that the sequence {H(∇un)p−2H(∇un)} is bounded in (Lp′(Ω))N .
Using the above pieces of information and [30, Theorem 10.36] we deduce that

H(∇un)p−2H(∇un) ⇀ H(∇u)p−2H(∇u) in (Lp′(Ω))N .

This last weak convergence combined with relation (3.5) from Remark 3.4 allows us
to pass to the limit as n →∞ in relation (3.6) and to obtain

∫
Ω

α(x , v)H(∇u)p−2⟨H(∇u),∇φ⟩ dx = ∫
Ω

f φ dx , ∀ φ ∈ W 1, p
0 (Ω) .(3.9)

Thus, u is actually the unique weak solution of equation (3.1). Since the possible limit
of the sequence un is uniquely determined, the whole sequence un converges toward u
in Lp(Ω) and weakly in W 1, p

0 (Ω). In order to end the proof of this lemma, it remains
to establish the strong convergence of un to u in W 1, p

0 (Ω). With that end in view, let
us observe first, that the convexity of the mapping R

N ∋ ξ → H p(ξ) yields

∫
Ω

α(x , vn)H(∇u)p dx ≥ ∫
Ω

α(x , vn)H(∇un)p dx

+ p∫
Ω

α(x , vn)H(∇un)p−2⟨H(∇un),∇un −∇u⟩ dx , ∀ n

and

∫
Ω

α(x , vn)H(∇un)p dx ≥ ∫
Ω

α(x , vn)H(∇u)p dx

+ p∫
Ω

α(x , vn)H(∇u)p−2⟨H(∇u),∇u −∇un⟩ dx , ∀ n .

These estimates and relations (3.7) and (3.8) imply

lim inf
n→∞ ∫

Ω
α(x , vn)H(∇u)p dx ≥ lim sup

n→∞
∫

Ω
α(x , vn)H(∇un)p dx
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and

lim inf
n→∞ ∫

Ω
α(x , vn)H(∇un)p dx ≥ lim sup

n→∞
∫

Ω
α(x , vn)H(∇u)p dx .

The last two relations show that

lim
n→∞∫

Ω
α(x , vn)H(∇un)p dx = ∫

Ω
α(x , v)H(∇u)p dx .(3.10)

Consider now the sequence {gn}n in L1(Ω) defined pointwise in Ω by

gn(x) ∶= α(x , vn(x))H(∇un(x))p + α(x , vn(x))H(∇u(x))p

2

− α(x , vn(x))H (∇un(x) − ∇u(x)
2

)
p

≥ 0 .

It is clear that gn → α(x , v)H(∇u)p a.e. in Ω. Then, by Fatou’s Lemma and (3.10), we
have

∫
Ω

α(x , v)H(∇u)p dx ≤ lim inf
n→∞ ∫

Ω
gn dx

= ∫
Ω

α(x , v)H(∇u)p dx

− lim sup
n→∞

∫
Ω

α(x , vn)H (∇un −∇u
2

)
p

dx .

We conclude that {un} converges strongly to u in W 1, p
0 (Ω), which means application

T is continuous.
The proof of Lemma 3.5 is complete. ∎

Remark 3.6 Since W 1, p
0 (Ω) is compactly embedded in Lp(Ω), which is the inclusion

operator i ∶ W 1, p
0 (Ω) → Lp(Ω) is compact, it follows by Lemma 3.5 that the operator

S ∶ Lp(Ω) → Lp(Ω) defined by S = i ○ T is compact.

Proof of Theorem 1.1 For each p ∈ (1,∞), let Dp be the positive constant given by
Remark 3.3. We have

∥S(v)∥Lp(Ω) ≤ p
√
Dp , ∀ v ∈ Lp(Ω) .

Define the set in Lp(Ω),

B p
√

Dp
(0) ∶= {v ∈ Lp(Ω) ∶ ∥v∥Lp(Ω) ≤ p

√
Dp } .

Clearly, B p
√

Dp
(0) is a convex, closed subset of Lp(Ω) and S (B p

√
Dp
(0)) ⊂ B p

√
Dp
(0).

Moreover, by Remark 3.6, we have that S (B p
√

Dp
(0)) is relatively compact in

B p
√

Dp
(0).

Finally, by Lemma 3.5 and Remark 3.6, we have that S ∶ B p
√

Dp
(0) → B p

√
Dp
(0) is a

continuous map. Thus, we can apply the Schauder’s fixed-point theorem to obtain that
S possesses a fixed point up . This gives us a weak solution up ∈ W 1, p

0 (Ω) of problem
(1.2), which is nonnegative in Ω.

The proof of Theorem 1.1 is finally complete. ∎
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Remark 3.7 For each p > 1 there exists up ∈ W 1, p
0 (Ω) ⊂ Lp(Ω) such that T(up) =

up , where up is obtained by applying Schauder’s fixed point theorem, and up is the
unique minimizer of the functional J ∶ W 1, p

0 (Ω) → R,

J(u) = 1
p ∫

Ω
α(x , up)H(∇u)p dx − ∫

Ω
f u dx .

4 Proof of Theorem 1.2

Let {pn}n≥1 ⊂ (N ,∞) be a sequence of real numbers such that limn→∞ pn = +∞.
For each n ≥ 1, we consider upn to be the weak solution of problem (1.2) with p =

pn , which is obtained by applying Schauder’s-fixed point theorem. We have that upn is
the unique weak solution of problem (3.1) with p = pn and v = upn . By Remark 3.7, we
have that upn is the unique minimizer of the functional Jn ∶ W 1, pn

0 (Ω) → R, defined
by

Jn(u) = 1
pn

∫
Ω

α(x , upn)H(∇u)pn dx − ∫
Ω

f u dx .

4.1 A �-convergence result

We start this subsection of our paper by recalling the definition of the concept of �-
convergence (introduced in [14, 15] ) in metric spaces. The reader is referred to [13]
and [10] for a comprehensive introduction to the topic.

Definition 4.1 Let X be a metric space. A sequence {Fn} of functionals Fn ∶ X → R ∶=
R ∪ {+∞} is said to �(X)-converges to F ∶ X → R, and we write �(X) − limn→∞ Fn =
F, if the following hold
(i) for every u ∈ X , and {un} ⊂ X such that un → u in X, we have

F(u) ≤ lim inf
n→∞

Fn(un);

(ii) for every u ∈ X there exists a recovery sequence {un} ⊂ X such that un → u in X
and

F(u) ≥ lim sup
n→∞

Fn(un).

For each n ≥ 1, we introduce In ∶ L1(Ω) → [0,∞] defined by

In(u) ∶= {
1

pn ∫Ω α(x , upn)H(∇u)pn dx , if u ∈ W 1, pn
0 (Ω),

+∞, if u ∈ L1(Ω)/W 1, pn
0 (Ω).

The main result of this subsection gives the following �-convergence result for the
sequence {In}.
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Lemma 4.1 Define I∞ ∶ L1(Ω) → [0,∞] by

I∞(u) ∶= { 0, if u ∈ X0 and H(∇u(x)) ≤ 1 f or a.e . x ∈ Ω,
+∞, otherwise ,

where X0 = W 1,∞(Ω) ∩ (∩q>1W 1,q
0 (Ω)). Then �(L1(Ω)) − limn→∞ In = I∞.

Proof Let v ∈ L1(Ω) and {vn} ⊂ L1(Ω) be such that vn → v in L1(Ω). We may
assume without loss of generality that {vn} ⊂ W 1, pn

0 (Ω) and

lim inf
n→∞

In(vn) = lim
n→∞

In(vn) < ∞.(4.1)

Let x ∈ Ω be a Lebesgue point for∇v ∈ (L1(Ω))N . For any ball Br(x) ⊂ Ω and for any
integer n > 1 such that pn ≥ 2 we have, by Hölder’s inequality,

∫
Br(x)

H(∇vn(y)) d y ≤ ∥H(∇vn)∥Lpn (Ω)∥χBr(x)∥L
pn

pn−1 (Ω)
.(4.2)

Also, we have

∥χBr(x)∥L
pn

pn−1 (Ω)
= ∣Br(x)∣

pn−1
pn .(4.3)

On the other hand, note that

∫
Ω

H(∇vn)pn dx ≤ 1
λ

pn In(vn)

or

∥H(∇vn)∥Lpn (Ω) ≤ λ−1/pn p1/pn
n [In(vn)]1/pn .(4.4)

By (4.2), (4.3), and (4.4), we obtain

∫
Br(x)

H(∇vn(y)) d y ≤ λ−1/pn pn
1/pn [In(vn)]1/pn ∣Br(x)∣

pn−1
pn

which in view of (4.1) implies

lim sup
n→∞

∫
Br(x)

H(∇vn(y)) d y ≤ ∣Br(x)∣.(4.5)

Let q ≥ 1 be an arbitrary real number. For each n > 1 such that q < pn , using Hölder’s
inequality, we have

∫
Ω

H(∇vn)q dx ≤ (∫
Ω

H(∇vn)pn dx)
q

pn ∣Ω∣
pn−q

pn

≤ λ−q/pn pq/pn
n [In(vn)]q/pn ∣Ω∣

pn−q
pn

and thus, using (2.5),

a∥ ∣∇vn ∣ ∥Lq(Ω) ≤ ∥H(∇vn)∥Lq(Ω) ≤ [λ−1 pn In(vn)]
1

pn ∣Ω∣
1
q −

1
pn .

We obtain that the sequence {∇vn} is bounded in Lq(Ω;RN), for any q ≥ 1. It
follows that the sequence {vn} is bounded in W 1,q

0 (Ω), and thus we may extract a
subsequence, still denoted by {vn}, such that vn converges weakly to v in W 1,q

0 (Ω).
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In particular, we find that v ∈ ∩q>1W 1,q
0 (Ω). On the other hand, a well-known weak

lower semicontinuity result implies

∫
Br(x)

H(∇v(y)) d y ≤ lim inf
n→∞ ∫

Br(x)
H(∇vn(y)) d y ≤ lim sup

n→∞
∫

Br(x)
H(∇vn(y)) d y

which, in view of (4.5), yields

1
∣Br(x)∣ ∫Br(x)

H(∇v(y)) d y ≤ 1, ∀ r > 0.

Since almost every x ∈ Ω is a Lebesgue point for ∇v, passing to the limit as r → 0+ in
the above inequality yields H(∇v(x)) ≤ 1 for a.e. x ∈ Ω. Now, since v ∈ ∩q>1W 1,q

0 (Ω)
we deduce by (2.7) that

∫
Ω

H(∇v)q dx ≥ λ1(q)∫
Ω
∣v∣q dx , ∀ q > 1 .

In view of (2.8), the above relation implies that

1 ≥ ∥H(∇v)∥L∞(Ω) ≥ Λ∞∥v∥L∞(Ω) ,

and, thus, we deduce v ∈ W 1,∞(Ω) and, consequently, v ∈ X0. It follows that I∞(v) = 0
and thus we obtain

I∞(v) ≤ lim inf
n→∞

In(vn).

It remains to prove the existence of a recovery sequence for the �-limit. Let v ∈
L1(Ω). Note, if I∞(v) = +∞ there is nothing to prove, because the inequality holds
true for any sequence vn → v strongly in L1(Ω). On the other hand, if I∞(v) < ∞ we
must have I∞(v) = 0 and, consequently, v ∈ X0 ⊂ ∩q>1W 1,q

0 (Ω) and H(∇v(x)) ≤ 1 for
a.e. x ∈ Ω. For each integer n > 1 define vn ∶= v and note that we have

lim sup
n→∞

In(vn) = lim sup
n→∞

1
pn

∫
Ω

α(x , upn)H(∇v(x))pn dx

≤ lim sup
n→∞

Λ
pn

∣Ω∣ = 0 = I∞(v).

The proof of Lemma 4.1 is complete. ∎
In the end of this subsection, we also recall the following well-known result, which

can be found in [20, Corollary 6.1.1].

Proposition 4.2 Let X be a topological space satisfying the first axiom of countability,
and assume that the sequence {Fn} of functionals Fn ∶ X → R, �-converges to F ∶ X →
R. Let zn be a minimizer for Fn . If zn → z in X, then z is a minimizer of F, and

F(z) = lim inf
n→∞

Fn(zn).

This result will prove to be extremely useful in obtaining the result from Theo-
rem 1.2 of our manuscript.
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4.2 Asymptotic behavior

We start by establishing a result which in the particular case when α(x , t) and f (x) are
positive constant functions and H(⋅) = ∣ ⋅ ∣ is the Euclidean norm on R

N was proved
by Payne and Philippin in [27].

Proposition 4.3 For each n ∈ N, let upn ∈ W 1, pn
0 (Ω) be the weak solution of the

problem (1.2) with p = pn given by Schauder’s fixed-point theorem. Then

lim
n→∞∫

Ω
f upn dx = ∫

Ω
f δH dx .

The proof of this proposition will be based on two auxiliary results, which are
established in the next two lemmas.

Lemma 4.4 The sequences {∫Ω f upn dx} and {∫Ω upn dx} are bounded.

Proof First, we prove that the sequence {∫Ω f upn dx} is bounded. For every pn ≥ 2,
using Hölder’s inequality, we have

∫
Ω

f upn dx ≤ ∥ f ∥L∞(Ω)∫
Ω

upn dx ≤ ∥ f ∥L∞(Ω) (∫
Ω
∣upn ∣pn dx)

1/pn

∣Ω∣
pn−1

pn .

Taking p = pn and v = upn in (2.7), we have

∫
Ω
∣upn ∣pn dx ≤ ∫Ω H(∇upn)pn dx

λ1(pn)
.

Combining the above two inequalities, we deduce

(∫
Ω

f upn dx)
pn

≤ ∥ f ∥pn
L∞(Ω)

∫Ω H(∇upn)pn dx
λ1(pn)

∣Ω∣pn−1 .(4.6)

Since upn is a weak solution for problem (1.2) with p = pn , relation (1.5) with φ = upn

gives

∫
Ω

α(x , upn)H(∇upn)pn−2⟨H(∇upn),∇upn ⟩ dx = ∫
Ω

f upn dx ,

and taking into account (2.3) and (1.1), it follows that

∫
Ω

H(∇upn)pn dx = ∫
Ω

H(∇upn)pn−2⟨H(∇upn),∇upn ⟩ dx ≤ 1
λ ∫

Ω
f upn dx .

(4.7)

By inequalities (4.6) and (4.7), we get

(∫
Ω

f upn dx)
pn−1

≤ ∥ f ∥pn
L∞(Ω)

1
λ1(pn)

∣Ω∣pn−1 1
λ

or

∫
Ω

f upn dx ≤ ∥ f ∥pn/(pn−1)
L∞(Ω)

λ−1/(pn−1)

( pn
√

λ1(pn))
pn/(pn−1) ∣Ω∣.
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On the other hand, by (2.8), we know that limn→∞
pn
√

λ1(pn) = ∥δH∥−1
L∞(Ω) , which

implies that the right-hand side in the last inequality above is bounded and, conse-
quently, {∫Ω f upn dx} is bounded.

Finally, since f ∶ Ω → (0,∞) is continuous, we deduce that {∫Ω upn dx} is
bounded, too. The proof of Lemma 4.4 is complete. ∎
Lemma 4.5 There exists u∞ ∈ X0 with u∞ ≥ 0 in Ω and ∥H(∇u∞)∥L∞(Ω) ≤ 1 and a
subsequence of {upn} (not relabeled) such that upn → u∞ uniformly in Ω.

Proof Fix q > N be an arbitrary real number. Since limn→∞ pn = +∞, it follows that
q < pn for sufficiently large n ∈ N.

For each q < pn , using Hölder’s inequality, recalling the fact that ⟨J′n(upn), upn ⟩ = 0
and taking into account (4.7), we deduce

∫
Ω

H(∇upn)q dx ≤ (∫
Ω

H(∇upn)pn dx)
q

pn ∣Ω∣
pn−q

pn

≤ ( 1
λ ∫

Ω
f upn dx)

q
pn
∣Ω∣

pn−q
pn

≤ 1
λq/pn

(∫
Ω

f upn dx)
q

pn ∣Ω∣
pn−q

pn .

By Lemma 4.4, there exists a positive constant M such that

∫
Ω

f upn dx ≤ M

for all n ∈ N sufficiently large. Thus, using also (2.5), for such n ∈ N we must have

a∥ ∣∇upn ∣ ∥Lq(Ω) ≤ ∥H(∇upn)∥Lq(Ω) ≤ λ−1/pn M1/pn ∣Ω∣1/q−1/pn .

Thus, {∇upn}n is uniformly bounded in Lq(Ω;RN). The fact that q > N guarantees
that the embedding of W 1,q

0 (Ω) into C(Ω) is compact. Taking into account the
reflexivity of the Sobolev space W 1,q

0 (Ω), it follows that there exists a subsequence
(not relabeled) of {upn} and a function u∞ ∈ C(Ω) such that upn ⇀ u∞ weakly in
W 1,q

0 (Ω) and upn → u∞ uniformly in Ω. Moreover, the fact that upn ≥ 0 a.e. in Ω for
each pn > N implies that u∞ ≥ 0 a.e. in Ω.

Finally, since there exists u∞ such that u∞ = limn→∞ upn in L1(Ω) in view of
Proposition 4.2 (with X = L1(Ω), Fn = In , F∞ = I∞, zn = upn ) and Lemma 4.1 (and
taking into account that for each positive integer n the minimizer upn of Jn mini-
mizes In , too), we conclude that u∞ must be a minimizer for I∞ and, in particular
∥H(∇u∞)∥L∞(Ω) ≤ 1 and u∞ ∈ X0. This concludes the proof of Lemma 4.5. ∎
Proof of Proposition 4.3 Fix an arbitrary subsequence of {upn}, still denoted by
{upn}. Similar arguments as those used in the proof of Lemma 4.5 can be considered
to prove that this subsequence contains, in its turn, a subsequence, say {upnk

},
which converges uniformly in Ω to a certain limit u∞ ∈ X0 with ∥H(∇u∞)∥L∞(Ω
≤ 1. In order to get the conclusion of Proposition 4.3, it is enough to establish that
limk→∞ ∫Ω f upnk

dx = ∫Ω f δH dx. In other words, we will show that the limit of all
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possible subsequences of {∫Ω f upn dx} is ∫Ω f δH dx and, consequently, the limit of
the full sequence should also be ∫Ω f δH dx.

In the sequel, for simplicity, we will write upn instead of upnk
.

Since δH ∈ X0 ⊂ ∩q>1W 1,q
0 (Ω) and H(∇δH(x)) = 1 for a.e. x ∈ Ω, and upn is a

minimizer of Jn in W 1, pn
0 (Ω), we deduce that for each positive integer n ∈ N we have

Jn(upn) ≤ Jn(δH) =
1

pn
∫

Ω
α(x , upn)H(∇δH(x))pn dx − ∫

Ω
f δH dx

= 1
pn

∫
Ω

α(x , upn) dx − ∫
Ω

f δH dx

≤ Λ
pn
∣Ω∣ − ∫

Ω
f δH dx .

Taking into account that pn →∞ as n →∞ the above estimates imply

∫
Ω

f δH dx ≤ lim inf
n→∞ ∫

Ω
f upn dx = ∫

Ω
f u∞ dx .(4.8)

Next, for each x ∈ Ω fix y ∈ ∂Ω such that H0(x − y) = δH(x). Define h ∶ [0, 1] → R

by h(t) ∶= u∞(tx + (1 − t)y). By the mean value theorem, we deduce that there exists
tx ∈ (0, 1) such that

h′(tx) = h(1) − h(0)

or

u∞(x) = u∞(x) − u∞(y) = h(1) − h(0) = ⟨∇u∞(tx x + (1 − tx)y), (x − y)⟩ ,

and by (2.1) we deduce

u∞(x) ≤ H0(x − y) sup
z∈[x , y]

H(∇u∞(z)) ≤ δH(x) .(4.9)

Multiplying by f and integrating over Ω, we get

lim
n→∞∫

Ω
f upn dx = ∫

Ω
f u∞ dx ≤ ∫

Ω
f δH dx .

Recalling (4.8) it follows that limn→∞ ∫Ω f upn dx = ∫Ω f δH dx . Thus, the proof of
Proposition 4.3 is complete. ∎
Proof of Theorem 1.2 As in Proposition 4.3, we fix an arbitrary subsequence of the
solutions {upn} (not relabeled). Similar arguments as those used in Lemma 4.5 ensure
that {upn} converges uniformly to a certain limit

u∞ ∈ X0 with ∥H(∇u∞)∥L∞(Ω) ≤ 1 .

Thus, it just remains to see that u∞ = δH . Notice that, since {upn} is arbitrary, this
means that δH is indeed the limit of the full sequence {upn}. Recall that by (4.9) we
have u∞(x) ≤ δH(x), for each x ∈ Ω. Furthermore, since we have upn(x) ≥ 0 for a.e.
x ∈ Ω and for every integer n > 1 for which pn ≥ 2, we deduce that u∞(x) ≥ 0 for a.e.
x ∈ Ω. Finally, applying Proposition 4.3 and taking into account the fact that upn → u∞
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uniformly in Ω, we find that

∫
Ω

f δH dx = lim
n→∞∫

Ω
f upn dx = ∫

Ω
f u∞ dx .

Recalling the continuity of f, δH , and u∞, the last equalities yield u∞ = δH .
The proof of Theorem 1.2 is complete. ∎
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[26] M. Mihăilescu and M. Pérez-Llanos, Inhomogeneous torsional creep problems in anisotropic
Orlicz Sobolev Spaces. J. Math. Phys. 59(2018), article number 071513.

[27] L. E. Payne and G. A. Philippin, Some applications of the maximum principle in the problem of
torsional creep. SIAM J. Appl. Math. 33(1977), 446–455.

[28] M. Pérez-Llanos and J. D. Rossi, The limits as p(x) → ∞ of solutions to the inhomogeneous
Dirichlet problem of the p(x)-Laplacian. Nonlinear Anal. 73(2010), 2027–2035.

[29] M. Struwe, Variational methods: applications to nonlinear partial differential equations and
hamiltonian systems. Springer, Heidelberg, Germany, 1996.

[30] M. Willem, Analyse harmonique réelle. Hermann, Paris, 1995.

The University of Sydney, Sydney, Australia
e-mail: farcaseanu.maria@yahoo.com

University of Craiova, Craiova, Romania
e-mail: mmihailes@yahoo.com

University Politehnica of Bucharest, Bucharest, Romania
e-mail: farcaseanu.maria@yahoo.com denisa.stancu@yahoo.com

https://doi.org/10.4153/S0008414X20000681 Published online by Cambridge University Press

mailto:farcaseanu.maria@yahoo.com
mailto:mmihailes@yahoo.com
mailto:farcaseanu.maria@yahoo.com
mailto:denisa.stancu@yahoo.com
https://doi.org/10.4153/S0008414X20000681

	1 Introduction and main results
	2 Auxiliary results
	2.1 Finsler norms: definition, properties, and examples
	2.2 Eigenvalue problems involving Finsler norms

	3 Proof of Theorem theorem11.1
	4 Proof of Theorem theorem21.2
	4.1 A Γ-convergence result
	4.2 Asymptotic behavior


