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Blood digestion in the mosquito, Anopheles stephensi : the

effects of Plasmodium yoelii nigeriensis on midgut enzyme

activities
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

Midgut proteases contribute to the success or failure of Plasmodium infection of the mosquito. This paper examines the

reciprocal effect of Plasmodium yoelii nigeriensis on midgut trypsin, chymotrypsin, aminopeptidase and carboxypeptidase

in the mosquito Anopheles stephensi. The total protein ingested and the rate of protein digestion were unaffected by the

parasite, but more protein was ingested at the first than the second bloodmeal. All peptidases were unaffected by the

presence of the parasite during the first gonotrophic cycle, when ookinetes were penetrating the midgut. In the second

gonotrophic cycle, trypsin and chymotrypsin were unaffected by growing oocysts, but aminopeptidase activity was reduced

in the midguts of infected mosquitoes. Chymotrypsin activity was depressed and aminopeptidase activity elevated during

the second gonotrophic cycle. Plasmodium infection has a negligible effect on bloodmeal digestion and does not limit the

availability of the protein for egg production. The significance of changes in aminopeptidase activity when oocysts are

present is discussed.
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

The sporogonic cycle of Plasmodium spp. is asso-

ciated intimately with the mosquito midgut. During

this period the mosquito synthesizes and secretes

into the midgut an array of digestive enzymes. The

mechanisms that underlie successful parasite de-

velopment are poorly understood. Some mosquito

factors are essential for parasite development (Gwadz

1994; Sinden et al. 1996; Billingsley & Sinden,

1997; Billker et al. 1998; Shahabuddin et al. 1998)

while others, initiated by blood feeding or the

parasite, reduce parasite survival (Shahabudin et al.

1998). Invasion of the midgut initiates several

responses in vectors, including increased mRNAs

encoding defence molecules (Richman et al. 1997;

Luckhart et al. 1998). Other responses contribute to

refractoriness to malaria transmission and include

activation of a phenoloxidase cascade (Collins et al.

1986) and non-specific esterases (Vernick & Collins,

1989).

Mosquito digestive enzymes can also affect vector
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competence. Immature ookinetes are susceptible to

protease digestion while mature forms are relatively

resistant (Gass & Yeates, 1979). The proteases also

deactivate complement and macrophages in the

midgut, both of which kill parasites (Grotendorst &

Carter, 1987) and digest haemoglobin which is

required for ookinete maturation. Midgut proteases

can also enhance infection by activating parasite pro-

chitinase to chitinase, thereby ensuring invasion of

the peritrophic matrix (Shahabudin, 1998; Shah-

abuddin, Cocianich & Zieler, 1998), or reduce

infection when elevated in selected strains (Feld-

mann, Billingsley & Savelkoul, 1989). Thus, the

post-feeding kinetics of enzyme activity affect para-

site development and invasion success at a number of

levels (Billingsley & Sinden, 1997). However, little is

known of any reciprocal effect of the parasite upon

mosquito proteases. Here we examine whether the

presence of Plasmodium yoelii nigeriensis can affect

the post-feeding activity of four digestive peptidases

and the efficiency of bloodmeal digestion in the

mosquito, Anopheles stephensi during two gono-

trophic cycles coinciding with ookinete invasion of

the midgut wall and maturation of the oocyst.

  

Mosquito maintenance and infection

Anopheles stephensi (Dubai) Liston were maintained

at 26³1 °C, 80% relative humidity and 12:12 h
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light}dark cycle. Adults were fed ad libitum 10%

glucose with antibiotics (2±8 ml}l of a stock solution,

of 10000 units penicillin and 10 mg streptomycin}ml

0±9% sodium chloride). Larvae were reared under

standardized conditions to produce adult females of

similar size (Jahan & Hurd, 1997). Male CD mice

were infected with Plasmodium yoelii nigeriensis

following one serial passage of infected blood from

mice infected from cryopreserved stocks (Hogg &

Hurd, 1995a). Parasitaemia and gametocytaemia

were monitored in stained thin and fresh thick blood

films respectively at 24–30 h post-infection.

Experimental protocol

Experiments were designed to observe the effect

upon protein digestion and enzyme activity of

invading ookinetes during the first gonotrophic cycle

(GC1) and of growing oocysts during the second

cycle (GC2). Two groups of nulliparous females (6

days post-emergence) were starved for 12–18 h then

fed upon a non-infected mouse or infected (gameto-

cytaemic, exflagellating) mouse 24–30 h post-infec-

tion. The packed-cell volumes (PCV) of control and

infected mice were measured immediately prior to

feeding mosquitoes. A subgroup of engorged females

fed on the infected mouse were checked for oocysts

7 days post-blood-feeding. The wing length of each

mosquito was measured (Jahan & Hurd, 1997) and

those outside the range 3±3³1 mm were discarded.

Fully engorged females were separated randomly

into polystyrene pots (11±5 cm diameter), 24 per pot,

and supplied with glucose solution containing 0±05%

para-aminobenzoic acid (Peters & Ramkaran, 1980)

until dissection. Additionally, mosquitoes were fed

as above and groups (infected or control) of engorged

females maintained as above. On day 7 post-blood-

feed (PBF) both groups of mosquitoes were fed on

the same uninfected mouse and fully engorged

females were immediately separated into pots as

above. Mosquitoes were sampled at 0 or 4, 12, 24, 36,

48 or 60 h PBF, anaesthetized on ice and midguts

dissected into a drop of phosphate-buffered saline

(PBS), within 2 h of chilling. Midguts were stored in

a minimum volume of PBS at w20 °C until homo-

genization.

Preparation of midgut homogenates

Five (unfed), two (4 and 48–60 h PBF) or one

(8–36 h PBF) midguts were homogenized in 200 µl

of 0±15  NaCl in a tight-fitting Teflon-glass

homogenizer and centrifuged at 10000 g for 20 min

at 4 °C. Supernatants were stored atw80 °C. Pellets

were re-homogenized in 0±15  NaCl}1% Triton–X

100, centrifuged at 10000 g for 20 min at 4 °C and

these supernatants stored at w80 °C.

Trypsin, chymotrypsin and aminopeptidase assays

For trypsin assays N-benzoyl--arginine-p-nitro-

anilide (BApNA) was dissolved in dimethylfluoride

(DMF), while chymotrypsin (N-succinyl-ala-ala-p-

nitroanilide) and aminopeptidase (-leucine p-nitro-

anilide) substrates were dissolved in dimethyl sul-

foxide (Me
#
SO). Substrate buffers contained 2 m

substrate, 7% DMF or 3% Me
#
SO in 100 m

Tris–HCl, pH 8±0. Triplicate 10 µl samples of

midgut homogenate supernatants were added to

100 µl of substrate buffer in a microwell plate. The

change in absorbance at 405 nm was monitored at

30 °C for 20 min in an Anthos III microplate reader.

Kinetic rate was calculated by linear regression

(Deltasoft programme, Biometallics Inc., Princeton,

NJ) and enzyme activity calculated using an ex-

tinction coefficient of 8800 m}cm (Erlanger, Ko-

kowsky & Cohen, 1961). One enzyme unit is the

activity required to hydrolyse 1 µmol substrate per

min.

Carboxypeptidase

Twenty microlitres of supernatant were incubated

with 20 m Z–Gly–Phe in veronal buffer (35 m

Na-barbitone, 35 m CH
$
COONa, pH 5±5–9±5) at

37 °C for 1 h. The reaction was stopped by boiling.

Released phenylalanine was detected by adding

300 µl -amino acid oxidase reagent (10 mg o-

dianiside-HCl, 6 mg amino acid oxidase, 2 mg

peroxidase type II, 100 ml of 250 m Tris–HCl, pH

8±0) and the absorbance was read at 405 nm (Nichol-

son & Kim, 1975). Enzyme activity (µ substrate

hydrolysed per min) was calculated by reference to a

standard curve of the optical density of phenyl-

alanine.

Protein assays

Individual midguts were homogenized in 0±15 

NaCl and protein contained in the midgut was

determined using a Coommassie Blue binding assay

(Bio-Rad) according to manufacturer’s instructions.

Bovine serum albumen (BSA) was used as a standard.

Analysis of results

Mean E.U.}gut for each time-point were compared

between groups for significance using a two-way

ANOVA and multiple means were compared using

Tukey’s test (MINITAB Inc., State College, PA).



Parasitaemia and PCV

The PCV of the infected mice (43–44%) was always

slightly reduced compared to that of the control,
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A

B

Fig. 1. Total protein content of the midgut of uninfected

(D,E) and infected (*,+) Anopheles stephensi during

digestion of a bloodmeal during the first (A,E,+) or

second (B,D,*) gonotrophic cycles. Each point

represents the mean³.. of 10–12 mosquitoes.

uninfected mice (45–46%). Total parasitaemia

ranged from 10 to 15% and all blood samples from

infected mice contained exflagellating gametocytes

(density not estimated) at the time of blood-feeding.

The prevalence of infection in mosquitoes was 100%

and the density of infection 50–150 oocysts per

mosquito in each experiment.

Protein digestion

Nulliparous mosquitoes ingested the same size

bloodmeals from uninfected or infected mice (Fig.

1A). Similarly, the presence of oocysts did not affect

protein ingestion at the second bloodmeal (Fig. 1B).

However, for both groups of mosquitoes, the amount

of protein ingested during the second bloodmeal was

significantly reduced (P¯0±0001). In the first 48 h

PBF, bloodmeals were digested more rapidly

(approx. 9±8 µg protein digested}h) during GC1

(Fig. 1A) than GC2 (approx. 7±1 µg protein di-

gested}h) (Fig. 1B), but in each case, "98% of the

bloodmeal was digested by 60 h PBF. Infection had

no significant effect on the protein content of the

midgut at any time-point PBF in either cycle (GC1,

F¯0±43; ..¯1, 125; P¯0±514 or GC2 F¯1±41;

..¯1, 127; P¯0±238).

A

B

Fig. 2. Soluble trypsin activity in the midgut of

uninfected and infected Anopheles stephensi during

digestion of a bloodmeal during the first (A) or second

(B) gonotrophic cycles. Each point represents the

mean³.. of 4–6 mosquitoes. For legend see Fig. 1.

Trypsin

Trypsin was active only in soluble fractions. Activity

during GC1 increased gradually from 4 to 12 h then

rapidly from 12 to 24 h, before gradually declining

from 24 to 36 h and rapidly declining from 36 to 60 h

PBF (Fig. 2A). No significant differences between

infected and control females were observed (F¯2±30;

..¯1, 64; P¯0±134). At 60 h, 24±7% and 32±5% of

the maximum activity was found in uninfected and

infected mosquitoes respectively. The peak trypsin

activity during GC2 was slightly delayed to 36 h

PBF in both groups, but the overall pattern and peak

activities were similar to those during GC1 (Fig.

2B). There were no significant differences between

infected and control females (F¯0±29; ..¯1, 57;

P¯0±589).

Chymotrypsin

Chymotrypsin activity was always restricted to the

soluble midgut fraction and some activity was

present in unfed mosquitoes. During GC1 activity

increased rapidly from 4 to 12 h, then gradually to a

peak at 24 h PBF after which activity declined in an

almost linear fashion (Fig. 3A). Activity was un-
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A

B

Fig. 3. Soluble chymotrypsin activity in the midgut of

uninfected and infected Anopheles stephensi during

digestion of a bloodmeal during the first (A) or second

(B) gonotrophic cycles. Each point represents the

mean³.. of 4–6 mosquitoes. For legend see Fig. 1.

affected by infection during GC1 (F¯2±12; ..¯1,

60; P¯1±51). A similar pattern occurred during

GC2 (Fig. 3B) and there was no significant difference

between treatments at any time (F¯1±43; ..¯1,

51; P¯0±24; Tukey’s test P"0±05). At 60 h after the

second bloodmeal, 30±4% and 34±3% of the maxi-

mum activity was present in uninfected and infected

mosquitoes, respectively.

Aminopeptidase

Aminopeptidase was active in both soluble and

membrane fractions. Approximately 20±7% of the

maximum soluble activity was present in nulliparous

(sugar fed) females at 6 days post-emergence. During

GC1, soluble activity gradually increased from 4 h

PBF to peak at 24 h (Fig. 4A). There was no

significant difference due to infection at any time

duringGC1 (F¯0±89;..¯1, 48;P¯0±35) although

peak activity was depressed in infected mosquitoes.

In GC2, soluble aminopeptidase activity followed a

similar post-feeding activity pattern, but was re-

duced in infected females up to 24 h post-feeding

(F¯9±32; ..¯1±50; P¯0±004) and peak activity

was delayed (Fig. 4B).

Membrane-associated aminopeptidase activity

showed less clear post-feeding trends. During GC1,

activity peaked slightly at 12 PBF then declined

gradually until 60 h in both control and infected

groups (Fig. 4C). Activity was significantly increased

in infected mosquitoes at 4 h PBF (Tukey’s test

P"0±05) but not at any other time. During GC2, the

membrane-associated aminopeptidase activity in un-

infected mosquitoes showed a clear peak at 24 h

PBF, then a subsequent decline to 36 h (Fig. 4D).

Activity during GC2 was higher than during GC1 at

all times after 4 h PBF (F¯159±5; ..¯1; P¯
0±0001). The presence of oocysts was associated

with a significant reduction in activity at 24 h and a

significant elevation at 60 h, but there was no peak

activity (Fig. 4D).

Carboxypeptidase

Carboxypeptidase was active only in the soluble

supernatants. Activity increased during GC1 to peak

at 24 h PBF then declined to baseline levels at 60 h

(Fig. 5). There was no difference in carboxypeptidase

activities between infected and uninfected mos-

quitoes during GC1. Activity was not assayed after

the second bloodmeal.



Mosquitoes respond to ookinete penetration of the

midgut epithelium by up-regulation of molecules

associated with the immune response (Richman et al.

1996; Dimopoulos et al. 1997), resorption of de-

veloping follicles (Carwardine & Hurd, 1997), and

an increase in yolk protein content of the hae-

molymph (Jahan & Hurd, 1998). At later stages in

the sporogonic cycle similar changes in vitellogenesis

again result in reduced fecundity (Hogg & Hurd,

1995 b ; Jahan & Hurd, 1997, 1998; Ahmed et al.

1999), blood-feeding behaviour is altered (Anderson,

Koella & Hurd, 1999), or a phenoloxidase response

may be triggered (Collins et al. 1986). However,

parasite-modulated modifications to the vector phy-

siology are generally poorly understood (Maier,

Becker-Feldman & Seitz, 1987). Blood proteins are

digested by midgut proteases (Billingsley & Hecker,

1991) and the resultant amino acids used to syn-

thesize vitellogenin. Thus infection-induced changes

in protein intake or the activity of digestive enzymes

could affect egg production. Furthermore, an alter-

ation in the post-feeding dynamics of midgut

protease activities could alter the susceptibility of the

mosquito to Plasmodium infection (Sinden et al.

1996; Ramasamy et al. 1996).

P. y. nigeriensis infections eventually cause anaemia

in mice although during the initial days of infection

(parasitaemia of !15%) this effect is minimal.

Anopheline mosquitoes concentrate the bloodmeal

during feeding (Vaughan, Hensley & Beier, 1994)

and bloodmeal haemoglobin is not reduced when A.

stephensi feeds upon gametocytaemic mice with a

very slightly reduced PCV (Hogg & Hurd, 1995b ;
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A

B D

C

Fig. 4. Soluble (A,B, –––) and membrane-associated (C, D, ----) aminopeptidase activities in the midgut of

uninfected and infected Anopheles stephensi during digestion of a bloodmeal during the first (A, C) or second (B, D)

gonotrophic cycles. Each point represents the mean³.. of 4–6 mosquitoes. For legend see Fig. 1.

Fig. 5. Soluble carboxypeptidase activity in the midgut

of uninfected and infected Anopheles stephensi during

digestion of a bloodmeal during the first gonotrophic

cycle. Each point represents the mean³.. of 5

mosquitoes. For legend see Fig. 1.

Taylor & Hurd, personal observations). Here, the

amount of protein ingested is similarly unaffected by

infection at the ookinete or oocyst stages.

The time and peak height of enzyme activities

differ according to mosquito species. Peaks of

trypsin activity occur between 18 h (A. albimanus ;

Horler & Briegel, 1995) and 30 h (A. stephensi ;

Billingsley & Hecker, 1991). In this study, all

enzymes peaked at 24–36 h PBF. Aedes aegypti and

Culex fatigans fed on chick blood infected with P.

gallinaceum showed a higher activity compared to

those fed upon a normal chick (Gooding, 1966).

Conversely, A. stephensi which, in contrast to

culicines, will concentrate the blood during feeding,

imbibed less protein from infected rather than

uninfected chickens (Rudin, Billingsley & Saladin,

1991). Subsequent trypsin activity was reduced in

mosquitoes with parasites in the bloodmeal only

after 12 h PBF, suggesting that only early trypsin

was stimulated (Felix et al. 1991). In the present

study, enzyme activities and post-feeding protein

digestion rates were largely unaffected by the

infective blood feed, even though ookinetes were

burrowing through the midgut from about 12 h PBF

onwards (Vaughan et al. 1994). Therefore P. y.

nigeriensis-induced fecundity reduction during the

first gonotrophic cycle is not caused by quantitative

changes in bloodmeal protein or digestive enzyme

activities.

The transient, but significant, changes in amino-

peptidase activity observed during the second cycle

may have occurred as a result of oocyst-induced

changes in midgut cell activity or as a result of

damage caused by migrating ookinetes, even though

this event occurred several days earlier. While a

specific midgut cell type is preferentially invaded by
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P. gallinaceum ookinetes (Shahabuddin & Pimenta,

1998) and a variety of cell types exist in the mosquito

midgut (Veenstra et al. 1995), whether there is cell-

specific production of proteases and whether these

cells are affected directly by the parasite remains

unknown. Aminopeptidase activity is higher in a

strain of A. stephensi selected for refractoriness to P.

falciparum (Feldmann et al. 1990), and the parasite

may confer some reciprocal down-regulation of

aminopeptidase in order to enhance infection. As

insect digestive enzymes are usually secretogogue

regulated (Lehane, Mu$ ller & Crisanti, 1996), the

parasite may affect a rate-limiting step within

an aminopeptidase-specific secretogogue pathway.

Aminopeptidase is the only membrane-associated

protease of those studied (Billingsley, 1990), and in

Manduca is the receptor for Bacillus thuringiensis

Cry1Ac endotoxin (Cooper et al. 1998).

Although parasites had minimal effect on enzyme

activities per se, consistent differences were observed

between mosquitoes at each gonotrophic cycle.

Compared to those in GC1, mosquitoes offered a

second meal ingested 20–40% less protein, produced

less chymotrypsin and more aminopeptidase. The

decrease in protein may be attributable to reduced

capacity for ingestion as all other synthetic organs

would occupy more space in the body cavity. Indeed,

mosquitoes previously provided with a saline meal

containing latex particles will ingest similar amounts

of protein to those receiving their first bloodmeal

(Billingsley & Rudin, 1992). If secretogogue mech-

anisms are enzyme specific (Briegel & Lea, 1975),

any change in one enzyme could alter the digested

peptide components within the lumen and thereby

the secretogogue of other primary hydrolases. Thus,

if one enzyme, namely aminopeptidase is up-

regulated by the products of trypsin digestion, then

it would be under-produced when the trypsin:

chymotrypsin ratio is increased.
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