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Vibration-based flow energy harvesting enables robust, in situ energy extraction for
low-power applications, such as distributed sensor networks. Fluid–structure instabilities
dictate a harvester’s viability since the structural response to the flow determines its
power output. Previous work on a flextensional based flow energy harvester demonstrated
that an elastic member within a converging-diverging channel is susceptible to the
aeroelastic flutter. This work explores the mechanism driving flutter through experiments
and simulations. A model is then developed based on channel flow rate modulation and
considering the effects of both normal and spanwise flow confinement on the instability.
Linear stability analysis of the model replicates flutter onset, critical frequency and mode
shapes observed in experiments. The model suggests that flow modulation through the
channel throat is the principal mechanism for the fluid-induced vibration. The generalized
model presented can serve as the foundation of design parameter exploration for energy
harvesters, perhaps leading to more powerful devices in the future, but also to other similar
flow geometries where the flutter instability arises in an elastic member within a narrow
flow passage.

Key words: flow–structure interactions

1. Introduction

In situ energy harvesting in pipes could power sensors and actuators that improve
efficiency and/or production in oil wells (Rester et al. 1999; Sharma et al. 2002; Wood,
Arellano & Lorenzo 2013) and irrigation systems (Bastiaanssen, Molden & Makin 2000;
Zhou et al. 2014). They require power levels O(10−3–101) W dependent on data rates and
system architecture (Moschitta & Neri 2014). While turbines can achieve such power levels
(Tong 2010), they are susceptible to wear and friction within their bearing assemblies,
and not favourable alternatives for decades of use without maintenance (Guo et al. 2009;
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Figure 1. Illustration of flow path and relevant geometry. Values and units are listed in table 5. (a) Axial
cross-section of flow geometry illustrating flow path. (b) Cut section a-a.

Doll, Kotzalas & Kang 2010; Tong 2010). Hydrokinetic energy harvesters based on
flow-induced vibration (FIV) avoid the use of bearings or gears altogether, shifting the
primary failure to structural fatigue. Flow-induced vibration devices with power outputs
of O(10−7–104) W (Bernitsas et al. 2008; Zhu 2011) and decades of maintenance-free
operation may be feasible if designed to maintain internal stresses within material fatigue
limits.

Flow-induced vibration in these devices is driven by fluid–structure interaction (FSI)
instabilities that provide high amplitude, oscillatory forces on a responsive structure. One
such instability is aeroelastic flutter, which relies on a positive feedback between the
natural modes of a vibrating structure and aerodynamic forces. Flow energy harvester
devices developed by the authors and collaborators have focused on flutter instabilities in
an internal flow geometry (Sherrit et al. 2014; Lee et al. 2015, 2016). After a number of
design iterations (Sherrit et al. 2014; Lee et al. 2016), a device employing a flextensional
transducer (figure 1), where a cantilever exposed to the flow is mounted on a flexure
containing piezoelectric elements, was found to provide a number of advantages in terms
of power output and longevity. This paper aims to analyse the associated FSI mechanisms
taking place in this and similar devices; the resulting model could be used as a basis for
design, geometry and scaling of devices in the future.

The stability of an elastic member within a constant channel, or as part of the channel,
has been studied analytically, via reduced models, and numerically for many decades
(Johansson 1959; Miller 1960; Inada & Hayama 1988, 1990; Nagakura & Kaneko 1991;
Gurugubelli, Jaiman & Khoo 2014; Cisonni et al. 2017). A number of other applications
fall under this canonical problem, including wind instruments (Backus 1963; Sommerfeldt
& Strong 1988), human snoring (Balint & Lucey 2005; Tetlow & Lucey 2009) or
vocalization (Tian et al. 2014), enhanced heat transfer systems (Shoele & Mittal 2016;
Hidalgo, Jha & Glezer 2015). Modelling the structure displacement, velocities and fluid
forces approximated via simplified equations of motion appear as early as the 1960’s
(Johansson 1959; Miller 1960), where the divergence instability in channels within nuclear
reactor cooling systems is addressed. More recent work has taken an inviscid approach
to understanding the onset of flutter in a symmetric channel (Guo & Paidoussis 2000).
Other similar formulations include a vortex sheet model to calculate flutter boundary
(Alben 2015), and a plane wake vortex sheet model in unconfined flows (Alben 2008).
The latter was extended to asymmetric channel flow to account for the effects of channel
confinement (Shoele & Mittal 2016). Viscous formulations that account for the flow rate
modulation due to change in the channel geometry were also devised and progressed at
around the same time (Nagakura & Kaneko 1991; Païdoussis 2003; Wu & Kaneko 2005).
These employed fluid force terms applied to an elastic beam in channel flow had originally
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been devised for rigid plates in converging or diverging channels (Inada & Hayama 1988).
This framework was also extended to cylindrical constant channels (Fujita & Shintani
1999, 2001, 2007). More recently, methods that include viscosity in compressible and
incompressible potential flow have been devised to interrogate the confined beam flutter
stability problem, also considering the addition of beam tension (Jaiman, Parmar &
Gurugubelli 2014).

The two-dimensional viscous flow problem has also been explored numerically to define
the flutter boundary dependence on the fluid-to-structure mass ratio and Reynolds number
for a relatively flexible cantilever (and a two-cantilever system) within a confined channel
(Gurugubelli et al. 2014; Gurugubelli & Jaiman 2019), as well as its dependence on
throat-to-beam length ratio and Reynolds number (Cisonni et al. 2017). Two-dimensional
channel geometries with small throat-to-beam length ratios have also been modelled
and results tested against numerical simulations for a constant channel over a range
of Reynolds numbers, geometry and material parameters (Tosi & Colonius 2019). This
model, devised by the authors, has failed to correctly predict experimentally observed
flutter onset of the flextensional device. In the present paper, we extend the model
formulation to account for the three-dimensional effect from lateral beam confinement.
The importance of considering the full geometry becomes apparent, for example, when
comparing two-dimensional flag flutter to that of flutter in spanwise confined flags (Doaré,
Sauzade & Eloy 2011a; Doaré et al. 2011b).

The remainder of the paper is structured as follows. We define the details of the
flextensional flow energy harvester in § 2. In § 3 we present experiments that first
characterize the flextensional properties as a function of set-screw torque, then the flutter
boundary as a function of flow rate. A numerical simulation of the system, presented in § 4,
is used to obtain insights into three-dimensional aspects of the flow field and the relevant
fluid–structure mechanisms driving flutter. Those insights guide the model derived in § 5,
which is based on the modulation of the channel flow rate by the beam displacement and
velocity, and predicts the flutter instability onset flow rate, frequency and mode shapes
near the plane-asymmetric diffuser separation angle of ≈7◦.

2. Flextensional flow energy harvester

We begin by defining the design of the energy harvester that is tested experimentally, then
simulated and modelled in subsequent sections.

2.1. Device description
A flow energy harvester based on flextensional actuators (figure 1) converts the motion of
a cantilever excited by the flow into electricity via piezoelectric crystals (Lee et al. 2015).
Flextensional structures are designed as actuators that convert compressive piezoelectric
stresses to flexural displacements; here the device is used in reverse as a transducer to
generate compressive piezoelectric stresses from flexure displacements. This produces
more energy for the same displacement as compared with a piezoelectric bimorph
transducer (Sherrit et al. 2014, 2015).

As seen in figure 1, the flexure supports two piezoelectric stacks (PZT 1 shown, with
a symmetric PZT 2) through a centre mount that is attached to the fixed base with a set
screw. Torque applied to the set screw pre-stresses the stacks, and changes the dynamical
(and static) properties of the flexure. By adding or removing torque to the set screw
τS, the effective stiffness k0, damping c0 and mass m0 of the flexure can be altered.
The measurement of flexure properties is discussed in § 2.2. Table 1 lists the relevant
dimensional parameters to define the fluid-structure flextensional harvester system.
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Variable Description Dimension

δ Beam displacement l
x Beam length coordinate l
t Time t
p Pressure m ∗ l−1 ∗ t−2

Uc Characteristic velocity l ∗ t−1

k0 Flexure stiffness m ∗ t−2

c0 Flexure damping m ∗ t−1

m0 Flexure mass m
L Beam length l
hb Beam thickness l
b Beam width l
h̄ Throat height l
ρf Fluid density m ∗ l3

μf Fluid viscosity m ∗ l−1 ∗ t−1

ρs Beam density m ∗ l−3

E Young’s modulus m ∗ l−1 ∗ t−2

Table 1. Table of fluid–structure dimensional parameters.

The device works on the premise that flow can interact and excite the beam structure.
In our experiments, the flow path begins from a round pipe inlet into the test section. The
flow impinges on the fixed base and is directed onto the top and bottom paths, as illustrated
in figure 1. The beam is centred along the channel, such that the flow path is symmetric.
The figure illustrates the top channel, with dimensions listed in table 5 in the appendix.
The flow is converging for L2 ≈ 0.1L along x until it bypasses the constriction at the throat
h̄, and expands in a planar, θ = 19◦ diffuser for ≈0.7L. In the remaining 0.2L, the diffuser
tapers off into <1◦ exit at the end of the beam. The total expansion is ≈15 : 1 from h̄. Our
flowing experiments are carried out in air.

The flexure and the beam are made of a single aluminium stock, and comprise the
moving structure. The fixed base is fastened with screws to both the test section and the
flexure. The flexure behaves like a translational spring that transfers motion from the beam
surface normal direction into compression and expansion of the piezoelectric stacks. The
pre-stress from the set screw and centre mount ensure that the piezoelectric elements are
always in compression: as the flexure moves above the channel centreline, the bottom stack
is compressed, and the top stack pre-stress is released, although maintained positive, and
vice versa when the beam moves below the channel centreline. The up and down motion
gives rise to two voltage signals that are 180◦ out of phase. Vacuum grease and rubber
inserts are used to seal and restrain the flow path to that shown in figure 1. An electrical
fitting is used to connect the piezoelectric stacks to the data acquisition card on the outside
of the test section.

The piezoelectric stacks are composed of multiple thin, alternately poled, piezoelectric
layers ‘stacked’, or mechanically connected in series and electrically in parallel. They
operate in what is known as the 33 mode, where the applied force is parallel to the poling
direction. When a resistor is placed in parallel with the stack, its response to a step input
force is that of an RC circuit with the capacitor having an initial voltage equivalent to the
open circuit step-force voltage. The voltage V(t) is measured across the resistor Re and
is given by V(t) = Vin exp(−t/ReC∗

p). If the time constant τ = ReC∗
p is large enough, the

system will act as a low-pass filter and any oscillating voltage upstream of the resistor

915 A40-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.18


Flutter instability in an internal flow energy harvester

Uc

x

a–

a–

c0

h0

Ptop

Pbot

m0

κ0

δ

Figure 2. Illustration cantilever beam in a converging-diverging channel geometry (b) with a simple
harmonic boundary condition (a).

(opposite to ground) at a frequency fres that satisfies

ωres � 1
τ

= ωc (2.1)

will not pass through the resistor. Hence, the voltage output will be measured as if the
system was an open circuit. We implement this circuit and choose an Re large enough
such that the resonances of the structure satisfy condition (2.1). Specifically, we expect
the stacks to act as strain gauges for high enough frequencies, where the output oscillating
voltage is proportional to the flextensional displacement.

The combination of the flow path, the structure, the piezoelectric elements and the
electronics comprise the flow energy harvester design. In our current work, we are
particularly interested in the coupling between the flextensional and beam structure to
the flow path in the channel.

2.2. Flextensional and beam parameters
Figure 2 divides the flow energy harvester into two distinct parts: the flextensional
dynamics on the left, which provides the boundary condition for the flow-driven beam
dynamics on the right.

Informed by finite element results of the flexture (Tosi 2019), a damped harmonic
oscillator can be used to capture the flextensional fundamental mode dynamics.
In particular,

m0

b
¨̄a + c0

b
˙̄a + k0

b
ā = fr, (2.2)

where m0/b, c0/b and k0/b are the flexure mass, damping and stiffness constants per unit
span, and ā is the displacement of the flextensional boundary. The force fr is equivalent
to the total force per unit span acting on the flexure interface to the cantilever. It can be
defined as the integrated pressure difference between top and bottom channels over the
beam length,

fr =
∫ L

0
�P dx. (2.3)

Here �P = Pbot − Ptop, and Pbot(x, t) and Ptop(x, t) are the pressures acting on the
bottom and top of the beam, per superscript. Values for m0, c0 and k0 are inferred from
measurements of the actual device in § 3.1.
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The goal of our work is to understand the flutter instability when the system is near zero
displacement. Hence, to describe the beam motion in transverse vibration, we consider the
undamped, Euler–Bernoulli (EB) beam equation per unit span (Inman 2008),

ρshb
∂2

∂t2
δ(x, t)+ ∂2

∂x2

(
EI
b
∂2

∂x2 δ(x, t)
)

= �P, (2.4)

where I is the area moment of inertia in (D2). The beam is moving at its leading edge and
free at its trailing edge, so the boundary conditions are

δ(0, t) = ā,
∂

∂x
δ(0, t) = 0,

∂2

∂x2 δ(L, t) = 0,
∂3

∂x3 δ(L, t) = 0. (2.5a–d)

Equation (2.4) and data (2.5a–d) assume that the beam is thin relative to its length
(L � hb); that the rotational inertia is negligible; and that beam extension and shear
displacement are negligible when compared with the transverse displacement (the beam
is inextensible). It follows that flow shear stresses do not impact the motion of the elastic
member. Furthermore, the amplitude of oscillation is small relative to the beam length
(‖δ‖∞ � L) such that x is equivalent to the Lagrangian coordinate of the beam. These
simplifications are consistent with our system near the zero displacement equilibrium.

Though (2.4) is undamped, external damping due to the fluid (i.e. Rayleigh damping)
is accounted for within the pressure terms on its right-hand side. Internal damping (i.e.
internal to the solid), however, is not accounted for within our equations of motion.
A range of internal material damping formulations exist for a beam (Banks & Inman
1991). Typically a strain-rate proportional form (Kelvin–Voigt) is used but time- or
spatial-hysteretic formulations have also been deemed appropriate for certain materials
and configurations. Yet material coefficients corresponding to any of the aforementioned
formulations are difficult to obtain and require specialized experimental equipment. The
effect of neglecting internal material damping results in underestimating the energy
dissipated by the beam structure, leaving modes associated with the flexible beam specially
susceptible to instabilities. However, the experimental results in § 3.2.1 show that the
flextensional rigid-body (RB) motion at the cantilever base is responsible for the flutter
bifurcation observed, rendering the flutter stability boundary observed largely independent
of the beam modes. However, this limitation of the present model should be noted if it
is generalized to designs that rely on significant beam bending. Results are verified and
discussed in more detail within the numerical simulation and modelling in §§ 4.2 and 5.5,
respectively.

In considering the flow separately in the top and bottom channels, we write the
geometrical constraint

δ(x, t) = δtop(x, t) = −δbot(x, t). (2.6)

Furthermore, we define δ = Lδ∗, t = (L/Uc)t∗, fr = ρf U2
c Lf ∗

r and �P = ρf U2
c�P∗,

where the superscript ∗ represents non-dimensional quantities. The non-dimensionalization
of (2.2) and (2.4) as such yields the fluid–structure non-dimensional groups in table 2.
A gap-to-length ratio ĥ = h̄/L arises in dimensional analysis when we define a second
length scale h̄ associated with the channel geometry h0 = h̄h∗

0, as does the beam
width-to-length ratio b̂ = b/L. The relevant fluid-only dimensional groups depend on the
form of the pressure term, as related to the velocity field.

This model is intended to describe the initial, small displacement behaviour of the
fluid–structure system as a function of fluid/structure parameters, and is appropriate for
the stability analyses that follow in § 5.
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Variable Expression Description

m̂bc
1

ρf L2
m0

b
Boundary mass ratio

k̂bc
1

ρf Uc

k0

b
Boundary stiffness ratio

ĉbc
1

ρf UcL
c0

b
Boundary damping ratio

m̂
ρshb

ρf L
Beam mass ratio

k̂
E

ρf U2
c

I
bL3 Beam stiffness ratio

Table 2. Table of fluid–structure non-dimensional parameters for flextensional boundary and cantilevered
beam.

Variable Flex. 1 Flex. 2 Flex. 3

τS (Nm) 1.2 2 0.8
k0 N m−1 3.73 × 104 4.12 × 104 2.16 × 104

m0 (kg) 0.0274 0.0204 0.0366
c0 (kg s−1) 0.135 0.314 0.281

Table 3. Table of calculated mean flextensional (Flex.) properties.

Variables Flex. 1 Flex. 2 Flex. 3 Description

Qcr (L min−1) 208 376 410 Critical flow rate
Qr (L min−1) 179 334 73 Fold flow rate

fcr (Hz) 186 226 120 Critical frequency

Table 4. Table of critical and restoring (fold) values for Flex. settings.

3. Experiments

From the design and parameter definitions in the previous section, we first experimentally
measure the flextensional boundary parameter values in § 3.1, then quantify the dynamics
of the device as a function of flow rate in § 3.2. Rather than a complete experimental
characterization of the dynamics however, three settings are selected (and measured)
instead, i.e. baseline, high and low set-screw torque values (shown in table 3), to span
a range of flextensional mass, stiffness and damping properties for comparison with the
numerical simulation and modelling results in §§ 4 and 5, respectively.

3.1. Flexure characterization
Two experiments are carried out to quantify m0, c0 and k0, all in still air at standard
pressure and temperature (STP). First, the flexure stiffness k0 is characterized through
a static measurement of force Fa for displacement ā,

k0 = bfr
ā

= Fa

ā
, (3.1)
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derived from the steady equation (2.2). The second experiment measures the voltage
output of the PZT stacks when the flextensional fundamental mode is excited. This is
done with an impulse force at the x = 0 location (figure 1). With the damped resonant
frequency ω and exponential decay rate ζ measured from PZT voltage outputs, the solution
to the homogeneous equation (2.2) (fr = 0) is used to map the dynamic voltage response
to parameter properties as

m0 = k0

ω2 + ζ 2 , (3.2)

c0 = 2ζm0. (3.3)

Equations (3.1), (3.2) and (3.3) allow us to map experimentally measured quantities Fa, ζ ,
and ω onto k0, c0 and m0.

3.2. Flow experiments
Next, the flextensional energy harvester is tested in flowing conditions to quantify the
critical properties at the flutter instability, which encompass those properties at or near the
quasi-stable point where the systems transition from the stable equilibrium into flutter
and vice versa. Parameters are systematically varied in two ways: first, the set-screw
torque τS sets the structural parameters of the flextensional corresponding to the boundary
conditions in figure 2 and to values in table 3. Second, for any of the three set-screw
settings (i.e. flextensional settings 1, 2 and 3), an experiment is run where the flow
rate is first increased past the critical point, where the stable equilibrium to flutter
transition is observed; then decreased past the fold point where the flutter transition to
a stable equilibrium is observed. This topology holds true for all three settings tested.
The dynamics of the flowing system are assessed by measuring the voltage output from
each piezoelectric stack, and by processing video images of the beam displacement. In
the increasing flow rate branch, the critical point is described by the critical flow rate
Qcr where the system is not longer stable, and the critical frequency fcr, corresponding
to the dominant oscillatory frequency at the nearest point Q ≥ Qcr where self-sustained
oscillations can be observed in the measured outputs. The fold point in the decreasing
flow rate branch is characterized by the fold flow rate Qr. This data provides quantitative
values by which we can compare numerical and analytical results in the subsequent
sections.

Two output data products are extracted from experiments: PZT voltages and beam
displacement videos. The voltage data set is processed through peak extraction to obtain
average amplitudes over the relevant time series, and fast Fourier transformed using
Welch’s method to obtain the signal frequency response corresponding to the highest
peak. No other processing technique or filtering was applied to the voltage signals, as
the system is responding to oscillatory forcing that satisfies condition (2.1). The video
data set is decomposed and processed to characterize predominant vibration modes and
their amplitudes. From the video, the transverse displacement of a section of the elastic
beam is measured using edge-detection through a Canny filter (Canny 1986) for the
top and bottom edges of the beam. The precision per-pixel is ≈0.15 mm or ≈0.4 %
of the beam length. The extracted edges are averaged to estimate the beam centreline
displacement. The resulting space–time series is processed using the spectral proper
orthogonal decomposition (SPOD), which allows the most energetic mode shapes at each
frequency to be robustly extracted (Schmidt, Colonius & Bres 2017; Towne, Schmidt
& Colonius 2018). Further details of the SPOD applied here are given in Appendix C.
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Figure 3. Representative SPOD data for flextensional setting 1 showing self-sustained oscillating regime
of mode 1 and under-damped regime of mode 2. (a) Trace of cross-spectral density matrices at discrete
frequencies. (b) Phase diagram for mode 1. (c) Phase diagram for mode 2. (d) Spectral proper orthogonal
decomposition mode shape for mode 1. (e) Spectral proper orthogonal decomposition mode shape for mode 2.

In subsequent results, frequencies are labelled as f with subscript 1 representing that of the
highest power spectral density (PSD) value, and subsequent peaks following numerically.

3.2.1. Experimental results
The video and voltage data sets are processed for the three flextensional settings over
air flow rates ranging from 5 to 500 L min−1. The dynamics observed as the flow
rate increases are consistent for all three flextensional settings: small decaying beam
displacement and voltage amplitude behaviour prevails until a critical flow rate is reached.
At the critical flow rate, both the beam and PZT voltage amplitudes significantly increase
and display self-sustaining oscillations (i.e. limit cycle).

Figure 3 shows a representative example for flextensional setting 1 when the system has
reached the self-sustained oscillation regime. The data set is at flow rate Q = 246 L min−1,
38 L min−1 above the flextensional setting 1 critical flow rate of 208 L min−1. The
spectrum shows a clear peak at f1 = 197 Hz, and the corresponding mode contains more
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Figure 4. Video data set showing mode 1 amplitude vs. flow rate for all flextensional settings.
(a) Flextensional 1. (b) Flextensional 2. (c) Flextensional 3.

than 99 % of the variance in the PSD of the beam displacement. The phase diagram shows
a limit-cycle behaviour and the mode shape resembles the RB motion of the cantilever
base, denoting excitation of the flexure itself. Given the predicted cantilever fundamental
mode frequency of 346 Hz from classical EB beam theory for clamped-free cantilever
boundary conditions (shown in Appendix D), we can reasonably associate the second
peak at f2 = 341 Hz to the beam fundamental mode. This is further validated from the
mode shape shown: though the extracted transverse displacement data does not reach
the cantilever base, the mode shape monotonically decreases as x/L decreases without
the appearance of a fixed node. The illustrated mode shape also contains over 99 % of
the variance of the signal at f2. The phase diagram shows behaviour typical of a lightly
damped resonance, where the mode amplitude and velocity are perturbed around their
equilibrium points through sporadic forcing (Schmidt et al. 2018). The remaining peaks
shown in the power spectrum plot are harmonics of f1. Similar behaviour was observed for
the flextensional settings 2 and 3 results, where f2 ≈ 341 Hz appears in all three settings.

Figures 4 and 5 display the dominant mode (mode 1) amplitude and frequency,
respectively, as a function of flow rate for all three flextensional settings. The amplitudes
are obtained by projecting the beam transverse position space–time series onto the two
most energetic spatial SPOD modes of f1 and f2, per the method described in the
appendix. The mean and standard deviation (markers and error bars, respectively) of the
resulting modal amplitude time series corresponding to the highest PSD frequency are
plotted in figure 4. To look for hysteresis, tests are carried out by first increasing and
then decreasing the flow rate. Plots in figure 4 show that the primary mode amplitude
remains small (lightly damped resonance) until a critical flow rate Qcr is reached, which
demarcates a transition to a high amplitude, limit-cycle regime. Increasing the flow rate
beyond Qcr, however, does not significantly increase the resulting amplitude. A slight
amplitude decrease is sometimes seen at the highest flow rates, corresponding to the point
when the beam appears to collide with the throat. As the flow rate is decreased through
Qcr, a hysteresis loop becomes evident in all three flextensional settings, with its size
(�Q = Qcr − Qr) varying between each setting. The system recovers the small amplitude
regime at Q < Qr < Qcr, where Qr is the fold flow rate. This hysteresis suggests that the
system is undergoing a subcritical Hopf bifurcation at Qcr, giving rise to the bi-stable
region captured in the data. All three frequency responses in figure 5 appear constant until
Qcr is reached, at which point the frequencies tend to increase slightly with increasing
flow rate. The hysteretic behaviour is most pronounced in the frequency data from setting
2. Critical and fold properties for the observed bifurcation are summarized in table 4.
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Figure 5. Video data set showing mode 1 frequency response vs. flow rate for all flextensional settings.
(a) Flextensional 1. (b) Flextensional 2. (c) Flextensional 3.

1000

1

2

3

4

200 300
Q (L min–1)

|V
| ∞

 (V
)

400 500 1000

1

2

3

4

200 300
Q (L min–1)

400 500 1000

1

2

3

4

200 300
Q (L min–1)

400 500

Increasing Q
Decreasing Q

(b)(a) (c)

Figure 6. Plots of PZT 1 voltage amplitude vs. flow rate for all flextensional settings. (a) Flextensional 1.
(b) Flextensional 2. (c) Flextensional 3.

Analogous amplitude and frequency plots for the PZT voltage are shown in figures 6 and
7, respectively, with critical and hysteresis results in agreement with video displacement
data. One discrepancy however, is observed in the flextensional setting 3 frequency data.
Specifically, the plot shows the beam fundamental frequency as dominant until Qcr, at
which point the voltage response frequency is double that of the video displacement
frequency in figure 5. This effect is caused by lightly pre-stressed piezoelectric elements,
as this flexure configuration represents conditions with the least amount of torque applied
on the set screw. The phenomenology is as follows: once the oscillation reaches the full
extension at either the top or bottom of the flextensional stroke, the decompressed stack
looses contact with the flexure structure. This in turn causes a strong response that flips
the sign of the voltage output, and appears as a frequency doubling through the discrete
Fourier transform. The nonlinear loss-of-contact behaviour has been observed by Sherrit
et al. (2009) as flextensional actuators loose their bond between stacks and the flexure.
Voltage amplitudes are also notably lower in flexure setting 3 than the other two flexure
configurations.

Given the observed Qcr values in table 4, it is plausible that throat velocities may reach a
considerable fraction of the sound speed when operating in air. In Appendix B we estimate
the Mach number at the channel throat Mt. We discuss the potential limitations of the
incompressible flow assumption made in the subsequent simulation section next.

4. Numerical simulations

Experimental results from the previous section show a rich set of dynamics and different
regimes consistent with a subcritical Hopf bifurcation. In this section we use two-way
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Figure 7. Plots of PZT 1 voltage PSD primary frequency (frequency associated with largest PSD amplitude
peak) vs. flow rate for all flextensional settings. (a) Flextensional 1. (b) Flextensional 2. (c) Flextensional 3.

coupled numerical simulations of a beam in the converging-diverging channel in order
to investigate the three-dimensional flow field and provide insights into the flow patterns
and instability mechanisms that drive the bifurcation. Experimental results also point us
primarily to explore the flextensional mode dynamics, the only one that reaches the limit
cycle, for which the beam is essentially in RB motion. We thus consider a rigid beam that is
allowed to oscillate, via the lumped parameter model, using the experimentally measured
values for mass, stiffness and damping ratios for flextensional setting 1. We further discuss
the validity of the RB approximation below as well as in § 5.

4.1. Numerical method
Our simulations are based on the lattice Boltzmann method (LBM), which originates from
kinetic theory and, thus, evolves discretized particle distribution functions (populations)
fi(x, t), which are associated with discrete velocities ci, i = 1, . . . ,Q and designed to
recover the macroscopic Navier–Stokes equations (NSE) in the hydrodynamic limit. By
organizing the set of discrete velocities into a regular lattice, LBM eventually reduces to a
simple, efficient and scalable stream-and-collide algorithm with the additional advantage
of exact propagation and local nonlinearity, which is incorporated through the collision
operator. In recent years, LBM has made significant progress and early stability issues
of the classical lattice Bhatnagar–Gross–Krook (LBGK) model have been overcome.
While on one hand explicit turbulence models have shown success for turbulent flows
(Chen et al. 2003; Malaspinas & Sagaut 2012), the class of parameter-free entropic lattice
Boltzmann schemes (ELBM) have shown accurate and robust solutions for both resolved
and under-resolved simulations for laminar, transitional as well fully turbulent flows
(Bösch, Chikatamarla & Karlin 2015a,b; Dorschner et al. 2016a; Dorschner, Chikatamarla
& Karlin 2017b). In particular, we use the multi-relaxation time variant of ELBM (KBC)
(Karlin, Bösch & Chikatamarla 2014), which exploits the high dimensionality of the
kinetic system and chooses the relaxation of higher-order, non-hydrodynamic moments
such that the entropy of the post-collision state is maximized. The KBC model has been
discussed in various contributions and we will restrict ourselves to the main steps in case
of isothermal flow using the standard D3Q27 lattice.

We start from the general lattice Boltzmann equation for the population fi(x, t), i.e.

fi(x + ci, t + 1) = f ′
i = (1 − β)fi(x, t)+ βf mirr

i (x, t), (4.1)

where the streaming step is indicated by the left-hand side and the post-collision state f ′
i

on the right-hand side is given by a convex-linear combination of fi(x, t) and a mirror state
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f mirr
i (x, t). We use natural moments to represent the population as a sum of the kinetic part

ki, the shear part si and the remaining higher-order moments hi,

fi = ki + si + hi. (4.2)

The mirror state can thus be represented as

f mirr
i = ki + (2seq

i − si
)+ ((1 − γ ) hi + γ heq

i
)
, (4.3)

where seq
i and heq

i denote si and hi evaluated at equilibrium.
The equilibrium distribution function f eq is defined as the minimum of the entropy

function

H( f ) =
Q∑

i=1

fi ln
(

fi
Wi

)
, (4.4)

subject to the local conservation laws for mass and momentum

Q∑
i=1

{1, ci}fi = {ρ, ρu}, (4.5)

and the weights Wi are lattice-specific constants. By minimizing the H-function in the
post-collision state one obtains the relaxation parameter

γ = 1
β

−
(

2 − 1
β

) 〈�s|�h〉
〈�h|�h〉 , (4.6)

where �si = si − seq
i and �hi = hi − heq

i are the deviation from equilibrium and the
entropic scalar product is defined as 〈X|Y〉 =∑i(XiYi/f

eq
i ). The KBC model recovers the

NSE in the hydrodynamic limit for which the viscosity is related to the parameter β as

ν = c2
s

(
1

2β
− 1

2

)
, (4.7)

where cs = 1/
√

3 is the lattice speed of sound.
Finally, to include two-way coupling of the fluid with the cantilever beam, we follow

the procedure as outlined in Dorschner et al. (2015); Dorschner, Chikatamarla & Karlin
(2017a, 2018), using second-order Grad boundary conditions to account for the momentum
transfer from the fluid onto the beam and vice versa. The beam velocity, needed to
prescribe the boundary conditions, is obtained by solving Newton’s equations of motions
using an Euler integration and the fluid force is evaluated by the Galilean invariant
momentum exchange method (see Wen, Zhang & Fang 2015). This procedure has been
validated extensively for various test cases for one- and two-way coupled simulations as
well as fully coupled FSI problems involving deforming geometries.

4.2. Simulation of the flow energy harvester
The simulation of the full flextensional energy harvester is a challenging task due to the
complex interaction of various physical mechanisms. We keep the geometry of the fluid
channel path identical to the experimental set-up apart from the diffuser exit, which is a
sharp edge in the simulation but smoothed in the experiment. In figure 8 the numerical
set-up is shown. As noted in § 2.2, the flexure itself is modelled by a harmonic oscillator to
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1 2
3

Figure 8. Instantaneous snapshot of the computational set-up for Q = 208 L min−1, showing a slice of
velocity magnitude. Exemplary observer points are indicated by the red spheres.

which a rigid cantilever beam is attached. In the simulations, this is realized by elastically
translating boundary conditions of the beam. The mass, stiffness and damping ratio of
the harmonic oscillator are prescribed in the simulations according to the experimental
measurements of flextensional setting 1 in table 3.

Regarding the RB approximation, as discussed in §§ 2 and 3, we refrain from modelling
the beam bending since the most energetic observed mode is primarily a RB motion of
the entire flexure, and where the damping of the structure as a whole is well approximated
by a second-order damped harmonic oscillator. We preformed precursor simulations that
included elasticity of the beam but neglected internal damping, and these confirmed the
model predictions discussed in § 5, namely that higher-order oscillatory beam modes do
become unstable in the absence of internal damping. Based on the experiments, these
results are known to be unphysical and we therefore focus our attention on predicting
critical properties of the first, primarily rigid, flextensional based mode. As discussed in
Appendix B, we do not account for compressibility and treat the fluid as an incompressible
fluid. Our simulations are carried out on a uniform Cartesian mesh (with Δ = 1 and
�t = 1 in lattice units), where we resolve the beam with roughly 250 lattice points. All
other dimensions follow from the experimental set-up and a snapshot of the computational
domain is shown in figure 8. Further, the inflow velocity is conservatively set to u = 0.0075
(in lattice units) to avoid any compressibility effects. The Reynolds number is set to
Reh = uth̄/ν ≈ 5200, which is chosen such that it is high enough to account for viscous
effects but low enough to provide sufficient resolution for all pertinent flow scales. To
that end, convergence of the critical flow rates was verified with coarser meshes. An
advantage of the current LBM formulation is that sufficient resolution can be verified by
looking at the space–time dependent relaxation parameter γ for the higher-order moments.
In the fully resolved case, the relaxation parameter tends to its limiting value γlim = 2,
corresponding to the classical LBGK model (Bösch et al. 2015a). Any deviation from 2 is
an indication of under-resolution (Dorschner et al. 2016b,a). In the current simulation, γ
has an phase-averaged value of ≈ 1.9, indicating negligible under-resolution. Furthermore,
the agreement with experiments gives us confidence that all pertinent mechanisms are
captured by our simulations.

Figure 9 shows the evolution of the velocity magnitude in the mid-plane of the domain
for one representative cycle. In the beginning of each cycle for a phase angle ϕ = 0, the
beam displacement is zero and two symmetric jets on the top and bottom of the beam
structure. Note also that residual turbulence from the previous cycle is visible in the bottom
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Figure 9. Flow evolution for one period of the energy harvester, showing a slice of velocity magnitude.

half of the diffuser. Subsequently, for ϕ = 0.125, the beam moves downward, leading to
an increase of mass flow through the upper diffuser channel until the mass flow through
the bottom channel almost ceases at ϕ = 0.25. Consequently, the upper jet amplifies and
penetrates deeper into the diffuser until it eventually breaks up into turbulence beyond
the beam. The maximum penetration of the jet into the diffuser is reached at ϕ = 0.25.
Notably, the jet does not penetrate much beyond the length of the beam, where it is
then expanding into the bottom half of the domain and rapidly broken up into finer-scale
turbulence. During its upward motion beyond ϕ = 0.25, the upper jet weakens whereas
the mass flow rate through the bottom half of the domain gradually increases. Finally, at
ϕ = 0.5, the process repeats in a symmetric fashion for the bottom half of the channel. In
figure 10 vorticity isosurfaces coloured by velocity magnitude are shown for the first half
of the oscillation period. The behaviour is analogous to what was observed for the velocity
magnitude. However, we can additionally observe the effect of spanwise confinement.
Starting from a phase angle of ϕ = 0.25, one can observe vortical structures attaching
to the side and upper walls of the diffuser geometry. Downstream of the throat, a large
lambda-type vortex structure is formed on the upper diffuser wall due to vortex rollup
from both sides of the beam. Consequently, most vorticity is confined in the centre region
of the beam, whereas only negligible vorticity is found in regions close to the diffuser side
walls and downstream of the throat.

To assess the predictive capabilities and validity of our computational model, we run a
series of simulations for flow rates in the range of Q = 100 to 300 L min−1 and record
the time evolution of the beam displacement. This allows us to obtain an estimate of the
critical flow rate at which the beam starts to exhibit self-sustained oscillations. As shown
in figure 11, the critical flow rates as computed by our simulations agree well with the
experiments.
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Figure 10. Flow evolution for half a period of the energy harvester, showing isosurfaces of vorticity coloured
by velocity magnitude and zoomed into the diffuser region.
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Figure 11. Beam oscillation amplitude as a function of the flow rate for the experiments as well as the
numerical simulations.

Note that in the simulation it is not possible to fully resolve the thin fluid layer between
beam and the throat for the experimental geometry. This is due to the fact that in our
experiments, and as indicated in figure 4, the beam oscillation amplitude becomes large
and sometimes collides with the wall (see error bars). Such collisions are not explicitly
modelled in our numerical model. However, since we are only interested in the onset of
self-sustained oscillation, we stop the simulation once the beam displacement reaches the
height of the throat. In addition to recording the oscillation amplitude for various flow
rates, we also probe the hysteresis behaviour of the system to access the bifurcation type.
To that end, the simulation of Q = 208 L min−1 is restarted and the flow rate reduced.
As shown in figure 11, we observe a pronounced hysteresis behaviour, again indicative
of a subcritical Hopf bifurcation, which is in agreement with the experimental findings.
The hysteresis is, however, more pronounced in the simulations. One potential explanation
comes from the perturbation and noise inherent in our experiments (i.e. collision of the
beam with the channel wall), which would tend to push the beam states from the stable
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Figure 12. Evolution of the beam displacement and its PSD.
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Figure 13. Evolution of the streamwise velocity profile for three probes.

limit-cycle basin of attraction to that of the stable equilibrium earlier (i.e. at a higher flow
rate than the fold point), resulting in a smaller experimental hysteresis loop. In figure 12 the
evolution of the beam displacement as well as the PSD is shown for the critical flow rate
of Q = 208 L min−1. As expected, the beam displacement undergoes exponential growth
and, from the PSD, oscillates near the natural frequency of the flexure. Once again, this is
consistent with what is observed in the experiment.

In addition to the temporal evolution of the beam displacement, three observer probes
were placed within the domain. In particular, the probes were placed in the vicinity of
the throat, near the trailing edge of the beam as well as in the far field of the diffuser
(see figure 8). The evolution of the streamwise velocity for all three probes is depicted
in figure 13. Probe 1, located near the throat, shows periodic behaviour with a largely
constant amplitude and only a slight decrease in amplitude as the oscillation amplitude of
the beam increases due to an increase of the throat gap. A different picture is drawn for the
two probes downstream. It is apparent that the amplitude in the initial phase (t/Tb < 17)
remains relatively low and increases noticeably afterwards. This is due to the increasing
penetration depth of the jet, which eventually reaches the probe location. In addition, the
magnitude of the streamwise velocity rapidly decreases as it is diffused further downstream
and diminishes to roughly 20 % for probe 2. It is further instructive to look at the PSD
plots of the observer probes in figure 14. It is noticeable that the most dominant frequency
for probe 1 is the beam frequency, whereas further downstream its first harmonic becomes
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Figure 15. Spanwise velocity profile. (a) Location of the phase-averaging plane. (b) Phase-averaged spanwise
velocity profile.

increasingly larger and eventually dominates. This can be explained by the fact that further
downstream there is the coupling between jets in the lower as well as in the upper half of
the domain, i.e. the probes feel the influence of both jets, thus doubling the dominant
frequency.

Moreover, we measure the phase-averaged profile at ϕ = 0 of the spanwise velocity in
a cross-section near the throat, as shown in figure 15. The profile is symmetric and linear
to a good approximation for most of the span. One can also see the effect of spanwise
vortices, which are forming due to spanwise confinement at the edge of the beam. This
will be used later as an input and validation of the model assumptions in § 5.

Finally, having an indication of how the flow evolves within the internal flow energy
harvester helps support our conjecture that the main driving factor of the instabilities
arising in the flow originates from its modulation due to the confinement in the channel
throat. This is evidenced by the flow field in figures 9 and 10 where there are no significant
flow structures that appear able to drive the instabilities in the wake of the beam. Further
validation is presented next, where we devise a reduced-order model that accounts for this
modulation phenomenon as the only source of the instability.

5. Model

Armed with insights from our numerical simulations, we reduce the fluid–structure
equations of motion to terms that are relevant when considering the flow modulation at
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ŷ
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Figure 16. Three-dimensional control volume illustration for the spanwise quasi-1-D leakage flow model.
(a) Projection view of channel control volume. (b) Front view of channel control volume.

the channel throat. In this section we develop an incompressible fluid–structure model
that captures the dynamics of the confined flow as the beam oscillates. In particular,
we formulate the forces on the beam as a function of the channel area as modulated
through the beam motion. The coupled equations of motion, once derived and linearized,
represent the modulation of the flow rates through beam motion and confinement. The
model presented is an extension of a viscous, quasi-one-dimensional model (Inada &
Hayama 1988, 1990; Nagakura & Kaneko 1991; Fujita & Shintani 1999, 2001, 2007; Tosi
& Colonius 2019), where here we include the effect of flow in the spanwise direction as
an additional state solved through a spanwise momentum equation. The structure model
is extended to include a moving beam boundary condition to account for the motion of
the flextensional transducer. The solid equations are defined in § 2.2 with the appropriate
coupling to the fluid pressure. We begin by defining the pressure in terms of flow properties
and channel geometry.

5.1. Fluid equations of motion
We consider a three-dimensional control volume analysis of the half-span section of the
channel in order to obtain an expression that contains the ẑ momentum terms. (If the
total span is considered, the spanwise flow rates are cancelled in momentum conservation
because of the symmetry of the flow in the problem.) We would like to obtain an expression
of the local pressure to quantify the fluid force onto the flextensional structure. Figure 16
illustrates the control volume boundaries as a section of the diagram in figure 2, with only
half of the channel demarcating the control surfaces in ẑ. The surface normal vectors are

[n1 · · · n6] =

⎡
⎢⎢⎣

1 −1 −dh0

dx
dδ
dx

0 0

0 0 1 −1 0 0
0 0 0 0 1 −1

⎤
⎥⎥⎦ . (5.1)

We assume the beam is rigid in z, such that δ = δ(x, t). Solid walls are in n3 and n4, with
n1, n2, n5 and n6 representing free surfaces.

We apply mass and momentum conservation to this control volume under the
simplifying assumptions of constant fluid density and a gradually varying channel in

the streamwise direction, h′2
0 � 1 and δ′2 � 1, such that

√
1 + h′2

0 ≈ 1 and
√

1 + δ′2 ≈ 1
for x ∈ [0, L]. Starting with mass conservation and the three-dimensional velocity vector
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u = [u, v,w]T, we have

∂

∂t

(∫ b/2

0

∫ h0

δ

dy dz

)
+ ∂

∂x

(∫ b/2

0

∫ h0

δ

u dy dz

)
+
∫ h0

δ

w dy
∣∣∣∣
z=b/2

= 0. (5.2)

Integrating in z leads to
∂Qx

∂x
+ 2

b
Qz|z=b/2 = ∂δ

∂t
, (5.3)

where

Qx =
∫ h0

δ

u dy, Qz =
∫ h0

δ

w dy (5.4a,b)

are the flow rates per unit length in the streamwise and spanwise directions, respectively.
In a similar manner, the momentum equations in x̂ can be obtained as

∂

∂t

(∫ b/2

0
Qx dz

)
+
∫ b/2

0

∂Nx

∂x
dz + Nxz|z=b/2

= − 1
ρf

{∫ b/2

0

[
∂

∂x

(∫ h0

δ

P dy
)

− h′
0P|y=h0 + ∂δ

∂x
P|y=δ

]
dz − Fvisc,x

}
, (5.5)

and in ẑ as

∂

∂t

(∫ b/2

0
Qz dz

)
+ ∂

∂x

(∫ b/2

0
Nxz dz

)
+ Nz|z=b/2

=
∫ h0

δ

(
P|z=b/2 − P|z=0

)
dy − Fvisc,z, (5.6)

where the advection terms are given by

Nx =
∫ h0

δ

u2 dy, Nz =
∫ h0

δ

w2 dy, Nxz =
∫ h0

δ

uw dy. (5.7a–c)

The goal of this analysis is to obtain an expression for the pressure as a function of δ,
Qx and Qz. To make further progress, we must find a closure for the advection terms Nx,
Nz and Nxz, along with Fvisc,x and Fvisc,z in terms of those variables. Similarly, we must
also relate the local pressure values in y and z to the integrated pressure over the same
dimensions.

We consider the infinitesimal NSE in three dimensions non-dimensionalized similar to
lubrication theory (Kundu, Cohen & Dowling 2012),

x∗ = x
L
, y∗ = y

h̄
, z∗ = y

b
, u∗ = u

Uc
, v∗ = L

h̄Uc
v, w∗ = w

Uc
εb, t∗ = Uc

L
t,

P∗ = P
Pin
, ĥ = h̄

L
, εb = b

L
, ReL = ρf UcL

μf
, Λ = μf LUc

Pinh̄2
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.8)
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Flutter instability in an internal flow energy harvester

Here Pin is a constant reference pressure upstream of the channel as defined in (5.21). For
ĥ → 0, the NSE are well approximated by

0 = − 1
Λ

∂P∗

∂x∗ + ∂2u∗

∂y∗2 ,

0 = − 1
Λ

∂P∗

∂y∗ ,

0 = − 1
Λ

∂P∗

∂z∗ + ε2
b
∂2w∗

∂y∗2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.9)

To obtain a simple expression for the flow velocities, we first assume that the flow
remains largely one-dimensional in x for u and v, and recover the quasi-one-dimensional
parabolic profile of u∗ = u∗( y∗(x∗), t∗), with v ≈ 0. Next we assume that any ∂P∗/∂z∗
is due to the motion of the channel walls, and that no time-averaged net pressure gradient
exists in z. It follows that, due to the symmetry of the geometry in figure 16, w∗|z=0 = 0 and
w∗ odd in z = [−(b/2), b/2] with P∗ symmetric in the same z∗ interval. If ∂P∗/∂z∗ /= 0
and P∗ = P∗(x, z, t), the spanwise component in (5.9) can be integrated twice (with the
no-slip conditions) to also recover a parabolic profile of w∗ in y∗. Combined with a linear
function in z∗, the one of lowest order that satisfies the specified symmetries, we assume a
functional form for the spanwise velocity profile as

w∗(x∗, y∗, z∗, t) ∼ z∗
(
δ(x∗, t∗)

h̄
− y∗

)(
h0(x∗)

h̄
− y∗

)
. (5.10)

As a first check to the conjecture that w∗ ∼ z∗, we consult the numerical simulation results
and compute the phase-averaged w at ϕ = 0 near the throat as indicated in figure 15(a).
Figure 15(b) shows that w is linear to good approximation for most of the beam span. The
deviation from the linear profile can be attributed to the channel spanwise confinement and
the associated vortices forming at the corners of the beam edge. Even considering those
effects, the linear approximation appears to be a reasonable trade-off between accuracy
and simplicity. With an expression for w∗ as a function of y∗, Nz and Fvisc,z can be defined
in terms of Qz,

Nz = ξz
Q2

z

h0 − δ
, Fvisc,z = −12μf

Qz

(h0 − δ)2
, (5.11a,b)

with the latter taking the form for a Newtonian fluid. Here ζz = 6/5.
The remaining advection terms in (5.7a–c) can be defined in terms of Qx and Qz,

Nx = ξx
Q2

x

h0 − δ
, Nxz = ξxz

QxQz

h0 − δ
, (5.12a,b)

where ξx and ξxz are a constant profile ‘shape factor’ for axial and axial-spanwise
cross-coupling velocities. Here Fvisc,x takes the form (Tosi & Colonius 2019)

Fvisc,x = − f (Qx)

4
Q2

x

(h0 − δ)2
, (5.13)

where the Fanning friction factor, f ,

f =
{

48Re−1
h if Reh < 1000,

0.26Re−0.24
h if Reh ≥ 1000,

(5.14)
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with Reh = ĥReL. We model the profile shape factor as

ξx = ξxz =
{

6/5 if Reh < 1000,
1 if Reh ≥ 1000,

(5.15)

where the laminar value (Reh < 1000) coincides with the lubrication theory frictional
result (Kundu et al. 2012; Tosi & Colonius 2019), and the turbulent case follows from
the blunted mean velocity profile in the outer region and neglects the thin inner region.

Next, we define the relation between evaluated and integrated P and Qz in y and z.
Substituting the form in (5.10) into the spanwise component of (5.9), we ascertain that
P∗ ∝ z∗2. We keep integrated z quantities as model variables, normalizing them such that
they represent the spatial average of P and Qz over z = [0, b/2],

P̄ = 2
b

∫ b/2

0
P dz, Q̄z = 2

b

∫ b/2

0
Qz dz. (5.16a,b)

With the definition of w from w∗ in (5.8) and (5.10), along with the definitions immediately
above, we have

P|z=0 = 3
2

P̄, Qz|z=b/2 = 2Q̄z. (5.17a,b)

Mass conservation in (5.3), and axial and spanwise momentum, (5.5) and (5.6), can now
be simplified to

∂Qx

∂x
+ 4

b
Q̄z = ∂δ

∂t
, (5.18)

∂Qx

∂t
+ ∂

∂x

(
ξx

Q2
x

h0 − δ

)
+ 4ξxz

QxQ̄z

b (h0 − δ)
= − 1

ρf

∂P̄
∂x
(h0 − δ)+ Fvisc,x, (5.19)

∂Q̄z

∂t
+ ∂

∂x

(
ξxz

QxQ̄z

h0 − δ

)
+ 8ξz

Q̄2
z

b (h0 − δ)

= −2 (h0 − δ)

bρf

(
P|z=b/2 − 3

2
P̄
)

− 12μf

ρf

Q̄z

(h0 − δ)2
. (5.20)

Equations (5.18), (5.19) and (5.20) comprise the fluid equations of motion that describe
the averaged spanwise local pressure in x as a function of the passage shape and dynamics.
Pressure boundary conditions are required to solve them uniquely. Based on leakage flow
instability work (Inada & Hayama 1988, 1990; Nagakura & Kaneko 1991; Tosi & Colonius
2019),

P̄(t)|x=0 = Pin − ζin

2
ρf

[(
Qx

h0 − δ

)2
]

x=0

,

P̄(t)|x=L = Pout + ζout

2
ρf

[(
Qx

h0 − δ

)2
]

x=L

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.21)

where ζin ≥ 1 and ζout ≥ 0 are loss coefficients, and the departure from equality represents
non-isentropic processes. Here Pin and Pout are constants. The boundary value for P|z=b/2
appears explicitly in (5.20), and is an additional boundary condition needed for the control
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Flutter instability in an internal flow energy harvester

volume in figure 16. We maintain the same form to define the pressure at the edge surface
z = b/2,

P(x, t)|z=b/2 = p0(x)+ ζout,z

2
ρf

(
2Q̄z(x, t)
h0 − δ

)2

. (5.22)

Equation (5.22) states that when Q̄z = 0, the pressure at the boundary is the steady
pressure of the two-dimensional channel p0. This is consistent with the assumption that
no time-averaged net pressure gradient exists in z, used to obtain w∗. The pressure loss
coefficient is ζout,z ≥ 0, and it can be used to account for any pressure losses in the
movement of the flow between top and bottom channels via surface 5 in figure 16.

5.2. Linearized model
The goal of this model is to predict the linear stability (i.e. flutter boundary) of an
equilibrium beam shape δ0(x), as a function of parameters in table 1. We begin this process
by expanding the dependent variables about their respective equilibrium values in a small
parameter, ε, representing the amplitude of the beam displacement. That is, we take

δ(x, t) = δ0(x)+ εδ1(x, t)+ . . . ,

P̄(x, t) = p0(x)+ εp1(x, t)+ . . . ,

Qx(x, t) = qx0(x)+ εqx1(x, t)+ . . . ,

Q̄z(x, t) = qz0(x)+ εqz1(x, t)+ . . . ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.23)

as well as the linearized friction factor

f (Qx) ≈ f (qx0)+ (Qx − qx0)

[
df

dQx

]
Qx=qx0

+ . . . ≈ f0 + εηqx1(x, t)+ . . . , (5.24)

determined from laminar and turbulent relations in (5.13) and (5.14). At zeroth order of ε,
we obtain a differential equation describing the equilibrium beam shape

EI
b

d4

dx4 δ0(x) = pbot
0 − ptop

0 , (5.25)

with an homogeneous and elastic boundary condition

k0

b
δ0(0) =

∫ L

0

(
pbot

0 − ptop
0

)
dx. (5.26)

Once again, the superscripts ‘top’ and ‘bot’ refer to parameters associated with htop
0

and hbot
0 as the channel shapes above and below the beam, respectively. Substituting the

expansions into (5.18), (5.19) and (5.20), and applying qz0(x) = 0, we recover the same
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steady pressure and flow rate equations as those in Tosi & Colonius (2019),

p0(x) = Pin − ρf q2
x0

(
f0
4

∫ x

0

dx2

he (x2)
3 − ξx

∫ he(x)

he(0)

dhe

h3
e

+ ζin

2he (0)2

)
, (5.27)

qx0 =

⎛
⎜⎜⎜⎜⎝

Pin − Pout

ρf

[
ζout

2he (L)2
+ ζin

2he (0)2
− ξx

(∫ he(L)

he(0)

dhe

h3
e

)
+ f0

4

(∫ L

0

dx2

he (x2)
3

)]
⎞
⎟⎟⎟⎟⎠

1/2

,

(5.28)

where he(x) = h0(x)− δ0(x) is the equilibrium channel height. The linear order terms are

qx1 =
∫ x

0
δ̇1 dx1 − 4

b

∫ x

0
qz1 dx1 + qx1(0, t), (5.29)

q̇x1 + 2ξxqx0
∂

∂x

(
qx1

h0

)
+ qx0

2h2
0

(
λ0 + η

2
qx0

)
qx1

= ξx
q2

x0

h2
0

∂δ1

∂x
− 3
ρf

∂p0

∂x
δ1 − 4ξxz

qx0

bh0
qz1 − h0

ρf

∂p1

∂x
, (5.30)

q̇z1 + ξxzqx0
∂

∂x

(
qz1

h0

)
+ 12μ
ρf h2

0
qz1 = h0

3ρf
p1. (5.31)

Manipulation is required to obtain an expression for p1 as a function of δ1, qz1 and their
derivatives. Though it is not useful to show the full form of such an expression because of
its length and complexity, the following are the steps carried out in the MATLAB symbolic
engine to obtain it: first we differentiate in x (5.30), then substitute (5.29) into that result.
Next, we solve (5.31) for q̇z1 and substitute the resulting expression into the previous result
for the combined set of equations. We can then separate the pressure dependent terms as

∂2p1

∂x2 +
(

h′
0

h0

)
∂p1

∂x
− 12

b2 p1 = r(x, t), (5.32)

where we have an inhomogeneous differential equation for p1 with the right-hand side
r(x, t) as a forcing term containing δ1 and its derivatives, along with qz1 and its derivatives.
Equation (5.32) cannot be solved analytically for arbitrary forms of h0. Two solvable forms
of h0 are for constant and linear channels. For each of those cases, (5.32) can be solved
with the variation of parameter method. The fundamental solutions are found by solving
the homogeneous problem (r(x, t) = 0), then convolved in the variation of parameters
integral to obtain the particular solution. Respective coefficients are found by equating
the linearly superimposed homogeneous and particular pressure solutions to the linearized
pressure boundary conditions at x = 0 and x = L,

p1(0, t) = 2 (Pin − p0(0))
he (0)

δ1 (0, t)− ζin
ρf qx0

he (0)2
qx1 (0, t) , (5.33)

p1(L, t) = 2 (Pout − p0 (L))
he (L)

δ1 (L, t)+ ζout
ρf qx0

he (L)2
qx1 (L, t) . (5.34)

Fundamental solutions for a constant channel are two real exponential functions, while
those of a linear channel are a set of modified Bessel functions.
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Flutter instability in an internal flow energy harvester

Once p1 is defined, two other relations are needed to complete the fluid system of
equations. First, the time evolution of the boundary forcing flow rate qx1(0, t) in (5.29)
must be defined. This is done by substituting p1 into (5.32) evaluated at x = 0, and solving
for q̇x1(0, t) in terms of δ1, qz1 and their derivatives. Last, the time evolution of qz1 is
obtained by substituting p1 into (5.31) and also solving for q̇z1 in terms of δ1, qz1 and their
derivatives.

Next we collect and equate coefficients to linear order in ε for the beam,

ρshb
∂2δ1

∂t2
+ EI

b
∂4δ1

∂x4 = pbot
1 − ptop

1 , (5.35)

together with an homogeneous and elastic boundary condition,

m0

b
δ̈1(0, t)+ c0

b
δ̇1(0, t)+ k0

b
δ1(0, t) =

∫ L

0

(
pbot

1 − ptop
1

)
dx. (5.36)

To numerically solve the linear system of PDEs given by (5.29) to (5.36), we expand the
first-order beam displacement in a series of basis functions

δ1(x, t) =
n∑

i=0

ai(t)gi(x), (5.37)

where

gi(x) =
{

1 for i = 0,
φi(x) for i = [1, n],

(5.38)

and φi(x), defined in (D3), are solutions of the homogeneous (unforced) beam equation
in the domain x ∈ [0, L]. The constant g0 = 1 base accounts for the elastic boundary
condition via (5.36). Because φi does not enforce the boundary values for qz1 at x = 0 and
x = L, we seek another basis expansion that does. Specifically, qz1|x=0,L are determined by
(5.31) when evaluated at x = 0 and x = L, with the pressure boundary condition at x = 0
and x = L in (5.33) and (5.34) applied,

q̇z1|x=0,L = h0

3ρf
p1

∣∣∣∣
x=0,L

− ξxz qx0
∂

∂x

(
qz1

h0

)∣∣∣∣
x=0,L

− 12μ
ρf h2

0
qz1

∣∣∣∣∣
x=0,L

. (5.39)

We use the linear superposition of solutions that satisfy the inhomogeneous boundary
conditions, but homogeneous equation, and those that satisfy the homogeneous boundary
condition, but inhomogeneous problem to solve the full inhomogeneous boundary value
problem. A sine series expansion, truncated at m terms, is chosen for the latter since
homogeneous Dirichlet boundaries are present. Hence, for the expansion

qz1(x, t) =
m∑

i=0

q̃i(t)ψi(x), (5.40)

we have

ψi(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − x

L

)
for i = 0,

ψ̃i(x) for i = [1,m − 1],( x
L

)
for i = m,

(5.41)
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where

ψ̃i(x) = sin
(

iπx
L

)
(5.42)

for i ∈ Z : [0,m].

5.3. Fluid–structure equations for symmetric channels
The model developed includes the analytical formulation of distinct constant or linear top
and bottom channel geometries. Here we write the coupled equations for a symmetric
channel relevant to the flextensional geometry in figure 1. We would like to understand
the dynamics around the equilibrium δ0 = 0, which is a solution to (5.25) and (5.26)
when ptop

0 = pbot
0 . Two formulations of the structure are considered. For the EB beam

formulation, we apply the expansion of δ1 in gi(x) and qz1 in ψi(x) via steps in § 5.2 to
obtain the fluid–structure coupled equations,

n∑
i=0

(Msi(x)äi(t)+ Csi(x)ȧi(t)+ Ksi(x)ai(t))

= −2Tf (x)qx1(0, t)− 2
n∑

i=0

(
Mfi(x)äi(t)+ Cfi(x)ȧi(t)+ Kfi(x)ai(t)

)

− 2
m∑

i=0

Hfi(x)q̃i(t), (5.43)

with Msi, Csi, Ksi defined in the appendix by (E2), (E3) and (E4), respectively. Coefficients
Tf , Mfi, Cfi, Kfi and Hfi are obtained through (5.35) for i = [1, n], and (5.36) for i = 0 (i.e.
boundary term), both via procedures in § 5.2 to solve for p1. In the RB beam formulation,
δ = δ(t), and only (5.36) for i = 0 boundary term is considered in (5.43).

The dynamics of the axial boundary flow rate are given by

q̇x1(0, t) = Gqqx1(0, t)+
n∑

i=0

(
Bqiäi(t)+ Dqiȧi(t)+ Eqiai(t)

)+
m∑

i=0

Hqiq̃i(t), (5.44)

and the spanwise boundary flow rate dynamics as
m∑

i=0

˙̃qi(t)ψi(x) = G̃q(x)qx1(0, t)+
n∑

i=0

(
B̃qi(x)äi(t)+ D̃qi(x)ȧi(t)+ Ẽqi(x)ai(t)

)

+
m∑

i=0

H̃qi(x)q̃i(t). (5.45)

Coefficients for ai, ȧi, qx1(0, t) and q̃i in (5.44) are determined following steps in § 5.2 for
(5.32). Coefficients in (5.45) are produced from (5.39) evaluated at x = 0 and x = L for
the boundary terms at i = 0 and i = m, respectively, and from (5.31) for i = [1,m − 1].
We obtain the semi-continuous system in time via projection of (5.43) and (5.45) onto
test functions. For the EB formulation, we write the solution vector as

x = [a0 a1 . . . an ȧ0 ȧ1 . . . ȧn qx1(0, t) q̃0 q̃1 . . . q̃m
]T
, (5.46)
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m0 αm
qx0

x
L

Symc0

a–

a–
h–

κ0

δ (x,t)

Figure 17. Illustration of spanwise quasi-1-D geometry for comparison to experimental results.

and the resulting ordinary differential equation system is

ẋ = Ax. (5.47)

The entries of A and the projection test functions are given in the appendix. The
eigenvalues and eigenvectors of A are computed to determine the flutter boundary for the
coupled FSI system. For the RB formulation, components of x, ai and ȧi for i = [1, n] are
removed since the beam motion is driven by the boundary equation only.

5.4. Modelling flow separation
Results from numerical simulations in § 4.2 show the flow is separated from the top wall
as it enters the diffusing part of the channel. In order to account for flow separation within
the model framework, we conjecture that the pressure distribution over the beam surface
behaves approximately as that of an attached flow within a plane-asymmetric diffuser of
angle αm. High Reynolds number numerical and experimental studies of plane-asymmetric
diffusers suggest that flow separation from the diffusing wall happens for αm � 7◦, and is
independent of Reynolds number for turbulent flows (Kaltenbach et al. 1999; Lan, Armaly
& Drallmeier 2009; Törnblom, Lindgren & Johansson 2009; Chandavari & Palekar 2014).
Hence, we solve (5.47) for the simplified geometry in figure 17.

To summarize, the separation bubble over the diffusing channel walls effectively serve
as a secondary diffuser boundary at an effective expansion angle of αm < θ . The pressure
distribution on the beam surface behaves as if the flow had been attached and expanded
at αm. At the end of the effective diffuser expansion (x = L), we assume that the outlet
boundary pressure variation behaves as an abrupt expansion at the outlet, where ζout = 1.

5.5. Model-experiment comparison
We now use the model to assess critical parameters at the onset of flutter. Critical flow
rates and frequencies are calculated over integer values of αm = [1–8]◦ for the flexible
EB and RB beam formulations. As in precursor numerical simulations, the EB modelled
cantilever modes are quickly (or immediately) unstable once flowing in the absence
of internal material damping terms. This unphysical behaviour precludes their direct
comparison to experimental results (i.e. mode 2 in figure 3). However, the EB model still
allows us to extract the flexure/flextensional mode where damping has been accounted and
experimentally measured, and compare its critical flow rate, frequency and corresponding
shape to those observed experimentally (i.e. mode 1 in figure 3). Hence, only the primary
flexure mode is considered for comparison in the EB formulation.

Beginning with critical flow rates, figure 18 shows their calculated values for the EB
and RB model formulations compared with experimental values for the three flextensional
settings. The corresponding critical frequencies are shown in figure 19. Both model critical
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Figure 18. Flutter boundary defined by critical flow rate vs. diffuser expansion angle for all three
flextensional settings. (a) Flex. 1. (b) Flex. 2. (c) Flex. 3.
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Figure 19. Frequencies at critical flow rates vs. diffuser expansion angle for all three flextensional settings.
(a) Flex. 1. (b) Flex. 2. (c) Flex. 3.
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Figure 20. Mode shape comparison between EB model and experimental SPOD results. (a) Flex. 1.
(b) Flex. 2. (c) Flex. 3.

flow rate trends are convex, with αm ≈ 4◦ representing the least stable configuration over
the diffuser angles tested. For flextensional setting 2, αm = 1◦ critical values are not shown
as the mode was stable for tested flow rates ([0–500] L min−1). Though EB model critical
flow rate values tend to be higher than those predicted by the RB model, they are close to
one another at αm > 3◦. Both EB and RB model predictions match experimental critical
flow rates near αm ≈ 7◦ for all three flextensional settings. This suggests that the critical
diffuser angle for plane-asymmetric diffusers may be dictating the flow expansion and
pressure distribution over the flow energy harvester channel. Critical frequency trends in
figure 19 are largely constant, with a slight increase as αm increases in both EB and RB
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models. Predicted frequency values are also close between both model formulations and
to those observed experimentally.

Figure 20 shows the unstable EB flexure eigenvectors and experimental SPOD modes
closest to the flutter bifurcation point for each of the three flextensional settings. Predicted
EB model mode shapes are similar to SPOD modes for flextensional settings 1 and 2,
but captures only the RB motion, missing the beam shape for flextensional setting 3.
The primary motion seen in the modes shown is associated with the translation of the
flextensional boundary condition, and are largely captured by the RB formulation.

6. Conclusions

This paper explored the fluid–structure instability that drives the dynamics of a
flextensional based flow energy harvester. In particular, we sought to elucidate the
mechanisms that drive the system into flutter, which represents the transition between low
and high power extraction regimes for the device.

First, we experimentally assessed the dynamics of the flextensional based flow energy
harvester in air flow. Experiments characterized the device’s mechanical properties, then
appraised the system dynamics in flowing conditions. Critical flow rates and frequencies
were measured for three different flextensional settings, with self-sustaining oscillations
reached in the flextensional mode (translational motion at the base of the beam) in all
three cases tested. Hysteresis was observed as the flow rate direction is reversed, indicating
a bi-stable region and a subcritical Hopf bifurcation at the critical point, also in all three
settings.

Numerical simulations were then carried out in three-dimensions to characterize the
flow field and edify the experimentally observed flutter. Structure equations for a rigid
beam were coupled with a lattice-Boltzmann flow solver to characterize the motion of
the flextensional base, and any ensuing coherent structures within the velocity field. The
incompressible formulation of flow equations and RB structure were able to replicate the
critical point and the bi-stable region of the subcritical Hopf bifurcation. Results showed
that the flow rate modulation due to confinement at the channel throat largely drives
the velocity fluctuations observed at downstream stations. They pointed at a confinement
based instability where flow compressibility does not play a significant role.

Finally, an incompressible quasi-one-dimensional fluid–structure model based on flow
rate modulation due to confinement in the axial and spanwise directions was developed.
Flow equations were derived for small throat-to-beam length ratios and defined the
pressure on the structure surface as a function of beam displacement and velocity.
Results showed that the flutter onset is captured for a linear diffuser channel, matching
experimental values near the typical separation angle for plane-asymmetric diffusers of
7◦. The resulting model mode shapes agreed well with experimental SPOD modes for two
of the three flextensinal settings tested, with all three capturing the primary base translation
motion.

We believe that this work provides tantalizing evidence that the positive feedback
between beam displacement (and velocity) and the flow modulation due to confinement
is likely the dominant mechanism that drives the flutter instability within the flextensional
flow energy harvester system. Flow compressibility and beam flexibility do not appear
to significantly impact the fluid–structure dynamics on the current design. Agreement
between model-predicted critical properties and experimental results suggest that the
framework developed can be used to assess not only future flow energy harvester designs,
but fluid–structure systems where small throat-to-beam lengths dominate the dynamics.
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Appendix A. Dimension, material and measurement tables

Table 5 shows dimensions associated with the flextensional design highlighted in figure 1.
Material and electrical properties for flexure and PZT stacks are shown in tables 6 and 7.
Results from the static displacement force and dynamic tests for three flextensional

configurations are shown in tables 8 and 9.

Appendix B. Compressibility at critical flow rates

Given Qcr results in table 10, it is plausible that throat velocities may reach a considerable
fraction of the sound speed. To assess whether the critical flow rates may present
compressible effects, we estimate the Mach number at the channel throat Mt. Assuming
the flow accelerates isentropically over the converging section of the flow path in figure 1
(x ≤ L2), we take isentropic relations for stagnation (subscript o) and throat (subscript t)
quantities,

To

Tt
= 1 + γg − 1

2
M2

t , (B1)

ρo

ρt
=
(

1 + γg − 1
2

M2
t

)1/(γg−1)

, (B2)

Mt = Ucr√
γgRgTt

, (B3)

where Rg is the specific gas constant, γg is the ratio of specific heats, T is the temperature
and ρ is the density. With the definition of the critical mass flow rates as

ṁcr = ρSTPQcr = ρtAtUcr, (B4)

we can combine (B1), (B2) and (B3) to represent an implicit relation between the fluid
flow properties and Mt valid for Mt ≤ 1,

ṁcr√√√√ γgRgTo

1 + γg − 1
2

M2
t

MtAt

= ρo(
1 + γg − 1

2
M2

t

)1/(γg−1) . (B5)

Values for To = TSTP = 295 (K), ρo = ρSTP = 1.20 (kg m−3), Rg = 287.0 (kg J−1 K−1),
γg = 1.40 (per Moran & Shapiro 2004) and

At = b1(2h̄ + hb)− bhb (B6)

as the throat flow area. Table 10 lists results of Mt in the three flextensional settings.
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Variable Value Units

L1 70 mm
L2 5 mm
L3 19.4 mm
L 40.7 mm
h1 9.8 mm
h2 2.3 mm
h3 9 mm
h̄ 0.62 mm
b 14 mm
b1 16.5 mm
hb 0.7 mm
θ 19 deg.

Table 5. Table of flow path parameter dimensions illustrated in figure 1.

Variable Aluminum Steel PZT

Density (kg m−3) 2700 8000 7500
Young’s modulus (GPa) 68.9 193 64.5

Poisson’s ratio (ND) 0.33 0.29 0.31

Table 6. Table of structural material properties (Boston Piezo Optics Inc. 2018; MatWeb 2018).

Variable Value Units Description

C∗
p 3.6 μF Stack capacitance

Ks 2.8 × 107 N m−1 Stack stiffness in 33 mode
Ls × Ws × Hs 5 × 5 × 36 mm Dimensions

Re 68 k� Circuit resistor
τ 0.245 s RC time constant

Dm 40 μm Maximum displacement

Table 7. Table of relevant piezoelectric stack properties.

ā (mm) Flex. 1 Fa (N) Flex. 2 Fa (N) Flex. 3 Fa (N)

0 0 0 0
0.127 4.86 5.40 2.80
0.254 9.12 10.04 5.44
0.381 14.44 16.00 8.24

k0 (N m−1) 3.73 × 104 4.12 × 104 2.16 × 104

Table 8. Table of mean force (N) at different displacement values for three flexure settings, with a linear best
fit slope describing the stiffness k0 (N m−1).

The chocked flow rate is Qch ≈ 267 (L min−1) for flow path with dimensions in table 5.
Here Mt values suggest that flextensional settings 2 and 3 are chocked, while flextensinal
setting 1 is not. The possibility of having Qcr > Qch for the former two settings is due
to the increase in stagnation pressure downstream of the needle valve: the flow meter
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Variable Flex. 1 Flex. 2 Flex. 3

ω – mean (rad s−1) 1167.6 1423.1 767.7
ω – STD (rad s−1) 0.348 4.055 18.821
ζ – mean (1 s−1) −2.471 −7.718 −3.834
ζ – STD (1 s−1) 0.071 0.076 0.271

Table 9. Table of experimental flexure values for flexure dynamic test.

Critical properties Flex. 1 Flex. 2 Flex. 3 Description

Qcr (L min−1) 208 376 410 Critical flow rate
Mt 0.53 1 1 Throat Mach number est.

Table 10. Table of critical values for flexure settings listed.

measurements represent a mass flow rate rather than a purely volumetric one. Since the
flow control (needle) valve is upstream of the flow meter and the test section, by further
opening the valve, the upstream flowing and stagnation pressures are increased, which in
turn increase the density at the throat and allows for the higher mass flow rate through the
system. This happens despite the volumetric flow rate remaining constant in the choked
condition.

Appendix C. Spectral proper orthogonal decomposition

To define the SPOD, we choose the transverse displacement δ as the primary quantity
to characterize the fluid–structure system dynamics. The inertial coordinate x spans the
length of the beam, with y displacement at discrete xi (i ∈ Z : [1, p]) and time tj (j ∈ Z :
[1, n] ) as δ(xi, tj) = δ

(j)
i . We define the data matrix X ,

X =

⎡
⎢⎢⎢⎢⎣
δ
(1)
1 δ

(j)
1 . . . δ

(n)
1

δ
(1)
i δ

(j)
i . . . δ

(n)
i

...
...

. . .
...

δ
(1)
p δ

(j)
p . . . δ

(n)
p

⎤
⎥⎥⎥⎥⎦ ∈ R

p×n. (C1)

The rows of X are measurements of points along the beam, and the columns are the time
series for each point with size �t.

Assuming that the system is stationary and consistent with the procedure in Towne et al.
(2018) and Schmidt & Towne (2019), the discrete Fourier transform of each row of our X
is carried out using Welch’s method (Welch 1967). In the procedure, each discrete time
series is segmented into 50 % overlapping blocks of size nf ≤ n, Fourier transformed,
and assembled into a Fourier domain data matrix X̃ fl at each discrete frequency fl,

X̃ fl =

⎡
⎢⎢⎢⎢⎣
δ̃
(1)
1 δ̃

(k)
1 . . . δ̃

(N)
1

δ̃
(1)
i δ̃

(k)
i . . . δ̃

(N)
i

...
...

. . .
...

δ̃
(1)
p δ̃

(k)
p . . . δ̃

(N)
p

⎤
⎥⎥⎥⎥⎦

fl

∈ C
p×N, (C2)
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where l ∈ Z : [1, nf ], N ≥ 1 ∈ Z is the total number of blocks in Welch’s method, k ∈ Z :
[1,N] is a Fourier realization of the data and block number index. Elements in X̃ fl are

δ̃
(k)
i = 1√nf

(nf /2)(k+1)∑
j=(nf /2)(k−1)+1

δ
(j)
i exp

(
−2π

√−1 (l − 1)
j − 1

nf

)
, (C3)

for a rectangular windowing function, and discrete frequencies

fl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l − 1
nf�t

for l ≤ nf /2,

l − 1 − nf

nf�t
for l > nf /2.

(C4)

We build the cross-spectral density matrix at each fl,

S̃fl = �t
nf N

X̃ flX̃
∗
fl ∈ C

p×p, (C5)

where X̃ ∗
fl is the conjugate transpose of X̃ fl and�t is the time increment for the series. Here

S̃fl is Hermitian and represents the cross-correlation of measurement i Fourier coefficients
with all other measurements, averaged over all realizations. We can eigendecompose S̃l,

S̃l = Û lΣ lÛ∗
l , (C6)

where Û l is unitary (along with its conjugate transpose Û∗
l ) and its columns (ûi)l are

orthonormal eigenvectors of S̃l. Here Σ l ∈ Rp×p is a diagonal matrix with its entries as
the eigenvalues (σi)l in descending order. We can interpret (σi)l as the amount of energy
its pair (ûi)l contains at fl. The cross-spectral density at each fl is tensor invariant tr(Ŝl) =
tr(Σ l), and represents the total energy at each frequency. The fraction of energy each mode
contains is

(
σ̂i
)

l = (σi)l

tr(Σ̂ l)
. (C7)

The system may be reduced further if a single (σ̂i)l, (ûi)l pair contains most of the energy
at these peak frequencies. In systems where both hold true, it is often useful to understand
the dynamics of these predominant modes. Frequencies where tr(Σ̂ l) peaks indicate
periodic behaviour, but do not discern between the periodic oscillations characteristic of
a limit cycle, or intermittent periodic behaviour associated with a stochastically forced
under-damped system. However, the SPOD modes provide a means to filter the original
time domain data and discern those states exactly. Schmidt et al. (2017) first explored this
by projecting time domain pressure data onto the leading SPOD modes to find intermittent
behaviour of noise in a turbulent jet. Here, we would like to do the same by projecting the
time domain beam displacement data onto the leading SPOD beam shapes.
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Suppose the system has m < nf peak frequencies in tr(Σ̂ l). To explore the time
behaviour of the most energetic modes at each peak frequency, we build a basis,

Φ̂ = [(û1
)

1 , . . . ,
(
û1
)

m

] ∈ C
p×m, (C8)

where subscript 1 in û1 indicates the leading mode. We would like to approximate the time
domain data X as

X ≈ Φ̂A, (C9)

where A is the matrix with coefficients of each basis (rows) in Φ̂ over time (columns). To
solve for A,

A =
(
Φ̂∗Φ̂

)−1
Φ̂∗X , (C10)

where Φ̂∗ is the conjugate transpose of Φ̂. The columns of Φ̂ are not orthogonal,
and (Φ̂∗Φ̂)−1 accounts for the cross-coupling between the modes. By construction,
modes are orthonormal within a single frequency, but not across frequencies when only
considering the spatial norm. (Modes across frequencies are orthogonal in the temporal
sense. However, if the spatial modes are considered in the projection framework here, they
are not orthogonal in that the norm (û1)

∗
i (û1)j /= 0 for i /= j.)

The map between A and X is, in essence, a spatial filter that when applied to the time
domain data elucidates how each shape û1 behaves in time. With X built as transverse
displacement δ(j)p , each basis in Φ̂ represents a beam mode shape and the columns of A
their amplitudes at a particular instance in time.

Since A represents beam displacement over time, the velocity of each shape can be
defined as dA/dt and estimated through a discrete time derivative for the data set. We
can access a two-dimensional phase-portrait of each mode, and discern their individual
dynamics: periodic orbits will be closed orbits (donut shape), while amplifier states as
points clumped around the origin, as the mode is perturbed stochastically, but decays back
to its equilibrium.

Appendix D. Euler–Bernoulli beam fundamental frequency

From classical EB beam theory, we can calculate the theoretical clamped-free beam
frequencies as

fi = (βiL)2

2πL2

√
EI
ρsbhb

. (D1)

Here I is the square cross-section moment of inertia for the beam in three dimensions,

I = h3
bb

12
. (D2)

The eigenfunctions φk, k ∈ Z : [1,∞], when subject to the clamped-free boundary
conditions, are

φk(x) = cosh (βkx)− cos (βkx)+
[

cos (βkL)+ cosh (βkL)
sin (βkL)+ sinh (βkL)

]
(sin (βkx)− sinh (βk x)) ,

(D3)
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β1L β2L β3L β4L β5L β6L

1.8751 4.6941 7.8548 10.9955 14.1372 17.2788

Table 11. Table of solutions to the characteristic equation for clamped-free EB beam.

with the characteristic equation

cosh (βkL) cos (βkL)+ 1 = 0. (D4)

The first six corresponding eigenvalues are listed in table 11.

Appendix E. Fluid–structure coefficients

A =

⎡
⎢⎢⎣

0 1 0 0
M−1K M−1C M−1T M−1H

Eq + Bq(M−1K) Dq + Bq(M−1C) Gq + Bq(M−1T) Hq + Bq(M−1H)
Ẽq + B̃q(M−1K) D̃q + B̃q(M−1C) G̃q + B̃q(M−1T) H̃q + B̃q(M−1H)

⎤
⎥⎥⎦ ,
(E1)

where

Msi =
⎧⎨
⎩

m0

b
for i = 0,

ρshbgi(x) for i = [1, n],
(E2)

Csi =
⎧⎨
⎩

c0

b
for i = 0,

0 for i = [1, n],
(E3)

Ksi =

⎧⎪⎪⎨
⎪⎪⎩

k0

b
for i = 0,

EI
b

d4

dx4 gi(x) for i = [1, n],
(E4)

and

Mji =
∫ L

0

(
Msi(x)+ 2Mfi(x)

)
g′

j(x) dx, Cji = −
∫ L

0

(
Csi(x)+ 2Cfi(x)

)
g′

j(x) dx,

Kji = −
∫ L

0

(
Ksi(x)+ 2Kfi(x)

)
g′

j(x) dx,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(E5)

exist in Rn+1×n+1,

Tj = −2
∫ L

0
Tf (x)g′

j(x) dx (E6)

exists in Rn+1×1, and

Hji = −2
∫ L

0
Hfi(x)g′

j(x) dx (E7)
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exists in Rn+1×m+1. The test functions are

g′
i(x) =

{
δ(x) for i = 0,
φi(x) for i = [1, n],

(E8)

where δ is the Dirac delta function and φi is defined in (D3). Coefficients for the spanwise
terms

B̃qji = Nji

∫ L

0
Bqi(x)ψ ′

j (x) dx, D̃qji = Nji

∫ L

0
Dqi(x)ψ ′

j (x) dx,

Ẽqji = Nji

∫ L

0
Eqi(x)ψ ′

j (x) dx, G̃qji = Nji

∫ L

0
Gqi(x)ψ ′

j (x) dx,

H̃qji = Nji

∫ L

0
Hqi(x)ψ ′

j (x) dx, Nji =
(∫ L

0
ψ ′

i (x)ψ
′
j (x) dx

)−1

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(E9)

The test functions are

ψ ′
i (x) =

⎧⎪⎨
⎪⎩
δ(x) for i = 0,
ψ̃i(x) for i = [1,m − 1],
δ(x − L) for i = m,

(E10)

where δ is the Dirac delta function and ψ̃ is defined in (5.42).

REFERENCES

ALBEN, S. 2008 Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355–380.
ALBEN, S. 2015 Flag flutter in inviscid channel flow. Phys. Fluids 27 (3), 033603.
BACKUS, J. 1963 Small-vibration theory of the clarinet. J. Acoust. Soc. Am. 35 (3), 305–313.
BALINT, T.S. & LUCEY, A.D. 2005 Instability of a cantilevered flexible plate in viscous channel flow. J. Fluids

Struct. 20 (7 SPEC. ISS.), 893–912.
BANKS, H.T. & INMAN, D.J. 1991 On damping mechanisms in beams. Trans. ASME: J. Appl. Mech. 58 (3),

716–723.
BASTIAANSSEN, W.G.M., MOLDEN, D.J. & MAKIN, I.W. 2000 Remote sensing for irrigated agriculture:

examples from research and possible applications. Agric. Water Manage. 46, 137–155.
BERNITSAS, M.M., RAGHAVAN, K., BEN-SIMON, Y. & GARCIA, E.M. 2008 Vivace (vortex induced

vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid
flow. Trans. ASME: J. Offshore Mech. Arctic Engng 130 (4), 041101.

BÖSCH, F., CHIKATAMARLA, S.S. & KARLIN, I.V. 2015a Entropic multirelaxation lattice Boltzmann models
for turbulent flows. Phys. Rev. E 92 (4), 43309.

BÖSCH, F., CHIKATAMARLA, S.S. & KARLIN, I.V. 2015b Entropic multirelaxation models for simulation of
fluid turbulence. ESAIM: Proc. Surv. 52, 1–24.

BOSTON PIEZO OPTICS INC. 2018 Ceramic materials. Available at: https://www.bostonpiezooptics.com/
ceramic-materials-pzt.

CANNY, J. 1986 A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8
(6), 679–698.

CHANDAVARI, V. & PALEKAR, S. 2014 Diffuser angle control to avoid flow separation. Intl J. Tech. Res. Appl.
2 (5), 16–21.

CHEN, H., KANDASAMY, S., ORSZAG, S., SHOCK, R., SUCCI, S. & YAKHOT, V. 2003 Extended Boltzmann
kinetic equation for turbulent flows. Science 301 (5633), 633–636.

CISONNI, J., LUCEY, A.D., ELLIOTT, N.S.J. & HEIL, M. 2017 The stability of a flexible cantilever in viscous
channel flow. J. Sound Vib. 396, 186–202.

DOARÉ, O., MANO, D., CARLOS, J. & LUDENA, B. 2011b Effect of spanwise confinement on flag flutter:
experimental measurements. Phys. Fluids 23, 1–4.

DOARÉ, O., SAUZADE, M. & ELOY, C. 2011a Flutter of an elastic plate in a channel flow: confinement and
finite-size effects. J. Fluids Struct. 27 (1), 76–88.

915 A40-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://www.bostonpiezooptics.com/ceramic-materials-pzt.
https://www.bostonpiezooptics.com/ceramic-materials-pzt.
https://doi.org/10.1017/jfm.2021.18


Flutter instability in an internal flow energy harvester

DOLL, G.L., KOTZALAS, M.N. & KANG, Y.S. 2010 Life-limiting wear of wind turbine gearbox bearings:
origins and solutions. In Proceedings of European Wind Energy Conference Exhibition (EWEC 2010),
vol. 4.

DORSCHNER, B., BÖSCH, F., CHIKATAMARLA, S.S., BOULOUCHOS, K. & KARLIN, I.V. 2016a Entropic
multi-relaxation time lattice Boltzmann model for complex flows. J. Fluid Mech. 801, 623–651.

DORSCHNER, B., CHIKATAMARLA, S.S., BÖSCH, F. & KARLIN, I.V. 2015 Grad’s approximation for
moving and stationary walls in entropic lattice Boltzmann simulations. J. Comput. Phys. 295, 340–354.

DORSCHNER, B., CHIKATAMARLA, S.S. & KARLIN, I.V. 2017a Entropic multirelaxation-time lattice
Boltzmann method for moving and deforming geometries in three dimensions. Phys. Rev. E 95 (6), 063306.

DORSCHNER, B., CHIKATAMARLA, S.S. & KARLIN, I.V. 2017b Transitional flows with the entropic lattice
Boltzmann method. J. Fluid Mech. 824, 388–412.

DORSCHNER, B., CHIKATAMARLA, S.S. & KARLIN, I.V. 2018 Fluid–structure interaction with the entropic
lattice Boltzmann method. Phys. Rev. E 97 (2), 023305.

DORSCHNER, B., FRAPOLLI, N., CHIKATAMARLA, S.S. & KARLIN, I.V. 2016b Grid refinement for entropic
lattice Boltzmann models. Phys. Rev. E 94 (5), 053311.

FUJITA, K. & SHINTANI, A. 1999 Flow-induced vibration of the elastic rod due to axial flow: unstable
phenomena of continuous flexible rod as the axisymmetric body. PVP Flow Induced Vib. 389,
199–206.

FUJITA, K. & SHINTANI, A. 2001 Axial leakage flow-induced vibration of the elastic rod as the axisymmetric
continuous flexible beam. Trans. ASME: J. Press. Vessel Technol. 123 (4), 421–428.

FUJITA, K. & SHINTANI, A. 2007 A consideration on pre- and post-instability of an axisymmetric elastic
beam subjected to axial leakage flow. J. Fluids Struct. 23 (3), 463–478.

GUO, C.Q. & PAIDOUSSIS, M.P. 2000 Stability of rectangular plates with free side-edges in two-dimensional
inviscid channel flow. Trans. ASME: J. Appl. Mech. 67 (1), 171–176.

GUO, H., WATSON, S., TAVNER, P. & XIANG, J. 2009 Reliability analysis for wind turbines with incomplete
failure data collected from after the date of initial installation. Reliab. Engng Syst. Safety 94 (6), 1057–1063.

GURUGUBELLI, P.S. & JAIMAN, R.K. 2019 Interaction of gap flow with flapping dynamics of two
side-by-side elastic foils. Intl J. Heat Fluid Flow 75, 239–255.

GURUGUBELLI, P.S., JAIMAN, R.K. & KHOO, B.C. 2014 Flexible flapping dynamics of parallel elastic
plates in a uniform flow: application to energy harvesting devices. In International Conference on Offshore
Mechanics and Arctic Engineering, vol. 45400, p. V002T08A038.

HIDALGO, P., JHA, S. & GLEZER, A. 2015 Enhanced heat transfer in air cooled heat sinks using aeroelastically
fluttering reeds. In 2015 21st International Workshop on Thermal Investigations of ICs and Systems
(THERMINIC), pp. 1–6. IEEE.

INADA, F. & HAYAMA, S. 1988 A study on leakage-flow-induced vibrations. Japan Soc. Mech. Engrs Intl J.
31 (1), 39–47.

INADA, F. & HAYAMA, S. 1990 A study on leakage-flow-induced vibrations. Part 1: Fluid-dynamic forces and
moments acting on the walls of a narrow tapered passage. J. Fluids Struct. 4 (4), 395–412.

INMAN, D.J. 2008 Distributed-parameter systems. In Engineering Vibration, vol. 3, chap. 6, pp. 464–538.
Prentice Hall.

JAIMAN, R.K., PARMAR, M.K. & GURUGUBELLI, P.S. 2014 Added mass and aeroelastic stability of a
flexible plate interacting with mean flow in a confined channel. Trans. ASME: J. Appl. Mech. 81 (4), 1–9.

JOHANSSON, E.B. 1959 Hydraulic instability of reactor parallel-plate fuel assemblies. Tech. Rep. Knolls
Atomic Power Lab., USA.

KALTENBACH, H.J., FATICA, M., MITTAL, R., LUND, T.S. & MOIN, P. 1999 Study of flow in a planar
asymmetric diffuser using large-eddy simulation. J. Fluid Mech. 390, 151–185.

KARLIN, I.V., BÖSCH, F. & CHIKATAMARLA, S.S. 2014 Gibbs’ principle for the lattice-kinetic theory of
fluid dynamics. Phys. Rev. E 90 (3), 031302.

KUNDU, P.K., COHEN, I. & DOWLING, D.R. 2012 Fluid Mechanics. Elsevier.
LAN, H., ARMALY, B.F. & DRALLMEIER, J.A. 2009 Turbulent forced convection in a plane asymmetric

diffuser: effect of diffuser angle. Trans. ASME: J. Heat Transfer 131 (7), 071702.
LEE, H.J., SHERRIT, S., TOSI, L.P. & COLONIUS, T. 2016 Design and experimental evaluation of

flextensional-cantilever based piezoelectric transducers for flow energy harvesting. In SPIE Smart
Structures and Materials + Nondestructive Evaluation and Health Monitoring. International Society for
Optics and Photonics.

LEE, H.J., SHERRIT, S., TOSI, L.P., WALKEMEYER, P. & COLONIUS, T. 2015 Piezoelectric energy
harvesting in internal fluid flow. Sensors 15 (10), 26039–26062.

MALASPINAS, O. & SAGAUT, P. 2012 Consistent subgrid scale modelling for lattice Boltzmann methods.
J. Fluid Mech. 700, 514–542.

915 A40-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.18


L.P. Tosi, B. Dorschner and T. Colonius

MATWEB 2018 Material property data. Available at: http://matweb.com/search/DataSheet.aspx?MatGUID
=b8d536e0b9b54bd7b69e4124d8f1d20a&ckck=1.

MILLER, D.R. 1960 Critical flow velocities for collapse of reactor parallel-plate fuel assemblies. J. Engng
Power 82 (2), 83–91.

MORAN, M.J. & SHAPIRO, H.N. 2004 Fundamentals of Engineering Thermodynamics. John Wiley & Sons.
MOSCHITTA, A. & NERI, I. 2014 Power consumption assessment in wireless sensor networks.

ICT-Energy-Concepts Towards Zero-Power Information and Communication Technology.
NAGAKURA, H. & KANEKO, S. 1991 The stability of a cantilever beam subjected to one-dimensional leakage

flow. In Transactions of the 11th International Conference on Structural Mechanics in Reactor Technology.
PAÏDOUSSIS, M.P. 2003 Annular- and leakage- flow-induced instabilities. In Fluid–Structure Interactions:

Slender Structures and Axial Flow, Volume 2, chap. 11, pp. 1221–1420. Academic Press.
RESTER, S., THOMAS, J., HILTEN, M.P.V. & VIDRINE, W.L. 1999 Application of intelligent completion

technology to optimize the reservoir management of a deepwater gulf of mexico field: a reservoir simulation
case study. In SPE Annual Technical Conference, pp. 573–581.

SCHMIDT, O.T., COLONIUS, T. & BRES, G.A. 2017 Wavepacket intermittency and its role in turbulent jet
noise. In 55th AIAA Aerospace Sciences Meeting, p. 0686.

SCHMIDT, O.T., SCHMID, P.J., TOWNE, A. & LELE, S.K. 2018 Statistical description of intermittency
and rare events via conditional space-time pod: example of acoustic bursts in turbulent jets. Center for
Turbulence Research Annual Research Briefs.

SCHMIDT, O.T. & TOWNE, A. 2019 An efficient streaming algorithm for spectral proper orthogonal
decomposition. Comput. Phys. Commun. 237, 98–109.

SHARMA, A.K., et al. 2002 Quantifying value creation from intelligent completion technology
implementation. In European Petroleum Conference. Society of Petroleum Engineers.

SHERRIT, S., FRANKOVICH, K., BAO, X. & TUCKER, C. 2009 Miniature piezoelectric shaker mechanism
for autonomous distribution of unconsolidated sample to instrument cells. In Industrial and Commercial
Applications of Smart Structures Technologies, vol. 7290, p. 72900H. International Society for Optics and
Photonics.

SHERRIT, S., et al. 2014 Flow energy piezoelectric bimorph nozzle harvester. In SPIE Smart Structures
and Materials + Nondestructive Evaluation and Health Monitoring. International Society for Optics and
Photonics.

SHERRIT, S., LEE, H.J., WALKEMEYER, P., WINN, T., TOSI, L.P. & COLONIUS, T. 2015 Fluid flow
nozzle energy harvesters. In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health
Monitoring. International Society for Optics and Photonics.

SHOELE, K. & MITTAL, R. 2016 Flutter instability of a thin flexible plate in a channel. J. Fluid Mech. 786,
29–46.

SOMMERFELDT, S.D. & STRONG, W.J. 1988 Simulation of a player–clarinet system. J. Acoust. Soc. Am. 83
(5), 1908–1918.

TETLOW, G.A. & LUCEY, A.D. 2009 Motions of a cantilevered flexible plate in viscous channel flow driven
by a constant pressure drop. Intl J. Numer. Meth. Biomed. Engng 25 (5), 463–482.

TIAN, F.B., DAI, H., LUO, H., DOYLE, J.F. & ROUSSEAU, B. 2014 Fluid–structure interaction involving
large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451–469.

TONG, W. 2010 Wind Power Generation and Wind Turbine Design. Wit Press.
TÖRNBLOM, O., LINDGREN, B. & JOHANSSON, A.V. 2009 The separating flow in a plane asymmetric

diffuser with 8.5 opening angle: mean flow and turbulence statistics, temporal behaviour and flow
structures. J. Fluid Mech. 636, 337–370.

TOSI, L.P. 2019 Fluid–structure stability in an internal flow energy harvester. PhD thesis, California Institute
of Technology.

TOSI, L.P. & COLONIUS, T. 2019 Modeling and simulation of a fluttering cantilever in channel flow. J. Fluids
Struct. 89, 174–190.

TOWNE, A., SCHMIDT, O.T. & COLONIUS, T. 2018 Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867.

WELCH, P. 1967 The use of fast fourier transform for the estimation of power spectra: a method based on time
averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 70–73.

WEN, B., ZHANG, C. & FANG, H. 2015 Hydrodynamic force evaluation by momentum exchange method in
lattice Boltzmann simulations. Entropy 17 (12), 8240–8266.

WOOD, M.H., ARELLANO, A.L.V. & LORENZO, V. 2013 Corrosion Related Accidents in Petroleum
Refineries. European Commission Joint Research Centre.

WU, X. & KANEKO, S. 2005 Linear and nonlinear analyses of sheet flutter induced by leakage flow. J. Fluids
Struct. 20 (7), 927–948.

915 A40-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://matweb.com/search/DataSheet.aspx?MatGUID=b8d536e0b9b54bd7b69e4124d8f1d20a{\&}ckck=1
http://matweb.com/search/DataSheet.aspx?MatGUID=b8d536e0b9b54bd7b69e4124d8f1d20a{\&}ckck=1
https://doi.org/10.1017/jfm.2021.18


Flutter instability in an internal flow energy harvester

ZHOU, G., HUANG, L., LI, W. & ZHU, Z. 2014 Harvesting ambient environmental energy for wireless sensor
networks: a survey. J. Sensors 2014, 815467.

ZHU, D. 2011 Vibration energy harvesting: machinery vibration, human movement and flow induced vibration.
In Sustainable Energy Harvesting Technologies – Past, Present and Future (ed. Y.K. Tan), vol. 1, pp. 22–54.
IntechOpen.

915 A40-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.18

	1 Introduction
	2 Flextensional flow energy harvester
	2.1 Device description
	2.2 Flextensional and beam parameters

	3 Experiments
	3.1 Flexure characterization
	3.2 Flow experiments
	3.2.1 Experimental results


	4 Numerical simulations
	4.1 Numerical method
	4.2 Simulation of the flow energy harvester

	5 Model
	5.1 Fluid equations of motion
	5.2 Linearized model
	5.3 Fluid--structure equations for symmetric channels
	5.4 Modelling flow separation
	5.5 Model-experiment comparison

	6 Conclusions
	A Appendix A. Dimension, material and measurement tables
	B Appendix B. Compressibility at critical flow rates
	C Appendix C. Spectral proper orthogonal decomposition
	D Appendix D. Euler--Bernoulli beam fundamental frequency
	E Appendix E. Fluid--structure coefficients
	References

