
Math. Struct. in Comp. Science (2009), vol. 19, pp. 1161–1189. c© Cambridge University Press 2009

doi:10.1017/S0960129509990168

An expressiveness study of priority in process calculi

CRIST IAN VERSARI, NADIA BUSI and ROBERTO GORRIERI

Università di Bologna, Dipartimento di Scienze dell’Informazione

Mura Anteo Zamboni 7, 40127 Bologna, Italy

Email: {versari,gorrieri}@cs.unibo.it

Received 20 Mar 2008; revised 26 November 2008

In memory of Nadia Busi

Priority is a frequently used feature of many computational systems. In this paper we study

the expressiveness of two process algebras enriched with different priority mechanisms. In

particular, we consider a finite (that is, recursion-free) fragment of asynchronous CCS with

global priority (FAP, for short) and Phillips’ CPG (CCS with local priority), and contrast

their expressive power with that of two non-prioritised calculi, namely the π-calculus and its

broadcast-based version, called bπ. We prove, by means of leader-election-based separation

results, that, under certain conditions, there exists no encoding of FAP in π-Calculus or

CPG. Moreover, we single out another problem in distributed computing, which we call the

last man standing problem (LMS for short), that better reveals the gap between the two

prioritised calculi above and the two non-prioritised ones, by proving that there exists no

parallel-preserving encoding of the prioritised calculi in the non-prioritised calculi retaining

any sincere (complete but partially correct, that is, admitting divergence or premature

termination) semantics.

1. Introduction

Priority is a frequently used feature of many computational systems. High-priority

processes use more central processing unit time in workstations, or preempt the execution

of low priority processes through hardware/software-driven interrupt mechanisms. In

order to model such systems, many basic process algebras have been enriched with some

priority mechanisms (see, for example, Baeten et al. (1987), Camilleri and Winskel (1995),

Cleaveland and Hennessy (1990), Cleaveland et al. (2001) and Phillips (2001)). Priority

is also implicitly used in many stochastic process calculi, where immediate actions

take precedence over timed actions (see, for example, Bernardo and Gorrieri (1996),

Hermanns (2002) and Bravetti and Gorrieri (2002)), or where actions are equipped with

an explicit priority level (see, for example, Bernardo and Gorrieri (1998)).

In this paper (which is an extended and revised version of Versari et al. (2007)) we study

a couple of problems in distributed systems to investigate the expressiveness of priority

in (untimed) concurrent systems in order to delineate the expressive power gained by the

addition of priority, and to compare the relative expressive power of different priority

mechanisms.

According to the classification in Cleaveland et al. (2001), the basic priority mechanisms

reported in the literature can be divided into two main groups: those based on global

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1162

priority (see, for example, Baeten et al. (1986) and Cleaveland and Hennessy (1990))

and those based on local priority (see, for example, Camilleri and Winskel (1995) and

Phillips (2001)). This distinction is motivated by the scope of the priority effects on the

system. In the case of global priority, a high-priority action is able to preempt any other

low-priority action in the system, so that only higher priority processes are allowed to

evolve. In the case of local priority, this effect is limited to the location of the process,

where a location can be thought as a site on a distributed system and may be represented

by the scope of some name or the guarded choice between actions with different priorities.

An example may help to show the difference between the two. Consider the system S

composed of five processes

S � a.P | a.Q1 + b.Q2 | b.R | c.T1 + d.T2 | c.V

where the sum operator represents the usual choice between different actions, output

actions are overlined and high-priority actions are underlined. According to the semantics

of CCSsg (CCS with a global notion of priority) and CCSsl (CCS with local priority)

reported in Cleaveland et al. (2001), the processes a.Q1 + b.Q2 and b.R are ready to

perform a high-priority action on channel b. In CCSsg semantics this action is forced to

happen before any other low priority transition in S , while in CCSsl semantics, the action

b only preempts the execution of the action a, so that the synchronisation on c of the last

two processes may even happen first. In other words, with a global priority notion the

only possible internal transition of the system S is

S → a.P | Q2 | R | c.T1 + d.T2 | c.V

but with local priority, we can also have the evolution

S → a.P | a.Q1 + b.Q2 | b.R | T1 | V .

As a basic representative of a calculus with global priority, in this paper we will consider

a very minimal fragment of CCS (Milner 1980) without restriction and recursion but with

asynchronous communication, and enrich it with static priority and global preemption (as

in CCSsg , which is described in Cleaveland et al. (2001)) where only the prefix operator

on inputs is present and the asynchronous output is characterised by the possibility of

assigning different priorities to the outgoing messages – we call this calculus FAP.

As a representative of a calculus with local priority, we will consider Phillips’ CCS with

priority guards (CPG for short) (Phillips 2001).

Moreover, we will also consider two well-known unprioritised calculi, namely the

π-calculus (Milner et al. 1992a; Milner et al. 1992b) and its broadcast-based version

bπ-Calculus (Ene and Muntean 1999), which we will compare with the two prioritised

calculi above.

The two problems in distributed systems we will use to distinguish the expressive

power of these four calculi are the leader-election problem (Le Lann 1977), which has

already been used to study the expressiveness gap between, for example, synchronous and

asynchronous π-calculus (Palamidessi 2003), and an apparently new problem, which we

have called the last man standing problem (LMS for short), which consists of the capability

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1163

of processes recognising the absence of other processes ready to perform synchronisations

or input/output operations. In other words, the LMS problem is solvable if a process is

able to check that it is the only one active in a network.

1.1. Related work

The election of a unique leader in distributed systems often constitutes a preliminary

step during reorganisation operations that require a common agreement between the

nodes of the network. Its formalisation is attributed to Le Lann in Le Lann (1977),

where the leader election preceded the generation of a new token in a ring network

after the loss of the previous one. This problem was considered for the first time in a

process algebra framework in Bougé (1988), where it was used to study the expressive

power of CSP (Hoare 1985) in relation to its communication primitives and the topology

of the network. The first application of the leader election problem to the π-Calculus

revealed the superior expressiveness of mixed-choice compared with separate choice

(Palamidessi 1997; 2003): the relative expressive power of the two constructs is stated in

terms of the impossibility of a reasonable encoding of mixed into separate choice, where

the reasonableness is represented by the uniformity (preservation of the parallelism and

symmetry of the system) of the encoding function and the preservation of the observable

actions performed by the encoded processes. Many other separation results have been

obtained using the same approach, each one based on the ability or inability to solve the

leader election under appropriate conditions. A variant of the problem was used in Ene

and Muntean (1999) to show that the broadcast-based bπ-Calculus is more expressive

than the standard π-Calculus provided with point-to-point communication primitives. The

result is based on the idea that broadcasting enables the leader election problem to be

solved even when there is no knowledge of the number of processes participating to the

election, while this is proved to be impossible in the π-Calculus.

The same approach was used in Phillips (2001; 2008) to separate CPG from CCS and

from the π-Calculus by exploiting the broadcast-like power of preemption introduced

by priority: as with the bπ-Calculus, it is shown that CPG can solve the leader election

without any knowledge of the number of participants, while the ability of the π-Calculus

to create new communication links between processes is exploited to prove the converse

separation from CPG. The separation is based on the impossibility of finding a uniform

encoding of CPG preserving a semantics that respects the observables of the encoded

processes, and proves that local priority adds expressiveness with respect to both CCS

and the π-Calculus. This is currently the only result on the expressiveness of priorities in

process algebras that we are aware of.

A detailed survey of the leader election problem and the expressiveness separation

results in process algebras can be found in Vigliotti et al. (2007).

1.2. Contribution of this paper

In this paper we first analyse the expressiveness of global priority, in order to check if

it can be proved to be more expressive than local priority, as we would naturally expect

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1164

it to be. As a representative of a global priority model, we choose FAP, a fragment of

CCS augmented with stratified, global priority (a slight variant of the CCS with static

priority and global preemption, CCSsg , which was studied in Cleaveland et al. (2001))

where the only operators are the parallel composition of processes and the prefix on

inputs, while the asynchronous output models the dispatch of messages with two different

levels of priority: the delivery of high-priority messages is ensured to happen before that

of low-priority ones.

We prove that this very simple language (deprived of synchronous communication,

choice, recursion or replication, and hence finite) is sufficiently powerful to write programs

capable of solving the leader election problem in any connected graph of processes without

any knowledge of the number of processes involved in the election.

By applying the idea used in Ene and Muntean (1999) and Phillips (2001), we have as

a corollary that FAP cannot be distributively encoded in the π-Calculus, but we prove

that this also remains true for partially correct encodings, which introduce divergence or

failure in their computations as consequences of livelocked or deadlocked conditions. This

result can also be extended to the translations of bπ-Calculus and CPG in the π-Calculus,

thus relaxing the encoding conditions previously stated in Ene and Muntean (1999) and

Phillips (2001).

Another consequence of the above leader election result in FAP is the impossibility

of encoding it in CPG under uniformity and independence-preserving conditions, which

constitutes the expected result for the expressiveness gap between global and local priority

in the chosen process algebra framework. It is worth considering that the separation

between these two prioritised languages and the π-Calculus is stronger than that between

FAP and CPG themselves, which is a first hint of the expressive power of priority for

both global and local approaches.

In order to strengthen the separation between prioritised and non-prioritised languages,

we then introduce a new setting, which we call the last man standing problem. In this

setting, a bunch of n processes must realise if there is only one process participating

in the LMS (and in that case, this process would be the ‘last man standing’), that is,

they must know if n = 1 or n > 1 in a distributed way. We prove that the LMS can

be solved in both FAP and CPG (but we claim that it is also possible within other

priority approaches like Camilleri and Winskel (1995) and Cleaveland et al. (2001)),

but cannot be solved in non-prioritised languages like the π-Calculus, or even the

bπ-Calculus. This result implies that there are no distributed encodings of FAP and

CPG in the bπ-Calculus, and thus that the degree of expressiveness of priority does

not derive from the broadcast-like power of preemption, but from the capability of

processes knowing if another process is ready to perform a synchronisation on some

channel or not. In non-prioritised calculi, it is possible to know if some process is ready

to perform some synchronisation, but, on the contrary, knowing that this condition

does not hold is not decidable. We show that in a distributed setting this simple

capability is linked to priority (global or local, stratified or not) and cannot be obtained

otherwise, even if we provide broadcast-like primitives and admit divergent or deadlocked

computations.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1165

Fig. 1. Impossibility results: (1) C. Ene, T. Muntean; (2, 3) I. Phillips; the remaining ones are

presented in this paper.

The above results are summarised in Figure 1.

1.3. Structure of the paper

The rest of the paper is structured as follows. In Section 2, we introduce the four process

algebras involved in the separation results and give a brief explanation of their main

features. Section 3 contains a short discussion and sets out the formal definitions of the

properties of an encoding. In Sections 3.1 and 3.2, we formalise the leader election and

LMS problems, and then show the separation results for them in Sections 4.1 and 4.2,

respectively. Finally, we present some concluding remarks in Section 5.

2. Calculi

In this section we introduce the calculi of interest in this paper by giving their syntax and

a short explanation of the way they operate. We will give a comprehensive definition of

the FAP semantics, but due to lack of space, just refer to Milner (1993; 1999), Ene and

Muntean (1999) and Phillips (2001; 2008) for the semantics of the other calculi.

2.1. The π-Calculus

The π-Calculus (Milner et al. 1992a; Milner et al. 1992b) is derived from CCS (Milner

1980) in which processes interact through synchronisation over named channels and have

the ability to receive new channels and subsequently use them to interact with other

processes in order to model mobility.

Definition 2.1. Let N be a set of names on a finite alphabet, x, y, . . . ∈ N. The syntax of

the π-Calculus is defined as

P ::= 0
∣∣∣ ∑

i∈I
πi.Pi

∣∣∣ P | Q
∣∣∣ !P

∣∣∣ (νx)P

π ::= τ
∣∣∣ x(y)

∣∣∣ x〈y〉

where:

— 0 represents the null process;

— x(y) expresses the capability of performing an input on the channel x and receiving a

datum that is then bound to the name y;

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1166

— x〈y〉 expresses the capability of sending the name y on the channel x;

— τ is the invisible, uncontrollable action;

— P | Q represents the parallel composition of processes;

— !P stands for the unlimited replication of process P ;

—
∑

i∈I πi.Pi represents the non-deterministic choice between several input/output com-

munication capabilities, also denoted by π1.P1 + π2.P2 + · · · ;

— (νx)P represents scope restriction of the name x to process P .

Definition 2.2. The congruence relation ≡ on π-Calculus processes is defined as the least

congruence satisfying alpha conversion, the commutative monoidal laws with respect to

both (|,0) and (+,0) and the following axioms:

(νx)P | Q ≡ (νx)(P | Q) if x /∈ fn(Q)

(νx)P ≡ P if x /∈ fn(P)

!P ≡ !P | P

where the function fn is defined by

fn(τ)
def
= �

fn(x(y))
def
= {x}

fn(x〈y〉) def
= {x, y}

fn(0)
def
= �

fn(π.P)
def
= fn(π) ∪ fn(P)

fn(
∑

i∈I πi.Pi)
def
=

⋃
i fn(πi.Pi)

fn(P | Q)
def
= fn(P) ∪ fn(Q)

fn(!P)
def
= fn(P)

fn((νx)P)
def
= fn(P) \ {x}.

In order to define the observables of a π-Calculus process P , we introduce the notion

of barb.

Definition 2.3. Let P be a π-Calculus process. P exhibits barb π, written P ↓ π, if and

only if

— P ≡ (νỹ)(x(z).Q + R | S), with π = x, x /∈ ỹ; or

— P ≡ (νỹ)(x〈z〉.Q + R | S), with π = x, x /∈ ỹ.

Each barb π represents one action that P is immediately ready to perform. Conversely,

we write that P ↓� π if P does not exhibit barb π.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1167

Definition 2.4. π-Calculus semantics is given in terms of the reduction relation → described

by the rules

τ.P → P

(x(y).P + M) | (x〈z〉.Q + N) → P {z/y} | Q

P → P ′

P | Q → P ′ | Q

P → P ′

(ν x)P → (ν x)P ′

P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′ .

The fact that the λ-calculus can be encoded in the π-Calculus (Milner 1990) implies the

Turing completeness of the π-Calculus. As an alternative proof, we provide the encoding

of a very simple class of Random Access Machines (RAMs), which was shown to be

Turing complete in Minsky (1967). Each RAM is composed of a finite set of registers

r1, . . . , rn holding arbitrary large natural numbers and a finite set of indexed instructions

(1 : I1), . . . , (m : Im), which represent the program executed by the RAM. Each instruction

can have one of two forms:

— (i : Inc(rj)): increment by 1 the contents of the register rj and execute the next

instruction; or

— (i : DecJump(rj , s)): if the contents of the register rj is not zero, decrease it by 1 and

execute the next instruction, otherwise jump to instruction number s.

The internal state of a RAM is described by a configuration (i, c1, . . . , cn) where i is the

program counter, indicating the next instruction, and c1, . . . , cn are the values stored in the

registers.

Definition 2.5. A Random Access Machine (RAM) R is defined as a pair R = (I, n), where

n is the number of registers of R and

I = {(1 : I1), . . . , (m : Im)}

is the set of instructions of R, with |I | = m and each instruction Ii has the form

— Ii = Inc(rj) (1 � j � n); or

— Ii = DecJump(rj , s)) (1 � j � n).

An internal configuration C of R is defined as a state vector

C = (i, c1, . . . , cn)

with i representing the program counter and c1, . . . , cn ∈ � the current values stored in

the n registers of R.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1168

The transition function �R: C → C over the set of configurations C of a RAM R is

defined as

(i, c1, . . . , cn) �R (i′, c′
1, . . . , c

′
n)

if

— Ii = Inc(rj) and i′ = i + 1, c′
j = cj + 1, c′

p = cp for p �= j;

— Ii = DecJump(rj , s), cj > 0 and i′ = i + 1, c′
j = cj − 1, c′

p = cp for p �= j;

— Ii = DecJump(rj , s), cj = c′
j = 0 and i′ = s, c′

p = cp for p �= j.

Proposition 2.1. The π-Calculus is Turing complete.

Proof. The main program of a RAM R can be encoded as a process M (specified by

means of the processes M1, . . . ,Mm, one for every instruction of the RAM), and each

register rj as an independent process Rj , whose internal state is related to the value stored

in the register itself. The main program M interacts with each process register Rj over a

small set of channels tj , zj , nj , incj used to:

— test the state of the register (output from M to Rj on tj), which can be zero

(corresponding to an incoming answer on zj) or non-zero (answer on nj), and in

the latter case the register is decremented;

— increment the register (output on incj).

Each instruction (i : Ii) corresponds to the definition of a replicated process Mi, which is

spawned by an output on the channel mi:

— in the presence of an increment operation (i : Inc(rj)),

Mi ≡ !mi.incj .incj .mi+1

— in the presence of a ‘jump if zero/decrement’ operation (i : DecJump(rj , s)),

Mi ≡ !mi.tj .(zj .ms + nj .mi+1).

Each register Rj is encoded as a stack of processes whose length corresponds to the

value stored in the register itself. The first process in the stack reacts to the instructions

given by the main process, according to the following definitions:

Zj ≡ tj .zloopj .zj + incj .(νa)
(
nloopj〈a〉.incj | a.zloopj .a

)
ZLj ≡ !zloopj .Zj

The recursive behaviour of Zj is achieved by guarded replication on zloopj in the usual

way. The first branch of the choice answers a possible query by sending one output on

zj , which signals the value zero stored in the register. One output on incj spawns a new

process Nj (defined below) linked to a process Zj , which represents a queue of length one.

The process Nj is defined as follows:

Nj(a) ≡ tj .a.a.nj + inc.(νa′)
(
nloopj〈a′〉.incj | a′.nloopj〈a〉.a′

)
NLj ≡ !nloopj(a).Nj(a).

As with Zj , each process Nj listens on tj in order to answer on nj that the value stored

in the register is greater than zero, then the register is decremented by sending an output

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1169

on a, which activates the next process in the stack. The increment operation is exactly the

same as for Zj .

Finally, the internal state (i, c1, . . . , cn) of a RAM R is encoded as

〈
[

(i, c1, . . . , cn)
]
〉
R

= mi | Rc1

1 | · · · | Rcn
n | ZL1 | NL1 | · · · | ZLn | NLn

where

R0
j � Zj

Rk
j � (νa1, . . . , ak)

(
Nj(ak) | ak.nloop〈ak−1〉.ak |

· · · |
a2.nloopj〈a1〉.a2 |
a1.zloopj .a1

)
(k > 0).

We have that for each configuration C′ of a RAM R immediately reachable from C,

that is C �R C′, there exist a sequence of reductions M1 → · · · → Mp between their

corresponding encodings and vice versa, so

C�R C′ ⇐⇒ 〈
[

C
]
〉
R

≡ M1 → · · · → Mp ≡ 〈
[

C′]
〉
R

(p < 8).

Furthermore, the encoding fully preserves the determinism of the RAM (in fact, only

one reduction is possible for each encoded configuration 〈
[

C
]
〉 and for each of the above

intermediate steps Mi between two encoded configurations) and, consequently, it also

preserves its divergence.

For a full treatment of the π-Calculus see Milner (1993; 1999).

2.2. The bπ-Calculus

The bπ-Calculus (Ene and Muntean 1999) is a variant of the π-Calculus where the

point-to-point synchronisation mechanism is replaced by broadcast communication. For

example, while the π-Calculus program

S � a〈b〉.P | a(x).Q | a(y).R | a(z).T

can evolve in one step to a system like S1

S → S1 � P | Q{b/x} | a(y).R | a(z).T

where only one of Q,R, S is affected by the communication performed, in bπ-Calculus the

system S evolves directly to S2

S → S2 � P | Q{b/x} | R{b/y} | T {b/z}

where all the processes listening on channel a receive the broadcasted message.

So that we can give a uniform presentation of the languages analysed in this paper,

we will introduce a variant of the bπ-Calculus defined in terms of reduction semantics,

instead of the labelled transition system used in Ene and Muntean (1999).

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1170

Definition 2.6. Let N be a set of names on a finite alphabet, x, y, . . . ∈ N. The syntax of

the bπ-Calculus is defined in terms of the grammar

P ::= 0
∣∣∣ A〈x̃〉

∣∣∣ ∑
i∈I

πi.Pi

∣∣∣ P1 | P2

∣∣∣ (νx)P

where

πi ::= τ
∣∣∣ x(y)

∣∣∣ x〈y〉

and each constant A is assumed to have a unique defining equation A(x̃) � P .

Definition 2.7. The congruence relation ≡ on bπ-Calculus processes is defined as the least

congruence satisfying alpha conversion, the commutative monoidal laws with respect to

both (|,0) and (+,0) and the axioms

(νx)P | Q ≡ (νx)(P | Q) if x /∈ fn(Q)

(νx)P ≡ P if x /∈ fn(P)

A〈b̃〉 ≡ P {b̃/ã} if A(ã)
def
= P

where the function fn is defined by

fn(τ)
def
= �

fn(x(y))
def
= {x}

fn(x〈y〉) def
= {x, y}

fn(0)
def
= �

fn(π.P)
def
= fn(π) ∪ fn(P)

fn(
∑

i∈I πi.Pi)
def
=

⋃
i fn(πi.Pi)

fn(P | Q)
def
= fn(P) ∪ fn(Q)

fn(A〈b̃〉) def
= {b̃}

fn((νx)P)
def
= fn(P) \ {x} .

The definition of barb for the bπ-Calculus follows – it is the same as for the π-Calculus.

Definition 2.8. Let P be a bπ-Calculus process. P exhibits barb π, written P ↓ π, if and

only if

— P ≡ (νỹ)(x(z).Q + R | S), with π = x, x /∈ ỹ; or

— P ≡ (νỹ)(x〈z〉.Q + R | S), with π = x, x /∈ ỹ.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1171

Definition 2.9. The bπ-Calculus semantics is given in terms of the reduction relation →
described by the rules

R ↓� μ∏
i(μ(yi).Pi + Mi) | (μ〈z〉.Q + N) | R →

∏
i Pi{z/yi} | Q | R

τ.P → P

P → P ′

(ν x)P → (ν x)P ′

P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′

where
∏

represents the parallel composition of zero or more processes,
∏n

i=1
Pi = P1 | · · · | Pn

for some n � 1, while for n = 0 ∏
i
Pi = 0.

Proposition 2.2. The bπ-Calculus is Turing complete.

Proof. The encoding of a RAM into the bπ-Calculus is similar to the one given for the

π-Calculus, and is shown in Figure 2.

The encoding does not exploit the broadcast capabilities of the bπ-Calculus, but carefully

forces every output to be received by at most one process. Furthermore, since the one-

to-many communication of the bπ-Calculus allows the output message to be lost if some

other process is not listening on the right channel at the right time (in contrast with the

binary synchronisation of the π-Calculus, which requires a previous handshake between

the processes involved), such an encoding ensures the correctness of the computation

by forcing each input to be exhibited before some output may be performed on the

corresponding channel.

2.3. The CPG language

The CPG language (Phillips 2001) is derived from CCS by extending it with a local notion

of priority over actions. CPG fully embeds (syntactically and semantically) CCS so that

any CCS program is still valid and is denoted by the same semantics, but, in addition,

each action can be guarded by a set of names representing the actions whose co-action

availability may prevent its execution. For example, in the system S ,

S � a : b.Q | b.R,

the first action b is guarded by a, so its execution is prevented by the presence of any

parallel complementary action a. Since there is no such co-action in S , it can undergo the

reduction

S → Q | R.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1172

Fig. 2. Definition of the function 〈
[

·
]
〉 for the encoding of RAMs into bπ-Calculus and CPG.

Although different, the two calculi share a common core that is very close to CCS, and this allows

us to use the same encoding function for this kind of RAM.

The system S ′,

S ′ � a.P | S,

cannot reduce in the same way, because of the presence of the action a in a.P . The locality

of this effect can be oberved in the system

S ′′ � a.P | a : b.Q | b.R | c : b.T

where the following reduction over b is possible:

S ′′ → a.P | a : b.Q | R | T .

In fact, the process a : b.Q is still stuck in the presence of the action a, while b.R is free

to synchronise with c : b.T , since the co-action c, which would prevent the reduction with

the last process, is absent.

Definition 2.10. Let N be a set of names on a finite alphabet, x, y, . . . ∈ N. The CPG

syntax is defined in terms of the grammar

P ::= 0
∣∣∣ A〈x̃〉

∣∣∣ ∑
i∈I

Si : αi.Pi

∣∣∣ P1 | P2

∣∣∣ (νx)P

where

αi ::= x
∣∣∣ x

∣∣∣ τ,

and each constant A is assumed to have a unique defining equation A(x̃) � P .

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1173

Si ⊆ N represents the set of actions whose co-action availability prevents the execution

of αi.

We now describe the reduction semantics given in Phillips (2001), in which N is a set

of names, N are the corresponding co-names, U is the set of names that can be used

as priority guards and U are the corresponding co-names. Std = N ∪ N, Pri = U ∪ U,

Vis = Std ∪ Pri, Act = Vis ∪{τ}, with: u, v, . . . ranging over Pri; a, b, . . . ranging over Vis;

α, β, . . . ranging over Act; S, T , . . . ranging over finite subsets of Vis; and U,V , . . . ranging

over finite subsets of Pri.

Definition 2.11. The function fn(P) ⊆ N ∪ U is defined by induction on P ∈ P as

follows:

fn
(∑

i∈I
Si : αi.Pi

)
= {n ∈ N ∪ U | ∃i ∈ I : n ∈ Si ∪ {αi} ∨

n ∈ Si ∪ {αi} ∨
n ∈ fn(Pi) }

fn(P1 | P2) = fn(P1) ∪ fn(P2)

fn((νa)P) = fn(P) \ {a}
fn(A〈a1, . . . , an〉) = {a1, . . . , an}.

Definition 2.12. The congruence relation ≡ on CPG processes is defined as the least

congruence satisfying alpha conversion, the commutative monoidal laws with respect to

both (|,0) and (+,0) and the following axioms:

(νx)P | Q ≡ (νx)(P | Q) if x /∈ fn(Q)

(νx)P ≡ P if x /∈ fn(P)

A〈b̃〉 ≡ P {b̃/ã} if A(ã)
def
= P .

Definition 2.13. The set off(P) ⊆ Pri of ‘higher priority’ actions ‘offered’ by P is defined

by induction on CPG processes by the rules

off
(∑

i∈I
Si : αi.Pi

)
= {αi : i ∈ I, αi ∈ Pri, αi /∈ Si}

off(P1 | P2) = off(P1) ∪ off(P2)

off(νaP) = off(P) \ {a, a}

off(A〈b̃〉) = off(P {b̃/ã}) if A(ã)
def
= P .

Definition 2.14. Let P be a CPG process, and let S ⊆ Act be finite. P eschews S (written

P eschews S) if and only if off(P) ∩ S = �.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1174

Definition 2.15. CPG semantics is given in terms of the reduction relation →X described

by the rules

S : τ.P + M →S∩Pri P

S : a.P + M eschewsT T : a.Q + N eschews S

(S : a.P + M) | (T : a.Q + N) →(S∪T)∩Pri P | Q

P →U P ′ Q eschewsU

P | Q →U P ′ | Q

P →U P ′

(νa)P →U\{a,a} (νa)P ′

Q ≡ P P →U P ′ P ′ ≡ Q′

Q →U Q′ .

We say that P → Q ⇐⇒ ∃X : P →X Q.

The reduction relation →X is parameterised by a set of names X representing the

high-priority actions whose co-action availability would prevent the occurrence of the

described reduction.

We now give the definition of barb for CPG reported in Phillips (2008).

Definition 2.16. Let P be a CPG process. P exhibits barb α, written P ↓ α, if and only if

— P ≡ (νỹ)(S : x.Q + R | T), with α = x, x /∈ ỹ; or

— P ≡ (νỹ)(S : x.Q + R | T), with α = x, x /∈ ỹ.

CPG Turing completeness is directly inherited from CCS.

Proposition 2.3. CPG is Turing complete.

As an alternative proof, one possible encoding of RAMs into CPG is exactly the same as

that given for the bπ-Calculus in Figure 2.

For a full treatment of the CPG language, see Phillips (2001; 2008).

2.4. The FAP language

As previously outlined, the FAP language is a slight variant of a minimal CCSsg fragment,

viz. CCS with the addition of static, global priority (Cleaveland et al. 2001): keeping FAP

minimal means that the expressive power of global priority can be better isolated. Only

two operators are present in FAP: parallel composition and prefix. The prefix operation

is only allowed after input actions, so the output can be considered asynchronous as with

the asynchronous π-Calculus (Honda and Tokoro 1991; Boudol 1992). Output actions are

characterised by two priority levels, meaning that high-priority output synchronisations

are guaranteed to happen before low priority ones. As an example, consider the system

S � a.P | a.Q | b.R | a | a | b.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1175

The processes a, a, b model messages that must be delivered to the processes listening on

the appropriate channels. The message a has higher priority than any other message in S

and hence must be delivered first. Consequently, the only possible transitions of S are

S → P | a.Q | b.R | a | b S → a.P | Q | b.R | a | b

where the process receiving the message is chosen non-deterministically. Also, after this

transition, the low-priority messages a and b can finally be delivered. To simplify the

notation, inputs do not have any denotation of priority, but the results presented in this

paper are completely independent of this design choice.

Definition 2.17. Let N be a set of names on a finite alphabet, x, . . . ∈ N. FAP syntax is

defined in terms of the grammar

P ::= 0
∣∣∣ x.P

∣∣∣ x
∣∣∣ x

∣∣∣ P | Q.

For simplicity, we will define the FAP semantics in terms of a reduction system in the

style of Milner (1993).

Definition 2.18. Structural congruence for FAP is the congruence ≡ generated by the

equations

P | 0 ≡ P

P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R.

Definition 2.19. FAP operational semantics is given in terms of the reduction systems �→
and � described by the following rules:

x.P | x �→ P

x.P | x � P

P � P ′

P | Q � P ′ | Q

P �→ P ′ P | Q �/ R

P | Q �→ P ′ | Q

P ≡ Q P �→ P ′ P ′ ≡ Q′

Q �→ Q′

P ≡ Q P � P ′ P ′ ≡ Q′

Q � Q′ .

We say that P → Q ⇐⇒ P �→ Q ∨ P � Q.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1176

Definition 2.20. For any process in FAP, the function fn is defined as

fn(0) = �

fn(x) = {x}
fn(x.P) = {x} ∪ fn(P)

fn(x) = {x}
fn(P | Q) = fn(P) ∪ fn(Q).

As with the other languages, we define the notion of barb.

Definition 2.21. A FAP process P exhibits barb α, written P ↓ α, if and only if:

— P ≡ x.Q | R, α = x; or

— P ≡ x | R, α = x; or

— P ≡ x | R, α = x.

Proposition 2.4. FAP is not Turing complete.

Proof. Every process P ∈ FAP terminates – FAP has no loop operator, such as bang

or recursion.

3. Encodings

In order to provide the results previously outlined, we now formalise the relevant encoding

conditions for studying the expressiveness separation between languages.

We first formalise the notion of the observables of a program computation, using the

style of Phillips (2008).

Definition 3.1. Let L be a process language with processes P , P0, . . . ∈ L. A computation C
of P is a finite or infinite sequence P = P0 → P1 → · · · . We say C is maximal if it cannot

be extended.

A computation of a process P is the sequence of states that P can reach during its

execution. Each process P may present many different computations due to the non-

determinism intrinsic in concurrent calculi.

Definition 3.2. Let L be a process language with names in N and having processes

P0, . . . , .Pi ∈ L. Let C be a computation P0 → · · · → Pi · · · . Given a set of intended

observables Obs ⊆ N, the observables of C are Obs(C) = {x ∈ Obs : ∃i Pi ↓ x}.

The observables of a computation C are the set of all the external interactions the process

may perform in the states reached during the computation.

Some of the separation results are based on the topology of the network of pro-

cesses: for example, the impossibility of encoding the π-Calculus in value-passing CCS

(Palamidessi 2003) is based on the hypothesis that the encoding does not increase the

connectedness of the network, that is, all the processes that are independent (not sharing

free names) in the source language must remain independent after the encoding. The same

criterion will be necessary to separate FAP and CPG.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1177

Definition 3.3. Let L be a process language. Two processes P ,Q ∈ L are independent if

they do not share any free names, that is, fn(P) ∩ fn(Q) = �.

We now define the conditions an encoding may preserve, in the style of Phillips (2008).

Definition 3.4. Let L,L′ be process languages. An encoding
[[

·
]]

: L → L′ is:

1 Observation-respecting if ∀P ∈ L:

— for every maximal computation C of P there exists a maximal computation C′ of[[
P

]]
such that Obs(C) = Obs(C′); and

— for every maximal computation C of
[[
P

]]
there exists a maximal computation C′

of P such that Obs(C) = Obs(C′).

2 Weakly-observation-respecting if ∀P ∈ L:

— for every maximal computation C of P there exists a maximal computation C′ of[[
P

]]
such that Obs(C) = Obs(C′); and

— for every maximal computation C of
[[
P

]]
there exists a maximal computation C′

of P such that Obs(C) ⊆ Obs(C′).

3 Distribution-preserving if ∀P1, P2 ∈ L,
[[
P1 | P2

]]
=

[[
P1

]]
|

[[
P2

]]
.

4 Renaming-preserving if for any permutation σ of the source names in L there exists

a permutation θ in L′ such that
[[
σ(P)

]]
= θ(

[[
P

]]
) and the permutations are

compatible on observables, that is σ|Obs = θ|Obs.

5 Independence-preserving if ∀P ,Q ∈ L, if P and Q are independent, then
[[
P

]]
and[[

Q
]]

are also independent.

The observation-respecting property is the minimal requirement that any reasonable

encoding should preserve: it ensures that some intended observable behaviour is preserved

by the translation. The weak variant of this condition admits encodings that introduce

divergence or failure deriving from livelocks or deadlocks. Under certain conditions,

such as fairness or other hypotheses on scheduling or execution, the introduction of

divergence or failure by the encoding may be tolerated (Nestmann 2000; Palamidessi and

Herescu 2005) because it would be guaranteed not to happen anyway (or to be very

unlikely).

The distribution-preserving property is a very important feature of an encoding in a

concurrent framework: it implies its compositionality and above all it guarantees that the

degree of parallelism of the translated system does not decrease.

The renaming-preserving property states that the encoding should not introduce

asymmetries in the system. It is essential that this condition is preserved when impossibility

results on problems such as the leader election are based completely on the symmetric

topology of the network.

Independence-preserving represents the property of not increasing the connectedness of

the network.

According to Palamidessi (2003) and Phillips (2008), a distribution- and renaming-

preserving encoding is said to be uniform, and it is said to be reasonable if it

also preserves the intended observables over maximal computations. We say a

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1178

weakly-observation-respecting encoding is sincere if it is complete but only weakly correct,

in the sense that it admits divergence or premature termination.

3.1. The leader election problem

An electoral system represents the situation of a bunch of processes (modelling for example

a set of workstations in a network) aiming to reach a common agreement, that is, deciding

which one of them (and no other) is the leader. The modelling of the election problem

in process algebras requires that the system composed of the network of processes will

sooner or later signal unequivocally the result of the election on some channels ωi, which

consequently become the observables of interest for the computations of the system.

Definition 3.5. Let L be a process language, and processes P1, . . . , Pk ∈ L. A network Net

of size k, with k � 1, is a system Net = P1 | · · · | Pk .

Definition 3.6. A network Net of size k is an electoral system if for every maximal

computation C of Net ∃i � k : Obs(C) = {ωi}, where Obs = {ωi : i ∈ �}.

In order to keep the notation simple, the definition of an electoral system reflects the

design choices made in Palamidessi (2003), Ene and Muntean (1999) and Phillips (2001),

which are based on the hypothesis that the system will never perform external interactions

on channels that are not intended to be observable. As in Phillips (2001; 2008), the winner

process (the leader) is supposed to signal the outcome of the election, while all the other

processes simply do nothing.

Definition 3.7. Given a network of size k, with Net = P1 | · · · | Pk , two nodes Pi and Pj

(with i �= j) are neighbours (or connected) if they are not independent.

Definition 3.8. A network Net of size k, with Net = P1 | · · · | Pk , is connected if one of

the following conditions holds:

— k = 1

— ∃i, j � k, with i �= j, such that Pi and Pj are neighbours and Net′, with

Net′ = P1 | · · · | Pi−1 | Pi+1 | · · · | Pk

is also connected.

In a connected network Net, each node is connected to at least one other node, and there

exists no partition of Net into two subnetworks such that there are no cross connections

between processes from one subnetwork to the other. This condition must hold when

some information needs to be propagated between all the nodes.

Definition 3.9. A network Net of size k, with Net = P1 | · · · | Pk , is fully connected if Pi

and Pj are not independent, ∀i, j � k.

In this case each node may interact directly with any other node in the network.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1179

3.2. The last man standing problem

The last man standing problem represents a very simple situation where a bunch of n

processes in a fully connected network must realise if n = 1 or n > 1 in a distributed way.

The possibility or impossibility of solving the LMS problem is based on the idea that in

a given language L a process P may or may not know if another process Q is ready to

perform some intended action on a given channel. Usually the only way that P can know

of the presence of Q is to try a synchronisation with it. Since the input (and often the

output also) is blocking, P turns out to be blocked if the condition does not hold, or it

follows another computation without any knowledge of the presence of Q. The definition

of the LMS system follows.

Definition 3.10. A network Net of size k is a LMS system if for every maximal computation

C of Net

— Obs(C) = {y} if k = 1

— Obs(C) = {n} if k > 1

where Obs = {y, n}.

4. Separation results

In this section we show the separation results outlined earlier. We begin with those based

on the leader election problem, and then present those based on the LMS problem.

4.1. Leader-election-based separation results

The bπ-Calculus and CPG have been proved capable of solving the leader election in

a fully connected network without knowledge of the number of processes (Ene and

Muntean 1999; Phillips 2001). Here we show that this is possible in FAP in any (not only

a fully) connected network.

Theorem 4.1. Let P1, . . . , Pk be FAP processes, Net = P1 | · · · | Pk . Let

Pn = mn | sn | mn.sn.(ωn | dn1 | · · · | dnzn)

| dn1.(sn | dn1 | · · · | dnzn)

...

| dnzn .(sn | dn1 | · · · | dnzn)

where zn is the number of neighbours of Pn, with 1 � n � k. Each dxy represents an

existing channel (which is not necessarily distinct from some other dwz in the definition)

that connects two neighbour processes. In other words, Pi, Ph are neighbours if and only

if ∃j, l : dij = dhl , with ωi, sj , mh distinct and ωi, sj , mh �= dpq, ∀i, j, h, p, q. If Net is connected,

then Net is an electoral system.

Proof. For k = 1, any maximal computation of Net = P1 is of the form

P1 ≡ m1 | s1 | m1.s1.ω1 �→ s1 | s1.ω1 � ω1,

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1180

hence Net is an electoral system. In fact, the first reduction is only possible by a

synchronisation on channel m1, while the second is a prioritised reduction on channel s1.

For k � 1,Net = P1 | · · · | Pk , the first (low-priority) reduction can happen only on

one of the mn channels. We can suppose without loss of generality that it happens on

channel m1. Then the only possible (high-priority) reduction is on channel s1, and the

system evolves as follows:

Net =P1 | P2 | · · · | Pk �→
Q1 | P2 | · · · | Pk �

Q2 | P2 | · · · | Pk = Net2

with

Q1 = sn | s1.(ω1 | d11 | · · · | d1z1
) | d11.(s1 | d11 | · · · | d1z1

)

...

| d1z1
.(s1 | d11 | · · · | d1z1

)

and

Q2 = ω1 | d11 | · · · | d1z1
| d11.(s1 | d11 | · · · | d1z1

)

...

| d1z1
.(s1 | d11 | · · · | d1z1

).

As in the previous case, after the first two reductions the system already exhibits the

winner. We must verify that for any subsequent computation, no other barb on ωi, i �= 1,

is exhibited. To prove this, we must ensure that every input on si, i �= 1, is exhibited by a

sequence of high-priority reductions before some other low-priority reduction on any of

the channels mi, i �= 1 may occur: in this way any high-priority message si, i �= 1 would be

extinguished and none of the remaining ωi channels may be exhibited.

We first note that for every reduction P → P ′ on channels dnj:

— the number of high-priority outputs on channel dnj in P and P ′ is the same (if

dnj �= dnh∀n, j, h, otherwise it also increases);

— the number of inputs on channel dnj decreases;

— the number of inputs on channel si for some i increases;

— the number of high-priority outputs on channels dn′h, with (n′, h) �= (n, j), may (only)

grow.

For each neighbour Pi of P1, there exists some j, h such that d1j = dih. This means that

in Net2, for each neighbour Pi of Q2, there is an output dih ready to react with the

corresponding input on dih and to disclose an input on si. After each reduction on some

d1j , the number of inputs on s1 increases, but they can only grow up to a maximum of z1.

This means that after at most z1 + 1 (high-priority) reductions, an input on si for some

i, Pi neighbour of Q2, is exhibited. In turn, after at most another zi + 1 + 1 reductions

(we must take the reduction on si into account) another input on sj , Pj neighbour of Pi

or Q2, is exhibited, and so on. Since the network is connected, after at most n +
∑

n∈N zn

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1181

high-priority reductions, Net2 leads to a system where every sn is exhibited, thanks to the

fact that the number of high-priority outputs dnj never decreases, and is thus sufficient to

elide any input on dnj . After this chain of high-priority reductions, a sequence of k − 1

low-priority reductions on channels mi, i �= 1, occur, and then (because of the lack of any

output si) the computation ends before any other ωi is exhibited.

The next lemma (Phillips 2008) is used to prove that the above results cannot be

obtained in the π-Calculus without knowing the number of processes in the electoral

system, and also that the LMS problem is undecidable. As noted in Phillips (2008), this

would also be true for any language having a comparable semantics for the parallel

operator, such as Mobile Ambients (Cardelli and Gordon 1998).

Lemma 4.1. For any π-Calculus processes P1, P2, if Pi has a maximal computation with

observables Oi(i = 1, 2), then P1 | P2 has a maximal computation with observables O

such that O1 ∪ O2 ⊆ O.

Next we state a similar but weaker result for the bπ-Calculus, which is also needed to

show the separation from FAP and CPG based on the LMS problem.

Lemma 4.2. For any bπ-Calculus processes P1, P2, if Pi has a maximal computation with

observables Oi(i = 1, 2), then P1 | P2 has two maximal computations C1 and C2 (which

are not necessarily distinct) with observables O′
1 and O′

2, respectively, such that Oi ⊆ O′
i .

Proof. Let

Pi → Pi2 → · · · → Pin → · · ·
be the two maximal computations (which may be empty, finite or infinite) of P1 and P2,

with observables O1 and O2, respectively. If P1 � and P2 � (empty computations), the

sets of observables O1 and O2 are trivially included in the observables of P1 | P2.

If P1 → P12, then

P1 ≡ (νã)(π.Q | R) with π = τ or π = x〈ỹ〉

and

P1 | P2 → P12 | P ′
2

where P ′
2 may be the same as P2 if (at least) one of the following conditions holds:

— π = τ

— x ∈ ã

— P2 ↓� x.

In the same way, if P12 → P13, then

P12 | P ′
2 → P13 | P ′′

2 ,

and so on. By defining

C1 =P1 | P2 → P12 | P ′
2 → P13 | P ′′

2 → · · · ,

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1182

we have that O1 ⊆ O′
1. Symmetrically, by defining

C2 =P1 | P2 → P ′
1 | P22 → P ′′

1 | P23 → · · · ,

we have O2 ⊆ O′
2.

The next theorem follows the idea in Ene and Muntean (1999) and Phillips (2001). As

discussed for the definition of sincere semantics, here the condition on the preserved ob-

servables is weaker than those considered in Ene and Muntean (1999) and Phillips (2001),

but it is possible to relax them as well.

Theorem 4.2. There is no distribution-preserving and weakly-observation-respecting en-

coding of FAP in the π-Calculus.

Proof. Consider

Pn = mn | sn | mn.sn.(ωn | d) | d.(sn | d)

for n = 1, 2. By Theorem 4.1, Net1 = P1, Net2 = P2 and Net12 = P1 | P2 are electoral

systems. Let
[[

·
]]

be a weakly-observation-respecting and distribution-preserving encoding

of FAP into the π-Calculus. Hence
[[
P1

]]
has a maximal computation C1 with observables

Obs(C1) = {ω1}, because of the weakly-observation-respecting condition. However,
[[
P2

]]
also has a maximal computation C2 with observables Obs(C2) = {ω2}.

So we have, for the distribution-preserving property,
[[

Net12

]]
=

[[
P1 | P2

]]
=

[[
P1

]]
|

[[
P2

]]
.

By Lemma 4.1,
[[

Net12

]]
has a maximal computation C12 with observables

{ω1, ω2} ⊆ Obs(C12), which are not included in the set of observables of any maximal

computation of Net12, which contradicts
[[

·
]]

being weakly-observation-preserving.

In order to formalise the separation between FAP and CPG, we will now give the

definitions pertaining to symmetric configurations of electoral systems from Phillips (2008).

As previously outlined in Section 3.1, to keep the notation simple, we omit restrictions

and the restriction-preserving conditions present in Phillips (2008).

Definition 4.1. Let L be a process language with names in N. A permutation is a bijection

σ : N → N such that σ preserves the distinction between observable and non-observable

names, that is, a ∈ Obs ⇐⇒ σ(a) ∈ Obs. Any permutation σ induces a mapping on

processes: P is equal to σ(P), except that any name a of P is mapped onto σ(a) in σ(P).

Given Obs = {ωi : i ∈ �}, a permutation σ induces a bijection σ̂ : � → � defined as

σ̂(i) = j ⇐⇒ σ(ωi) = ωj , thus σ(ωi) = ωσ̂(i).

Definition 4.2. Let Net = P1 | . . . | Pk be a network of size k. An automorphism on Net

is a permutation σ such that σ̂|{1,...,k} is a bijection.

Definition 4.3. Let σ be an automorphism on a network of size k. For any i ∈ {1, . . . , k},
the orbit Oσ̂(i) generated by σ̂ is defined as

Oσ̂(i) = {i, σ̂(i), σ̂2(i), . . . , σ̂(h−1)(i)}

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1183

where σ̂j represents the composition of σ̂ with itself j times, and h is the least value such

that σ̂h(i) = i.

Definition 4.4. A network Net = P1 | . . . | Pk is symmetric with respect to an automorphism

σ if and only if ∀i = 1, . . . , k Pσ̂(i) = σ(Pi). Net is symmetric if it is symmetric with respect

to some automorphism with a single orbit (of size k).

Definition 4.5. A ring is a network Net = P1 | . . . | Pk which has a single-orbit

automorphism σ such that ∀i, j < k, if fn(Pi) ∩ fn(Pj) �= � then i = j or σ̂(i) = j or

σ̂(j) = i. A ring is symmetric if it is symmetric with respect to such an automorphism σ.

The following lemma is also stated in Phillips (2008).

Lemma 4.3. Let L,L′ be process languages. If
[[

·
]]

: L → L′ is a uniform, observation-

respecting and independence-preserving encoding, then for any electoral system Net that

is a symmetric ring of size k, we have
[[

Net
]]

is also a symmetric ring of size k that is an

electoral system.

Corollary 4.1. For any k � 1, there is a symmetric ring of size k in FAP that is an electoral

system.

Proof. It is sufficient to choose a connected symmetric ring and apply Theorem 4.1.

The following theorem from Phillips (2008) implies the non-encodability of the π-

Calculus in CPG, but also of FAP into CPG.

Theorem 4.3. For any composite (that is, non-prime) k � 6, if Net is a symmetric ring of

size k in CPG, then Net is not an electoral system.

Theorem 4.4. There is no uniform, observation-respecting and independence-preserving

encoding of FAP into CPG.

Proof. The statement follows from Lemma 4.3, Corollary 4.1 and Theorem 4.3.

It is worth observing that while the separation between π-Calculus and CPG arises as a

result of the capability of communicating new names proper in the π-Calculus, the separ-

ation between FAP and CPG is a strict consequence of the different scope of priority in

the two languages. This can be explained straightforwardly using the simple configuration

of Figure 3, where a ring of size 6 is represented schematically in both FAP and CPG. As

stated by Corollary 4.1 and Theorem 4.3, leader election is possible in the first system but

not in the second one. In fact, the preemptive effect of global priority is not circumscribed

in any way, so that the production of a single high-priority output in FAP freezes all the

processes trying to perform low-priority reductions. This effect can be exploited for electing

the leader in the ring of Figure 3(a), where the processes P1, . . . , P6 are in a low-priority state

(that is, they are ready to perform just low-priority reductions). The first process (for ex-

ample, P1) that changes its internal state can immediately become the leader by producing

a high-priority output, which freezes all the other processes and propagates a chain of high-

priority reductions in order to denote them as non-leader processes. However, this mech-

anism cannot be exploited in CPG, because the preemptive effect is bound to the scope

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1184

Fig. 3. Expressiveness of global (a) versus local (b) priority by leader election in a symmetric ring

of size 6. The execution of high-priority reductions in languages characterised by global priority

such as FAP (a) implies the freezing of all the low priority reductions in the system, regardless of

the scope of the channel over which they occur. Conversely, languages such as CPG circumscribe

the preemptive effect to the neighbour processes. This difference allows a partially distributed

implementation of this kind of priority, in contrast to the complete centralisation required for the

global variant.

of restricted names, so only the neighbour processes can be frozen in this way: thanks to

binary synchronisation, the process P1 in Figure 3(b) may denote process P2 as non-leader

and freeze P3 and P6 (the neighbours of P2 and P1, respectively) by exploiting local priority.

However, the processes P4 and P5 may still attempt the same local leader election since

they cannot detect in any way the state changes of the rest of the system, so the symmetry

of the ring is restored and in at least one computation will never be irreversibly broken.

The price for the superior expressiveness of global priority may be revealed in a

distributed implementation by the overhead introduced for the additional synchronisations

needed to freeze all the low-priority processes before the execution of a high-priority

reduction. A unique, central coordinator (represented by C in Figure 3(a)) should be

introduced to achieve this result, while in CPG the localised effect of priority would allow

the partial distribution of such coordination.

4.2. LMS-based separation results

In this section, we formalise the separation results based on the last man standing

problem. First we show that the LMS can be solved in both FAP and CPG, and then,

from this expressive capability, we derive the impossibility of encoding FAP or CPG in the

π-Calculus or bπ under distribution- and weak-preservation of observables hypotheses.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1185

Lemma 4.4. Let P be the following FAP process:

P = m | s | q | k.(s | q | k) | m.s.(s.q.(k | n) | l | l.q.y).

Then Netk = P | · · · | P︸ ︷︷ ︸
k

is an LMS system of size k, ∀k � 1.

Proof. For k = 1, Net1 = P , Net1 has only one maximal computation C

P �→ P1 = s | q | k.(s | q | k) | s.(s.q.(k | n) | l | l.q.y) �

P2 = q | k.(s | q | k) | s.q.(k | n) | l | l.q.y �→
P3 = q | k.(s | q | k) | s.q.(k | n) | q.y �

P4 = k.(s | q | k) | s.q.(k | n) | y

where P4 does not allow any further transition and Obs(C) = {y}, as required by an LMS

system of size 1.

For k = 2, Net2 = P | P , Net2 has several possible computations C of the same length

leading to the same final state

Q9 = s | n | q.y | s | q | k | D

where

D = s.(s.q.(k | n) | l | l.q.y).

One of these computations is

Net2 = P | P �→ P1 | P � P2 | P �

Q3 = q | k.(s | q | k) | q.(k | n) | l | l.q.y |
m | q | k.(s | q | k) | m.D �

Q4 = k.(s | q | k) | k | n | l | l.q.y |
m | q | k.(s | q | k) | m.D �

Q5 = s | q | k | n | l | l.q.y |
m | q | k.(s | q | k) | m.D �

Q6 = s | q | n | l | l.q.y |
m | q | s | q | k | m.D �

Q7 = s | n | l | l.q.y |
m | s | q | k | m.D �→

Q8 = s | n | q.y |
m | s | q | k | m.D �→

Q9 = s | n | q.y |
s | q | k | D.

We have that Q9 does not allow any further reduction. For each computation C leading

to Q9, Obs(C) = {n} ∀C, as required by an LMS system of size 2. In fact, while Q9 ↓ n,

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1186

any barb y is guarded by two inputs on channels l and q, but each high-priority output

q is consumed before any low-priority output l may react.

For k � 3, Netk has k2 possible initial (low-priority) reductions on channel m that

lead to congruent states. As with Net2, the first reductions happen on channels m, s, s, q,

respectively:

Netk �→ P1 | P | · · · | P︸ ︷︷ ︸
k−1

� · · · � Q4 | P | · · · | P︸ ︷︷ ︸
k−2

= Netk4.

For k � 3, a chain of high-priority reductions happen on channels k, s, q until every

input on k is consumed. After this chain of high-priority reductions, every output s, q is

consumed and no other observables {y, n} can be exhibited. After another k low-priority

transitions (one on l and k − 1 on m), no further reduction is possible. Since for every

computation no barb on y is exhibited, Netk is an LMS system.

Lemma 4.5. Let P be a CPG process:

P = a : b.a | b.(b : τ.y | z : b.(b | n | z)).

Then Netk = P | · · · | P︸ ︷︷ ︸
k

is an LMS system of size k, ∀k � 1.

Proof. For k = 1, Net1 = P , Net1 has only one maximal computation C:

P → P1 = a | b : τ.y | z : b.(b | n | z) →P2 = a | y | z : b.(b | n | z)

where P2 does not allow any further transition and Obs(C) = {y}, as required by an LMS

system of size 1.

For k = 2, Net2 = P | P , Net2 has two possible computations C,C′ of length 2 leading

to states congruent to Q2:

Net2 = P | P → P1 | P →
Q2 = a | b : τ.y | b | n | z | a : b.a | b : τ.y | z : b.(b | n | z).

Q2 is a final state and for both computations Obs(C) = Obs(C′) = {n}, as required by an

LMS system of size 2.

For k � 3, Netk has k · (k − 1) possible computations of length 2 leading to states

congruent to Netk2:

Netk → P1 | P | · · · | P︸ ︷︷ ︸
k−1

→ Q2 | P | · · · | P︸ ︷︷ ︸
k−2

= Netk2.

Netk2 is a final state and for any computation C of Netk , Obs(C) = {n}, as required for an

LMS system of size k.

The following is an alternative to using Theorem 4.2 to prove the separation between

FAP and π-Calculus, and acts as a template for the theorems following it.

Theorem 4.5. There is no distribution-preserving and weakly-observation-respecting en-

coding
[[

·
]]

of FAP in the π-Calculus.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1187

Proof. Suppose
[[

·
]]

is distribution-preserving and weakly-observation-respecting. By

Lemma 4.4, ∃P : Netk is an LMS system for any k � 1, where Netk = P | . . . | P .

By the weakly-observation-respecting condition,
[[

Net1
]]

has a computation C1 with

observables Obs(C1) = {y}. By the distribution-preserving condition,
[[

Netk
]]

=
[[
P | · · · | P

]]
=

[[
P

]]
| · · · |

[[
P

]]
=

[[
Net1

]]
| · · · |

[[
Net1

]]
.

By Lemma 4.1, there exists a maximal computation Ck of
[[

Netk
]]

such that Obs(C1) =

{y} ⊆ Obs(Ck), while no computation of Netk contains observable y for k � 2, which

contradicts the weakly-observation-respecting property of the encoding function
[[

·
]]
.

Theorem 4.6. There is no distribution-preserving and weakly-observation-respecting en-

coding of CPG into the π-Calculus.

Proof. By Lemma 4.5, using exactly the same reasoning as in Theorem 4.5.

Theorem 4.7. There is no distribution-preserving and weakly-observation-respecting en-

coding of FAP in the bπ-Calculus.

Proof. By Lemmas 4.2 and 4.4, using exactly the same reasoning as in Theorem 4.5.

Theorem 4.8. There is no distribution-preserving and weakly-observation-respecting en-

coding of CPG in the bπ-Calculus.

Proof. By Lemmas 4.2 and 4.5, using exactly the same reasoning as in Theorem 4.5.

5. Conclusion

We have considered FAP, a finite fragment of CCS augmented with global priority,

and have proved, by means of leader-election-based separation results, that it is not

possible to encode it in CPG under uniformity and independence-preserving conditions

on the encoding, thus providing the first expressiveness separation result between global

and local priority within a process algebra framework. We then proved that FAP

cannot be distributively translated into the π-Calculus even if allowing partially correct

implementations, that is, encodings that may introduce divergence in computations or

premature termination caused by deadlock.

We then analysed another setting, called the last man standing (LMS) problem, which

allows us to considerably strengthen the separation between prioritised (with both global

or local priority) languages and non-prioritised ones, by showing that even if we equip

the language with broadcast-based primitives as in the bπ-Calculus, the expressiveness of

priority cannot be obtained under parallel-preserving conditions.

In conclusion, we have shown that, within the context of the process algebras con-

sidered here, it is not possible to have a distribution-preserving encoding of either

global or local priority in non-prioritised languages, even if we admit asymmetric

translations or divergence/failure in the computation as a consequence of livelocks or

deadlocks. This impossibility result does not depend on the capability of communication

of names or values, synchrony or asynchrony of the output, scope extrusion, choice

of the available input/outputs, recursion or replication, point-to-point or broadcast

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

C. Versari, N. Busi and R. Gorrieri 1188

communication/synchronisation type. Nor does it depend on Turing completeness: in

fact the non-encodability of FAP in the π-Calculus, bπ and CPG holds even if FAP

is the only non-Turing complete calculus amongst the calculi considered here, and the

other non-encodability results would also still hold by considering finite variants of

the relevant calculi. Therefore, this impossibility depends only on the power of the

instantaneous preemption characteristic of the prioritised languages analysed in this

paper. As a consequence, we can see that it is impossible to have any purely distributed

implementation of these kinds of priority on top of standard process calculi, even if

we admit good or randomised encodings like those considered in Nestmann (2000) and

Palamidessi and Herescu (2005) for the implementation of the choice operator. The

strength of the separation also suggests that any encoding trying to preserve some relaxed

condition on the distribution may be affected by severe performance issues due to the

further synchronisations needed to preserve the constraint of instantaneous preemption.

A deeper characterisation of the expressiveness of different kinds of priority is planned

as future work. In particular, further separation results between the global and local

variants of priority considered here need to be investigated in order to strenghten the

existing separation, as well as to determine settings where (CPG style) local priority may

turn out to be more expressive.

We also plan to analyse process algebras equipped with non-instantaneous priority

(in the style of the expressiveness study on PrioLinCa (Bravetti et al. 2005)), that is,

languages where the effect of preemption is not immediate, in order to better characterise

the expressive power of preemption and to identify prioritised constructs that are easier

to implement in a parallel, if not distributed, framework.

Acknowledgements

The authors would like to thank the referees for their detailed remarks and helpful

suggestions.

References

Baeten, J., Bergstra, J. and Klop, J. (1986) Syntax and defining equations for an interrupt mechanism

in process algebra. Fundamenta Informaticae IX (2) 127–168.

Baeten, J. C.M., Bergstra, J. A. and Klop, J.W. (1987) Ready-trace semantics for concrete process

algebra with the priority operator. Comput. J. 30 (6) 498–506.

Bernardo, M. and Gorrieri, R. (1996) Extended Markovian process algebra. In: Montanari, U. and

Sassone, V. (eds) CONCUR. Springer-Verlag Lecture Notes in Computer Science 1119 315–330.

Bernardo, M. and Gorrieri, R. (1998) A tutorial on empa: A theory of concurrent processes with

nondeterminism, priorities, probabilities and time. Theor. Comput. Sci. 202 (1–2) 1–54.

Boudol, G. (1992) Asynchrony and the π-Calculus. Technical Report 1702, Department of Computer

Science, INRIA Sophia-Antipolis.

Bougé, L. (1988) On the existence of symmetric algorithms to find leaders in networks of

communicating sequential processes. Acta Inf. 25 (2) 179–201.

Bravetti, M. and Gorrieri, R. (2002) The theory of interactive generalized semi-Markov processes.

Theor. Comput. Sci. 282 (1) 5–32.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

An expressiveness study of priority in process calculi 1189

Bravetti, M., Gorrieri, R., Lucchi, R. and Zavattaro, G. (2005) Quantitative information in the tuple

space coordination model. Theor. Comput. Sci. 346 (1) 28–57.

Camilleri, J. and Winskel, G. (1995) CCS with priority choice. Inf. Comput. 116 (1) 26–37.

Cardelli, L. and Gordon, A. D. (1998) Mobile ambients. In: Nivat, M. (ed.) FoSSaCS. Springer-Verlag

Lecture Notes in Computer Science 1378 140–155.

Cleaveland, R. and Hennessy, M. (1990) Priorities in process algebras. Inf. Comput. 87 (1/2) 58–77.

Cleaveland, R., Lüttgen, G. and Natarajan, V. (2001) Priority in process algebra. In: Bergstra, J.,

Ponse, A. and Smolka, S. (eds.) Handbook of Process Algebra, Elsevier Science Publishers 711–765.

Ene, C. and Muntean, T. (1999) Expressiveness of point-to-point versus broadcast communications.

In: Ciobanu, G. and Paun, G. (eds.) FCT. Springer-Verlag Lecture Notes in Computer Science

1684 258–268.

Hermanns, H. (2002) Interactive Markov Chains: The Quest for Quantified Quality. Springer-Verlag

Lecture Notes in Computer Science 2428.

Hoare, C.A.R. (1985) Communicating sequential processes, Prentice-Hall.

Honda, K. and Tokoro, M. (1991) An object calculus for asynchronous communication. In:

America, P. (ed.) ECOOP. Springer-Verlag Lecture Notes in Computer Science 512 133–147.

Le Lann, G. (1977) Distributed systems – towards a formal approach. In: IFIP Congress 155–160.

Milner, R. (1980) A Calculus of Communicating Systems. Springer-Verlag Lecture Notes in Computer

Science 92.

Milner, R. (1990) Functions as processes. In: Proceedings of the seventeenth international colloquium

on Automata, languages and programming, Springer-Verlag 167–180.

Milner, R. (1993) The polyadic pi-calculus: a tutorial. In: Bauer, F. L., Brauer, W. and

Schwichtenberg, H. (eds.) Logic and Algebra of Specification, Springer-Verlag 203–246. (Preprint

version (1991) available at citeseer.ist.psu.edu/article/milner91polyadic.html.)

Milner, R. (1999) Communicating and mobile systems: the π-calculus, Cambridge University Press.

Milner, R., Parrow, J. and Walker, D. (1992a) A calculus of mobile processes, I. Inf. Comput. 100

(1) 1–40.

Milner, R., Parrow, J. and Walker, D. (1992b) A calculus of mobile processes, II. Inf. Comput. 100

(1) 41–77.

Minsky, M. (1967) Computation: finite and infinite machines, Prentice-Hall.

Nestmann, U. (2000) What is a “good” encoding of guarded choice? Inf. Comput. 156 (1–2) 287–319.

Palamidessi, C. (1997) Comparing the expressive power of the synchronous and the asynchronous

pi-calculus. In: POPL. 256–265.

Palamidessi, C. (2003) Comparing the expressive power of the synchronous and asynchronous

pi-calculi. Mathematical Structures in Computer Science 13 (5) 685–719.

Palamidessi, C. and Herescu, O. M. (2005) A randomized encoding of the pi-calculus with mixed

choice. Theor. Comput. Sci. 335 (2–3) 373–404.

Phillips, I. (2001) CCS with priority guards. In: Larsen, K.G. and Nielsen, M. (eds.) CONCUR.

Springer-Verlag Lecture Notes in Computer Science 2154 305–320.

Phillips, I. (2008) CCS with priority guards. Journal of Logic and Algebraic Programming 75 (2)

139–165.

Versari, C., Busi, N. and Gorrieri, R. (2007) On the expressive power of global and local priority

in process calculi. In: Caires, L. and Vasconcelos, V. T. (eds.) CONCUR. Springer-Verlag Lecture

Notes in Computer Science 4703 241–255.

Vigliotti, M., Phillips, I. and Palamidessi, C. (2007) Tutorial on separation results in process calculi

via leader election problems. Theoretical Computer Science 388 (1–3) 267–289.

https://doi.org/10.1017/S0960129509990168 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129509990168

