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GENERIC EXISTENCE OFMAD FAMILIES

OSVALDOGUZMÁN-GONZÁLEZ,MICHAEL HRUŠÁK, CARLOS AZARELMARTÍNEZ-RANERO,
AND ULISES ARIET RAMOS-GARCÍA

Abstract. In this note we study generic existence of maximal almost disjoint (MAD) families. Among
other results we prove that Cohen-indestructible families exist generically if and only if b = c. We obtain
analogous results for other combinatorial properties of MAD families, including Sacks-indestructibility
and being +-Ramsey.

§1. Introduction. An infinite family A of infinite subsets of � is almost dis-
joint (AD) if the intersection of any two distinct elements of A is finite. It is
maximal almost disjoint (MAD) if it is not properly included in any largerAD family
or, equivalently, if given an infiniteX ⊆ � there is anA ∈ A such that |A∩X | = �.
ManyMAD families with special combinatorial or topological properties can be
constructed using set-theoretic assumptions like CH,MA, or b = c. However, special
MAD families are notoriously difficult to construct in ZFC alone. The reason being
the lack of a device ensuring that a recursive construction of a MAD family would
not prematurely terminate, an object that would serve a similar purpose as indepen-
dent linked families do for the construction of special ultrafilters (see [16]). There
is also a definite lack of negative (i.e., consistency) results. The following problem
due to J. Steprāns presents one the basic open test problems for understanding the
behaviour of MAD families in forcing extensions.

Problem 1.1 ([25]). Is there a Cohen-indestructible MAD family in ZFC?

As we mentioned before, the main difficulty lies in ensuring that a recursive
construction of a MAD family does not terminate prematurely. This can be done
typically either by means of cardinality considerations alone or by using an ad hoc
construction for the problem at hand. In this paper we focus on the former.
The following is one of the most important definitions in this note.

Definition 1.2. LetP be a property ofMAD families. We sayMAD families with
propertyP exist generically if every AD family of size less than c can be extended to
a MAD family with property P.

We begin with a simple example. Recall that a MAD family A is completely
separable if every subset of � which can not be almost covered by finitely many
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elements of A contains an element of A. It is not known, whether completely
separable MAD families exist in ZFC [24]. However, it is easy to see that completely
separable MAD families exist generically if and only if a = c. On the one hand,
assuming a = c, a straightforward and well-known recursive construction permits
to extend any AD family of size less than c to a completely separable MAD family,
while if a < c, then there is aMAD family of size less than c, which is not completely
separable1 and since it is already maximal can not be extended to a completely
separable MAD family.
One of themain results in this paper is the following theoremwhich gives a partial
answer to the Problem 1.1.
Theorem 1.3. Cohen-indestructible families exist generically if and only if b = c.
Extensions of AD families to maximal ones have been previously investigated by
Leathrum in [19] and by Fuchino, Geschke, and Soukup in [8]. Generic existence
of ultrafilters has been introduced by Canjar in [7] and was recently investigated by
Brendle and Flašková in [5].
Given a forcing notion P, a MAD family A is P-indestructible if A remains
maximal after forcing with P. It follows from the proof of b ≤ a (see [2]) that if
P adds a dominating real then it destroys every MAD family from the ground
model, so the definition is only interesting when P does not add dominating reals.
Our main focus is on Sacks and Cohen indestructible MAD families.
If A is an AD family on � (or any countable set) we denote by A ⊥ the set of all
infinite X ⊆ � that are almost disjoint with every element ofA . IfI is an ideal on
�, we denote byI + as those subsets of � that are not inI . We shall only consider
ideals which extend the ideal of finite sets. IfX ∈ I + then byI � X we will denote
the restriction ofI toX , that is,I � X = {I ∩X : I ∈ I } which is an ideal onX .
We say I is tall if for every infinite X ⊆ � there is an infinite A ∈ I such that
A ⊆ X . There is a close relationship between MAD families and definable ideals
(typically Borel of low complexity). We shall also investigate the connection here.

Definition 1.4. Let I be an ideal (on a countable set). Then:
(1) We define cov∗ (I ) as the least size of a family B ⊆ I such that for every
infinite X ∈ I there is B ∈ B for which B ∩ X is infinite.

(2) IfI is tall, we define cov+ (I ) as the least size of a familyB ⊆ I such that
for every Y ∈ I + there is B ∈ B for which B ∩ Y is infinite.

(3) We say an AD family A ⊆ I is a MAD family restricted to I if for every
infinite X ∈ I there is A ∈ A such that |X ∩ A| = �.

(4) a (I ) is the least size of a MAD family restricted to I .
(5) For tall ideals, we define a+ (I ) as the least size of an AD family A such
thatA ∪ A ⊥ ⊆ I (or in other words, if Y ∈ I + then there is A ∈ A such
that |Y ∩ A| = �).

Note that if I is tall, then cov∗ (I ) is just the least size of a family B ⊆ I
such that for every infinite X ⊆ � there is B ∈ B for which B ∩ X is infinite, also
cov+ (I ) ≤ cov∗ (I ). In general, cov∗ (I ) ≤ a (I ) and for tall ideals cov+ (I ) ≤
a+ (I ) and a+ (I ) ≤ a (I ). For the definitions of the classical invariants of the
continuum see [2].

1Every completely separable MAD family has size c.
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§2. Destructibility ofMAD families. LetI be a tall ideal on� andP be a forcing
notion. Recall that I is P-indestructible if I remains tall after forcing with P and
otherwise it isP-destructible. It is easy to see that aMADfamilyA isP-indestructible
if and only ifI (A ) is P-indestructible. For the sake of the reader, wewill nowquote
some results about destructibility. The key is to associate to every �-ideal on the
Baire space (Cantor space) an ideal on �<� (2<�) and this is done by the notion of
trace ideal.

Definition 2.1 ([6]). Given a ⊆ �<� we define � (a) = {b ∈ �� :
∃∞n(b � n ∈ a)}. If I is a �-ideal on �� define its trace ideal tr (I ) =
{a ⊆ �<� : � (a) ∈ I }.
Clearly � (a) is a G� set for every a ⊆ �<� . The Katětov order plays a crucial
role when studying destructibility of ideals and MAD families.

Definition 2.2. Let A,B be two countable sets and I ,J be two ideals on A
and B, respectively.

(1) We say that I is Katětov below J (denoted by I ≤K J ) if there is a
function f : B −→ A such that f−1[I ] ∈ J , for all I ∈ I . The function
f is called a Katětov function. We say that I is a Katětov-Blass below J
(I ≤KB J ) if the function f may be taken finite-to-one (in this case f is
called a Katětov-Blass function).

(2) We say thatI is Katětov equivalent toJ ifI ≤K J andJ ≤K I and we
denote it by I 	K J , the analogous definition holds for the Katětov-Blass
order.

Observe that if a forcing notion P destroys an ideal J and I ≤K J , then P
also destroys I . In fact, suppose that P destroysJ and that f : B −→ A witness
I ≤K J . Find a P-name Ẋ for an infinite subset ofB such that� “|Ẋ ∩J | < � for
all J ∈ J .” Note that� “f′′Ẋ /∈ I , ” so in particular is infinite and it also witness
that I is not tall in the extension. It is also immediate to see that if X ∈ I + then
I ≤KB I � X . An ideal I is called Katětov-Blass uniform if I is Katětov-Blass
equivalent to all its restrictions (equivalently, if X ∈ I +, then I � X ≤KB I ).
Given a �-ideal I on �� , PI denotes the collection of all Borel sets in I+ ordered
by the I -almost inclusion. The ideal I has the continuous reading of names [26] if for
all B ∈ PI and each Borel function f : B −→ �� , there is a Borel set C ∈ I+ such
that C ⊆ B and f � C is continuous. We shall need the following result of Hrušák
and Zapletal.

Proposition 2.3 ([12]). Let I be a �-ideal on �� such that PI is proper with
continuous reading of names andJ be an ideal on�. Then the following are equivalent:

(1) There is a B ∈ PI such that B � “J is not tall.”
(2) There is an a ∈ tr (I )+ such thatJ ≤K tr (I ) � a.
In many cases occurring in practice, particularly for the forcing notions discussed
in this article, the previous items are also equivalent to there is an a ∈ tr (I )+ such
thatJ ≤KB tr (I ) � a.
Let I be a �-ideal on �� , recall that I is continuously homogeneous if for every
B ∈ PI there is a continuous functionf : �� −→ B such thatf−1 [A] ∈ I for every
A ∈ I � B.
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Corollary 2.4 ([12]). Let I be continuously homogeneous �-ideal on �� such
that PI is proper with continuous reading of names such that tr (I ) is Katětov-Blass
uniform andJ be an ideal on �. Then the following are equivalent:
(1) J is PI -destructible,
(2) J ≤K tr (I ),
(3) J ≤KB tr (I ).
Let nwd be the ideal of all nowhere dense sets of the rational numbers, ctbl be the
�-ideal of all countable sets in the Baire space, andK� be the ideal generated by all
�-compact sets of the Baire space. It can be shown that tr (M) is Katětov equivalent
to nwd and it is easy to see that bothM and ctbl are continuously homogeneous.
Therefore, we can conclude the following.

Corollary 2.5 ([10] and [6]). LetI be an ideal on�, then the following holds:
(1) I is Cohen-destructible if and only if I ≤KB nwd,
(2) I is Sacks-destructible if and only if I ≤KB tr (ctbl),
(3) I is Miller-destructible if and only if I ≤KB tr (K�).
Sacks destructibility is particularly interesting due to the following result.

Proposition 2.6 ([10]). If P adds a new real, then P destroys tr (ctble).
Therefore, if I is Sacks-destructible, then it is Q-destructible by any forcing Q that
adds a new real.
Proof. Let r ∈ V [G ] be a new real and set r̂ = {r � n : n ∈ �}. Note that if
a ∈ (tr (ctbl)) ∩ V , then r /∈ � (a). This implies that r̂ ∩ a =∗ ∅, hence tr (ctbl)V
was destroyed. �
By a similar argument, we can show the following:

Proposition 2.7 ([6]). If P adds an unbounded real, then P destroys tr (K�).
Therefore, if I is Miller-destructible, then it is Q-destructible by any forcing Q that
adds an unbounded real.
It is easy to show that if I ≤K J , then cov∗ (J ) ≤ cov∗ (I ). It is a result of
Keremedis [15] (see also [1]) that cov∗ (nwd) = cov (M), it is not hard to see that
cov∗ (tr (ctbl)) = c and cov∗ (tr (K�)) = d. IfA is a MAD family, then it is straight
forward to check that cov∗ (I (A )) = |A |.
Corollary 2.8. Let A be a MAD family. Then:
(1) If A is Cohen-destructible, then cov (M) ≤ |A |,
(2) If A is Sacks-destructible, then |A | = c,
(3) If A is Miller-destructible, then d ≤ |A |.
It follows.

Corollary 2.9 ([10] and [6]). (1) If a < cov (M), then there is a Cohen-
indestructible MAD family,

(2) If a < c, then there is a Sacks-indestructible MAD family,
(3) If a < d, then there is a Miller-indestructible MAD family.
Given an AD family A we say that it is I -MAD if I (A ) �KB I .

Proposition 2.10. I -MAD families exist generically if and only if a+(I ) = c.
Proof. First assume a+ (I ) = c. We will show that I -MAD families exist
generically. Let A be an AD family of size less than c we will show how to extend
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it to a MAD family B so that I (B) �KB I . Let 〈fα : α ∈ c〉 be an enumeration
of the set of all finite to one functions from �<� to �. We will construct recursively
an increasing sequence 〈Bα : α ∈ c〉 of AD families such that:
(1) B0 = A ,
(2) |Bα| < c,
(3) fα : �<� −→ � is not a Katětov function from (�<�,I ) into
(�,I (Bα+1)).

Assume we are at step α and fα : �<� −→ � is a Katětov function from
(�<�,I ) into (�,I (Bα)). Let D = f−1

α [Bα ] and note that, since fα is finite to
one, D is an almost disjoint family and it is contained in I . Since D has size less
than c, it follows that D⊥ is not contained in I so there is X /∈ I that is almost
disjoint with D . Let Y = fα [X ] and note thatBα = B ∪{Y} is almost disjoint
and fα : �<� −→ � is no longer a Katětov function.
For the forward implication, note that if a+ (I ) < c, then there is an AD family

A of size strictly less than continuum such that A ∪ A ⊥ ⊆ I , and obviously A
can not be extended to a MAD family not K-below I . �
We now address the question of when PI -indestructible MAD families exist
generically.

Corollary 2.11. Let I be a �-ideal with continuous reading of names such that
tr (I ) is KB-uniform. Then PI -indestructible MAD families exist generically if and
only if a+

(
tr(I )) = c.

§3. Cohen-indestructibility. We will now show that b = a+ (nwd). First we give
several formulations of b that might be of independent interest.

Proposition 3.1. Let κ be an infinite cardinal, then the following are equivalent:
(1) κ < b.
(2) IfA is an AD family of size κ and {Cn : n ∈ �} ⊆ A ⊥, then there isX ∈ A ⊥

such that Cn ⊆∗ X for every n ∈ �, i.e., A ⊥ is a P-ideal.
(3) IfA is an AD family of size κ and {Cn : n ∈ �} ⊆ A ⊥, then there isX ∈ A ⊥

such that |X ∩ Cn| = � for every n ∈ �.
(4) IfA is an AD family of size κ and {Cn : n ∈ �} ⊆ A ⊥, then there isX ∈ A ⊥

such that X ∩ Cn �= ∅ for every n ∈ �.
(5) If A is an AD family of size κ and {Cn : n ∈ �} ⊆ A ⊥ is a pairwise disjoint
family, then there is X ∈ A ⊥ such that |X ∩Cn| = � for every n ∈ �.

(6) If A is an AD family of size κ and for every pairwise disjoint family
{Cn : n ∈ �} ⊆ A ⊥, then there is X ∈ A ⊥ such that X ∩ Cn �= ∅ for
every n ∈ �.

Proof. Obviously 2 implies 3, and 3 implies 5. It is easy to see that 4 implies
3 by splitting each Cn in countably many disjoint parts. By a similar reasoning it
follows that 5 and 6 are equivalent. We now show that 1 implies 2. Let κ < b,
A = {Aα : α ∈ κ} be an AD family in � and {Cn : n ∈ �} ⊆ A ⊥. Enumerate each
Cn =

{
cin : i ∈ �

}
and for every α < κ, define fα : � −→ � in such a way that

Aα∩Cn ⊆
{
cin : i < fα (n)

}
, for every n ∈ �. Since κ < b, we can find an increasing

function g : � −→ � that dominates each fα, and define X = {cg(n)n : n ∈ �}. It is
clear that X has the desired properties.
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We now show that 5 implies 1 by contrapositive. Let B ⊆ �� be an unbounded
family of size κ, define the function H : �� −→ 2� by H

(〈xn〉n∈�) =
0x0�1�0x1�1�0x2� · · · (where 0xn is the sequence of xn consecutive 0’s). Let
Q ⊆ 2� be the set of all sequences that are eventually zero, it is not hard to
see that H is an homeomorphism between �� and 2� \ Q. Given b ∈ 2� define
b̂ = {b � n : n ∈ �} and let A = {Ĥ (f) : f ∈ B} which clearly is an AD family
and note that {q̂ : q ∈ Q} ∈ A ⊥. We must now show there is noX ∈ A ⊥ such that
|X ∩ q̂| = � for every q ∈ Q.
Suppose this is not the case. For each n ∈ �, define Un = {b ∈ 2� : |b̂ ∩X | ≥ n}
and note that each Un is an open set, hence G =

⋂
Un is a G� set and Q ⊆ G while

G ∩H (B) = ∅. Let K = 2� \ G . It is clear that H [B] ⊆ K and K is �-compact.
It follows thatH−1 [K ] is �-compact and containsB, which is a contradiction. �
We are now ready to prove the main theorem of the section.

Theorem 3.2. Cohen-indestructible MAD families exist generically if and only if
b = c.

Proof. It suffices to show that b = a+ (nwd). First, let κ < b be given. Let us
show that κ < a+ (nwd). Let A be an AD family in Q such that A ⊆ nwd, we
must prove that A ⊥ is not contained in nwd. Let 〈Un : n ∈ �〉 be a base for the
topology of the rational numbers. Since κ < b, then it is also smaller than a, so
An = A � Un is not a MAD family in Un (note that Un /∈ I (A ) as the elements
of A are nowhere dense) so we can find an infinite Cn ⊆ Un that is almost disjoint
from every element of An. Using κ < b and the previous proposition, we can find
an X ∈ A ⊥ that intersects every Cn, and hence it is dense.
In order to show that a+ (nwd) ≤ b, we will construct an AD family A of size b
such that bothA andA ⊥ are contained in nwd. Recursively, we construct families
{As : s ∈ �<�} and

{
Cs : s ∈ �<�

}
such that:

(1) A∅ is an AD family on � of size b which is not maximal,
(2) Cs = {Cs (n) : n ∈ �} are pairwise disjoint infinite sets,
(3) As�〈n〉 is an AD family on Cs (n) of size b which is not maximal,
(4) C ∅ is a partition of � and Cs�〈n〉 is a partition of Cs (n),
(5) Cs ⊆ A ⊥

s and if Y ∈ [�]� intersects infinitely every Cs (n) then Y /∈ A ⊥
s ,

(6) For every a, b ∈ � there are s and n such that |{a, b} ∩ Cs (n)| = 1.
In order to do this, fix an enumeration {{ak, bk} : k ∈ �} of [�]2. Using
Proposition 3.1(5), there exists an AD family A of size b on � and a pairwise dis-
joint family {C (n) : n ∈ �} ⊆ A ⊥ such that if Y ∈ [�]� intersects infinitely every
C (n) thenY /∈ A ⊥. PutA∅ = A and by a adding finitely many points to eachC (n)
we may assume {C (n) : n ∈ �} forms a partition of �. Moreover, by making finite
changes we can assume that |{a0, b0} ∩ C (0)| = 1. Now set C ∅ = {C (n) : n ∈ �}.
Suppose that we have constructed As and Cs for s ∈ �≤m. Again using
Proposition 3.1(5), for every n ∈ � and s ∈ �m, there exists an AD family A
of size b on Cs(n) and a pairwise disjoint family {C (k) : k ∈ �} ⊆ A ⊥ such that
if Y ∈ [�]� intersects infinitely every C (k) then Y /∈ A ⊥. PutAs�〈n〉 = A and by
a adding finitely many points to each C (k) we may assume {C (k) : k ∈ �} forms
a partition of Cs(n). Moreover, by making finite changes, we can assume that if
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am, bm ∈ Cs (n) then |{am, bm} ∩C (0)| = 1. Now set Cs�〈n〉 = {C (k) : k ∈ �}.
This concludes the construction.
Let 	 be the topology on � generated by declaring each Cs (n) clopen. It follows
from a result of Sierpiński (see [17] or [14]) that (�, 	) is homeomorphic to the
rational numbers with the usual topology. Let A =

⋃
s∈�<� As , it suffices to show

that A ∪ A ⊥ ⊆ nwd. Let A ∈ At and Cs (n) first note that if A ∩ Cs (n) �= ∅ then
t and s are incompatible, by further extending s if necessary we may assume that
s extends t. By (5) we extend s even further to s ′ so that A ∩ C (n) �= ∅ is finite
and then using (6) we can find an open subset of Cs (n) disjoint from A. Thus,
A ⊆ nwd. The argument for A ⊥ is analogous. �
A closely related notion is that of a tight MAD family [20].

Definition 3.3. We say a MAD family A is tight if for every 〈Xn : n ∈ �〉 ⊆
I (A )+ there is B ∈ I (A ) such that |B ∩ Xn| = � for every n ∈ �.
Every tight family is Cohen indestructible and every Cohen indestructible family
has a restriction that is tight (see [11, 18]). In particular, the existence of a tight
MAD family is equivalent to the existence of a Cohen indestructible MAD family.

Corollary 3.4. Tight families exist generically if and only if b = c.

Proof. If tight families exist generically then obviously there exist Cohen-
indestructible MAD families, therefore bmust be equal to c. The other implication
follows from standard recursive construction. �
Wewill now show that there are also tight families in manymodels where b equals
to �1. The following guessing principle was defined in [22].

♦ (b): For every Borel coloring C : 2<�1 −→ �� there is a G : �1 −→ �� such
that for every R ∈ 2�1 the set {α : C (R � α) ∗ � G (α)} is a stationary set
(such G is called a guessing sequence for C ).

A coloring C : 2<�1 −→ �� is Borel if for every α, the function C � 2α is Borel
in the classical sense. It is easy to see that ♦ (b) implies that b = �1 and in [22] it
was proved that it implies a = �1. The following answers a question of Hrušák and
Garcı́a-Ferreira from [11].

Proposition 3.5. Assuming ♦ (b), there is a tight MAD family.
Proof. For every α < �1, fix an enumeration α = {αn : n ∈ �}. Using a
suitable coding, the coloring C will be defined on pairs t = (At , Xt), where
At = 〈A
 : 
 < α〉 and Xt = 〈Xn : n ∈ �〉. We define C (t) to be the constant 0
function in case At is not an almost disjoint family or Xt is not a sequence of ele-
ments in I (At)

+. In the other case, define an increasing function C (t) : � −→ �
such that for every n ∈ � and i ≤ n the set Xi ∩ (C (t − 1) , C (t)) \Aα0 ∪ · · · ∪Aαn
is not empty (where C (t) (−1) = 0).
By ♦ (b) there is a guessing sequence G : �1 −→ �� for C , changing G if
necessary, we may assume that all the G (α) are increasing and if α < � then
G (α) <∗ G (�). We will now construct our MAD family by recursion on �1: Let
{An : n ∈ �} be a partition of �. Suppose we have defined A
 for all 
 < α, we put
Aα =

⋃
n∈� (G (α) (n) \ Aα0 ∪ · · · ∪ Aαn ) in case this is an infinite set, otherwise

just take any Aα that is almost disjoint with Aα .
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We will now show that A is a tight family. Let X = 〈Xn : n ∈ �〉 where each
Xn ∈ I (A )+. Consider the branch R = (〈A
 : 
 < �1〉 , X ) and pick � > �
such that C (R � �) ∗ � G (�). It follows from the construction that A� intersects
infinitely every Xn. �
With the aid of a result of [22] we can conclude the following.
Proposition 3.6 ([22]). Let 〈Qα : α ∈ �2〉 be a sequence of Borel proper partial
orders where eachQα is forcing equivalent toP(2)+×Qα and let P�2 be the countable
support iteration of this sequence. Then there is a tight family in any forcing extension
by P�2 .
Proof. IfP�2 forces b = c then tight families exist generically, otherwise, it follows
from [22] that P�2 forces ♦ (b) and, hence forces the existence of tight families. �
The following weakening of tightness was introduced in [11].

Definition 3.7. We say that A is weakly tight if for every {Bn : n ∈ �} ⊆
I (A )+ there is A ∈ A such that |A ∩ Bn | = � for infinitely many n ∈ �.
Obviously every tight family is weakly tight. The proof of the next proposition is
virtually identical to the proof of Corollary 3.4.
Proposition 3.8. Weakly tight families exist generically if and only if b = c.
Mildenberger, Raghavan, and Steprāns (see [23] and [21]) proved that if s ≤ b
then there is a weakly tight family. However, it is still open if it is possible to construct
a weakly tight family without any additional axioms beyond ZFC.
The following invariant was introduced by Shelah in [24].

Definition 3.9. We define a∗ as the minimal size of an AD family A such that
there are (disjoint)C0, C1, C2, . . . ∈ A ⊥ such that for everyB ∈ [�]� ifCn∩B �=∗ ∅
for infinitely many Cn then there is A ∈ A for which A ∩ B �=∗ ∅.
The relation of a∗ with the other cardinal invariants is the following.
Proposition 3.10 ([24]). b ≤ a∗≤ a.
Proof. By the characterization of b, it is clear that b ≤ a∗. In order to prove
that a∗ ≤ a, let A be a MAD family of minimum size. Choose C0, C1, C2, . . . ∈ A
and let A1 = A \ {Cn : n ∈ �} we will show that A1 is a witness for a∗. Assume
Cn ∩B �=∗ ∅ for infinitely many Cn, then it follows that B \C0 ∪ · · · ∪Cn is infinite
for every n ∈ �, so we may find B ′ ⊆ B that is almost disjoint from every Cn. Since
A is MAD, it follows that there is an A ∈ A such that A ∩ B �=∗ ∅. �
Proposition 3.11. a∗ has uncountable cofinality.
Proof. Assume cof(a∗) = � and let A be an AD family of size a∗ and

{Cn | n ∈ �} ⊆ A⊥ such that for every B with the property that there are
infinitely many n ∈ � such that |Cn ∩ B| = � then there is A ∈ A for which
|A ∩ B| = �. Since a∗ has countable cofinality then we can find an increasing chain
{An | n ∈ �} ⊆ ℘ (A) such thatA = ⋃

n∈�
An and |An | < a∗ for every n ∈ �.

(1) Since |A0| < a∗ then we can find B0 ∈ A⊥
0 such that D0 = {n : |Cn ∩ B0| =

�} is infinite. Let m0 = min (D0).
(2) Let A′

1 = A1 � B0 since |A′
1| < a∗ then we can find B1 ⊆ B0 such that

B1 ∈ A⊥
1 and D1 = {n > m0 | |(Cn ∩ B0) ∩ B1| = �} is infinite. Let m1 =

min (D1).
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(3) Let A′
2 = A2 � B1 since |A′

2| < a∗ then we can find B2 ⊆ B1 such that
B2 ∈ A⊥

2 and D2 = {n > m1 | |(Cn ∩ B1) ∩ B2| = �} is infinite. Let m2 =
min (D2).
...

Finally, let X =
⋃
i∈� (Bi ∩Cmi ) then X intersects infinitely every Cmi and

X ∈ A⊥ which is a contradiction. �
With the previous proposition we can conclude the following,

Corollary 3.12. There is a model where a∗ < a.

Proof. In [4] Brendle constructed a model where a has countable cofinality.
By the previous proposition, it is clear that a∗ < a holds in that model. �

§4. Sacks-indestructibility. For simplicity, call aSacks = a+ (tr (ctbl)) which is
the least size of an AD family A ⊆ tr (ctbl) such that for every X ∈ tr (ctbl)+
there is A ∈ A such that A ∩ X is infinite. Recall that Sacks-indestructible MAD
families exist generically if and only if aSacks = c. Likewise, call a+Miller = a (tr (K�))
and as before, Miller indestructible MAD families exist generically if and only if
aMiller = c. Since ctbl ⊆ K� ⊆ M then b = a (nwd)+ ≤ aMiller ≤ aSacks .
The following result is an easy one but is very important.

Corollary 4.1. If a ≤ aSacks then there is a Sacks-indestructible family.

Proof. Assume a ≤ aSacks . On the one hand if a < c, then any MAD family of
size a is Sacks indestructible. On the other hand, if a = c, then aSacks = c and so
there are also Sacks indestructible MAD families. �
We do not know if a can consistently be bigger than aSacks .

Problem 4.2. Is a ≤ aSacks ?

Given s ∈ 2<� wedefine 〈s〉<� = {t ∈ 2<� : s � t}, it is clear that ifX∩〈s〉<� �= ∅
for every s ∈ 2<� then X /∈ tr (ctbl). Let BR be the ideal of 2<� generated
by branches, in this way BR⊥ is the ideal of all well-founded subsets of 2<� ,
its elements are called off-branch, it is clear that BR⊥ ⊆ tr (ctbl). We have the
following simpler characterization of cov+ (tr (ctbl)):

Lemma 4.3. cov+ (tr (ctbl)) is the minimum size of a familyB ⊆ BR⊥ such that
for every A ∈ tr (ctbl)+ there is B ∈ B such that |A ∩ B| = �.
Proof. Call  the minimum size a family B ⊆ BR⊥ such that for every A ∈
tr (ctbl)+ there is B ∈ B such that |A ∩ B| = �. It is clear that cov+ (tr (ctbl)) ≤ ,
we shall now prove the other inequality. We split the proof in two cases: if
cov+ (tr (ctbl)) = c then there is nothing to prove, so assume cov+ (tr (ctbl)) is less
than size of the continuum and letB ⊆ tr (ctbl) witness this fact. Since 2�×� ∼= 2�
we may find a partition {[Tα] : α < c} of 2� where each Tα is a Sacks tree. Since
B ⊆ tr (ctbl) and has size less than c, then there is Tα such that � (B)∩ [Tα] = ∅ for
every B ∈ B. The splitting nodes of Tα is isomorphic to 2<� and for every B ∈ B
it is the case that B ∩ Tα is off-branch in Tα . �
Using an analogous argument, we can prove the following.

Lemma 4.4. aSacks is the smallest size of an almost disjoint familyA ⊆ BR⊥ such
thatA ∪ A ⊥ ⊆ tr (ctbl).
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We call a maximal AD family restricted toBR⊥ aMOB family. In [19] Leathrum
defined o as the smallest size of a MOB family and he showed that a ≤ o.

Lemma 4.5. aSacks ≤ o.
Proof. Let O be aMOB family of size o, then O ⊆ BR⊥ and anyA ∈ O⊥ must
be contained in a union of finitely many branches, therefore A ∈ tr (ctbl). �
We have the following inequalities:

Lemma 4.6. cov+ (tr (ctbl)) ≤ min
{
aSacks , cov

∗
(
BR⊥

)}
.

Proof. The inequality cov+ (tr (ctbl)) ≤ aSacks follows by definition, and for the
other it is enough to recall that any B ∈ tr (ctbl)+ contains an infinite antichain. �
Now we compare them with some of the category related cardinal invariants.
Proposition 4.7. cov (M) ≤ cov+ (tr (ctbl)).
Proof. Let κ < cov (M) and A = {Aα : α ∈ κ} ⊆ BR⊥, we ought to find
B ∈ tr (ctbl)+ that is AD with A . Let P be the partial order of all finite trees
contained in 2<� ordered by end extension. Obviously, P is isomorphic to Cohen
forcing. Let Ṫgen be the name for the generic tree, clearly Ṫgen is forced to be a
Sacks tree. For every α < κ define the set Dα of all T ∈ P such that if s ∈ T is a
maximal node, then 〈s〉≤� ∩ Aa = ∅. It is straightforward to see that Dα is dense.
Since κ < cov (M) then we can find, in the ground model, a filter that intersects
every Dα and the result follows. �
We recursively define S = {ts : s ∈ 2<�} as follows:
We will now compare the Miller related invariants with the unbounding number.
Recall that cov∗ (tr (K�)) = d .
Proposition 4.8. cov+ (tr (K�)) = b.
Proof. We first show that cov+ (tr (K�)) ≤ b. Let {fα : α ∈ b} be an unbounded
family of strictly increasing functions. For every s ∈ �<� and α < b, we define
Tα (s) as the downward closed subtree of the set consisting of nodes of the form
s� 〈n〉� t, where n ∈ � and t ∈ �fα(n).
Note that each Tα (s) is in tr (K�), as �(Tα (s)). Now let A ⊆ 2<� be such that
� (A) is unbounded. Find s ∈ �<� such that for infinitely many n ∈ �, s� 〈n〉 has
a successor in A. For each n ∈ �, let g(n) be the minimum integer k so that there
is a t ∈ �k with s � 〈n〉t ∈ A. Using that {fα : α ∈ b} is an unbounded family, we
can find α < b so that fα∗ �≤ g. It follows that A ∩ Tα (s) is infinite.
Now, let κ < b and {Aα : α ∈ κ} ⊆ tr (K�), we must show it is not a covering
family. Since κ < b we can find f that bounds � (Aα) for every α < κ. Let T be
the tree such that every branch though T is bigger or equal than f, we may assume
T = �<� .
For every s ∈ �<� choose bs ∈ 〈s〉 and given α < κ define fα : �<� −→ � be
such that if m ≥ fα (s) then bs � m /∈ Aα (recall Aα is off-branch in T = �<�)
since κ is less than b, we may find g : �<� −→ � that dominates every fα . We
define a Miller tree S in the following way:
(1) The stem of S is b∅ � g (∅),
(2) If s ∈ S is a splitting node, then succS (s) = �,
(3) If s is a splitting node, then the next splitting node below s� 〈n〉 is bs�〈n〉 �
g (s� 〈n〉).
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Let B = split (S) which obviously is tr (K�) positive, we now claim B ∩ Aα is
finite for every α but this is clear. �
Likewise, cov+ (nwd) is smaller than cov∗ (nwd).

Proposition 4.9. cov+ (nwd) = add (M).
Proof. On the one hand, cov+ (nwd) ≤ cov∗ (nwd) = cov (M) and on the
other hand, cov+ (nwd) ≤ cov+ (K�) = b. Now we proceed to prove add (M) ≤
cov+ (nwd). Let κ < add (M) and {Nα : α ∈ κ} ⊆ nwd. Let {Un : n ∈ �} be a base
for Q and note that since κ < cov∗ (nwd), then we may find an infinite Bn ⊆ Un
almost disjoint from every Nα . Define hα : � −→ [Q]<� where hα (n) = Bn ∩ Aα .
Since κ < b then there is g : � −→ [Q]<� such that for every α it is the case that
hα (n) ⊆ g (n) for almost all n ∈ �, we may further assume that g (n) ⊆ Bn. Define
B =

⋃
n∈� (Bn \ g (n)) then B is dense and almost disjoint with each Aα . �

In [13] Kamburelis and We↪glorz introduced the following definitions,

Definition 4.10. (1) s (B0) is the smallest size of a family of open sets
U ⊆ P (2�) such that for every infinite antichain {sn : n ∈ �} ⊆ 2<� there
is U ∈ U such that both sets {n : 〈sn〉 ⊆ U} and {n : 〈sn〉 ∩U = ∅} are
infinite.

(2) Given x ∈ 2� and n ∈ �, let r (x, n) be the sequence of length n + 1 that
agrees with x in the first n places but disagrees in the last one.

(3) Let x ∈ 2� , A ∈ [�]� , andU ⊆ 2� an open set. We say U separates (x,A) if
x /∈ U and there are infinitely many n ∈ A such that 〈r (x, n)〉 ⊆ U .

(4) sep is the smallest size of a family of open sets U such that for every (x,A)
there is U ∈ U that separates (x,A).

It was later proved by Brendle in [3] that the two previous invariants are actually
equal.

Proposition 4.11. cov∗
(
BR⊥

)
= sep.

Proof. We first show that sep ≤ cov∗
(
BR⊥

)
. Let B ⊆ BR⊥ be a witness for

cov∗
(
BR⊥

)
, we might assume it is closed under finite changes. For every B ∈ B,

letUB =
⋃ { 〈s〉 : s ∈ B}.Wewill show that {UB : B ∈ B}witness sep. Let x ∈ 2� ,

A ∈ [�]� and define the off-branch family Y = {r (x, n) : n ∈ A} then find B ∈ B
such that B ∩ Y is infinite. Since B is off-branch, by taking a finite subset of it we
may assume no restriction of x is in B, it then follows thatUB separates (x,A).

We will now show cov∗
(
BR⊥

)
≤ s (B0). Let

{
U� : � < s (B0)

}
be a witness

for s (B0) and {fα : α < b} be an unbounded set of functions where each fα :
� −→ [2<�]<� and if n < m then fα (n) ⊆ fα (m). For every � < s (B0), let

A� =
{
s
�
n : n ∈ �

}
⊆ 2<� be the set of all minimal nodes of {s : 〈s〉 ⊆ U�}, note

that they form an antichain. For every α < b and � < s (B0), define B (α, �) =

A� ∪
⋃
n∈�

(
fα (n) ∩

〈
s�n

〉
<�

)
, observe that this is an off-branch set. We will show

that for every infinite off branchY there areα < b and � < s (B0) such thatB (α, �)
intersects Y infinitely.
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Let A ⊆ Y be an infinite antichain, first find � < s (B0) such that the set
X =

{
t ∈ A : 〈t〉 ⊆ U�

}
is infinite. Define g : � −→ [2<�]<� such that for every

n ∈ � there is m > n such that there is t ∈ A and t extends s�m. Let α < b such that
g (n) ⊆ fα (n) for infinitely many n ∈ �. It is then clear that B (α, �) intersects A
infinitely. Finally since b ≤ s (B0) (see [3]) we get the desired result. �
It then follows by a result ofKamburelis andWe↪glorz (see [13]) that cov

∗
(
BR⊥

)
≤ cof (N ).

§5. +-Ramsey MAD families. Let I be an ideal, we say T ⊆ �<� is I +-
branching if for every s ∈ T , the set succT (s) = {n : s� 〈n〉} ∈ I +. We say I is
+-Ramsey if for everyI+-branching treeT , there is b ∈ [T ] such that ran (b) ∈ I +.
An AD family A is called +-Ramsey if I (A ) is +-Ramsey. The following was
introduced in [9].

Definition 5.1. ra is the minimum size of an AD family that is not +-Ramsey.

In respect to the generic existence of +-Ramsey families, we have the following:

Proposition 5.2. ra = c if and only if +-Ramsey families exist generically.

Proof. First assume ra = c and let A be an AD family of size less than the con-
tinuum. Enumerate {Tα : α < c} all the trees in�<� . Recursively, we shall construct
a sequence 〈Aα : α < c〉 of AD families such that:
(1) A0 = A ,
(2) If α < � then Aα ⊆ A� and if � is limit then A� =

⋃
�<� A� ,

(3) Every Aα has size less than c,
(4) For every α < c either Tα is not a I + (Aα+1)-branching tree or there is
b ∈ [Tα ] such that ran (b) ∈ I (Aα+1)

++.

It is clear that if the construction can be carried out, we just extend
⋃
α<c Aα to

a MAD family and this will be a +-Ramsey MAD family. Assume Aα has been
defined, we will see how to define Aα+1. First consider the case where there is
s ∈ Tα such that succTα (s) /∈ I (Aα)

++. If succTα (s) ∈ I (Aα) then we just
define Aα+1 = Aα otherwise we can find an infinite A ⊆ succTα (s) that is AD with
Aα , so we just define Aα+1 = Aα ∪ {A}. Now assume succTα (s) ∈ I (Aα)

++ for
every s ∈ Tα . SinceAα has size less than ra then we know there is b ∈ [Tα ] such that
ran (b) ∈ I (Aα)

+. In case ran (b) ∈ I (Aα)
++ thenwe can just defineAα+1 = Aα ,

in the other case as before, we can find pairwise disjoint {An : n ∈ �} ⊆ [b]� ∩A +
α

and let Aα+1 = Aα ∪ {An : n ∈ �}.
Now assume ra ≤ c, let A be an non +-Ramsey AD family of size less than c. In
this way, we know there is T a I (Aα)

+ branching tree such that if b ∈ [T ] then
ran (b) ∈ I (Aα). �
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UNIVERSIDAD DE CONCEPCIÓN
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