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Abstract
We focus on exponential semi-Markov decision processes with unbounded transition rates. We first provide several
sufficient conditions under which the value iteration procedure converges to the optimal value function and optimal
deterministic stationary policies exist. These conditions are also valid for general semi-Markov decision processes
possibly with accumulation points. Then, we apply our results to a service rate control problem with impatient
customers. The resulting exponential semi-Markov decision process has unbounded transition rates, which makes
the well-known uniformization technique inapplicable. We analyze the structure of the optimal policy and the
monotonicity of the optimal value function by using the customization technique that was introduced by the author
in prior work.

1. Introduction

Semi-Markov decision process (SMDP) models have many successful applications to diverse fields
including management sciences, economics, and even ecology. It is the most natural formulation for
successive decision-making problems, where the objective might be to minimize either the average cost
or the expected total cost with or without discounting. The state space of the system and the set of
available actions at each decision epoch may be countably infinite or even uncountable (Lippman [20]).

One of the most important special cases of SMDPs is semi-Markov decision processes with exponen-
tial sojourn times (ESMDP). The main approach used to analyze ESMDPs is to reduce a given ESMDP
to a discrete-time Markov decision process (DTMDP) using the well-known uniformization technique,
which requires the transition rates of the given ESMDP to be bounded (Serfozo [24]). On the other
hand, when the transition rates of the given ESMDP are unbounded, applying the uniformization is not
possible. In addition, more importantly, unbounded transition rates violate the following assumption,
which seems to be standard in the literature on SMDPs:

There exists n > 0 and W > 0 such that Q(S, W | i, a) < 1 − n for all i ∈ S and for all a ∈ C,

where S is the state space, C is the control space, and Q is the transition probability kernel of a given
SMDP (formal definitions of S, C, and Q are given in Section 2.1). From now on, this assumption
will be called the standard assumption. This assumption guarantees that the system does not have any
accumulation point, i.e., transitions do not take place too quickly and only a finite number of transitions
are made in a finite amount of time with probability one (Ross [22]; Lippman [19]; Hu and Yue [17]).
On the other hand, the unboundedness of transition rates (and thus the failure to meet the standard
assumption) does not necessarily require the existence of accumulation points. For instance, in queuing
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models where the arrival rate is bounded (as in the problem examined in Section 3), the number of jumps
over a finite interval of time is finite with probability one, even if the transition rates are unbounded, so
accumulation points do not occur (Feinberg, Mandava, and Shiryaev [14]). Additional assumptions that
guarantee the absence of accumulation points can be found in Piunovskiy and Zhang [21] for continuous-
time Markov decision processes (CTMDPs) (CTMDPs allow decisions to be made at any time point for a
process with exponentially distributed sojourn times between successive state transitions, as opposed to
ESMDPs that allow decisions to be made at some discrete time points that are separated by exponentially
distributed sojourn times). However, tools that can be used in all cases where the standard assumption
is not met must be developed to take into account the accumulation points. The results in Section 2 of
this paper were developed without using the standard assumption and taking into account the possibility
of accumulation points. Therefore, these results can be applied to ESMDPs with unbounded transition
rates, regardless of whether they contain accumulation points or not.

The standard assumption seems to be too restrictive in some recent important applications, such
as infinite server queues and queues with impatient customers. For recent papers studying the prob-
lems leading to Markov decision processes with unbounded transition rates violating the standard
assumption, we refer the readers to Bhulai, Brooms, and Spieksma [4], Feinberg and Zhang [15], and
Zayas-Cabán et al. [25].

This paper aims to attack the problem of characterizing the structure of the optimal policies for
discounted ESMDPs with unbounded transition rates. The commonly used approach in the bounded
case is to reduce the original discounted ESMDP to a discounted DTMDP by using the uniformization
technique. In this way, the value iteration algorithm, together with the simplified optimality equations
as a result of uniformization, can be used to prove structural properties. When the transition rates are
unbounded, the uniformization technique is not applicable and, hence, the value iteration procedure
for discounted DTMDPs cannot be used to prove the results. Zayas-Cabán et al. [25] and Bhulai,
Brooms, and Spieksma [4] both underline this issue, and they suggest to use sample-path argument
and a smoothed rate truncation method to analyze the structure of the optimal policy, respectively. In
Section 2, we show that it is still possible to use a value iteration procedure for DTMDPs even in the
unbounded case. However, this value iteration algorithm will use the optimality equations of a DTMDP
with the total undiscounted cost criterion. Even though the primary objective of this study is to focus
on ESMDPs with unbounded transition rates, the results in Section 2 are for general SMDPs violat-
ing the standard assumption in Borel state and action spaces. We propose quite general conditions that
guarantee the convergence of the value iteration algorithm and the optimality of the deterministic sta-
tionary policies. These results are not readily available in the literature to the best of our knowledge.
In Section 3, we apply our results to a service rate control problem with impatient customers, which is
an extension of the models considered in Ata and Shneorson [2] and George and Harrison [16]. This
control problem is modeled as an ESMDP with unbounded transition rates, and we characterize the
structure of the optimal policy under very reasonable and mild assumptions. To overcome the challenge
of not being able to apply uniformization, we use a new technique called customization, proposed by
Çekyay [6], to modify the optimality equations to make them more convenient for the proofs. The main
advantage of the customization technique is that when it is used together with the value iteration proce-
dure that we propose, it provides a quite general methodology which can be applied to any ESMDP with
bounded or unbounded transition rates and which provides solid, rigorous proofs using the optimality
equations directly without requiring truncation.

Consequently, the main contribution of this paper is two-fold: (a) this paper proposes new con-
vergence and existence results for SMDPs violating the standard assumption (hence, for ESMDPs
with unbounded transition rates); (b) it is shown by analyzing an important service rate control prob-
lem that the proposed value iteration procedure and the customization technique provide a robust
methodology to analyze the structure of the optimal policies of ESMDPs with unbounded transition
rates.
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2. SMDPs violating the standard assumption

In this section, we propose several results proving the convergence of the value iteration procedure
to the optimal value function and the existence of optimal deterministic stationary policies for SMDPs
without using the standard assumption. These results are proved under mainly four different measurable
selection conditions which are commonly used in the established literature. To achieve these, we first
reduce the given SMDP with the expected total discounted cost criterion to a DTMDP with the expected
total undiscounted cost criterion. Then, the standard results in DTMDP literature are used to complete
the proofs. Reductions similar to the one that we use can be found in Feinberg [8, 9], where the author
assumes the standard assumption. Moreover, Feinberg [10] proposes a similar reduction for CTMDPs
with unbounded transition rates, where a decision can be made at any time, which is different from
the setting used in this paper, where decisions are allowed only at discrete time points with generally
distributed inter-occurrence times.

2.1. Basic definitions

Consider an SMDP with a nonempty state space S and a nonempty action space C. Assume that S and
C are Borel spaces, that is, they are Borel subsets of some Polish (complete, separable, and metric)
spaces. If the system state is i ∈ S at some decision epoch, an action a must be chosen from the action
set C(i) ⊆ C, which is a nonempty Borel set. The Borel f-algebras on S and C are denoted by S and
C, respectively. We assume that

Γ = {(i, a) | i ∈ S, a ∈ C(i)}

is a Borel subset of S × C. When action a is chosen in state i at a decision epoch, the probability that
the next decision epoch will occur by time t and the next system state will be in J is Q(J, t | i, a). We
assume that Q(B | i, a) is a Borel function on S × C for any Borel subset B ⊂ S×R≥0 and that Q(· | i, a)
is a measure on S×R≥0 with Q(S×R≥0 | i, a) ≤ 1 for any (i, a) ∈ S×C. We let Tn(T0 ≡ 0) be the time
of the nth jump where the decision-maker chooses action Cn after observing the system state Sn. We
also let Ξn = Tn+1 −Tn denote the time elapsing between nth and (n+ 1)th jumps for every n = 0, 1, . . ..

We let Hn = S × (C × R≥0 × S)n be the set of all histories up to and including nth jump for every
n = 0, 1, . . . ,∞. Thus, H = ∪0≤n<∞Hn is the set of all histories having finite number of jumps. All Hn
and H are endowed with f-algebras generated by S, C, and B(R≥0), where B(A) denotes the Borel
f-algebra on a set A. We define a strategy c as a regular transition probability from H to C such that
c(C(in) | 8n) = 1 for each 8n = i0a0b0i1 · · · in−1an−1bn−1in ∈ H and n = 0, 1, . . ..

We add a new, absorbing, state s to S, with an associated action c ∉ C, with the aim of defining a
sample space including sample paths with finite number of jumps over R≥0 and with an infinite number
of jumps over a finite time interval, and let S = S ∪ {s}, C = C ∪ {c}, and Γ = Γ ∪ {(s, c)}. Moreover,
we also define Q((s,∞) | i, a) = 1 − Q(S × R≥0 | i, a) and Q((s,∞) | s, c) = 1. Hence, Q is a regular
transition probability from S × C to S × R≥0, where R is the set of extended real numbers. Let Hn =

S× (C×R≥0×S)n for every n = 0, 1, . . . ,∞, and we have B(Hn) = B(S) × (B(C) ×B(R≥0) ×B(S))n.
A given strategy c, together with C(s) = {c}, defines the transition probabilities from Hn to Hn × C,
and the transition probabilities from Hn ×C to Hn+1 are defined by Q. There exists a unique probability
measure on (H∞,B(H∞)) for a given initial state i ∈ S and a strategy c due to Ionescu-Tulcea’s Theorem
(see Çınlar [5]). This probability measure and the corresponding expectation operator are denoted by
Pci and Eci , respectively.

For 8 = i0a0b0i1 · · · ∈ H∞, define the random variables Sn(8) = in, Cn(8) = an,Ξn(8) = bn, n ≥
0, T0(8) = 0, Tn(8) = b0+b1+· · ·+bn−1, n ≥ 1, T∞(8) = limn→∞ Tn(8). Since we are considering the
general case where the standard assumption may or may not hold, it is possible that Pci {T∞ < ∞} > 0 for
some i and c. We do not intend to consider the process after T∞, and we assume that it will be absorbed in
state s̄ after T∞. Taking this issue into account, the jump process of interest, {Xt (8) | t ∈ R≥0,8 ∈ H∞}
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with values in S, is defined by:

Xt (8) =
∞∑

n=0
inI{Tn (8)≤t<Tn+1 (8) } + sI{t≥T∞ (8) } .

Similarly, the jump process representing the chosen action at any time point, {At (8) | t ∈ R≥0,8 ∈ H∞}
with values in C, is defined by:

At (8) =
∞∑

n=0
anI{Tn (8)≤t<Tn+1 (8) } + cI{t≥T∞ (8) } .

Note that both Xt (8) and At (8) are piecewise right-continuous.
If the decision at epoch n is independent of T0, T1, . . . , Tn−1 for every n = 1, 2, . . ., then this strategy

is said to be a policy. Let Hn = S× (C × S)n for n = 0, 1, . . . ,∞ and H = ∪0≤n<∞Hn. Then, a policy c is
a transition probability from H to C such that c(C(in) | ln) = 1 for every ln = i0a0i1a1 . . . an−1in ∈ H
and n = 0, 1, . . .. If the decision at epoch n is only dependent on Sn, for every n = 0, 1, . . ., then this
policy is said to be a randomized Markov policy. Hence, a randomized Markov policy c is a sequence
of transition probabilities {cn | n = 0, 1, . . .} from S to C such that cn(C(i) | i) = 1 for every s ∈ S
and n = 0, 1, . . .. A deterministic Markov policy is a sequence of functions {qn | n = 0, 1, . . .} from S
to C such that qn(i) ∈ C(i) for each i ∈ S and n = 0, 1, . . .. A randomized stationary policy c is a
transition probability from S to C such that c(C(i) | i) = 1 for every i ∈ S. Note that a randomized
stationary policy c is a randomized Markov policy where cn = c for every n = 0, 1, . . .. A deterministic
stationary policy is a function q from S to C such that q(i) ∈ C(i) for every i ∈ S. It is clear that a
deterministic stationary policy q is a deterministic Markov policy where qn = q for every n = 0, 1, . . ..
The set of all strategies, all policies, and all randomized Markov policies will be denoted by Π,Πp, and
Πrmp, respectively.

The cost structure of the considered SMDP is defined by the following two cost functions:

(i) The cost rate function c(i, a) representing cost per unit time when action a is applied when the
system state is i;

(ii) The instantaneous cost function l(i, a) representing the lump sum cost incurred at a decision epoch
when the action a is chosen at state i.

We assume that c : Γ → R and l : Γ → R are Borel functions, and we set c(s, c) = l(s, c) = 0.
We also let f+(a) = max{f (a), 0} and f− (a) = max{−f (a), 0}. For an initial state i, a strategy c, and a
discount factor U > 0, consider the following infinite-horizon expected total discounted costs:

W+(i, c) = Eci

[∫ T∞

0
e−Utc+(Xt , At)dt +

∞∑
n=0

e−UTn l+(Sn, Cn)
]

and

W− (i, c) = Eci

[∫ T∞

0
e−Utc− (Xt , At)dt +

∞∑
n=0

e−UTn l− (Sn, Cn)
]
.

Let r(i, a) be the expected one-stage (from one decision epoch to the next) total discounted cost
incurred when action a is chosen in state i at the beginning of the stage. Then, we have
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r(i, a) = l(i, a) +
∫ ∞

0

∫ t

0
e−Usc(i, a)dsQ(S, dt | i, a) + Q((s,∞) | i, a)

∫ ∞

0
e−Usc(i, a)ds

= l(i, a) + c(i, a)
U

[∫ ∞

0

(
1 − e−Ut ) Q(S, dt | i, a) + Q((s,∞) | i, a)

]
,

which implies that r : Γ → R is a Borel function (Proposition 7.29 in Bertsekas and Shreve [3]) and
r(s, c) = 0.

We have the following assumption everywhere in this paper.

Assumption 1. For any initial state i ∈ S and any strategy c ∈ Π, either W+(i, c) < ∞ or W− (i, c) <
∞.

Given this assumption, the infinite-horizon expected total discounted cost criterion is defined as

W (i, c) = W+(i, c) − W− (i, c) = Eci

[∫ T∞

0
e−Utc(Xt , At)dt +

∞∑
n=0

e−UTn l(Sn, Cn)
]

= Eci

[ ∞∑
n=0

∫ Tn+1

Tn

e−Utc(XTn , ATn)dt + e−UTn l(Sn, Cn)
]

= Eci

[ ∞∑
n=0

e−UTn

(
c(Sn, Cn)

∫ Ξn

0
e−Utdt + l(Sn, Cn)

)]
= Eci

[ ∞∑
n=0

e−UTnr(Sn, Cn)
]
. (2.1)

A strategy c∗ is said to be optimal if W (i, c∗) ≤ W (i, c) for any initial state i and for any strategy
c ∈ Π. We let W∗(i) = infc∈Π W (i, c).

We analyze such a discounted SMDP in two main steps. In the first step, a given discounted SMDP
will be reduced to a DTMDP with expected total undiscounted cost criterion. In the second step, some
existing results for DTMDPs will be applied to prove the convergence of the value iteration algorithm
and the optimality of deterministic stationary policies.

A DTMDP is a special case of SMDPs, where all sojourn times are deterministic. This is why the
successive states of the decision process is governed by transition probabilities p(dj | i, a). Moreover,
the state space S, action space C, sets of available actions C(i), and lump sum cost functions l(i, a) have
the same properties as in SMDPs. Note that every strategy for a DTMDP is a policy. Therefore, it is
sufficient to define the optimization criteria for DTMDPs only for policies. We define the expected total
undiscounted cost

V+(i,f) = Efi

[ ∞∑
n=0

l+(Sn, Cn)
]

, V− (i,f) = Efi

[ ∞∑
n=0

l− (Sn, Cn)
]

,

and V (i,f) = V+(i,f) −V− (i,f) where i ∈ S is an initial state and f is a policy. If either V+(i,f) < ∞
or V− (i,f) < ∞, then

V (i,f) = Efi

[ ∞∑
n=0

l(Sn, Cn)
]
. (2.2)

If V+(i,f) = V− (i,f) = ∞, we assume that V (i,f) = ∞ by using the usual convention.
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2.2. Main results

Suppose that an SMDP Ys = {S, C, C(i), Q(· | i, a), r(i, a)}, which possibly does not satisfy the standard
assumption, is given under the infinite-horizon expected total discounted cost criterion in (2.1). We
define the regular nonnegative conditional measures on S,

V(J | i, a) =
∫ ∞

0
e−UtQ(J, dt | i, a) (2.3)

for any J ∈ S and (i, a) ∈ Γ. Note that V(J | i, a) is a Borel function on S × C for every J ∈ S.
Consider a DTMDP Ydt = {S, C, C(i), p(· | i, a), r(i, a)}, where S = S∪{s}, C = C∪{c}, C(i) = C(i)

for any i ∈ S, C(s) = {c},

p(J | i, a) =


V(J | i, a) if J ∈ S , i ∈ S, a ∈ C(i)
1 − V(S | i, a) if J = {s}, i ∈ S, a ∈ C(i)
1 if J = {s}, i = s, a = c,

(2.4)

r(i, a) = r(i, a) if (i, a) ∈ Γ, and r(s, c) = 0. Then, p is a regular transition probability from S × C to
S, and Γ = Γ ∪ {(s, c)} is a Borel subset of S × C. Note that we add an absorbing state s to S at which
no cost is incurred. With no loss of generality, we assume that s and c are isolated points in S and C,
respectively. This implies that the set {(i, a) ∈ S × C | i = s or a = c} is open (with respect to the
product metric) in S × C. Therefore, S × C is closed in S × C, which implies that Γ is closed in Γ since
Γ = Γ ∩ (S × C). Furthermore, since every finite set in a metric space is closed, Γ is open in Γ.

We let V (i,f) be the expected total undiscounted cost functions associated with this DTMDP, which
are defined as in (2.2). A policy f∗ is said to be optimal, if V (i,f∗) ≤ V (i,f) for any initial state i and
for any policy f ∈ Πp. We let V∗(i) = inff∈Πp V (i,f).

In the following, we show that the SMDP and DTMDP defined above are equivalent in terms of their
respective cost criteria.

For any strategy c, any initial state i, and epochs n = 0, 1, . . ., we define bounded nonnegative
measures

M c
i,n(J, B) = Eci

[
e−UTnI{Sn∈J,Cn∈B}

]
, (2.5)

mc
i,n(J) = Eci

[
e−UTnI{Sn∈J }

]
, (2.6)

where J ∈ S and B ∈ C.
Let f (j, b) = ∑n

k=1 ckI{j∈Jk ,b∈Bk } be a step function where Jk ∈ S and Bk ∈ C for every k. Then, by
the definition of integration,∫

S

∫
C

f ( j, b)M c
i,n(dj, db) =

n∑
k=1

ckM c
i,n(Jk , Bk).

Moreover,

Eci
[
e−UTn f (Sn, Cn)

]
=

n∑
k=1

ckE
c
i
[
e−UTnI{Sn∈Jk ,Cn∈Bk }

]
=

n∑
k=1

ckM c
i,n(Jk , Bk).

Joining the last two equations gives

Eci
[
e−UTn f (Sn, Cn)

]
=

∫
S

∫
C

f ( j, b)M c
i,n(dj, db). (2.7)

Now, let f ( j, b) be a nonnegative Borel measurable function on S × C. Theorem 1.5.5(a) in Ash and
Doléans-Dade [1] implies that there exists a sequence ( fm) of nonnegative finite-valued step functions
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such that fm ↑ f . Then, (2.7) implies that for every m,

Eci
[
e−UTn fm (Sn, Cn)

]
=

∫
S

∫
C

fm ( j, b)M c
i,n(dj, db). (2.8)

Applying the monotone convergence theorem to both sides of (2.8) gives

Eci
[
e−UTn f (Sn, Cn)

]
=

∫
S

∫
C

f ( j, b)M c
i,n(dj, db).

Similarly, it is possible to show that

Eci
[
e−UTn f (Sn)

]
=

∫
S

f ( j)mc
i,n(dj), (2.9)

where f (j) is a nonnegative Borel measurable function on S. Since r+ and r− are nonnegative Borel
measurable functions

Eci
[
e−UTnr+(Sn, Cn)

]
=

∫
S

∫
C

r+(j, b)M c
i,n(dj, db),

Eci
[
e−UTnr− (Sn, Cn)

]
=

∫
S

∫
C

r− (j, b)M c
i,n(dj, db),

and hence
Eci

[
e−UTnr(Sn, Cn)

]
=

∫
S

∫
C

r(j, b)M c
i,n(dj, db). (2.10)

The next result shows that it is sufficient to focus on randomized Markov policies to find the optimal
solution of Ydt.

Lemma 1. Let c ∈ Π and i ∈ S. Then, there exists a f ∈ Πrmp such that

Mf
i,n = M c

i,n (2.11)

for all n = 0, 1, . . .. Hence, W (i,f) = W (i, c).

Proof. Since mc
i,n(J) = M c

i,n(J, C) for every J ∈ S, m is the marginal of M on S. Then, Corollary 7.27.2
in Bertsekas and Shreve [3] implies that there exists a transition probability fn from S to C such that

M c
i,n(J, B) =

∫
J
fn(B | j)mc

i,n(dj) (2.12)

for all J ∈ S and B ∈ C. Note that fn is unique almost everywhere with respect to mc
i,n. Since M c

i,n is
concentrated on Γ, it is possible to choose fn such that fn(C(i) | i) = 1 for all i ∈ S. This implies that
f = {f0,f1, . . .} ∈ Πrmp.

We will prove (2.11) by induction on n. Choose arbitrary i ∈ S, J ∈ S , and B ∈ C. Then, (2.5)
and (2.6) imply that

mc
i,0 (J) = P

c
i {X0 ∈ J} = I{i∈J } (2.13)

and
M c

i,0(J, B) = Pci {S0 ∈ j, C0 ∈ B} = Pc{i ∈ J, C0 ∈ B | S0 = i}
= Pc{C0 ∈ B | i ∈ J, S0 = i}Pc{i ∈ J | S0 = i}
= c0(B | i)I{i∈J } . (2.14)

https://doi.org/10.1017/S0269964824000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000044


Probability in the Engineering and Informational Sciences 675

Note that (2.12), (2.13), and (2.14) hold for any J ∈ S. Now, let J be a set in S such that i ∈ J. Then, if
we plug in (2.13) and (2.14) into (2.12), we obtain fn(B | i) = c0(B | i). Since i and B are arbitrary, we
can conclude that f0 = c0. This directly implies that (2.11) is correct for n= 0. Now, we assume that
(2.11) is correct for n and verify its correctness for n+ 1.

We first show that mf
i,n+1 = mc

i,n+1. Let X be an arbitrary strategy and choose arbitrary J ∈ S . Then,

mX
i,n+1(J) = EXi

[
e−UTn+1I{Sn+1∈J }

]
= EXi

[
EXi

[
e−UTn−UTn+1+UTnI{Sn+1∈J } | Tn, Sn, Cn

] ]
= EXi

[
e−UTn

∫ ∞

0
e−UtQ(J, dt | Sn, Cn)

]
= EXi

[
e−UTn V(J | Sn, Cn)

]
=

∫
S

∫
C
V(J | j, b)M X

i,n(dj, db). (2.15)

Then, since X can be chosen arbitrarily, the induction hypothesis and (2.15) imply that

mf
i,n+1(J) =

∫
S

∫
C
V(J | j, b)Mf

i,n(dj, db)

=

∫
S

∫
C
V(J | j, b)M c

i,n(dj, db) = mc
i,n+1(J).

Now we will prove Mf
i,n+1 = M c

i,n+1 by using mf
i,n+1 = mc

i,n+1. For arbitrary J ∈ S and B ∈ C,

Mf
i,n+1 (J, B) = Efi

[
e−UTn+1I{Sn+1∈J,Cn+1∈B}

]
= Efi

[
Efi

[
e−UTn+1I{Sn+1∈J,Cn+1∈B} | Tn+1, Sn+1

] ]
= Efi

[
e−UTn+1I{Sn+1∈J }E

f
i
[
I{Cn+1∈B} | Tn+1, Sn+1

] ]
= Efi

[
e−UTn+1I{Sn+1∈J }fn+1(B | Sn+1)

]
=

∫
J
fn+1(B | j)mf

i,n+1(dj) (2.16)

=

∫
J
fn+1(B | j)mc

i,n+1(dj) = M c
i,n+1(J, B),

where the fifth equality follows from (2.9) with f (j) = I{j∈J }fn+1(B | j) and the last equality follows
from (2.12). Then, (2.10) implies that

Efi
[
e−UTnr(Sn, Cn)

]
= Eci

[
e−UTnr(Sn, Cn)

]
,

which completes the proof. �

The next result shows that an optimal policy for Ydt is also optimal for Ys.

Theorem 1. For any c ∈ Πrmp, W (i, c) = V (i, c). Moreover, W∗(i) = infc∈Π W (i, c) =

infc∈Πrmp W (i, c) = V∗(i) = inff∈Πp V (i,f) = inff∈Πrmp V (i,f).

Proof. Lemma 1 in this paper and Proposition 9.1 in Bertsekas and Shreve [3] imply that it suffices to
show that W (i, c) = V (i, c) for any randomized Markov policy c. We choose an arbitrary randomized
Markov policy c. We let Tn denote the time of the nth jump of Ydt. The decision-maker chooses action
Cn after observing the system state Sn at time Tn. Let Pci be the probability measure on the sets of
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trajectories in this DTMDP defined by the initial state i and the randomized Markov policy c. The
expectation operator with respect to this measure is denoted by Eci . Then, we have

V (i, c) = Eci

[ ∞∑
n=0

r(Sn, Cn)
]
.

We define the bounded nonnegative measure Pci,n on S × C,

P
c

i,n(J, B) = Pci
(
Sn ∈ J, Cn ∈ B

)
for all n = 0, 1, . . . and for all J ∈ S , B ∈ C, where S and C are the collections of all measurable sets of
S and C, respectively. Then, we clearly have

E
c

i

[
r(Sn, Cn)

]
=

∫
S

∫
C

r(j, b)Pci,n(dj, db)

=

∫
S

∫
C

r(j, b)Pci,n(dj, db) (2.17)

since r(s, c) = 0 and C(s) = {c}. Then, (2.10) and (2.17) imply that it is sufficient to show that
P
c

i,n(J, B) = M c
i,n(J, B) for all n = 0, 1, . . . and for all J ∈ S , B ∈ C. We will prove this by induc-

tion on n. It is clear that Pci,0(J, B) = I{i∈J }c0(B | i) = M c
i,0 (J, B) for all J ∈ S , B ∈ C. Let Pci,n = M c

i,n
holds for some n and fix some J ∈ S , B ∈ C. Then, (2.15) and (2.16) directly imply that

M c
i,n+1(J, B) =

∫
S

∫
C

∫
J
cn+1(B | x)V(dx | j, b)M c

i,n(dj, db). (2.18)

By conditioning on Sn and Cn, we have

P
c

i,n+1(J, B) = Pci (Sn+1 ∈ J, Cn+1 ∈ B)

=

∫
S

∫
C
P
c

i (Sn+1 ∈ J, Cn+1 ∈ B | Sn = j, Cn = b)Pci,n(dj, db)

=

∫
S

∫
C

∫
J
cn+1(B | x)p(dx | j, b)Pci,n(dj, db)

=

∫
S

∫
C

∫
J
cn+1(B | x)V(dx | j, b)M c

i,n(dj, db), (2.19)

where the last equality follows from the induction hypothesis and (2.4). Then, the result directly follows
from (2.18) and (2.19). �

This result implies that the optimization of an SMDP possibly with accumulation points is equivalent
to the optimization of the corresponding DTMDP defined at the beginning of this subsection. Based on
this fact, in what follows we analyze the convergence of the value iteration algorithm, the existence of
optimal deterministic stationary policies, and the validity of the Bellman equation for SMDPs possibly
with accumulation points. We define the value iteration procedure as

Vk+1(i) = inf
a∈C (i)

{
r(i, a) +

∫
S

Vk (j)p(dj | i, a)
}

, (2.20)
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where V0 (i) = 0 for every i ∈ S. Since r(s, c) = 0, Vk (s) = 0 for every k. This and (2.4) imply that
(2.20) simplifies to

Vk+1(i) = inf
a∈C (i)

{
r(i, a) +

∫
S

Vk (j)V(dj | i, a)
}

(2.21)

for every i ∈ S.
The next result shows that, under appropriate conditions on the one-stage cost function r(i, a), W∗

satisfies the Bellman equation defined by

W (i) = inf
a∈C (i)

{
r(i, a) +

∫
S

W (j)V(dj | i, a)
}
. (2.22)

Theorem 2. If r(i, a) ≥ (≤)0 for all i and a, then the optimal expected total discounted cost function
W∗ is the minimal nonnegative (maximal nonpositive) solution of the Bellman equation (2.22).

Proof. The statements in the theorem are correct for V∗ due to Corollary 9.4.1, Proposition 9.8, and
Proposition 9.10 in Bertsekas and Shreve [3], respectively. Then, the result trivially follows from
Theorem 1. �

The value iteration procedure is very useful in the applications of Markov decision processes. It can
be used to compute the optimal value functions. It can also be used to prove structural properties of the
optimal policy. The next result shows that the value iteration procedure always converges if r(i, a) ≤ 0.
However, we will need some additional compactness and continuity assumptions when r(i, a) ≥ 0.

Theorem 3. If r(i, a) ≤ 0 for all i and a, then the value iteration procedure given in (2.21) converges
to W∗, i.e., Vk (i) → W∗(i) as k → ∞.

Proof. Proposition 9.14 in Bertsekas and Shreve [3] implies that Vk (i) → V∗(i). Then, the result
trivially follows from Theorem 1. �

For an R-valued function f, defined on a Borel subset U of a Polish space, consider the level sets
{y ∈ U | f (y) ≤ _},_ ∈ R. f is said to be inf-compact on U if all the level sets are compact. f
is said to be lower semicontinuous on U if f (u) ≤ lim infn→∞ f (un) for every sequence {un | n ≥ 1}
in U converging to a point u ∈ U. Lemma 7.13 in Bertsekas and Shreve [3] implies that f is lower
semicontinuous on U if and only if all the level sets are closed in U.

Let r̃(i, a) be an R-valued function defined on S × C such that

r̃(i, a) =
{

r(i, a) if (i, a) ∈ Γ

∞ otherwise.

We further analyze the convergence of the value iteration procedure and the existence of the optimal
deterministic stationary policies under the following four assumptions:

Assumption 2.

(i) r is nonnegative; and
(ii) C is a finite set.
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Assumption 3.

(i) Assumption 2(i) holds; and r is lower semicontinuous on Γ;
(ii) C is a compact set;
(iii) Γ is closed in S × C; and
(iv) Q(· | i, a) is weakly continuous in (i, a) ∈ Γ, i.e.,∫

S×R≥0

f (j, t)Q(dj, dt | ik , ak) →
∫

S×R≥0

f (j, t)Q(dj, dt | i, a) as k → ∞

for any sequence {(ik , ak) | k ≥ 0} converging to (i, a), where (ik , ak), (i, a) ∈ Γ, and for any
bounded continuous function f : S × R≥0 → R.

Assumption 4.

(i) Assumption 2(i) holds;
(ii) For each i ∈ S, r(i, a) < ∞ for some a ∈ C(i);
(iii) The function r̃ : S × C → R is K-inf-compact on Γ, i.e., it is inf-compact on the set

{(i, a) ∈ Γ | i ∈ K} for every compact subset K of S; and
(iv) Assumption 3(iv) holds.

Assumption 5.

(i) Assumption 2(i) holds;
(ii) Assumption 4(ii) holds;
(iii) The function a ↦→ r(i, a) is inf-compact on C(i) for every i ∈ S;
(iv) Q(· | i, a) is setwise continuous in a ∈ C(i), i.e.,∫

S×R≥0

f (j, t)Q(dj, dt | i, ak) →
∫

S×R≥0

f (j, t)Q(dj, dt | i, a) as k → ∞

for any sequence {ak | k ≥ 0} converging to a, where ak , a ∈ C(i), and for any bounded function
f : S × R≥0 → R.

In what follows, we show that each of these assumptions are sufficient for the convergence of the
value iteration procedure and the existence of the optimal deterministic stationary policies.

Lemma 2.

(i) Let Assumption 3(iv) holds. Then, V(· | i, a) is weakly continuous in (i, a) ∈ Γ, and p(· | i, a) is
weakly continuous in (i, a) ∈ Γ.

(ii) Let Assumption 5(iv) holds. Then, V(· | i, a) is setwise continuous in a ∈ C(i), and p(· | i, a) is
setwise continuous in a ∈ C(i).

Proof. As the proofs of part (i) and (ii) are almost identical, we will only provide the proof for part
(i). Let {(ik , ak) | k ≥ 0} be a sequence in Γ converging to (i, a) ∈ Γ, and f : S → R be a bounded
continuous function. The weak convergence of V(· | i, a) in (i, a) ∈ Γ follows from∫

S
f (j)V(dj | ik , ak) =

∫
S×R≥0

e−Utf (j)Q(dj, dt | ik , ak)
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→
∫

S×R≥0

e−Utf (j)Q(dj, dt | i, a) =
∫

S
f (j)V(dj | i, a),

where the first equality follows from (2.3), and the convergence follows from Assumption 3(iv) and
from the fact that the function e−Utf (j) is continuous and bounded on S × R≥0. Let {(ik , ak) | k ≥ 0}
be a sequence in Γ converging to (i, a) ∈ Γ, and f : S → R be a bounded continuous function. We need
to show that ∫

S
f (j)p(dj | ik , ak) →

∫
S

f (j)p(dj | i, a). (2.23)

Recall that (s, c) is an isolated point. If (i, a) = (s, c), then (ik , ak) = (s, c) for all k ≥ N for some
N < ∞. Then, the convergence in (2.23) follows trivially. Due to the same reasoning, if (i, a) ∈ Γ, there
exists N < ∞ such that (ik , ak) ∈ Γ for every k ≥ N . This and (2.4) imply that∫

S
f (j)p(dj | ik , ak) =

∫
S

f (j)V(dj | ik , ak) + f (s)
(
1 −

∫
S
V(dj | ik , ak)

)
→

∫
S

f (j)V(dj | i, a) + f (s)
(
1 −

∫
S
V(dj | i, a)

)
=

∫
S

f (j)p(dj | i, a),

where the convergence follows from the weak continuity of V(· | i, a) in (i, a) ∈ Γ. �

Theorem 4. If Assumption 2 holds, then W∗ is Borel measurable. If Assumption 3 holds, then W∗ is
lower semicontinuous on S. In addition, if either Assumption 2 or Assumption 3 hold, then the following
statements hold:

(i) There exists a deterministic stationary policy which is optimal for Ys;
(ii) A deterministic stationary policy q is optimal for Ys if and only if

W∗(i) = r(i, q(i)) +
∫

S
W∗(j)V(dj | i, q(i)) = min

a∈C (i)

{
r(i, a) +

∫
S

W∗(j)V(dj | i, a)
}

;

(iii) In the value iteration procedure given in (2.21), infimum can be replaced with minimum and
Vk (i) → W∗(i) as k → ∞.

Proof. First, we will show that all statements in the theorem are correct for V∗ and Ydt instead of W∗

and Ys. Then, the proof will be completed by applying Theorem 1 of this paper. All results that we use
in this proof are from Bertsekas and Shreve [3] unless otherwise specified. Assume that Assumption 2
holds. Corollary 9.17.1 implies that Vk (i) → V∗(i), V∗ is Borel measurable and that there exists a Borel
measurable optimal deterministic stationary policy for Ydt. Furthermore, Proposition 9.18 implies that
infimum can be replaced with minimum in (2.21).

Now, assume that Assumption 3 holds. Due to Lemma 2(i), the transition probability p(· | i, a) is
weakly continuous in (i, a) ∈ Γ. By using the open cover characterization of compactness and the facts
for a metric space that a one-point set is compact and the union of two compact sets is compact, it is
easy to see that C is compact. Since S × C is closed in S × C, it follows from Assumption 3(iii) and the
fact that every finite set is closed in a metric space that Γ and Γ are closed in S × C. Consider the level
set {(i, a) ∈ Γ | r(i, a) ≤ _}. Since r(s, c) = 0,

{(i, a) ∈ Γ | r(i, a) ≤ _} =
{

{(i, a) ∈ Γ | r(i, a) ≤ _}⋃{(s, c)} if _ ≥ 0
{(i, a) ∈ Γ | r(i, a) ≤ _} if _ < 0.

(2.24)

Since Γ is closed in Γ, the lower semicontinuity of r on Γ and (2.24) imply that the level set {(i, a) ∈ Γ |
r(i, a) ≤ _} is closed in Γ, and hence r is lower semicontinuous on Γ. Then, Corollary 9.17.2 implies
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that Vk (i) → V∗(i), V∗ is lower semicontinuous on S and there exists a Borel measurable optimal
deterministic stationary policy for Ydt, and Proposition 9.18 implies that infimum can be replaced with
minimum in (2.21). It should be noted that in Bertsekas and Shreve [3], the disturbance kernel and the
system function associated with Ydt are assumed to be continuous. These assumptions are merely used
to guarantee the weak continuity of p(· | i, a), which is also correct in our setting. Moreover, we have

V∗(i) = r(i, q(i)) +
∫

S
V∗(j)V(dj | i, q(i)) = min

a∈C (i)

{
r(i, a) +

∫
S

V∗(j)V(dj | i, a)
}

if and only if the deterministic stationary policy q is optimal for Ydt, where the equalities follow from
Proposition 9.12, Proposition 9.8, and Corollary 9.12.1, respectively. Note that, so far, all results given
in the theorem are proved for V∗ and Ydt instead of W∗ and Ys. They can be extended to W∗ and Ys by
using Theorem 1 of this paper. �

Theorem 5. If Assumption 4 holds, then the following statements hold:

(i) The value function W∗ is lower semicontinuous on S;
(ii) There exists a deterministic stationary policy which is optimal for Ys;
(iii) A deterministic stationary policy q is optimal for Ys if and only if

W∗(i) = r(i, q(i)) +
∫

S
W∗(j)V(dj | i, q(i)) = min

a∈C (i)

{
r(i, a) +

∫
S

W∗(j)V(dj | i, a)
}

;

(iv) In the value iteration procedure given in (2.21), infimum can be replaced with minimum and
Vk (i) → W∗(i) as k → ∞.

Proof. This result directly follows from Theorem 2 in Feinberg, Kasyanov, and Zadoianchuk [12].
Assumption 4 and Lemma 2.5 in Feinberg, Kasyanov, and Zadoianchuk [13] imply that Assumption
(W*) in Feinberg, Kasyanov, and Zadoianchuk [12] holds for r, Γ, S, C, and Q. We need to show that
it still holds when r, Γ, S, C, and Q are replaced with r, Γ, S, C, and p, respectively. It is obvious that
r ≥ 0 and r(i, a) < ∞ for some a ∈ C(i) for every i ∈ S because r(s, c) = 0. Since Γ is closed in
Γ, the lower semicontinuity of r on Γ and (2.24) imply the lower semicontinuity of r on Γ. Moreover,
Lemma 2(i) implies that p(· | i, a) is weakly continuous in (i, a) ∈ Γ. Let {ik | k ≥ 1} be a convergent
sequence in S such that ik → i ∈ S as k → ∞. Let {ak | k ≥ 1} be an arbitrary sequence such that
ak ∈ C(ik) for every k and the sequence {r(ik , ak) | k ≥ 1} is bounded above. To complete the proof,
we need to show that ak → a as k → ∞ for some a ∈ C(i). If i = s, since s is an isolated point, there
exists N1 such that ik = s for every k ≥ N1. This directly implies that ak = c for every k ≥ N1, and hence
ak → c ∈ C(s). Now, assume that i ∈ S. We can find N2 such that ik ∈ S for every k ≥ N2 since s is an
isolated point. This implies that ak ∈ C(ik) for every k ≥ N2. By ignoring (with no loss of generality)
finitely many elements of the sequence {ak | k ≥ 1} and using Lemma 2.5(ii) in Feinberg, Kasyanov,
and Zadoianchuk [13], we can conclude that ak → a for some a ∈ C(i), where C(i) = C(i) due to the
initial assumption that i ∈ S. �

Theorem 6. If Assumption 5 holds, then the following statements hold:

(i) The value function W∗ is Borel measurable on S;
(ii) There exists a deterministic stationary policy which is optimal for Ys;
(iii) A deterministic stationary policy q is optimal for Ys if and only if

W∗(i) = r(i, q(i)) +
∫

S
W∗(j)V(dj | i, q(i)) = min

a∈C (i)

{
r(i, a) +

∫
S

W∗(j)V(dj | i, a)
}

;
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(iv) In the value iteration procedure given in (2.21), infimum can be replaced with minimum and
Vk (i) → W∗(i) as k → ∞.

Proof. This result directly follows from Theorem 3.1 in Feinberg and Kasyanov [11]. Assuming that
Assumption 5 holds, we need to show that it still holds when r, S, C, and Q are replaced with r, S, C,
and p, respectively. It is obvious that r ≥ 0 and r(i, a) < ∞ for some a ∈ C(i) for every i ∈ S
because r(s, c) = 0. Moreover, Lemma 2(ii) implies that p(· | i, a) is setwise continuous in a ∈ C(i).
To complete the proof, we need to show that the function a ↦→ r(i, a) is inf-compact on C(i) for every
i ∈ S. Therefore, it is sufficient to show that the level sets {a ∈ C(i) | r(i, a) ≤ _} are compact in C(i)
for any _ ∈ R. If i = s, then C(i) = {c} implying that

{a ∈ C(i) | r(i, a) ≤ _} =
{

∅ if _ < 0
{c} if _ ≥ 0.

Since finite sets are compact in metric spaces, {a ∈ C(s) | r(s, a) ≤ _} is compact in C(s) for any
_ ∈ R. If i ∈ S, then C(i) = C(i) implying that {a ∈ C(i) | r(i, a) ≤ _} = {a ∈ C(i) | r(i, a) ≤ _}.
Let D = {a ∈ C(i) | r(i, a) ≤ _}. It will be sufficient to show that D is compact in C(i). Due to
Assumption 5(iii), we already know that D is compact in C(i). Let {Θn} be an open cover of D in C(i).
Since D is a subset of C(i), {Θn} is an open cover of D in C(i), where Θn = Θn

⋂
C(i). Since D is

compact in C(i), there is a finite subcover of D in C(i), and let {Θa1 , · · ·Θam } be this subcover. This
implies that D is also compact in C(i) since {Θa1 , · · ·Θam } must be also a subcover of D in C(i). �

3. Application: a service rate control problem

We consider a service rate control problem for an M/M/1 queueing system with infinite buffer capacity
and a strictly positive arrival rate _. We assume that customers arriving at this queuing system are
impatient. Each customer has a maximum waiting time in the system, and if a customer’s waiting time
in the system exceeds this maximum time, the customer will abandon the system regardless of whether
the customer has started receiving service or not. We assume that these maximum times follow an
exponential distribution with a parameter of W > 0 for each customer, and that each of these random
times is independent of all other times in the model. Customers who wait in the system for less than the
maximum time will not leave the system. Whenever a customer enters or leaves the system, a service
rate ` is chosen from a compact set C ⊂ R≥0 such that 0 ∈ C. The cost rate of having service rate
` is c(`) ≥ 0 per unit time. We assume that c(`) is a lower semicontinuous real-valued function on
C. If there is no customer in the system, the cost c(0) is incurred per unit time. A holding cost h ≥ 0
is incurred for every time unit a customer spends in the system. In addition, if a customer abandons
the system, a lump sum cost a> 0 is incurred. We assume that all costs are continuously discounted by
using a discount rate U > 0.

The problem is to determine the best service rate control policy minimizing the expected total dis-
counted cost in the long run. We will formulate this problem as an ESMDP, denoted by Y, where the
system state is defined as the number of customers in the system. So, the state space is S = {0, 1, · · · }.
Since all alternative service rates in C are available at any state, Γ = S × C. Let Λ(i, `) and P(j | i, `),
where i, j ∈ E and ` ∈ C, denote the transition rates and transition probabilities associated with Y,
respectively. Then, if the number of customers in the system is i and the chosen service rate is ` at a
decision epoch, the time until the next decision epoch will be exponentially distributed with rateΛ(i, `),
and the next system state will be j with probability P(j | i, `). It is easy to see that

Λ(i, `) =
{

_ + ` + Wi if i ≥ 1
_ if i = 0,

(3.1)
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and

P(j | i, `) =


_

Λ(i,`) if j = i + 1 and i ≥ 1
`+Wi
Λ(i,`) if j = i − 1 and i ≥ 1

1 if j = 1 and i = 0
0 otherwise.

(3.2)

Note that since the buffer capacity is infinite, the transition rates are unbounded and, therefore, the
uniformization technique is not possible. Moreover, we have

Q(j, t | i, `) = (1 − e−Λ(i,`)t)P(j | i, `) (3.3)

and

r(i, `) =
{

c(`)+(h+Wa)i
U+_+`+Wi if i ≥ 1

c(0)
U+_ if i = 0.

(3.4)

Let (ik , `k) be a sequence in Γ converging to (i, `) ∈ Γ, and f (j, t) be a bounded continuous function
on S × R≥0. Then, we have

lim
k→∞

∫
S×R≥0

f (j, t)Q(dj, dt | ik , ak) = lim
k→∞

∑
j∈S

∫ ∞

0
f (j, t)Λ(ik , `k)e−Λ(ik ,`k )tP(j | ik , `k)dt

=
∑
j∈S

∫ ∞

0
f (j, t) lim

k→∞
Λ(ik , `k)e−Λ(ik ,`k )tP(j | ik , `k)dt

=
∑
j∈S

∫ ∞

0
f (j, t) lim

k→∞
Λ(i, `k)e−Λ(i,`k )tP(j | i, `k)dt

=
∑
j∈S

∫ ∞

0
f (j, t)Λ(i, `)e−Λ(i,`)tP(j | i, `)dt

=

∫
S×R≥0

f (j, t)Q(dj, dt | i, a), (3.5)

where the second inequality follows from the dominated convergence theorem, the third equality follows
from the fact that there exists an integer N such that ik = i for every k ≥ N since the elements of S are
integers, and the fourth equality follows from the fact that the product of two continuous functions is
continuous. It follows from (3.5) that Q(· | i, a) is weakly continuous in (i, a) ∈ Γ.

Now, we show that the lower semicontinuity of c(`) implies the lower semicontinuity of r(i, `). For
fixed i ∈ S and z ∈ R, we have

{` ∈ C | r(i, `) ≤ z} =
{

{` ∈ C | c(`) ≤ z(U + _ + `) + (zW − h − Wa)i} if i ≥ 1
∅ or C if i = 0,

where all sets on the right hand-side of the equality are closed in C since c(`) − z` is a lower semicon-
tinuous function on C. This follows from the facts that a linear function is continuous, any continuous
function is lower semicontinuous, and the sum of lower semicontinuous functions is lower semicon-
tinuous. We can conclude that r(i, `) is lower semicontinous in ` for a given i. This implies that

lim inf
k→∞

r(ik , `k) = lim inf
k→∞

r(i, `k) ≥ r(i, `), (3.6)

where the inequality follows from Lemma 7.13 in Bertsekas and Shreve [3]. The same lemma together
with (3.6) imply that r(i, `) is lower semicontinuous in Γ.

In the previous two paragraphs, we have shown that the ESMDP Y = {S, C, C, Q(· | i, `), r(i, `)}
satisfies Assumption 3. Then, Theorem 4 implies that there exists an optimal deterministic stationary

https://doi.org/10.1017/S0269964824000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000044


Probability in the Engineering and Informational Sciences 683

policy which is the solution of the Bellman equations that can be solved iteratively by using the value
iteration procedure.

We define

Lg(i) =
{

min`∈C

{
Σ (i,` |g)
U+_+`+Wi

}
if i ≥ 1

c(0)+_g(1)
U+_ if i = 0,

(3.7)

where
Σ(i, ` | g) = c(`) + (h + Wa)i + _g(i + 1) + (` + Wi)g(i − 1) (3.8)

for any function g defined on S. The Bellman equation corresponding to the service rate control problem
that we analyze is

v(i) = Lv(i), (3.9)

where v(i) is the expected total discounted cost occurring under the optimal policy given that the initial
system state is i. Let ˚̀(i) be the optimal service rate chosen by the decision-maker when the initial
system state is i ≥ 1. We define it as:

˚̀(i) = min
{
` ∈ C | v(i) = Σ(i, ` | v)

U + _ + ` + Wi

}
, (3.10)

where the minimum is attained since any closed subset of a compact set is compact. Therefore, ˚̀(i) is
the smallest service rate solving (3.9) and we assume that the decision-maker prefers the smaller service
rate in case of a tie.

The value iteration procedure is defined as:
vN+1(i) = LvN (i),

where v0(i) = 0 for every i ∈ S, and Theorem 4 implies that vN → v as N → ∞. Moreover, the following
result shows that v(i) is a finite function on S.

Proposition 1. For every i ∈ S, v(i) < ∞.

Proof. It follows from (3.7) and (3.8) that either every v(i) is infinite or none of them. Therefore, it
is sufficient to show that v(0) < ∞. We will do this by considering the policy where the zero service
rate is selected in all states. Let v(0) (0) denote the expected total discounted cost corresponding to
this policy, and we will show that v(0) (0) < ∞. Under the fixed policy, the system that we analyze
is equivalent to an M/M/∞ queueing system where the arrival rate is _ and the service rate is W. For
each customer in the system, a cost of h is incurred per unit time, and whenever a customer leaves the
system, a lump-sum cost a is incurred. Note that paying the lump-sum cost a for a departing customer is
equivalent to paying Ua per unit time during the time interval from the moment of departure to infinity
since

∫ ∞
t e−UsUads = ae−Ut for every t ≥ 0, where ae−Ut is the present value of the lump-sum cost a

paid at time t. This is why

v(0) (0) = E
[∫ ∞

0
e−Ut (c(0) + UaN1(t) + hN2(t)) dt

]
,

where N1(t) is the number of customers who have left the system by time t, and N2(t) is the number of
customers in the system at time t. It follows from Example 2.3(B) in Ross [23] that N1 (t) and N2(t) are
Poisson random variables with the respective means _

(
t + e−Wt−1

W

)
and _

(
1−e−Wt )
W

. Then, we have

v(0) (0) =
∫ ∞

0
e−Ut (c(0) + UaE [N1(t)] + hE [N2(t)]) dt =

c(0)
U

+ _ (h + aW)
U (U + W) < ∞.

�
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Next, we investigate the structure of the optimal policy and the optimal value function under the
following assumptions.

Assumption 6. For every ` ∈ C, c(0) ≤ c(`).

Assumption 7. There exists a real number Mc such that c(`) ≤ Mc for every ` ∈ C.

Assumption 6 states that the cost of idleness is always less than the operation cost of providing
service. Assumption 7 implies that the cost function c(`) is a bounded function.

In the proofs presented in the rest of the paper, we will use customized versions of the original
ESMDP Y. These versions are obtained by applying the customization technique to Y. Y is an ESMDP
with the state space S, action space C, transition rates Λ(i, `), transition probabilities P(j | i, `), lump-
sum costs r(i, `), and discount factor U. In the customization technique, we formulate a new ESMDP
Y with the same state and action spaces, the same discount factor, transition rates Λ(i, `), transition
probabilities P(j | i, `), and lump-sum costs r(i, `). We assume that Λ(i, `) ≥ Λ(i, `),

r(i, `) = r(i, `)U + Λ(i, `)
U + Λ(i, `)

, (3.11)

and

P(j | i, `) =


1 − Λ(i,`)
Λ(i,`)

if i = j
Λ(i,`)P(j |i,`)

Λ(i,`)
if i ≠ j.

(3.12)

Then, we can prove that Y and Y have the same infinite-horizon expected total discounted cost for every
stationary deterministic policy. In other words, a problem with a stationary deterministic optimal policy
can be solved using either Y or Y . This result implies that the transition rates of Y can be increased (so Y
can be customized) to obtain an equivalent formulation that makes the proofs more tractable and easier.
Note that, unlike the uniformization technique, the transition rates of the new ESMDP do not have to be
the same in the customization technique; each of them can be increased independently of the others. We
refer interested readers to Çekyay [6] for a detailed description and applications of the customization
technique.

As an example, let us define a new ESMDP Y0 by customizing Y such that the transition rate at state
0 is increased from _ to _ + ` + W and the transition rate at state i, i ≥ 1, when the selected service rate
is ` is increased from _ + ` + Wi to _ + ` + Wi, where

` ≥ max{max C,
McW

h + Wa
− U − _}. (3.13)

This new ESMDP is denoted by Y0 = (S, C, C, Q0(· | i, `), r0(i, `)), where

Q0(j, t | i, `) =


Q(j, t | i, `) 1−e−(_+`+W) t

1−e−_t
_

_+`+W if i = 0, j ≠ i
(1 − e−(_+`+W)t) (1 − _

_+`+W ) if i = 0, j = i
Q(j, t | i, `) 1−e−(_+`+Wi) t

1−e−(_+`+Wi) t
_+`+Wi
_+`+Wi if i > 0, j ≠ i

(1 − e−(_+`+Wi)t) (1 − _+`+Wi
_+`+Wi ) if i > 0, j = i,

(3.14)

and

r0(i, `) =
{

r(i, `) U+_
U+_+`+W if i = 0

r(i, `) U+_+`+Wi
U+_+`+Wi if i > 0,

(3.15)

which directly follow from (3.11) and (3.12).
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By following similar steps as done for the original ESMDP Y, it can be shown that Y0 also satisfies
Assumption 3 due to the fact that the formulations of Q0 and r0 ((3.14) and (3.15)) are very similar to
the formulations of Q and r ((3.3) and (3.4)), respectively. Let v0

N (i) be the value function corresponding
to the Nth iteration of the value iteration procedure for Y0. Theorem 4 of this paper, Theorem 2.3 in
Çekyay [6], (3.3), (3.4), (3.14), and (3.15) imply the following result.

Theorem 7. There exists a deterministic stationary policy which is optimal for Y0. The same policy is
also optimal for Y. Moreover, v0

N (i) → v(i) as N → ∞ and v(i) = L0v(i), where v0
N+1(i) = L0v0

N (i),
v0

0 (i) = 0 and

L0g(i) =
{ c(0)+_g(i+1)+(`+W)g(i)

U+_+`+W if i = 0
min`∈C{ Σ (i,` |g)+(`−`)g(i)U+_+`+Wi } if i > 0,

(3.16)

for any function g defined on S.

Remark 1. Even though we only formulate Y0 by customizing Y for simplicity, it is clear that by increas-
ing the transition rates of Y to some other values, it is possible to obtain other new ESMDPs that are
equivalent to Y. In the following part of the paper, instead of Y0, we will also use the equivalent ESMDP
Y i∗ , which is obtained by increasing the transition rate of state i to _+`+Wi∗ when i ≤ i∗ and to _+`+Wi
when i > i∗ for a selected i∗ ∈ S\{0}. It is easy to see that Assumption 3 and Theorem 7 also hold for
Y i∗ , and Qi∗ , ri∗ , and Li∗ can be formulated similarly to (3.14), (3.15), and (3.16), respectively. Then,
vi∗

N (i) denotes the value function corresponding to the Nth iteration of the value iteration procedure for
Y i∗ . Note that it can be easily seen by comparing (3.7) and (3.16) that the Bellman equations of the
new ESMDP can be obtained by applying two modifications to the Bellman equations of the initial
ESMDP. First, the denominator of the equation for a state-action pair is changed to U plus the new tran-
sition rate for the state-action pair in the new ESMDP. Second, a new term is added to each numerator,
which equals the product of v(i) and the difference between the old and new transition rates for state i
and the related action. Therefore, the Bellman equations for Y i∗ can be obtained by applying these two
modifications. Moreover, by formulating Y0, we obtain Bellman equations where the denominators are
independent of the decision variable `. Similarly, in the Bellman equations for Y i∗ , the denominators
will be equal to U plus the new transition rates; therefore, in the equations for v(i), i ≤ i∗, all denomina-
tors will be the same. These simplifications allow us to perform algebraic and comparison operations,
including different values of the function v(i), such as v(i) − v(i − 1), much more easily.

Next, we will show that the value function v(i) is monotone under Assumptions 6 and 7. The following
two lemmas are crucial for proving this result.

Lemma 3. If Assumption 7 holds, then

c(`) + (h + Wa)i
U + _ + ` + Wi

≤ c(`) + (h + Wa) (i + 1)
U + _ + ` + W (i + 1)

for any i ≥ 1.

Proof. It is easy to see that

c(`) + (h + Wa)i
U + _ + ` + Wi

− c(`) + (h + Wa) (i + 1)
U + _ + ` + W (i + 1) =

c(`)W − (h + Wa) (U + _ + `)
(U + _ + ` + Wi) (U + _ + ` + W (i + 1))

≤ 0,

where the inequality directly follows from (3.13) and Assumption 7. �
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Lemma 4. Under Assumptions 6 and 7, v0
N+1(i) is nondecreasing in i provided that v0

N (i) is nonde-
creasing in i.

Proof. First assume that i= 0. It follows from (3.8) and (3.16) that v0
N+1(1) − v0

N+1(0) ≥ 0 since for an
arbitrary ` ∈ C, we have

c(`) + h + Wa + _v0
N (2) + (` + W) v0

N (0) + (` − `)v0
N (1)

U + _ + ` + W
−

c(0) + _v0
N (1) + (` + W) v0

N (0)
U + _ + ` + W

≥
(c(`) − c(0)) + _v0

N (1) + (` + W) v0
N (0) + (` − `)v0

N (0) − _v0
N (1) − (` + W) v0

N (0)
U + _ + ` + W

≥ 0,

where the first inequality follows from the induction hypothesis and (3.13), and the last inequality
follows from Assumption 6. Now, arbitrarily choose i ≥ 1 and ` ∈ C and define

u′ (j) =


`+Wi

U+_+`+Wi if j = i − 1
`−`

U+_+`+Wi if j = i
_

U+_+`+Wi if j = i + 1
0 otherwise

and

u(j) =


`+W (i+1)

U+_+`+W (i+1) if j = i
`−`

U+_+`+W (i+1) if j = i + 1
_

U+_+`+W (i+1) if j = i + 2
0 otherwise

for every j ≥ −1. We aim to show that

c(`) + (h + Wa)i
U + _ + ` + Wi

+
∑
j≥−1

u′ (j)v0
N (j) ≤

c(`) + (h + Wa) (i + 1)
U + _ + ` + W (i + 1) +

∑
j≥−1

u(j)v0
N (j) (3.17)

where it is assumed, with no loss of generality, that v0
N (−1) = 0. First, we will show that∑

j≥k
u′ (j) ≤

∑
j≥k

u(j)

for every k ≥ −1. The result is trivial when k ≥ i + 2. If k ≤ i − 1, then∑
j≥k

u′ (j) = _ + ` + Wi
U + _ + ` + Wi

≤ _ + ` + W (i + 1)
U + _ + ` + W (i + 1) =

∑
j≥k

u(j).

This also implies that∑
j≥k

u′ (j) =
∑

j≥k−1
u′ (j) − ` + Wi

U + _ + ` + Wi
≤

∑
j≥k−1

u(j) − ` + Wi
U + _ + ` + Wi

≤
∑

j≥k−1
u(j) =

∑
j≥k

u(j),

where k = i. If k = i + 1,∑
j≥k

u(j) −
∑
j≥k

u′ (j) =
` − ` + _

U + _ + ` + W (i + 1) −
_

U + _ + ` + Wi
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=
(` − `) (U + ` + Wi) + _(` − ` − W)

(U + _ + ` + W (i + 1)) (U + _ + ` + Wi) ≥ 0

where the last inequality follows from (3.13). It follows from Lemma 1 on page 123 in Derman [7]
that

∑
j≥−1 u(j)v0

N (j) ≥
∑

j≥−1 u′ (j)v0
N (j). This and Lemma 3 imply that (3.17) holds. Then, taking the

minimum of both sides in (3.17), with respect to `, results in v0
N+1(i + 1) ≥ v0

N+1(i). �

An immediate consequence of this result and Theorem 7 is the following theorem.

Theorem 8. Under Assumptions 6 and 7, v(i) is nondecreasing in i ∈ S.

Similar results for the monotonicity of the value function for service rate control problems without
abandonment can be seen in Ravi [18] and Zheng, Julaiti, and Pang [26].

Note that Theorem 8 does not assume anything about the monotonicity of the cost function c(`).
The next result shows that if Assumptions 6 and 7 hold when c(`) is nonincreasing (which is very
unrealistic), then the optimal policy will have a very simple structure.

Corollary 1. Under Assumptions 6 and 7, if c(`) is nonincreasing in `, then the policy of always
choosing max C as the service rate is an optimal policy.

Proof. It follows from (3.16) that it is sufficient to show that Σ(i, ` | v) + (` − `)v(i) is nonincreasing
in ` for any i ≥ 1. From (3.8), we have

Σ(i, ` | v) + (` − `)v(i) = c(`) + (h + Wa)i + _v(i + 1) + Wiv(i − 1)
+`v(i) − `(v(i) − v(i − 1))

which is clearly nonincreasing in ` since v(i) − v(i − 1) ≥ 0 due to Theorem 8. �

In the following part of this section, we investigate the structure of ˚̀(i) under Assumptions 6 and 7
without assuming anything on the monotonicity of c(`) and show that ˚̀(i) is nondecreasing in i.

Lemma 5. For any i ∈ S\{0} and ` ∈ C, v(i) − v(i − 1) > (≤) c(˚̀(i) )−c(`)
˚̀(i)−` if ` < (>)˚̀(i).

Proof. Choose arbitrary i ∈ S\{0} and ` ∈ C such that ` < (>)˚̀(i). Then, (3.10) and (3.16) imply
that

Σ(i, ˚̀(i) | v) + (` − ˚̀(i))v(i) < (≤)Σ(i, ` | v) + (` − `)v(i),

which can be reduced by using (3.8) to

c(˚̀(i)) − c(`) < (≤)(˚̀(i) − `) (v(i) − v(i − 1)),

which completes the proof. �

Immediate corollaries of this lemma and Theorem 8 are as follows. Let int(A) denote the interior of
set A.

Corollary 2.

(i) For any i ∈ S\{0},
sup

`<˚̀(i)
{ c(˚̀(i)) − c(`)

˚̀(i) − `
} ≤ v(i) − v(i − 1) ≤ inf

`>˚̀(i)
{ c(˚̀(i)) − c(`)

˚̀(i) − `
}.
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(ii) If c(`) is differentiable on int(C), then, for any i ∈ S\{0},

v(i) − v(i − 1) = dc
d`

(˚̀(i))

provided that ˚̀(i) ∈ int(C).
(iii) If c(`) is differentiable on int(C) and Assumptions 6 and 7 hold, then any service rate ` ∈ int(C)

with dc
d` (`) < 0 cannot be optimal.

Corollary 3. If i ∈ S\{0},
c (˚̀(i + 1)) − c (˚̀(i)) ≥ (˚̀(i + 1) − ˚̀(i)) (v(i) − v(i − 1)) , (3.18)

and
c (˚̀(i + 1)) − c (˚̀(i)) ≤ (˚̀(i + 1) − ˚̀(i)) (v(i + 1) − v(i)) . (3.19)

Moreover,
c (˚̀(1)) − c (0) ≤ ˚̀(1) (v(1) − v(0)) . (3.20)

Proof. For the first two inequalities, it is sufficient to show that the inequalities hold for three cases:
˚̀(i + 1) > ˚̀(i), ˚̀(i + 1) < ˚̀(i), and ˚̀(i + 1) = ˚̀(i). In the last case, it is clear that the results follow.
When i ∈ S\{0}, in each of the other cases, the inequalities (3.18) and (3.19) can be obtained by setting
` = ˚̀(i + 1) for state i and then ` = ˚̀(i) for state i + 1 in Lemma 5. Note that ˚̀(1) ≥ 0, and (3.20)
trivially holds when ˚̀(1) = 0. When ˚̀(1) > 0, (3.20) can be obtained by setting ` = 0 for state 1 in
Lemma 5. �

We let Δv(i1, i2) = [v(i1) − v(i1 − 1)] − [v(i2) − v(i2 − 1)] for any i1, i2 ∈ S\{0}. It is easy to see
that

Δv(i1, i2) = −Δv(i2, i1), (3.21)

and
Δv (i1, i2) = Δv (i1, i3) + Δv (i3, i2) . (3.22)

Proposition 2. For any i1, i2 ∈ S\{0} such that i1 ≠ i2,

(i) If ˚̀(i1) > ˚̀(i2), then Δv(i1, i2) > 0,
(ii) If ˚̀(i1) = ˚̀(i2) ∈ int(C) and c(`) is differentiable on int(C), then Δv(i1, i2) = 0,
(iii) If Δv(i1, i2) ≤ 0, then ˚̀(i1) ≤ ˚̀(i2).

Proof. Choose arbitrary i1, i2 ∈ S\{0} such that i1 ≠ i2. Assume that ˚̀(i1) > ˚̀(i2). By setting first
i = i1, ` = ˚̀(i2) and then i = i2, ` = ˚̀(i1) in Lemma 5, it is easy to see that

v(i2) − v(i2 − 1) ≤ c(˚̀(i2)) − c(˚̀(i1))
˚̀(i2) − ˚̀(i1)

< v(i1) − v(i1 − 1),

which completes the proof of (i). Note that (iii) is the contrapositive of (i).
Now, assume that ˚̀(i1) = ˚̀(i2) ∈ int(C) and that c(`) is differentiable on int(C). Then, it follows

from Corollary 2(ii) that

v(i1) − v(i1 − 1) = v(i2) − v(i2 − 1) = dc
d`

(˚̀(i1)) =
dc
d`

(˚̀(i2)),

which completes the proof. �

Setting i2 = i1 + 1 in Proposition 2(iii) immediately implies the following corollary.
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Corollary 4. If v(i + 1) − v(i) is nondecreasing in i ∈ S, then ˚̀(i) is nondecreasing in i ∈ S\{0}.

The previous two results indicate that inequalities regarding Δv(i2, i1) are crucial in proving the
monotonicity of ˚̀(i). The next three results will develop these inequalities.

Lemma 6. For every i ∈ S\{0},
(U + _ + ˚̀(i + 1) + W(i + 1)) (v(i + 1) − v(i)) = [c (˚̀(i + 1)) − c (˚̀(i))] + h + Wa

+ _ (v (i + 2) − v (i + 1))
+ (˚̀(i) + Wi) (v (i) − v (i − 1)) . (3.23)

Moreover, we have

(U + _ + ˚̀(1) + W) (v(1) − v(0)) = [c (˚̀(1)) − c (0)] + h + Wa + _ (v (2) − v (1)) . (3.24)

Proof. Let i ∈ S\{0}. By picking i∗ ≥ i + 1, it is easy to see that (3.16) and Remark 1 imply that

(U + _ + ` + Wi∗) (v(i + 1) − v(i)) = [c (˚̀(i + 1)) − c (˚̀(i))] + h + Wa + _ (v (i + 2) − v (i + 1))
+ (˚̀(i) + Wi) (v (i) − v (i − 1))
+ (` − ˚̀(i + 1) + W (i∗ − i − 1)) (v (i + 1) − v (i))

which simplifies to (3.23). Similarly, by picking i∗ ≥ 1, it is easy to obtain (3.24) by using (3.16) together
with Remark 1. �

Proposition 3. If i ∈ S\{0},
(U + W) (v(i + 1) − v(i)) ≥ h + Wa + _Δv(i + 2, i + 1) + (˚̀(i + 1) + Wi) Δv(i, i + 1), (3.25)

and
(U + W) (v(i + 1) − v(i)) ≤ h + Wa + _Δv(i + 2, i + 1) + (˚̀(i) + Wi) Δv(i, i + 1). (3.26)

Moreover,
(U + W) (v(1) − v(0)) ≤ h + Wa + _Δv(2, 1). (3.27)

Proof. First assume that i ∈ S\{0}. Then, (3.18) and (3.23) imply that

(U + _ + ˚̀(i + 1) + W(i + 1)) (v(i + 1) − v(i)) ≥ (˚̀(i + 1) − ˚̀(i)) (v(i) − v(i − 1)) + h + Wa
+ _ (v (i + 2) − v (i + 1)) + (˚̀(i) + Wi) (v (i)
−v (i − 1)) ,

which simplifies to
(U + W) (v(i + 1) − v(i)) ≥ h + Wa + _Δv(i + 2, i + 1) + (˚̀(i + 1) + Wi) Δv(i, i + 1). (3.28)

Similarly, (3.19) and (3.23) imply that
(U + W) (v(i + 1) − v(i)) ≤ h + Wa + _Δv(i + 2, i + 1) + (˚̀(i) + Wi) Δv(i, i + 1). (3.29)

Moreover, (3.27) follows from (3.20) and (3.24). �

Theorem 9. If i1, i2 ∈ S\{0, 1},
(U + _ + W) Δv (i2, i1) + (˚̀(i2) + W (i2 − 1)) Δv (i2, i2 − 1) ≥ _Δv (i2 + 1, i1 + 1) (3.30)

+ (˚̀(i1 − 1) + W (i1 − 1)) Δv (i1, i1 − 1) ,
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and
(U + _ + W) Δv (i2, i1) + (˚̀(i2 − 1) + W (i2 − 1)) Δv (i2, i2 − 1) ≤ _Δv (i2 + 1, i1 + 1)

+ (˚̀(i1) + W (i1 − 1)) Δv (i1, i1 − 1) .

Moreover, if i2 ∈ S\{0, 1}, we have

(U + _ + W) Δv (i2, 1) + (˚̀(i2) + W (i2 − 1)) Δv (i2, i2 − 1) ≥_Δv (i2 + 1, 2) . (3.32)

Proof. Let i1, i2 ∈ S\{0, 1}. Then, (3.25) and (3.26), respectively, imply that

(U + W) (v(i2) − v(i2 − 1)) ≥ h + Wa + _Δv(i2 + 1, i2) + (˚̀(i2) + W(i2 − 1)) Δv(i2 − 1, i2) (3.33)

and
− (U + W) (v(i1) − v(i1 − 1)) ≥ −h−Wa−_Δv(i1+1, i1) − (˚̀(i1 − 1) + W(i1 − 1)) Δv(i1−1, i1), (3.34)

which yield (3.30) since Δv(i2 + 1, i2) − Δv(i1 + 1, i1) = Δv(i2 + 1, i1 + 1) − Δv(i2, i1). Similarly, (3.31)
follows from (3.26) and (3.25) by setting i+1 = i2 and i+1 = i1 in these equations, respectively. Finally,
(3.32) follows from (3.33) and (3.27) since Δv(i2 + 1, i2) = Δv(i2 + 1, 2) + Δv(2, 1) − Δv(i2, 1). �

In the following part, the monotonicity of the optimal policy under Assumptions 6 and 7 is proved by
using the inequalities proposed in Theorem 9. The proof will be based on the nonnegativity ofΔv(i, i−1).

Proposition 4. Let i1, i2 ∈ S\{0, 1} such that i2 > i1. If Δv(i1, i1 − 1) > 0 and Δv(i2 + 1, i2) > 0, then
Δv(i, i − 1) > 0 for every i ∈ {i1 + 1, i1 + 2, . . . , i2}.

Proof. Since Δv(i2, i1) = Δv(i2, i1+1)+Δv(i1+1, i1) and Δv(i2+1, i1+1) = Δv(i2+1, i2)+Δv(i2, i1+1),
it follows from (3.30) that
(U + W) Δv(i2, i1 + 1) + (U + _ + W)Δv(i1 + 1, i1) + (˚̀(i2) + W(i2 − 1)) Δv(i2, i2 − 1)

≥ _Δv(i2 + 1, i2) + (˚̀(i1 − 1) + W(i1 − 1)) Δv(i1, i1 − 1), (3.35)

which simplifies to

(U + _ + ˚̀(i1 + 1) + W(i1 + 1)) Δv(i1 + 1, i1) ≥ _Δv(i1 + 2, i1 + 1) + (˚̀(i1 − 1)
+W(i1 − 1)) Δv(i1, i1 − 1) (3.36)

by setting i2 = i1 + 1.
Note that if we can prove that Δv(i1 + 1, i1) > 0 by using the relations Δv(i1, i1 − 1) > 0 and

Δv(i2 + 1, i2) > 0, then, by using the same reasoning and using the relations v(i1 + 1, i1) > 0 and
Δv(i2 + 1, i2) > 0, it can be shown that Δv(i1 + 2, i1 + 1) > 0; and repeating the same argument, the
proof can be completed. Therefore, it is sufficient to show that Δv(i1 + 1, i1) > 0.

In the following, we describe a procedure with two inputs and show that a finite number of repetitions
of this procedure will prove that Δv(i1 + 1, i1) > 0. Let the initial inputs be i1 and i2 + 1. If i2 = i1 + 1,
then (3.36) trivially implies that Δv(i1 + 1, i1) > 0, and the procedure is completed. If i2 ≥ i1 + 2, then
(3.35) implies that Δv(i2, i1 + 1) > 0, or Δv(i1 + 1, i1) > 0, or Δv(i2, i2 − 1) > 0. If Δv(i1 + 1, i1) > 0,
then the procedure is completed. If Δv(i2, i2 − 1) > 0, then the procedure is repeated with inputs i1 and
i2. If Δv(i2, i1 + 1) > 0, then we can conclude that Δv(j, j − 1) > 0 for some j ∈ {i2, i2 − 1, . . . , i1 + 2}
since Δv(i2, i1 + 1) = Δv(i2, i2 − 1) + Δv(i2 − 1, i2 − 2) + · · · + Δv(i1 + 2, i1 + 1). Then, the procedure
is repeated with inputs i1 and j. Note that this procedure can only stop when Δv(i1 + 1, i1) > 0, the first
input never changes in each repetition of the procedure, and at the end of a repetition of the procedure
with inputs i1 and k, we conclude that Δv(l, l − 1) > 0 for some l such that i1 + 1 ≤ l < k. This implies
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that after a finite number of repetitions, this procedure will stop, concluding that Δv(i1 + 1, i1) > 0, and
this completes the proof. �

Proposition 5. Let i2 ∈ S\{0, 1}. If Δv(i2 + 1, i2) > 0, then, Δv(i, i− 1) > 0 for every i ∈ {2, 3, . . . , i2}.

Proof. Since Δv(i2, 1) = Δv(i2, 2) + Δv(2, 1) and Δv(i2 + 1, 2) = Δv(i2 + 1, i2) + Δv(i2, 2), it follows
from (3.32) that
(U + W) Δv(i2, 2) + (U + _ + W)Δv(2, 1) + (˚̀(i2) + W(i2 − 1)) Δv(i2, i2 − 1) ≥ _Δv(i2 + 1, i2), (3.37)

which simplifies to
(U + _ + ˚̀(2) + 2W) Δv(2, 1) ≥ _Δv(3, 2) (3.38)

by setting i2 = 2. If i2 = 2, then the result trivially follows from (3.38). Let i2 > 2. Due to Proposition
4, it is sufficient to show that Δ(2, 1) > 0. This can be proven by using the same procedure as in
Proposition 4 with inputs i1 = 1 and i2 + 1 by using (3.37) and (3.38) instead of (3.35) and (3.36),
respectively. �

A direct consequence of this result is the following.

Corollary 5. If Δv(i1 + 1, i1) < 0, then Δv(i, i − 1) ≤ 0 for every i = i1 + 2, i1 + 3, . . ..

This corollary and the monotonicity of v(i) imply the following main result.

Theorem 10. Under Assumptions 6 and 7, Δv(i + 1, i) ≥ 0, for every i ≥ 1.

Proof. For a contradiction assume that Δv(i + 1, i) < 0 for some i ≥ 1, and let i1 be the minimum of
such is. It follows that Δv(i1, i1−1) ≥ 0 if i1 > 1. Moreover, due to Corollary 5, Δv(i, i−1) ≤ 0 for every
i ≥ i1 +2. This directly implies that the sequence v(i) − v(i−1) is nonincreasing possibly except a finite
number of initial elements. Moreover, Theorem 8 implies that v(i) − v(i − 1) is bounded below by 0.
Therefore, we can conclude that limi→∞ (v(i) − v(i − 1)) = l for some l ∈ R≥0. This directly implies that
limi→∞ Δv(i, i−1) = 0. Therefore, there exists i2 ≥ i1 +2 such that |Δv(i2 + 1, i2) | <

���Δv(i1+1,i1 ) (U+_+W)
_

���,
which implies that

_Δv(i2 + 1, i2) − (U + _ + W) Δv(i1 + 1, i1) > 0. (3.39)

If i1 = 1, then (3.37) and (3.39) imply that

(U + W) Δv(i2, 2) + (˚̀(i2) + W(i2 − 1)) Δv(i2, i2 − 1) > 0,

which is a contradiction since Δv(i2, i2 − 1) ≤ 0 and Δv(i2, 2) = Δv(i2, i2 − 1) +Δv(i2 − 1, i2 − 2) + · · · +
Δv(3, 2) ≤ 0, which follow from the fact that Δv(i, i − 1) ≤ 0 for every i ≥ 3. If i1 > 1, by using the
fact that Δv(i1, i1 − 1) ≥ 0, (3.35) and (3.39) imply that

(U + W) Δv(i2, i1 + 1) + (˚̀(i2) + W(i2 − 1)) Δv(i2, i2 − 1) > 0

which is a contradiction since Δv(i2, i2 − 1) ≤ 0 and Δv(i2, i1 + 1) = Δv(i2, i2 − 1) +Δv(i2 − 1, i2 − 2) +
· · · + Δv(i1 + 2, i1 + 1) ≤ 0, which follow from the fact that Δv(i, i − 1) ≤ 0 for every i ≥ i1 + 2. �

The following two results are direct consequences of this theorem.

Corollary 6. Under Assumptions 6 and 7, v(i) − v(i − 1) is a nondecreasing sequence.

https://doi.org/10.1017/S0269964824000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000044


692 B. Çekyay

Theorem 11. Under Assumptions 6 and 7, ˚̀(i + 1) ≥ ˚̀(i) for every i = 1, 2, . . ..

Proof. This is a direct consequence of Corollary 4 and Corollary 6. �

We have shown that under very reasonable and non-restrictive conditions, as the system gets more
crowded, decreasing the service rate cannot be optimal. This result can be used to reduce the size of
feasible region and to develop more efficient methods to find the optimal policy. Furthermore, it is also
possible to reduce the size of the feasible region more as the following results imply.

Theorem 12. Under Assumptions 6 and 7, if c(˚̀(i) )−c(`)
˚̀(i)−` <

h+Wa
U+max C+W for some i ∈ S\{0} and some

` ≠ ˚̀(i), then ˚̀(i) > `.

Proof. For a contradiction assume that ˚̀(i) < `. It follows from (3.24), Assumption 6, and Corollary
6 that

(U + _ + ˚̀(1) + W) (v(1) − v(0)) ≥ h + Wa + _ (v (1) − v (0)) ,

and hence
v(i) − v(i − 1) ≥ v(1) − v(0) ≥ h + Wa

U + max C + W
.

On the other hand, Lemma 5 implies that

v(i) − v(i − 1) ≤ c(˚̀(i)) − c(`)
˚̀(i) − `

<
h + Wa

U + max C + W
,

which leads to a contradiction. �

The previous theorem implies that if the marginal cost of increasing the service rate is not too high,
then increasing the service rate is optimal, which is as expected. Some immediate corollaries of this
theorem are the following.

Corollary 7. Under Assumptions 6 and 7, ˚̀(i) ≥ \ for every i ∈ S\{0}, where

\ = sup
{
` ∈ C

����c(`∗) − c(`)
`∗ − `

<
h + Wa

U + max C + W
for every `∗ < `

}
.

Proof. For a contradiction assume that ˚̀(i) < \ for some i ∈ S\{0}. Then, there exists ` ∈ C such that
˚̀(i) < ` ≤ \, and

c(`∗) − c(`)
`∗ − `

<
h + Wa

U + max C + W

for every `∗ < `. This directly implies that

c(˚̀(i)) − c(`)
˚̀(i) − `

<
h + Wa

U + max C + W
.

This result leads to a contradiction since ˚̀(i) > ` due to Theorem 12. �

Corollary 8. Under Assumptions 6 and 7, if c(`1 )−c(`2 )
`1−`2

<
h+Wa

U+max C+W for every `1 ≠ `2, then ˚̀(i) =
max C for every i ∈ S\{0}.
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4. Conclusion

This paper aims to study the problem of characterizing the structure of the optimal policies for ESMDPs
with unbounded transition rates under the expected total discounted cost criterion. It is well known
that this type of MDPs cannot be reduced to a DTMDP with the same optimization criterion by using
the uniformization technique. Moreover, this type of MDPs can be considered as discounted SMDPs
violating the standard assumption, which guarantees that a finite number of transitions are made in a
finite interval with probability one.

We provide several sufficient conditions for the convergence of a value iteration algorithm, which
uses the value functions of a DTMDP with the expected total undiscounted cost criterion, and for the
existence of optimal deterministic stationary policies for such SMDPs. Then, we apply our results to
a service rate control problem with impatient customers, which can be modeled as an ESMDP with
unbounded transition rates. We analyze the structure of the optimal policy under reasonable assumptions
using the customization technique, which allows us to provide solid rigorous proofs. This application
shows that the value iteration procedure that we propose and the customization technique provide a
reliable and powerful methodology to analyze the structure of the optimal policies for ESMDPs with
unbounded transition rates.

We leave the analysis of ESMDPs with unbounded transition rates under the average cost criterion as
a future research project. Note that although the results given in Section 2.2 are valid for general SMDPs
violating the standard assumption, we apply those results to an ESMDP with unbounded transition rates
in Section 3 as a first step. The next step should be analyzing an example where the standard assumption
is not satisfied and non-exponential sojourn times between decision points are inevitable. Moreover, in
the service rate control problem that we study in this paper, it is assumed that impatient customers leave
the system even after they have started to receive service. In a future study, a similar service rate control
problem could be analyzed, where a certain proportion of customers do not leave the system after they
have started to receive service, even if their maximum waiting time is reached.
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