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Abstract. The sentences employed in semantic paradoxes display a wide range of semantic
behaviours. However, the main theories of truth currently available either fail to provide a theory
of paradox altogether, or can only account for some paradoxical phenomena by resorting to multiple
interpretations of the language, as in (Kripke, 1975). In this article, I explore the wide range of
semantic behaviours displayed by paradoxical sentences, and I develop a unified theory of truth and
paradox, that is a theory of truth that also provides a unified account of paradoxical sentences. The
theory I propose here yields a threefold classification of paradoxical sentences—liar-like sentences,
truth-teller–like sentences, and revenge sentences. Unlike existing treatments of semantic paradox,
the theory put forward in this article yields a way of interpreting all three kinds of paradoxical
sentences, as well as unparadoxical sentences, within a single model.

§1. Introduction. Semantic predicates such as truth, satisfaction, and denotation play
a crucial role in several contemporary theories of meaning.1 However, semantic predicates
are famously problematic: simple and intuitive assumptions about the principles governing
them, together with a modicum of logic and syntax theory, yield well-known paradoxes.
Consider the self-applicable predicate ‘. . . is true’. An apparently compelling intuition
suggests that it should obey the following informal principle:

(NAÏVETÉ) For every sentence ϕ, ϕ and “ϕ’ is true’ are equivalent.

But now consider a liar sentence λ equivalent to “λ’ is not true’. If the truth predicate obeys
NAÏVETÉ, then λ is true if and only if λ is not true, a contradiction. But (in classical logic,
and several other logics) everything follows from a contradiction, whereby every sentence
is true.

The Liar Paradox is not an isolated phenomenon. Semantic notions can be used to
form several kinds of sensu lato paradoxical sentences, which display a wide range of
semantic behaviours. For instance, a truth-teller sentence τ equivalent to “τ ’ is true’ can
be consistently validated, falsified, or assigned any other semantic value by any semantics
compatible with NAÏVETÉ. Revenge paradoxes show that certain semantic notions, related
to naïve truth, are inexpressible in a target theory. Analogous paradoxes arise for satisfac-
tion, denotation, and other semantic notions. For simplicity, I focus on the truth predicate
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1 Consider e.g., Davidsonian and Montagovian semantics (see e.g., Davidson (1967) and Montague

(1974), Chierchia & McCconnell-Ginet (2000), respectively), or truthmaker semantics Fine
(2017).
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and on relatively simple languages, which are however expressive enough to encode some
basic syntactic mechanisms.2

The aim of this article is to investigate the semantics of sentences involving the truth
predicate, including liar sentences, truth-teller sentences, revenge sentences, and the like.
More specifically, the article provides a theory of truth that also accounts for and classifies
all the paradoxical sentences involving truth. The motivation behind the theory offered
here is that, if a semantics for a natural language employs a self-applicable truth predicate,
then that semantics is going to have to interpret all kinds of sentences involving the truth
predicate, whether they are ‘unproblematic’, or in some sense ‘paradoxical’. To my knowl-
edge, the modern systematic analysis of paradoxes was initiated by fixed-point theories
of truth (Kripke, 1975) and revision theories of truth (Gupta, 1982; Herzberger, 1982a,
1982b).3 Recent years have seen a growth of graph-theoretical approaches, which are very
successful at identifying structural features of paradoxical sentences.4 Nevertheless, the
theories of truth and paradox currently available do not seem to provide a unified semantics
for paradoxical and nonparadoxical sentences. For one thing, existing approaches resort to
several models to account for the semantics of certain paradoxical sentences—this includes
Kripke’s approach and the Hezberger–Gupta approach. More precisely, existing theories
cannot provide an interpretation of unproblematic sentences, such as ‘snow is white’ or
t = t, and of all the various kinds of paradoxical sentences within one single model.5 For
another, existing semantic theories typically do not treat revenge-paradoxical sentences,
since adding revenge-breeding notions to their target language would make them trivial.
Revenge-breeding notions are therefore also relegated to the meta-theory.6

In this article, I propose a unified theory of truth and paradox, i.e., a single model that
interprets both nonparadoxical and paradoxical sentences. The interpretation of paradox-
ical sentences consists in assigning them special semantic values, encoding (as much as
possible) their semantic behaviour. The theory I develop differentiates between three main
kinds of paradoxical cases: liar-like sentences, truth-teller–like sentences, and revenge
sentences. As I will argue, these cases exhaust all the main paradoxes of truth. More
precisely, the theory I present here can accommodate any compositional interpretation
of the logical vocabulary, without affecting the resulting classification of paradoxes. The
proposed classification of paradoxes is therefore robust, and should be shared by any
compositional approach to naïve truth.7

2 The theory I am going to propose can be easily extended to other semantic predicates and richer
languages. See McGee (1991, pp. 31–37), for details on the relations between truth, satisfaction,
and denotation.

3 See also Burgess (1986, 1988), Gupta & Belnap (1993), Kremer (2009).
4 See e.g., Davis (1979), Hazen (1981), Barwise & Etchemendy (1987), Gaifman (1988), Gaifman

(1992), Yi (1999), Gaifman (2000), Cook (2004), Maudlin (2004), Cook (2006), Schlenker
(2007), Walicki (2009), Rabern, Rabern, & Macauley (2013), Cook (2014), Dyrkolbotn & Walicki
(2014), Hansen (2015), Walicki (2017), Beringer & Schindler (2017).

5 Consider the treatment of liar and truth-teller sentences in fixed-point and revision theories: in
both approaches, several models have to be considered to differentiate liar sentences, truth-teller
sentences, and truths or falsities of the base language.

6 For discussion, see Field (2007), Leitgeb (2007), Rossi (2019).
7 The interest of the study of paradoxes goes well beyond the goal of interpreting the sentences

of a language featuring a self-applicable truth predicate. The study of paradoxes has led to
discover new limitative results and to determine which logical principles and evaluation schemes
are compatible with NAÏVETÉ (see e.g., Kripke (1975), Friedman & Sheard (1987), McGee
(1985), Restall (1992), Hájek, Paris, & Shepherdson (2000), Field (2002, 2003), Halbach,
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A UNIFIED THEORY OF TRUTH AND PARADOX 211

The plan of the article is as follows. In §2, I present some representative semantic
paradoxes, and I explore the challenges their account poses to a semantic theory of truth.
I argue that the kinds of paradoxes presented in §2 yield an exhaustive taxonomy of
semantic antinomies. In §3, I provide some heuristics. In §4 I develop the proposed theory
of truth and paradox. Technically, this theory employs a combination of graph-theoretic
tools, fixed-point constructions, and revision sequences. I argue that the proposed theory
satisfactorily accounts for the semantics of the paradoxical sentences classified in §2, and I
sketch some prospects for further developments. §5 concludes. The main proofs are given
in the Appendix.

§2. Naïveté and paradoxes. Naïveté about truth—the idea that ϕ and “ϕ’ is true’ are
equivalent—can be made precise in a number of ways. For present purposes, I characterise
it in semantic terms. An evaluation is a function from the sentences of the target language
to a nonempty value space V , including some designated values. Let Tr(�ϕ�) abbreviate
“ϕ’ is true’, where �ϕ� is a name of ϕ. At first approximation, an evaluation e is said to be
naïve if one of the following requirements is satisfied:

– (INTERSUBSTITUTIVITY) e(ϕ) = e(ϕTr)

where ϕTr is the result of substituting (possibly nonuniformly) a subformula ψ of
ϕ with Tr(�ψ�) or vice versa.

– (T-SCHEMA) e(Tr(�ϕ�) ↔ ϕ) = d
where d is a designated value of V .

I generically speak of NAÏVETÉ when it makes no difference whether an evaluation func-
tion satisfies INTERSUBSTITUTIVITY or the T-SCHEMA. I now briefly present some impor-
tant paradoxical sentences, outlining the challenges that capturing their semantics
poses.

2.1. Liar-like sentences. The Liar Paradox features a sentence that, roughly
speaking, says that that very sentence is not true. For instance, consider the following
sentence:

(λ) The sentence labelled with ‘(λ)’ is not true.

Liar sentences can be used to show that no classical evaluation satisfies NAÏVETÉ. For
suppose that a classical evaluation e satisfies NAÏVETÉ, let λ be the sentence ¬Tr(�λ�),

Leitgeb, & Welch (2003), Halbach & Horsten (2006), Priest (2006), Cieśliński (2007), Field
(2008), Beall (2009), Horsten (2009), Zardini (2011), Cobreros, Égré, Ripley, & van Rooij
(2013), Field (2013), Nicolai & Rossi (2018), Murzi & Rossi (2019)). Moreover, the analysis
of paradoxes has been instrumental to determine the expressive power of theories of truth
(see e.g., Ketland (2003), Beall (2006, 2007a, 2007b), Cook (2007), Field (2007), Leitgeb
(2007), Maudlin (2007), Priest (2007), Restall (2007), Scharp (2007), Simmons (2007), Shapiro
(2011), Scharp (2013), Rossi (2019)). Finally, the investigation of semantic paradoxes has
revealed connections between theories of truth and questions concerning coding, circularity,
self-reference, and nonwell-foundedness (see e.g., Yablo (1985), Gaifman (1988), McCarthy
(1988), Visser (1989), Gaifman (1992), Yablo (1993), Priest (1997), Yi (1999), Gaifman
(2000), Beall (2001), Leitgeb (2002), Bueno & Colyvan (2003), Ketland (2004), Cook (2004,
2006), Yablo (2006), Schlenker (2007), Cook (2014), Halbach & Visser (2014a, 2014b),
Beringer & Schindler (2017)).
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and consider the value of e(¬Tr(�λ�)). Since e is classical, V consists of two semantic
values, 1 and 0. And since e is classical, either e(¬Tr(�λ�)) = 1 or e(¬Tr(�λ�)) = 0.
However, if e(¬Tr(�λ�)) = 1 then, by the classical semantics for negation, NAÏVETÉ, and
the definition of λ, e(Tr(�λ�)) = 0 = e(¬Tr(�λ�)), which is impossible. Similarly, if
e(¬Tr(�λ�)) = 0, then e(Tr(�λ�)) = 1 = e(¬Tr(�λ�)), which is equally impossible.

The same conclusion is reached with other paradoxical sentences: Curry’s Paradox em-
ploys a sentence κ identical to the sentence ‘if ‘κ’ is true, then ⊥’ (where ⊥ is some
conventional falsity); McGee (1985)’s Paradox employs a sentence μ identical to ‘not
every iteration of Tr in front of ‘μ’ is true’, and both can be used to show that classical
evaluations do not satisfy NAÏVETÉ.

The Liar Paradox, Curry’s Paradox, McGee’s Paradox and many others arguably show
that, in order to interpret a language with a naïve truth predicate, a nonclassical semantics
is required. In order to accommodate NAÏVETÉ, several nonclassical semantics expand
the value space V with intermediate values between 0 and 1, generalising the evaluation
clauses accordingly. In this way, the sentences that receive a classical value (0 or 1) obey
the principles of classical logic, while the sentences that are assigned a nonclassical value
display a different semantic behaviour. I clarify this point with an example (which will be
useful later).

A partial evaluation is a function that assigns to the sentences of the target language one
amongst the values 1, 0, and 1/2, and that satisfies the following criteria:8

– The value of ¬ϕ is 1 minus the value of ϕ.
– The value of ϕ ∧ ψ is the minimum of the values of ϕ and ψ .
– The value of ∀xϕ is the infimum of the values of its instances ϕ(t).

Several semantics for naïve truth are based on partial evaluations.9 Liar, Curry,
and McGee sentences can be assigned value 1/2 by partial evaluations, together with their
negation.

2.2. Truth-teller sentences. While the Liar Paradox rules out some evaluations for
naïve truth, the Truth-teller Paradox presents quite an opposite scenario. The paradox
involves a sentence that, roughly, says that that very sentence is true, e.g.:

(τ ) The sentence labelled with ‘(τ )’ is not true.

Let τ be the sentence Tr(�τ�). No feature of τ ‘forces’ one value assignment over an-
other, unlike liar sentences which are forced by NAÏVETÉ to have the same value as their
negation.

The fact that truth-teller sentences can be assigned any available value might make them
appear to be unproblematic, but this is far from being the case. In most semantic theories
of truth, truth-teller sentences are assigned a semantic value—be it 1, 0, 1/2, or another
intermediate value—exactly as any other sentence, like ∀x(x = x) or λ. But assigning
value 1 to ∀x(x = x) seems appropriate, for few will doubt of the truths of the theory of
identity. And assigning value 1/2 to λ also seems appropriate, for NAÏVETÉ forces λ to have
the same value of ¬λ, showing that no classical value is appropriate for liar sentences.

8 For more on partial evaluations, see Kleene (1952, chap. XII) and Blamey (2002).
9 Examples include strong Kleene semantics (see e.g., Kripke (1975)), the logic of paradox (see

e.g., Asenjo (1966), Priest (1979)), strict-tolerant and tolerant-strict semantics (see e.g., Cobreros,
Égré, Ripley, & van Rooij (2012), Nicolai & Rossi (2018)).
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However, no ‘standard’ value seems appropriate for Tr(�τ�), because no such value seems
to be ‘the’ right one for τ , in that there are no grounds for choosing a value over another.
No ‘standard’ value (such as 1, 0 or 1/2) captures the fact that truth-teller sentences can be
assigned any value, thus suitably representing their semantic behaviour. Several theories
of truth can only account for this behaviour resorting to multiple models: for instance, both
fixed-point and revision theories of truth capture the difference between liar and truth-teller
sentences by showing that the latter can be assigned several values or revision sequences,
unlike the former.10

2.3. Revenge sentences. Even though truth-teller sentences are puzzling, they are rel-
atively inoffensive as they do not yield inexpressibility results.11 Revenge sentences are
much less innocuous. Revenge paradoxes are arguments to the effect that certain semantic
notions, related to naïve truth, are not expressible in a target theory. Consider again the
treatment of liar sentences in semantics based on partial evaluations (and in which 1 is the
only designated value). In such theories, sentences such as λ are assigned value 1/2. Despite
the fact that liar sentences do not receive value 1, they fail to be declared ‘not true’, since
their negation receives also value 1/2, and not 1. In order to properly express the fact that
liar sentences fail to be true, one could employ a notion of determinateness that maps both
values 0 and 1/2 to 1. Consider therefore a unary operator D, with the following semantics
(for an evaluation function e):

e(D(ϕ)) =
{

1, if e(ϕ) = 1,
0, if e(ϕ) �= 1.

Using D, it should be possible to declare liar sentences ‘not determinate’, assigning value
1 to ¬D(λ). However, such an operator D is inexpressible in the setting we assumed. For
suppose otherwise, and consider the sentence λd identical to ¬D(Tr(�λd�)). If e(λd) = 1,
then e(D(Tr(�λd�))) = 1 = e(¬D(Tr(�λd�))), which is impossible. Similarly, if e(λd) =
0, then e(D(Tr(�λd�))) = 0 = e(¬D(Tr(�λd�))), which is impossible as well. We have a
revenge paradox: (bivalent) determinateness is inexpressible.

Revenge paradoxes pose a serious threat to theories of truth: if successful, they show
that their target theories have severe expressive limitations. Proponents of revenge-prone
theories of truth have typically sought to avoid the problem by arguing that the revenge-

10 Albert Visser (1984, secs. 3.4–3.5) argues that some four-valued models can distinguish between
liar sentences and truth-teller sentences. As he puts it: ‘[o]ne attractive feature of four valued logic
for the study of the Liar Paradox is the possibility of making certain distinctions within one single
model. [. . .] I present various models in which the Liar is both true and false and the [truth-teller]
neither true nor false. The intuitive idea here is that the Liar must be true, must be false; the [truth-
teller] need not be true, need not be false.’ Visser (1984, pp. 181–182). Nevertheless, it is not
obvious that ‘neither true nor false’ has a better claim to capture the semantic behaviour of truth-
teller sentences than the other values in four valued semantics. If ‘true’ and ‘false’ (understood as
semantic values) are not to be assigned to the truth-teller because it ‘need not be true, need not
be false’, the same could be said of ‘neither true nor false’ itself, since truth-teller sentences need
not be neither true nor false either. This reasoning generalises easily to any ‘standard’ semantic
value.

11 Mortensen & Priest (1981) and Billon (2013) argue that the peculiar semantic behaviour of truth-
teller sentences can be turned into a proper contradiction (see also Smith (1984)). For more
discussion, see Sorensen (2001, chap. 11) and Greenough (2011).
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paradoxical notions are not genuine semantic notions.12 And since revenge-breeding no-
tions are not expressible in the theories they are directed against, existing theories of
truth simply do not consider revenge sentences. However, it is very unclear whether there
are principled reasons to reject notions such as bivalent determinateness, while keeping
naïve truth and other notions that breed ‘standard’ paradoxes. If at least some revenge-
paradoxical notions are genuine semantic notions, a theory of truth and paradox needs to
interpret them as well.13

2.4. A complete picture. The paradoxes described in §2.1–§2.3 can be be plausibly
argued to cover the main kinds of semantic behaviours that are relevant to a theory of truth
and paradox—that is, those that require different kinds of semantic value assignments. The
idea, roughly, is the following.

Suppose a semantics for the logical vocabulary and a value space have been selected,
and consider an arbitrary sentence ϕ. There are two possibilities: ϕ is either compatible
with exactly one semantic value assignment, or it isn’t. In the former case, ϕ has either a
classical value (as in the case of ∀x(x = x)), or a nonclassical value (as in the case of λ). In
the latter case, ϕ is either compatible with more than one semantic value (as in the case of
τ ), or it is not compatible with any semantic value (as in the case of λd).

More systematically, this suggests the following classification:

– Sentences that are compatible with exactly one semantic value:

– Nonparadoxical sentences: they are assigned a classical semantic value.
– Liar-like sentences: they are assigned a nonclassical semantic value.

– Sentences that are not compatible with exactly one semantic value:

– Truth-teller–like sentences: they are assigned a special semantic value that
indicates that they are compatible with more than one (standard) semantic
value.

– Revenge sentences: they are assigned a special semantic value that indicates
that they are incompatible with every (standard) semantic value.

The above taxonomy arguably covers all the possible outcomes of an evaluation of ϕ. In
the next section, I develop a theory that incorporates and makes explicit all the above cases,
thus yielding a theory of naïve truth as well as an account of paradoxical sentences.

§3. Heuristics. In this section, I provide some heuristics for the theory to be developed
in §4. I show how certain kinds of graphs, called semantic graphs, can be used to decom-
pose sentences and assign them semantic values, exemplifying this process with nonpara-

12 See e.g., Priest (2006), Field (2007), Beall (2009).
13 For arguments for the legitimacy of revenge-paradoxical notions, see e.g., Cook (2007), Leitgeb

(2007), Scharp (2007, 2013), Rossi (2019), Murzi & Rossi (2019). The indefinite extensibility
approach developed by Cook (2007, 2009), Cook & Tourville (2016) and Schlenker (2010) does
not refrain from interpreting revenge sentences. In a nutshell, in this approach semantic paradoxes
are interpreted in an indefinitely extensible succession of evaluations, with an indefinitely
extensible collection of semantic values. Nevertheless, due to its use of an indefinitely extensible
collection of values, this approach also resorts to infinitely many (actually, nonset-sized many)
models in order to characterise certain semantic paradoxes (more specifically, the phenomenon
of revenge).
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doxical sentences (§3.1), liar-like sentences (§3.2), truth-teller–like sentences (§3.3), and
revenge sentences (§3.4).

My starting point is a very basic question: what information is needed to evaluate a
sentence ϕ? The answer depends on the logical form of ϕ. If ϕ is an atomic sentence
of the base (i.e., truth-predicate-free) language, its value is determined by the selected
model of the base language. For instance, if ϕ is P(t0, . . . , tn), its value is determined by
whether the individuals denoted by t0, . . . , tn (in the selected model) are in the extension
of the predicate P(x0, . . . , xn) (in the selected model). If ϕ is a logically complex sentence,
compositionality dictates that the value of ϕ depend on the immediate subsentences of ϕ.
For instance, if ϕ is ¬ψ , the value of ϕ depends on the value of ψ ; if ϕ is ψ ∧ χ , the value
of ϕ depends on the values of ψ and χ , and so on. NAÏVETÉ suggests how to extend this
compositional picture to the truth predicate: the value of Tr(�ψ�) depends on the value of
ψ , even though ψ is not a subsentence of Tr(�ψ�).14

With this informal picture of semantic value assignments in mind, I look at the main
kinds of nonparadoxical or paradoxical sentences discussed above.

3.1. Nonparadoxical sentences. Consider the sentence Tr(�t = t�). In order to assign
it a value, one needs the value of t = t. I represent this process via a downward arrow, in a
suitable labelled graph:

Fig. 1. Graph for Tr(�t = t�).

The semantic value of t = t is unproblematic: being an atomic formula of the base
language, its semantic value is determined by the selected model of the base language,
and it is clearly 1. Once t = t is assigned value 1, NAÏVETÉ suggests to assign the same
value to Tr(�t = t�).

This process easily handles more complex sentences. Consider Tr(�t = t�) ↔ t = t, that
is (Tr(�t = t�) → t = t) ∧ (t = t → Tr(�t = t�)). Decomposing it iteratively, following
the intuition outlined above, the following graph obtains:

Fig. 2. Graph for Tr(�t = t�) ↔ t = t.

14 Versions of the approach to evaluation just sketched can be found, e.g., in Kripke (1975), Yablo
(1982), and Leitgeb (2005) amongst others.
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t = t cannot be decomposed any further, so the graph-formation process stops, and values
can be assigned. First, t = t has value 1. Since t = t has value 1, also Tr(�t = t�) has
value 1. But then also (Tr(�t = t�) → t = t) and (t = t → Tr(�t = t�)) have value 1,
because they are conditionals whose antecedents and consequents have value 1. Finally,
(Tr(�t = t�) → t = t)∧ (t = t → Tr(�t = t�)), a conjunction whose conjuncts have value
1, has value 1 as well.

3.2. Liar-like sentences. Consider now a sentence λ identical to ¬Tr(�λ�). It is a
negated formula, so in order to evaluate it one should look at Tr(�λ�):

And in order to evaluate Tr(�λ�), one should evaluate the sentence resulting by disquota-
tionally eliminating Tr from Tr(�λ�). But this sentence is ¬Tr(�λ�) itself. A loop
results:

Fig. 3. Graph for the liar sentence ¬Tr(�λ�).

Recognisably, the search for the information that is required to evaluate ¬Tr(�λ�) is
finished: in order to evaluate ¬Tr(�λ�) one needs the value of Tr(�λ�), and in order to
evaluate the latter one needs the value of the former. Can this information be used to assign
values?

In fact it can. Even if the above graph does not bottom out in sentences of the base
language, it provides information about the relation between ¬Tr(�λ�) and Tr(�λ�) that can
lead to a value assignment once a semantics for the logical vocabulary has been selected.
Suppose we adopt the following semantics for negation:15

e(¬ϕ) = 1 − e(ϕ).

The above graph, in combination with the above clause for negation, indicates that a
constraint should be placed on the possible values of ¬Tr(�λ�), which can be written as an
equation:

the value of ¬Tr(�λ�) = 1 − the value of Tr(�λ�).
Moreover, the informal method followed so far employs the following evaluation clause
for truth attributions (which derives from NAÏVETÉ):

15 Where e is an evaluation whose range includes 1, and on which subtraction is well-defined.
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e(Tr(�ϕ�)) = e(ϕ)

and this also suggests a constraint on the possible values of Tr(�λ�), that is the following
equation:

the value of Tr(�λ�) = the value of ¬Tr(�λ�).
All the relational information provided by the selected semantics and graph 3 has been
associated with the sentences appearing in the graph. Such information determines an equa-
tion system which expresses simultaneous constraints on the possible values of ¬Tr(�λ�)
and Tr(�λ�):

x = 1 − y

y = x.

It can therefore be checked whether such constraints can be univocally satisfied, i.e.,
whether the system has a unique solution. In this case, yes: x = 1/2 = y (if 1/2 is in
the chosen value space).16

It is easy to see that the analysis of Curry’s or McGee’s sentences yields similar out-
comes. Consider a Curry sentence κ identical to Tr(�κ�) → ⊥. Its graph is as follows:

Fig. 4. Graph for the Curry sentence Tr(�κ�) → ⊥.

Clearly ⊥ is assigned value 0, while the remaining two sentences in graph 4 yield the
following system (interpreting → as a material conditional):

the value of Tr(�κ�) → ⊥ = max[1 − the value of Tr(�κ�), 0]

value of Tr(�κ�) = the value of Tr(�κ�) → ⊥.
Re-writing it with variables we obtain the following system

x = min[1 − y, 0]

y = x

which has a unique solution, again x = 1/2 = y.
Finally, consider a McGee sentence μ identical to ¬∀nTr(�g. (n, �μ�)�), where g. is the

(object-linguistic term representing the primitive recursive) function g such that:

g(n, ϕ) := Tr(�Tr(�. . .Tr(�ϕ�)�)�)

16 The idea of analysing semantic paradoxes via equations is already found in Wen (2001).
Walicki (2009), Dyrkolbotn & Walicki (2014), Walicki (2017) combined this idea with a graph-
theoretical analysis of sentences that employs a pointer structure closely related to the one
developed by Gaifman (1988, 1992, 2000). Their approach differs from the one presented here in
several respects. For instance, the Walicki-Dyrkolbotn approach gives rise to a noncompositional
semantics, while the approach I develop here yields a compositional semantics (see §4.6). The
two approaches make also a very different use of equations. I do not compare the two approaches
any further in the interest of space.
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with n nested truth predicates prefixed to ϕ.17 McGee sentences are, essentially, infinitary
liars (more precisely, ω-liars). μ yields the following graph:

Fig. 5. Graph for the McGee sentence μ.

Once again, only relational information is available. Therefore, one can assign equations
to the (infinitely many) sentences appearing in graph 5, according to the evaluation clauses
associated with their logical form. The graph yields a single infinitary system, which
intuitively works as follows: sentences of the form Tr(�· · · Tr(�μ�) · · · �) are required to
have all the same value, ∀nTr(�g. (n, �μ�)�) is required to be the infimum of their values
and to have the same value of its negation ¬∀nTr(�g. (n, �μ�)�). Again, the only solution
of the system is easily seen to be 1/2 for every sentence appearing in graph 5.

3.3. Truth-teller–like sentences. In the case of λ, the relational information codified
by the equations was turned into a ‘standard’, numerical value assignment by solving
the resulting system. But this is not always possible. Consider the truth-teller sentence
τ identical to Tr(�τ�). Here is the graph associated with it:

Fig. 6. Graph for the truth-teller sentence Tr(�τ�).

As in the liar case, the only semantic information that can be extracted from the graph
and the evaluation clause for Tr is relational, i.e., equational. Here is the equation system
associated with Tr(�τ�):

17 See McGee (1985). I follow the formulation in Halbach (2011) (p. 157 and following).
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value of Tr(�τ�) = value of Tr(�τ�).

But this system has more than one solution. Indeed, every element of any value space is a
solution. Therefore, in this case it is not possible to proceed from the relational information
determined by graph 6 to an assignment of standard numerical values. In order to encode
and express this peculiar feature of τ , i.e., that it can be assigned any ‘standard’ semantic
value available, one can introduce special semantic values. Here, I propose to assign the
equation system itself to τ , as its semantic value. Equations are quite informative, as far
as the semantics of τ is concerned: the system ‘expresses’ that the only constraints on
τ ’s possible values is that they have to be identical to themselves, and therefore that τ is
compatible with any assignment of standard semantic values.

3.4. Revenge sentences. An opposite scenario is given in the case of revenge sen-
tences: their graph determines an equation system with no solutions (rather than more
than one solution). Consider a language featuring a unary operator D, whose evaluation is
governed by the following clause:

e(D(ϕ)) = 1 − min(1, 2(1 − e(ϕ)))

and assume the following numerical value space V = {1, 1/2, 0}.18 Consider a revenge liar
sentence λd identical to ¬D(Tr(�λd�)), which yields the following graph:

Fig. 7. Graph for the revenge liar sentence ¬D(Tr(�λd�)).

Here is the associated equation system:19

x = 1 − y

y = 1 − min(1, 2(1 − z))

z = x.

This system has no solution in VŁ = {1, 1/2, 0}, although it has a unique solution in a
larger numerical value space: x = 2/3 = z and y = 1/3. Also in this case, no ‘standard’
value is determined by the equation system: therefore, I assign to revenge sentences their
very equation systems as semantic values.

The idea behind assigning equations as semantic values is that they are ‘as close as
possible’ to numerical values. Equations exhibit all the semantic relations determined by
truth-teller–like and revenge sentences. In turn, the fact that such semantic relations give
rise to equation systems with too many or too few solutions (in the selected value spaces)
accounts for the fact that truth-teller–like and revenge sentences admit of too many or

18 This evaluation clause captures the intended semantics of D on the selected value space, i.e., the
value of D(ϕ) is 1 if the value of ϕ is 1, and 0 otherwise.

19 Where x stands for the value of ¬D(Tr(�λd�)), y for the value of D(Tr(�λd�)), and z for the value
of Tr(�λd�).
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too few interpretations via ‘standard’ semantic values. In conclusion, directly employing
equations as semantic values makes it possible to represent in one model the semantic
behaviour of truth-teller–like and revenge sentences.20

This completes the informal picture of the possible outcomes of the evaluation method I
propose here, and the resulting picture matches the taxonomy of sentences outlined in §2.4.
To begin with, a sentence is either assigned a numerical semantic value (e.g., Tr(�t = t�)),
or an equational value (liar-like, truth-teller–like, and revenge sentences). If equations are
assigned, the corresponding systems can have a unique solutions, in which case standard
semantic values replace equations (this happens with liar-like sentences). Alternatively,
equation systems can either have more than one solution or no solution, in which case equa-
tions are kept as semantic values (this happens with truth-teller–like sentences or revenge
sentences, respectively). In the next section, I develop a proper semantic theory of truth
and paradox, namely an evaluation function (for sufficiently expressive languages) that
systematically yields the classification and the semantic value assignments just outlined.

3.5. Intermezzo: loops and nonwell-foundedness. The evaluation procedure outlined
here implicitly yields a rather nonstandard answer to the question of whether paradox-
ical sentences are nonwell-founded. The informal evaluation procedure described so far
pictures sentences such as λ, τ and relevantly similar ones as well-founded, in that their
decomposition (and the search for information leading to an evaluation) does not lead into
an infinite regress. This is because their structure is modelled via graphs rather than trees,
and loops are admissible in the former but not in the latter. Therefore, λ are τ turn out to be
well-founded in the more precise sense that their graphs do not have infinitely descending
paths. More customarily, λ and τ are decomposed as follows:21

In the present approach, λ and τ are decomposed via loops, that ‘end’, so to speak, the
infinitely descending branches of their tree-theoretical representation (see Figures 3 and
6). Nonwell-founded graphs, that is semantic graphs with infinitely descending paths, can
be easily obtained if one introduces a satisfaction predicate into the language, or suitable
recursive functions that make it definable in terms of truth.22 Then, Visser–Yablo sentences
become formalisable, and give rise to nonwell-founded graphs. Visser–Yablo sentences
ascribe truth, untruth, or some other property to a collection of sentences which in turn
ascribe truth, untruth, or some other property to another collection of sentences, and so

20 For further discussion, see §4.7.
21 See e.g., Yablo (1985, p. 130). For analyses of semantic paradoxes that employ graphs (and

therefore feature loops as well), see e.g., Barwise & Etchemendy (1987), Gaifman (1988, 1992,
2000), Schlenker (2007), Walicki (2009), Rabern, Rabern, & Macauley (2013), Cook (2014),
Beringer & Schindler (2017).

22 See e.g., Cook (2014) (p. 22 and ff.).
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on, without end. Having a satisfaction predicate (whether primitive or definable) in the
language does not alter the evaluation procedure described here.

§4. A unified theory of truth and paradox. The plan of the section is as follows. In
§4.1–§4.2, I introduce some graph-theoretical notions and formally define semantic graphs.
In §4.3, I fix a semantics for the logical vocabulary, and in §4.4 I provide a semantic
construction to assign semantic values to the nodes of semantic graphs. In §4.5, I prove
an isomorphism result about semantic graphs, and in §4.6 I use this result to construct
the evaluation for truth and paradox that I propose here, called the canonical evaluation.
In §4.7, I outline some possible variations on the canonical evaluation and some possible
further developments.

4.1. Technical preliminaries. Consider a first-order language LTr with identity and a
primitive predicate Tr(x) for ‘x is true’. L is the Tr-free fragment of LTr. LTr should be rich
enough to encode facts about its own syntax, as in the case of the language of arithmetic.
Therefore, I require that LTr satisfy the following requirements:

– It must be possible to define in LTr a coding function � � such that for every LTr-
formula ϕ, �ϕ� is a closed LTr-term. Informally, �ϕ� can be considered as a name
of ϕ.

– For every open LTr-formula ϕ(x) there is a term tϕ such that the term �ϕ(tϕ/x)� is
tϕ , where ϕ(tϕ/x) results from replacing every occurrence of x with tϕ in ϕ.

– LTr has at least one ω-model, i.e., a model isomorphic to the standard model of
natural numbers.23

The primitive logical constants of LTr are ¬,∧,→, ∀ (∨,↔, ∃ are defined as usual).
CTerLTr , SentLTr , ForLTr indicate the sets of (codes of) closed terms, sentences, and for-
mulae of LTr, respectively. Lowercase Latin letters are used as meta-variables for closed
terms of LTr (and open terms, if specifically stated). Lowercase Greek letters are used
as meta-variables for sentences of LTr (and formulae, if specifically stated). ‘ϕ ∈ LTr’ is a
shorthand for ‘ϕ ∈ SentLTr’ and ‘s.t.’ is a shorthand for ‘such that’. Analogous conventions
are in place for the sublanguage L.

I now introduce some basic graph-theoretical notions.24

DEFINITION 4.1. A directed graph is a pair 〈N,S〉, where N is a nonempty set whose
elements are called nodes, and S is a set of ordered pairs of nodes, called edges. v and w,
possibly with indices, range over nodes. For any directed graph 〈N,S〉, define the following
notions:

– A directed graph 〈N†,S†〉 is a subgraph of 〈N,S〉, in symbols 〈N†,S†〉 ⊆g 〈N,S〉, if
N† ⊆ N and S† ⊆ S.

– A standard path is a finite, nonempty tuple of alternating nodes and edges, that
begins and ends with nodes, and where every edge connects the two nodes that pre-
cede and follow it. More intuitively, it is an object of the following
form:

23 Since an ω-model is also acceptable in the sense of Moschovakis (1974, p. 22), this requirement
ensures that it is possible to add a satisfaction predicate to L.

24 For comprehensive surveys of graph-theoretical notions and results, see Bondy & Murty (2008),
Diestel (2010).
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v1, 〈v1,v2〉,v2, 〈v2,v3〉 . . . ,vn−2, 〈vn−2,vn−1〉,vn−1, 〈vn−1,vn〉,vn

〉
.

A simple path, or just a path, is the tuple of edges P ⊆ S resulting from removing
the nodes in a standard path.25 More intuitively, it is an object of the following
form: 〈

〈v1,v2〉, 〈v2,v3〉, . . . , 〈vn−2,vn−1〉, 〈vn−1,vn〉
〉
.

A path P ⊆ S is from v to w if v is the first element of its first edge and w is the
second element of its last edge. A path P ⊆ S is maximal if there is no path P′ ⊆ S
s.t. P �= P′ and P ⊆ P′.

– For a set of edges P ⊆ S, let Nodes(P) denote the set of nodes in P. A path
P ⊆ S is a loop if, for every v ∈ Nodes(P), there is a path P′ ⊆ S from v to v s.t.
Nodes(P′) = Nodes(P) where no node except v occurs twice.26

– A path P is straight if no subpath of P is a loop. For P ⊆ S a straight path from w
to v, the set

Predw(v) := Nodes(P minus its last pair)

is the set of the predecessors of v from w. If v1 ∈ Predw(v), then v is a successor
of v1 from w. If 〈v1,v〉 ∈ P, then v is an immediate successor of v1, and v1 is an
immediate predecessor of v.27 I-Precw(v) and I-Succw(v) denote, respectively,
the immediate predecessor and the immediate successor(s) of v from w.

– A node v ∈ N is a dead end if there is no node w ∈ N s.t. 〈v,w〉 ∈ S.

4.2. Semantic graphs. For every ϕ ∈ LTr, I define one directed, labelled, rooted graph
〈Nϕ,Sϕ〉 and its labelling function Lϕ , i.e., the function that assign LTr-formulae to the
nodes of 〈Nϕ,Sϕ〉. In order to define semantic graphs, I start from the definition of three
inductive jumps, respectively corresponding to the operations of extending an arbitrary
rooted graph with the results of decomposing sentences whose main operator is unary,
binary, or the universal quantifier.

DEFINITION 4.2. For every directed graph 〈N,S〉 labelled with LTr-sentences and a root
note r, and for every function L : Nϕ �→ SentLTr (i.e., every labelling function), define the
following sets by simultaneous induction:28

(I) vi ∈ NU, 〈v,vi〉 ∈ SU and 〈vi, σ 〉 ∈ LU if:

(1) vi ∈ N, 〈v,vi〉 ∈ S and 〈vi, σ 〉 ∈ L; or

(2) v ∈ N, L(v) = ¬ψ , and

(2.1) for every w ∈ Predr(v), L(w) �= ψ , and σ = ψ , or

(2.L) for some w ∈ Predr(v), L(w) = ψ , and vi = w; or

25 I give, and use, the simplified notion of path in order to shorten the proof of some results below,
but they could be proven also with the standard definition of path in place.

26 What I call ‘loop’ is more commonly referred to as ‘simple cycle’ in graph theory.
27 In what follows, I only consider rooted graphs, with the parameter w always being the root node.
28 The labels U, B, and I are for a unary, binary, and infinitary decomposition of sentences

respectively.
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(3) v ∈ N, L(v) = Tr(t), t denotes the code of an LTr-sentence ψ , and

(3.1) for every w ∈ Predr(v), L(w) �= ψ , and σ = ψ , or

(3.L) for some w ∈ Predr(v), L(w) = ψ , and vi = w.

(II) vi,vj ∈ NB, 〈v,vi〉, 〈v,vj〉 ∈ SB and 〈vi, σ0〉, 〈vj, σ1〉 ∈ LB if:

(4) vi,vj ∈ N, 〈v,vi〉, 〈v,vj〉 ∈ S and 〈vi, σ0〉, 〈vj, σ1〉 ∈ L; or

(5) v ∈ N, L(v) = ψ ◦ χ , and

(5.1) for every w ∈ Predr(v), L(w) �= ψ and L(w) �= χ , σ0 = ψ and
σ1 = χ ; or

(5.L.a) for every w ∈ Predr(v), L(w) �= ψ , and for a w0 ∈ Predr(v),
L(w0) = χ , σ0 = ψ , w0 = vj, and σ1 = χ ; or

(5.L.b) for every w ∈ Predr(v), L(w) �= χ , and for a w0 ∈ Predr(v),
L(w0) = ψ , σ0 = χ , w0 = vj, and σ1 = ψ ; or

(5.L.c) for a w0 ∈ Predr(v), L(w0) = ψ , for a w1 ∈ Predr(v),
L(w1) = χ , w0 = vi, w1 = vj, σ0 = ψ , and σ1 = χ .

(III) vn ∈ NI, 〈v,vn〉 ∈ SI and 〈vn, σn〉 ∈ LI if:

(6) vn ∈ N, 〈v,vn〉 ∈ S and 〈vn, σn〉 ∈ L if; or

(7) v ∈ N, L(v) = ∀xχ(x), and for every n ∈ ω (letting tx be the x-th term in a
nonrepeating enumeration of CTerLTr)

(7.1) for every w ∈ Predr(v), L(w) �= χ(tn), and σn = χ(tn); or

(7.L) for some w0 ∈ Predr(v), L(w0) = χ(tn), and σn = χ(tn).

Call ‘looping clauses’ the clauses with an ‘L’ in their label. Definition 4.2 specifies in-
ductively the process of adding edges and labelled nodes to a given graph. For instance,
if 〈N,S〉 has a node v labelled with ¬ψ , clause (I)(2) yields a super-graph of that also
contains a node vi labelled with ψ and the new edge 〈v,vi〉 (if no loop arises), or that
contains the new edge 〈v,w0〉 (if a loop arises with a predecessor w0 of v in 〈N,S〉 that is
labelled with ψ).

In order to define semantic graphs, one just needs to put together the clauses of Definition
4.2. For every ϕ ∈ LTr, the semantic graph 〈Nϕ,Sϕ〉 and its labelling function Lϕ are the
results of applying the clauses of Definition 4.2 to a graph only consisting of a node r (the
root), labelled with ϕ, until a fixed point is reached.

DEFINITION 4.3. For every ϕ ∈ LTr, the semantic graph generated by ϕ, 〈Nϕ,Sϕ〉, and
its labelling function, Lϕ : Nϕ �→ SentLTr , are the least fixed points of the following
simultaneous inductive definition:

– At stage 0, put:

N0
ϕ = {r}; S0

ϕ = ∅; L0
ϕ = {〈r, ϕ〉}.

– For an arbitrary successor stage α + 1, put:

Nα+1
ϕ = (Nαϕ)

U ∪ (Nαϕ)B ∪ (Nαϕ)I; Sα+1
ϕ = (Sαϕ)

U ∪ (Sαϕ)B ∪ (Sαϕ)I;
Lα+1
ϕ = (Lαϕ)

U ∪ (Lαϕ)B ∪ (Lαϕ)I.
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– For δ a limit ordinal, put:

Nδϕ =
⋃
α<δ

Nαϕ ; Sδϕ =
⋃
α<δ

Sαϕ ; Lδϕ =
⋃
α<δ

Lαϕ.

Finally, put (where Ord is the class of all ordinals):

Nϕ =
⋃

α ∈ Ord

Nαϕ ; Sϕ =
⋃

α ∈ Ord

Sαϕ ; Lϕ =
⋃

α ∈ Ord

Lαϕ.

The above definition simply regiments and generalises the informal process that was fol-
lowed when building semantic graphs in §3.1–§3.4. The graphs that result from Definition
4.3 are exactly of the kind employed in §3.1–§3.4. The next results are immediate from
Definitions 4.2–4.3: they ensure that, for every ϕ ∈ LTr, the sets Nϕ , Sϕ , and Lϕ are positive
elementary in N0

ϕ , S0
ϕ , and L0

ϕ , and establish their existence and uniqueness.

LEMMA 4.4. Let Predϕ(v) denote the set of predecessors of v from the root note of the
semantic graph generated by ϕ. For every ϕ ∈ LTr and every v ∈ Nϕ , the set Predϕ(v) is
finite.

COROLLARY 4.5. For every ϕ ∈ LTr and v ∈ Nϕ , there are at most finitely many
vi ∈ Nϕ s.t. vi is a predecessor of v and 〈v,vi〉 ∈ Sϕ .

COROLLARY 4.6. For every ϕ ∈ LTr, there is exactly one semantic graph 〈Nϕ,Sϕ〉 and
exactly one labelling function Lϕ .

4.3. A semantics for the logical vocabulary. The taxonomy of ‘paradoxical’ sentences
and the characterisation of their semantic behaviour to be offered here remains structurally
unaltered across every compositional semantics for the logical vocabulary of LTr. However,
in order to give a semantic theory of truth and paradox proper, a semantics for the logical
vocabulary must be selected. Therefore, for the sake of presentation, I adopt Łukasiewicz
logics.29 This choice is suggested by the fact that revenge paradoxes can be already con-
structed in theories of naïve truth interpreted via Łukasiewicz semantics, without adding
further logical or semantic vocabulary. In fact, Łukasiewicz logic is incompatible with
naïve truth, unless revenge paradoxes are blocked in some way.30 And this is exactly
what happens in the proposed semantics, where revenge-theoretical sentences are assigned
equations as values, since they cannot be assigned numerical values (see §2.3 and p. 11).

A Łukasiewicz numerical value space VŁ is either {0, 1/n+1, . . ., n/n+1, 1} (for n an odd
positive integer), or the set of reals in the unit interval [0, 1]. I use the boldface letters i, j, k
to range over elements of VŁ. Here are the Łukasiewicz evaluation clauses:

value of ¬ψ = 1 − value of ψ

value of ψ ∧ χ = min[value of ψ, value of χ ]

value of ψ → χ = min[1, (1 − value of ψ + value of χ)]

value of ∀xψ(x) = inf[value of ψ(tn) | n ∈ ω].

29 For more on Łukasiewicz logics and semantics, see Gottwald (2001).
30 See Restall (1992), Hájek et al., (2000). Continuum-valued Łukasiewicz logic is merely ω-

inconsistent with naïve truth, but since I am assuming some ω-model of the base language, ω-
inconsistency amounts to a proper inconsistency for the models I consider.
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The Łukasiewicz clauses for ¬, ∧, and ∀ generalise the clauses of partial evaluations (see
p. 4) to larger value spaces, while → can be used to express a comparison between the
values of antecedent and consequent.31 The above clauses remain constant for any choice
of VŁ.

I now define a language LŁ for every numerical value space VŁ, in order to represent the
equations definable from the clauses of Łukasiewicz semantics and naïve truth.

DEFINITION 4.7. The language LŁ is composed of the following elements:

– Countably infinitely many fresh variables VarLŁ := {uϕ1 , . . . , uϕn , . . .}, where ϕn

is the n-th element of a nonrepeating enumeration of SentLTr .
– A set of fresh constants ConLŁ that contains exactly one term for each element of

the numerical value space VŁ. I use the same meta-variables to range over both
elements of VŁ and elements of ConLŁ .32

– Let s1, . . . , si, sj, sm, sn, . . . be LŁ-terms. Then, id(sm) (the identity function), sm −
sn, min(sm, sn), min[si, (sj − sm + sn)], inf{s1, . . . , sm, sn, . . .} are LŁ-terms (and
nothing else is). Let hi range over the term-forming functions of LŁ.

– Let sm, sn be LŁ-terms. Then sm =Ł sn is an atomic formula of LŁ (and nothing
else is). Denote this set with EŁ, and call its element Łukasiewicz equations. I use
the boldface letter e, possibly with indices, to range over elements of EŁ, and E,
possibly with indices, to range over elements of P(EŁ) (i.e., subsets of EŁ).

Now that I have formally constructed semantic graphs and defined the semantic values,
both numerical and equational, to be employed in the semantics, I turn to the assignment of
semantic values to nodes in semantic graphs, making the process described in §3 formally
precise.

4.4. Evaluations of nodes in semantic graphs. I start off by distinguishing some kinds
of nodes in semantic graphs.

DEFINITION 4.8. For every ϕ ∈ LTr, a node v in Nϕ is:

– a dead end, if there is no edge 〈v,w〉 ∈ Sϕ (no arrow departs from v). D-Endsϕ
denotes the set of dead ends of a semantic graph 〈Nϕ,Sϕ〉.

– a looping end, if there are only edges 〈v,w〉 ∈ Sϕ where w is a predecessor of v
(only looping, upwards arrows depart from v). L-Endsϕ denotes the set of looping
ends of a semantic graph 〈Nϕ,Sϕ〉.

– a simple point if it is not an end and it is not in any loop. S-Pointsϕ denotes the
set of simple points of a semantic graph 〈Nϕ,Sϕ〉.

– a looping point if it is not an end, it is in a loop, and its immediate predecessor is in
a loop. L-Pointsϕ denotes the set of looping points of a semantic
graph 〈Nϕ,Sϕ〉.

31 For the use and relevance of the Łukasiewicz conditional in theories of truth, see Rossi (2016).
32 ConLŁ

in effect contains the elements of VŁ to be used as constants in solving equation systems
definable in LŁ. I do not put ConLŁ

= VŁ to avoid confusion in the definition of LŁ, although
the two sets are identified in practice. Notice that, if VŁ = [0, 1], then ConLŁ

is uncountable,
and this makes the language LŁ itself uncountable. For simplicity, however, I adopt a countable
notation for LŁ, since only countably many different values are assigned in the semantics to be
developed, as there are only countably many LTr-sentences.
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– a loop top it is in a loop and it is the root or its immediate predecessor is a simple
point. L-Topsϕ denotes the set of loop tops of a semantic graph 〈Nϕ,Sϕ〉. If v is
in a loop, w is the loop top of v if w is the only loop top in Predϕ(v) and there is
a path P from w to v such that w is the only loop top in P.

LEMMA 4.9. For every ϕ ∈ LTr, every looping end or looping point in Nϕ has exactly
one loop top in Nϕ .

Using the above classification, I now show how to assign values to nodes in semantic
graphs. Values are assigned in a revision procedure, that replaces (whenever possible)
equational values with numerical values. The assignment of equational and numerical
values, in turn, is given by two inductive definitions. More specifically, the first inductive
construction assigns single equational values, while the second one assigns numerical
values (whenever possible) and sets of equations.33

I begin with the first inductive construction. It is a ‘top-bot’ construction, that is it
starts assigning an equational value to the root of a graph, and then moves on to as-
sign equations to its successors. Equations are assigned according to the logical form of
each node.

DEFINITION 4.10. Let M be an ω-model of L. For every ϕ ∈ LTr and A ⊆ (Nϕ × EŁ),
〈x, y〉 ∈ A+

ϕ if:
x = rϕ or x ∈ Nϕ and there is a w ∈ I-Precϕ(x) and an e ∈ EŁ s.t. 〈w, e〉 ∈ A and:

1. Lϕ(x) = P(t1, . . . , tn), P(t1, . . . , tn) is an atomic L-sentence, M |� P(t1, . . . , tn),
and y = (uψ=Ł1); or

2. Lϕ(x)= P(t1, . . . , tn), P(t1, . . . , tn) is an atomic L-sentence and M �|� P(t1, . . . , tn),
or Lϕ(x) = Tr(t) and t does not denote the code of a LTr-sentence in M, and
y = (uψ=Ł0); or

3. Lϕ(x) = ¬ψ , and y = (u¬ψ=Ł1 − uψ); or

4. Lϕ(x) = ψ ∧ χ , and y = (uψ∧χ=Łmin(uϕ, uψ)); or

5. Lϕ(x) = ψ → χ , and y = (uψ→χ=Łmin[1, (1 − uϕ + uψ)]); or

6. Lϕ(x) = ∀xχ(x), and y = (u∀xχ(x)=Łinf{utk | k ∈ ω}); or

7. Lϕ(x) = Tr(�ψ�), and y = (uTr(�ψ�)=Łuψ).

LEMMA 4.11. For every ϕ ∈ LTr and every A ⊆ (Nϕ ×EŁ), the definition of A+
ϕ is posi-

tive elementary in the following sets: EŁ, 〈Sϕ,Nϕ〉, Lϕ , VarLŁ , ConLŁ , {Im-Precϕ(v) |v ∈
Nϕ}.
I now re-write Definition 4.10 via an operator on subsets of (Nϕ×EŁ), which will be useful
later.

DEFINITION 4.12. For every ϕ ∈ LTr, let Qϕ indicate the sets in which the definition
of A+

ϕ is positive elementary, as per Lemma 4.11. For ϕ ∈ LTr and S ⊆ (Nϕ × EŁ),

let ζϕ(x, y, S,Qϕ) be the right-hand side of Definition 4.10. Let ϕ : P(Nϕ × EŁ) �−→
P(Nϕ × EŁ) be the operator defined as:

ϕ(S) := {〈x, y〉 ∈ Nϕ × EŁ | ζϕ(x, y, S,Qϕ)}.

33 I am grateful to Emmanuel Chemla, whose observations suggested to employ two distinct
inductive constructions, simplifying the previous version of the semantics.
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Put, for S ⊆ Nϕ × EŁ and γ limit:

α+1
ϕ (S) := (αϕ(S)), γϕ (S) :=

⋃
α<γ

αϕ(S).

LEMMA 4.13. For every ϕ ∈ LTr, the operator ϕ is monotone.

Let Iϕ denote the smallest fixed point of ϕ , that is:

Iϕ :=
⋃

α ∈ Ord

αϕ(∅).

I now turn to the second inductive construction, which incorporates Iϕ .

DEFINITION 4.14. Let M be an ω-model of L. For every ϕ ∈ LTr and B ⊆ Nϕ × (VŁ ∪
P(EŁ)), 〈x, y〉 ∈ B∗

ϕ if:

1. 〈x, y〉 ∈ B; or

2. x ∈ Nϕ , Lϕ(x) = P(t1, . . . , tn), P(t1, . . . , tn) is an atomic L-sentence, M |�
P(t1, . . . , tn), and y = 1; or

3. x ∈ Nϕ , Lϕ(x) = P(t1, . . . , tn), P(t1, . . . , tn) is an atomic L-sentence and M �|�
P(t1, . . . , tn), or Lϕ(x) = Tr(t) and t does not denote the code of a LTr-sentence in
M, and y = 0; or

4. x ∈ Nϕ , Lϕ(x) = ψ ∧ χ or Lϕ(x) = ∀xχ(x) and there is a vm ∈ I-Succϕ(x) s.t.
〈vm, 0〉 ∈ B, and y = 0; or

5. x ∈ Nϕ , Lϕ(x) = ψ → χ and there is a vm ∈ I-Succϕ(x) s.t. Lϕ(vm) = ψ and
〈vm, 0〉 ∈ B, or there is a vn ∈ I-Succϕ(x) s.t. Lϕ(vn) = χ and 〈vn, 1〉 ∈ B, and
y = 1; or

6. x ∈ Nϕ , x ∈ S-Pointsϕ , Lϕ(x) = ¬ψ , and there is a vm ∈ I-Succϕ(x), and a
j ∈ VŁ s.t. Lϕ(vm) = ψ , 〈vm, j〉 ∈ B, and y = 1 − j; or

7. x ∈ Nϕ , x ∈ S-Pointsϕ , Lϕ(x) = ψ ∧χ , and there are vm,vn ∈ I-Succϕ(x) and
j, k ∈ VŁ s.t. 〈vm, j〉 ∈ B and 〈vn, k〉 ∈ B, and y = min(j, k); or

8. x ∈ Nϕ , x ∈ S-Pointsϕ , Lϕ(x) = ψ → χ , and there are vm,vn ∈ I-Succϕ(x)
s.t. Lϕ(vm) = ψ and Lϕ(vn) = χ , and there are j, k ∈ VŁ s.t. 〈vm, j〉 ∈ B and
〈vn, k〉 ∈ B, and y = min[1, (1 − j + k)]; or

9. x ∈ Nϕ , x ∈ S-Pointsϕ , Lϕ(x) = ∀xχ(x), and for every m ∈ ω there is a vm ∈ I-
Succϕ(x) and a im ∈ VŁ s.t. Lϕ(vm) = χ(tm), 〈vm, im〉 ∈ B, and y = inf{im ∈
VŁ | 〈vm, im〉 ∈ B and vm ∈ I-Succϕ(x)}; or

10. x ∈ Nϕ , x ∈ S-Pointsϕ , Lϕ(x) = Tr(�ψ�), and there is a vm ∈ I-Succϕ(x) and
a j ∈ VŁ s.t. 〈vm, j〉 ∈ B, and y = j; or

11. x ∈ Nϕ , x ∈ L-Topsϕ , and y is the set of e ∈ EŁ s.t. 〈w, e〉 ∈ Iϕ and either w = x
or x is the loop top of w; or

12. x ∈ Nϕ , x ∈ L-Pointsϕ or x ∈ L-Endsϕ , there is a E ∈ P(EŁ) s.t. 〈v,E〉 ∈ B
and v is the loop top of x, and y is the set of e ∈ EŁ s.t. 〈w, e〉 ∈ Iϕ and w and x
have the same loop top; or

13. x ∈ Nϕ , x ∈ S-Pointsϕ and there is a v ∈ I-Succϕ(x) and E ∈ P(EŁ) s.t.
〈v,E〉 ∈ B, and y is the union of the set of e ∈ EŁ s.t. 〈x, e〉 ∈ Iϕ and the set of
e ∈ EŁ s.t. 〈v, e〉 ∈ Iϕ ; or
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14. x ∈ Nϕ , x ∈ L-Topsϕ , the equation system given by the set {e ∈ EŁ | 〈w, e〉 ∈ Iϕ
and either w = x or x is the loop top of w} has a unique solution in VŁ, and y is the
solution for x in VŁ; or

15. x ∈ Nϕ , x ∈ L-Pointsϕ or x ∈ L-Endsϕ , there is a k ∈ VŁ s.t. 〈v, k〉 ∈ B and v
is the loop top of x, the equation system given by the set {e ∈ EŁ | 〈w, e〉 ∈ Iϕ and
w and x have the same loop top} has a unique solution in VŁ, and y is the solution
for x in VŁ; or

Definition 4.14 deals with all the possible cases in which a numerical value or an equation
system is assigned to a node, and is therefore somewhat intricate. However, it merely
regiments the heuristics described in §3, and its working is actually quite simple. First,
dead ends are assigned either value 1 or 0, according to the selected ω-model of the
base language (items 2 and 3). Second, conjunctions with a 0-valued conjunct, universal
quantifications with a 0-valued instance, and conditionals with a 0-valued antecedent or a
1-valued consequent are assigned a numerical value (items 4 and 5). Third, simple points
whose immediate successors are assigned a numerical value are also assigned a numerical
value, compositionally (items 6–10). Fourth, equation systems are assigned starting from
loop tops, employing the equations assigned in the smallest fixed point of ϕ , i.e., Iϕ
(items 11–13). Finally, equation systems are solved and numerical values are assigned
whenever possible (items 14 and 15).

LEMMA 4.15. For every ϕ ∈ LTr and B ⊆ Nϕ × (VŁ ∪ P(EŁ)), the definition of B∗
ϕ is

positive elementary in the following sets: VŁ, EŁ, 〈Sϕ,Nϕ〉, Lϕ , VarLŁ , ConLŁ , L-Endsϕ ,
S-Pointsϕ , L-Pointsϕ , L-Topsϕ , {I-Succϕ(v) |v ∈ Nϕ}, {Predϕ(v) |v ∈ Nϕ},
{〈v,N†〉 ∈ Nϕ × P(Nϕ) |v is the loop top of the nodes in N†}, {E ∈ P(EŁ) | E
has a unique solution in VŁ}.
I re-write also Definition 4.14 via an operator on subsets of Nϕ × (VŁ ∪P(EŁ)), to be used
later.

DEFINITION 4.16. For every ϕ ∈ LTr, let Rϕ indicate the sets in which the definition
of B∗

ϕ is positive elementary, as per Lemma 4.15. For ϕ ∈ LTr and S ⊆ Nϕ × (VŁ ∪
P(EŁ)), let ϑϕ(x, y, S,Rϕ) be the right-hand side of Definition 4.14. Let �ϕ : P(Nϕ ×
(VŁ ∪ P(EŁ))) �−→ P(Nϕ × (VŁ ∪ P(EŁ))) be the operator defined as:

�ϕ(S) := {〈x, y〉 ∈ Nϕ × (VŁ ∪ P(EŁ)) |ϑϕ(x, y, S,Rϕ)}.

LEMMA 4.17. For every ϕ ∈ LTr, the operator �ϕ is monotone and increasing.

A fundamental idea of the heuristics outlined in §3 is that nodes are first assigned
equation systems, and then numerical values (when equation systems are solved, if they
have a unique solution). However, this amounts to revising a previously assigned value,
and cannot be done via an inductive construction such as the one given in Definition 4.14.
Inductive constructions can only add numbers and equation systems: in order to replace
the latter with the former, a revision construction is required. This is provided by the next
definition.

DEFINITION 4.18. For every ϕ ∈ LTr and ordinal δ, let eδϕ be defined as follows (for γ
limit):

https://doi.org/10.1017/S1755020319000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000078


A UNIFIED THEORY OF TRUTH AND PARADOX 229

e0
ϕ := Iϕ

eα+1
ϕ := �ϕ(e

α
ϕ) \ {〈x, y〉 ∈ Nϕ × P(EŁ) |

〈x, y〉 ∈ �ϕ(eαϕ) and for some k ∈ VŁ, 〈x, k〉 ∈ �ϕ(eαϕ)}
eγϕ := {〈x, y〉 ∈ Nϕ × (VŁ ∪ P(EŁ)) | there is an α < γ s.t.

for all α ≤ β < γ, 〈x, y〉 ∈ eβϕ }.

The key element of the above revision sequence is the successor case. In short, whenever
�ϕ(eαϕ) assigns both an equation system and a numerical value to a node in Nϕ , eα+1

ϕ

removes the equation system and keeps only the numerical value. As it turns out, this
suffices to ensure that every set eαϕ is a function, and that equational values are revised and
replaced with numerical values as outlined in the heuristics of §3. The limit case then
ensures that, as ordinals grow, the functions eαϕ converge to a limit, that is they have
fixed points. These facts are formulated more precisely and collected in the following
proposition.

PROPOSITION 4.19.

(I) For every ϕ ∈ LTr and every ordinal α:

1. There is exactly one eαϕ .

2. eαϕ is a function, i.e., for every v ∈ Nϕ and every v0, v1 ∈ VŁ ∪ P(EŁ) :

if 〈v, v0〉 ∈ eαϕ and 〈v, v1〉 ∈ eαϕ, then v0 = v1.

I write ‘eαϕ(v) = v’ if 〈v, v〉 ∈ eαϕ , and ‘eαϕ = eβϕ ’ if, for every v ∈ Nϕ ,

eαϕ(v) = eβϕ(v).

3. For every v ∈ Nϕ , if eαϕ(v) = k for a k ∈ VŁ, then for every β > α,

eβϕ(v) = k.

4. For every v ∈ Nϕ , if eαϕ(v) = E for E ∈ P(EŁ), then for every β > α, if

there is no k ∈ VŁ s.t. eβϕ(v) = k, then eβϕ(v) = E.

(II) There is exactly one ordinal δ0 s.t. for every ϕ ∈ LTr, eδ0
ϕ is a fixed point of the

functions eαϕ , i.e., for every δ ≥ δ0 and ϕ ∈ LTr :

eδ0
ϕ = eδϕ

I indicate eδ0
ϕ simply as eϕ .

4.5. Loop-isomorphisms. We have seen how semantic graphs are precisely constructed,
and how their nodes are assigned a semantic value, formalising the picture outlined in §3.
However, as I argued in §1, in order to provide a full account of semantic paradoxes, one
needs an evaluation function for LTr-sentences. But so far we only have many evaluation
functions for labelled nodes—one such function per graph. Therefore, the evaluations
defined on nodes have to be turned into a single evaluation defined on sentences.

To see this, consider the nodes in the graph generated by λ (see Figure 3): they are
assigned value 1/2 by the evaluation function associated with that very graph, i.e., eλ (see
§3.2). However, eλ does not tell us anything about the value assigned to a node labelled with
λ occurring in another semantic graph, i.e., in the graph generated by another sentence. But
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if one thinks that the sentence λ should be assigned value 1/2 and adopts a compositional
semantics, presumably one also thinks that the sentence λ ∧ ¬(s = s) should be assigned
value 0. But eλ does not give us this information, because it is not a function that evaluates
LTr-sentences—it evaluates only the nodes of Nλ.

In order to ‘weave together’ the evaluation functions defined on nodes (eϕ1 , eϕ2 , . . .)
and construct a single evaluation defined on sentences, I show that the functions eϕ have
the following robustness property: all the nodes with the same label are assigned the same
value by their respective evaluation functions (Proposition 4.23). This makes it possible
to define a canonical evaluation for sentences (Definition 4.24), by taking the value of ϕ
to be the value of a uniformly chosen node labelled with ϕ – for simplicity, I will take
the root node of 〈Nϕ,Sϕ〉. In order to prove the robustness property, I show that whenever
two nodes v and w are labelled with the same sentence, they generate subgraphs of their
respective semantic graphs 〈Nϕ,Sϕ〉 and 〈Nψ,Sψ 〉 that are structurally similar (Proposition
4.22). Such similarity is used to ensure that the two evaluations eϕ and eψ yield the same
result on v and w. The relevant notion of structural similarity is provided by a suitable
notion of graph-theoretic isomorphism (Definition 4.21).

To begin with, note that in order to evaluate a node v of Nϕ via the function eϕ ,
possibly not all of 〈Nϕ,Sϕ〉 is relevant. Consider for instance the semantic graph of
λ ∧ ¬(s = s):

Fig. 8. Graph for ¬Tr(�λ�) ∧ ¬(s = s).

In order to evaluate some of the nodes of graph 8, not all other nodes need to be evaluated:
for instance, in order to evaluate the node labelled with ¬Tr(�λ�), the value of the node
labelled with s = s is not required. More generally, an inspection of Definitions 4.3
and 4.14 shows that, in order to assign a value to a node v in Nϕ , only the nodes that
can be reached from v in following the edges, i.e., the arrows, in Sϕ are employed in
the construction of eϕ(v). The next definition makes the notion of reachable nodes more
precise.

DEFINITION 4.20 (Reachable nodes and subgraphs). For every ϕ ∈ LTr and v ∈ Nϕ , the
set Rϕ(v) of nodes reachable from v within 〈Nϕ,Sϕ〉 is defined thus:

Rϕ(v) := {
〈
〈v,w〉, . . . , 〈v′,w′〉

〉
∈

⋃
n∈ω
(Nϕ × Nϕ)

n |
there is a path from v to w′ in 〈Nϕ,Sϕ〉}.

Let ϕ ∈ LTr and v ∈ Nϕ . The subgraph of 〈Nϕ,Sϕ〉 reachable from v is the graph 〈Nvϕ,Svϕ〉
s.t.:

Nvϕ := the nodes in Rϕ(v); Svϕ := the edges in Rϕ(v).
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I now define the required notion of isomorphism between semantic graphs.

DEFINITION 4.21 (Loop-isomorphism). Let ϕ,ψ ∈ LTr, 〈N0
ϕ,S

0
ϕ〉 ⊆g 〈Nϕ,Sϕ〉 and

〈N0
ψ,S

0
ψ 〉 ⊆g 〈Nψ,Sψ 〉. 〈N0

ϕ,S
0
ϕ〉 and 〈N0

ψ,S
0
ψ 〉 are loop-isomorphic, in symbols 〈N0

ϕ,S
0
ϕ〉

∼=l 〈N0
ψ,S

0
ψ 〉, if:

(i) for every dead end (simple point) v ∈ N0
ϕ there is a dead end (simple point) w ∈ N0

ψ

s.t. Lϕ(v) = Lψ(w), and vice versa for dead ends and simple points of N0
ϕ , and

(ii) for every loop P1 ⊆ S0
ϕ there is a loop P2 ⊆ S0

ψ s.t. for every pair 〈v,v′〉 ∈ P2

there is a pair 〈w,w′〉 ∈ P2 s.t. Lϕ(v) = Lψ(w) and Lϕ(v′) = Lψ(w′), and vice
versa for loops in S0

ψ .

Informally, two (sub)graphs are loop-isomorphic when every dead end (simple node) of
one graph is bijectively mapped to a dead end (simple point) of the other graph, preserving
the identity of labels (item (i)), and every loop of one graph is bijectively mapped to a loop
of the other graph, preserving adjacency and identity of labels (item (ii)). It follows from
Definition 4.21 that if 〈N0

ϕ,S
0
ϕ〉 and 〈N0

ψ,S
0
ψ 〉 are loop-isomorphic, then paths of S0

ϕ that

only contain simple points and dead ends are bijectively mapped to paths of S0
ψ that only

contain simple points and dead ends, and that have the same labels in the same order, while
loops of S0

ϕ are bijectively mapped to loops of S0
ψ that have the same labels with the same

adjacencies, but that are possibly rotated.34

I now state the main fact about the loop-isomorphisms of semantic graphs, that is that
nodes with identical labels yield loop-isomorphic reachable subgraphs. In other words, a
node labelled with ϕ generates a subgraph of the graph it belongs to that is structurally
similar (i.e., loop-isomorphic) to the subgraph generated by any other node labelled with
ϕ, in any other graph.

PROPOSITION 4.22. For every ϕ,ψ ∈ LTr, v ∈ Nϕ , w ∈ Nψ :

if Lϕ(v) = Lψ(w), then 〈Nvϕ,Svϕ〉 ∼=l 〈Nwψ,Swψ 〉.

This result, in turn, makes it possible to prove that the evaluations defined on nodes are
robust in the sense described above, that is in the sense that they assign identical values to
nodes with identical labels.

PROPOSITION 4.23. For every ϕ,ψ ∈ LTr, v ∈ Nϕ , w ∈ Nψ , and v ∈ VŁ ∪ P(EŁ), if
Lϕ(v) = Lψ(w):

1. there is an α s.t. eαϕ(v) = v if and only if there is a β s.t. eβψ(w) = v, and

2. eϕ(v) = eψ(w).

4.6. The canonical evaluation. Proposition 4.23 makes it possible to speak of the
value of a sentence ϕ, rather than the value of a node labelled with ϕ in some semantic
graph. More precisely, the value of a sentence ϕ can be taken to be the value that any

34 Propositions 4.22 and 4.23 could have been proven employing a more standard notion of
isomorphism between labelled directed graphs, i.e., the existence of a bijection preserving
adjacency of nodes and identity of labels (and only identity of labels in the case of a graph with
empty edges), but this would have made the proofs longer.
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evaluation eψ whose domain includes a node labelled with ϕ assigns to any such node—by
Proposition 4.23, all such nodes receive the same value. So, I define a canonical evaluation
that takes the value of ϕ to be the value of a canonically selected node labelled with ϕ – for
simplicity, I take it to be the value of the root node of 〈Nϕ,Sϕ〉, the graph generated by ϕ.

DEFINITION 4.24. The canonical evaluation is the function C : SentLTr �−→ VŁ ∪ P(EŁ)
defined as:

C (ϕ) := eϕ(r).

The canonical evaluation C is the semantic theory of truth and paradox I propose in this
article. In this section, I review its main properties.

4.6.1. The canonical evaluation as a theory of paradox. To begin with, C obeys the
Łukasiewicz clauses for introducing and eliminating logical constants.

PROPOSITION 4.25. For every ϕ,ψ ∈ LTr and χ(x) ∈ ForLTr , the following holds
(⇐⇒ stands for the meta-linguistic ‘if and only if’, and �⇒ for ‘if . . . then’) :

C (¬ϕ) = 1 ⇐⇒ C (ϕ) = 0

C (ϕ ∧ ψ) = 1 ⇐⇒ C (ϕ) = 1 and C (ψ) = 1

C (ϕ → ψ) = 1 ⇐⇒ C (ϕ) = 0,

or C (ψ) = 1,

or C (ϕ) = j,C (ψ) = k, and j ≤ k

C (∀xχ(x)) = 1 ⇐⇒ C (χ(tk)) = 1 for all tk ∈ CTerLTr

C (Tr(�ϕ�)) = 1 ⇐⇒ C (ϕ) = 1.

In addition, modus ponens holds for the canonical evaluation:

C (ϕ) = 1 and C (ϕ → ψ) = 1 �⇒ C (ψ) = 1.

The next result generalises Proposition 4.25 to the whole value space VŁ ∪ P(EŁ),
providing a full picture of how the canonical evaluation interprets LTr-sentences.

PROPOSITION 4.26. Let M be an ω-model of L. For A ⊆ SentLTr , let E(A) be the set
{e ∈ EŁ | e ∈ C (ϕ), for ϕ ∈ A}. For all ϕ ∈ LTr, the following hold:

C (s = t) =
{

1, if M |� s = t,

0, if M �|� s = t

C (¬ϕ) =
{

1 − C (ϕ), if C (ϕ) ∈ VŁ,

{u¬ϕ =Ł 1 − sϕ} ∪ E({ϕ}), if C (ϕ) ∈ P(EŁ)

C (ϕ ∧ ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if C (ϕ) = 0 or C (ψ) = 0

min(C (ϕ),C (ψ)), if C (ϕ),C (ψ) ∈ VŁ,

{uϕ∧ψ =Ł min(sϕ, sψ)} ∪ E({ϕ,ψ}),

if

⎧⎪⎨⎪⎩
C (ϕ),C (ψ) ∈ P(EŁ), or

C (ϕ) ∈ P(EŁ),C (ψ) ∈ VŁ \ {0}, or

C (ψ) ∈ P(EŁ),C (ϕ) ∈ VŁ \ {0}
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C (ϕ → ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if C (ϕ) = 0 or C (ψ) = 1

min[1, (1 − C (ϕ)+ C (ψ))], if C (ϕ),C (ψ) ∈ VŁ,

{uϕ→ψ =Ł min[1, (1 − sϕ + sψ)]} ∪ E({ϕ,ψ}),

if

⎧⎪⎨⎪⎩
C (ϕ),C (ψ) ∈ P(EŁ), or

C (ϕ) ∈ P(EŁ),C (ψ) ∈ VŁ \ {1}, or

C (ψ) ∈ P(EŁ),C (ϕ) ∈ VŁ \ {0}

C (∀xχ(x)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if C (χ(tk)) = 0 for a k ∈ ω
inf{C (χ(tk)) | k ∈ ω}, if for all k ∈ ω,C (χ(tk)) ∈ VŁ,

{u∀xχ(x) =Ł inf{sχ(tk)|k ∈ ω}} ∪ E({χ(tn) | n ∈ ω}),
if for all k ∈ ω,C (χ(tk)) ∈ VŁ ∪ P(EŁ) \ {0},
and for some n ∈ ω,C (χ(tn)) ∈ P(EŁ)

C (Tr(�ϕ�)) =
{
C (ϕ), if C (ϕ) ∈ VŁ,

{uTr(�ϕ�) =Ł sϕ} ∪ E({ϕ}), if C (ϕ) ∈ P(EŁ).

The above result summarises the possible outcomes of applications of C to a sentence ϕ:
either ϕ is assigned a numerical value or an equation system. The clauses for equation
systems may appear strange at first, but they merely formalise the heuristics described in
§3. For example, the negation clause C (¬ϕ) = {u¬ϕ =Ł 1 − uϕ} ∪ E({ϕ}) tells us that
if the immediate subcomponent of ¬ϕ (that is ϕ) is assigned the equation system E({ϕ}),
then ϕ is assigned the equation system that results from adding an equation corresponding
to the logical form of ¬ϕ to E({ϕ}). Similarly, if at least one of C (ϕ) and C (ψ) is an
equation system, and none of C (ϕ) and C (ψ) is 0, then C (ϕ ∧ ψ) is an equation system
adding to whatever equation systems are associated with ϕ and ψ (whether just one of ϕ
and ψ is associated with an equation systems, or both of them are) the equation expressing
that the value of ϕ ∧ ψ is the minimum of the values of ϕ and ψ . And so on.

This does not necessarily mean that the equation system assigned to ϕ has more equa-
tions than the system assigned to its subcomponents. In fact, the subcomponents of ϕ may
be assigned the same equation system as ϕ, as it is to be expected e.g., in the case of
paradoxical sentences generating loops. Consider for example the value of C (¬Tr(�λ�))
in a classical value space VŁ = {1, 0}:

C (¬Tr(�λ�)) = {u¬Tr(�λ�) =Ł 1 − uTr(�λ�)} ∪ E({Tr(�λ�)})
= {u¬Tr(�λ�) =Ł 1 − uTr(�λ�)}∪

{uTr(�λ�) =Ł u¬Tr(�λ�), u¬Tr(�λ�) =Ł 1 − uTr(�λ�)}
= {uTr(�λ�) =Ł u¬Tr(�λ�), u¬Tr(�λ�) =Ł 1 − uTr(�λ�)}
= C (Tr(�λ�)).

The equation system associated with ¬Tr(�λ�) does not have more equations than the
system associated with ¬Tr(�λ�). This is the expected result: both λ and ¬λ should be
associated with the same value, that is the same equation system, which is unsolvable in
VŁ = {1, 0}.

It is now clear that the canonical evaluation yields the classification of LTr-sentences
described in §2 (see especially §2.4) and §3. Classical numerical values are assigned to
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nonparadoxical sentences (§3.1). Nonclassical numerical values are assigned to liar-like
sentences (§2.1, §3.2). Equation systems are assigned to sentences that are compatible with
too many numerical values (truth-teller–like sentences, §2.2, §3.3) or too few numerical
values (revenge sentences §2.3, §3.4).

Finally, notice that the canonical evaluation is compositional: the value of C (ϕ) (whether
numerical or equational) depends on the values that C assigns to the immediate subcom-
ponents of ϕ (where, by NAÏVETÉ, ψ is considered to be a subcomponent of Tr(�ψ�)).

4.6.2. The canonical evaluation as a theory of truth. The next results show that the
canonical evaluation also constitutes a semantic theory of naïve truth. To begin with,
C validates the INTERSUBSTITUTIVITY of truth and the T-SCHEMA for every sentence
receiving a numerical value (see §2, p. 3).

LEMMA 4.27. For every ϕ ∈ LTr, if ϕTr is the result of substituting (possibly
nonuniformly) a subformula ψ of ϕ with Tr(�ψ�) or vice versa, then (for k ∈ VŁ):

C (ϕ) = k = C (ϕTr).

LEMMA 4.28. For every ϕ ∈ LTr, there is a k ∈ VŁ s.t.:

C (ϕ) = k if and only if C (ϕ ↔ Tr(�ϕ�)) = 1.

Moreover, C includes some arguably good candidates to determine the extension of a
naïve truth predicate, such as the smallest fixed point of Kripke (1975)’s theory (strong
Kleene version).

PROPOSITION 4.29. For every ϕ ∈ LTr:

– if ϕ is in the extension of Tr in the least Kripkean fixed point for LTr, then C (ϕ) = 1,
and

– if ϕ is in the anti-extension of Tr in the least Kripkean fixed point for LTr, then
C (ϕ) = (0).

Clearly, the converse of the claims in Proposition 4.29 does not hold.
4.6.3. The canonical evaluation, determinateness, and revenge. The canonical evalu-

ation recovers a natural partial version of every Łukasiewicz semantics, generalised with
the inclusion of equational values. However, every finite-valued Łukasiewicz semantics is
known to be inconsistent with naïve truth, while continuum-valued Łukasiewicz semantics
is inconsistent with naïve truth over ω-models of the base language.35 The canonical
evaluation avoids these difficulties as follows: the sentences that cannot be consistently
assigned a value according to the Łukasiewicz semantics clauses in conjunction with naïve
truth, i.e., revenge sentences for this semantics, are simply assigned an equation system
which is unsolvable in the selected value space.

For instance, the following iterated Curry sentences (where ⊥ is some false sentence)
produce a revenge paradox for every finitely-valued Łukasiewicz semantics plus naïve
truth:36

κ0 := Tr(�κ0�) → ⊥
κj+1 := Tr(�κj+1�) → κj.

35 See Restall (1992), Hájek et al., (2000).
36 For more details, see Field (2008, chap. 4).
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However, the canonical evaluation assigns them numerical values if possible (that is, when-
ever the numerical space is sufficiently large), and unsolvable equation systems otherwise.
At a glance:

C (κ0) =

⎧⎪⎨⎪⎩
E ∈ P(EŁ), if VŁ = {0, 1}
1/2, if VŁ = {0, 1/n+1, . . . , n/n+1, 1} for all odd n

or VŁ = [0, 1]

C (κj+1) =

⎧⎪⎨⎪⎩
E ∈ P(EŁ), if VŁ ⊆ {0, 1/k+1, . . . , k/k+1, 1} for k < 2j+1

2j+1−1/2j+1, if VŁ = {0, 1/k+1, . . . , k/k+1, 1} for k ≥ 2j+1,

or VŁ = [0, 1].

In a similar way, the canonical evaluation blocks the revenge sentences employed to
prove the next result, assigning them an unsolvable equation system (see the proof in the
Appendix).

PROPOSITION 4.30 (Restall (1992)). There is no continuum-valued Łukasiewicsz eval-
uation for LTr that: (i) agrees with an ω-model for L, and (ii) validates the T-SCHEMA or
INTERSUBSTITUTIVITY.

Restall’s omega-inconsistency can be proven via a bivalent notion of determinateness,
which is definable in Łukasiewicz semantics.37 Since the canonical evaluation ‘blocks’
the applications of bivalent determinateness that are prone to yield revenge sentences (by
assigning them equational values), it can consistently feature a partial bivalent determi-
nateness operator, i.e., an operator that works bivalently on every sentence receiving a
numerical value.

DEFINITION 4.31. For every ϕ ∈ LTr, put: D(ϕ) := ¬(ϕ → ¬ϕ). Let Dn(ϕ) be a string
of n iterations of D applied to ϕ. Let Nt be a univalent recursive ordinal notation system,
whose range is OrdNt. Let r be the primitive recursive function from positive integers and
sentences to sentences s.t. r(n, �ϕ�) = Dn(ϕ), and put Dω(ϕ) := ∀nTr�r.(n, �ϕ�)�. Define
a determinateness hierarchy à la Field for ordinals in OrdNt.38

PROPOSITION 4.32. For every ϕ ∈ LTr and every VŁ, if C (ϕ) = k, for k ∈ VŁ, then:

1. For all ordinals α ∈ OrdNt, C (Dα(ϕ)) ∈ VŁ. In particular (for γ limit):

C (Dα+1(ϕ)) = 1 − min[1, (1 − C (Dα(ϕ))+ 1 − C (Dα(ϕ)))]

C (Dγ (ϕ)) = inf{C (Dα(ϕ))|α < γ }
2. There is a unique ordinal δ′ ∈ OrdNt s.t. for all δ ∈ OrdNt greater than or equal to
δ′:

C (Dδ(ϕ)) = 1 if and only if C (ϕ) = 1

0 if and only if C (ϕ) ∈ VŁ and C (ϕ) < 1

37 To my knowledge, the determinateness operator described here was introduced, in the context of
Łukasiewicz logic, by Field (2008) (pp. 89–92, but see also Field (2003), p. 157 and ff.).

38 For ordinal notation systems, see Rogers (1987, secs. 11.7–11.8). For determinateness hierarchies,
see Field (2008, chap. 22–23). Since Nt is recursive and univalent, the definable iterations of D
turn out to be much shorter than those in Field (2008), but neither longer iterations nor stronger
notation systems are needed, as the proof of Proposition 4.32 shows.
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This result shows that, for every VŁ, the canonical evaluation expresses a unique, bivalent
determinateness operator Dδ

′
that declares that every sentence that has a numerical value

other than ‘classical truth’ (i.e., 1) is not determinate.39 There is no ‘fuzzy’ hierarchy of
stronger and stronger determinateness operators (unlike in Field (2008)): they converge to
a bivalent operator at a small ordinal (dependent on the cardinality of VŁ).40 The canonical
evaluation is thus immune from a criticism that was advanced against the theory in Field
(2008), namely that it recovers a unique notion of truth but splits the notion of determi-
nate truth into a highly unmanageable hierarchy.41 The canonical evaluation provides one
notion of truth and one notion of determinate truth.

4.7. Modifications, extensions, and prospects for future work. The construction that
gives rise to the canonical evaluation is rather flexible, and can be subject to several
modifications and extensions. Here I informally outline some of them.

– The Łukasiewicz evaluation clauses (see §4.3) can be replaced with different clauses
(the value space should also be modified accordingly). A variant of the canonical
evaluation can thus be obtained for every compositional semantics for the logical
vocabulary. However, there is no obvious way to adapt the canonical evaluation to
noncompositional semantics, e.g., supervaluations.

– An immediate modification is given by just considering the classical numerical
value space, i.e., {1, 0}. When restricted to {1, 0}, the Łukasiewicz evaluation clauses
(as many other nonclassical evaluation clauses) just reduce to the classical ones. In
this value space, liar-like and revenge sentences are completely identified. When
there are only classical numerical values, liar-like sentences yield equation systems
with no solutions, just like revenge sentences. In a slogan: liar-like sentences are re-
venge sentences for classical semantics. More generally, in any given semantics, the
difference between liar-like sentences, i.e., the ‘standard’ paradoxical sentences,
and revenge sentences is that there are enough numerical values to evaluate sen-
tences of the former kind, but of not the latter kind. But this is no ‘deep’ difference:
the same sentence can be classified as ‘liar-like’ or ‘revenge’ depending solely on
the available values.42

– The canonical evaluation displays a ‘strong Kleene-style’ approach to partiality:
that some subformula of ϕ has a numerical value is in some cases sufficient for
ϕ to have a numerical value. In particular: a conjunction with a 0-valued conjunct
has itself value 0, and similarly for 0-valued universally quantified sentences, or 1-
valued conditionals. One could easily modify (indeed: simplify) the construction
of the canonical evaluation to give it a ‘weak Kleene-style’ approach, where a
conjunction ψ ∧ χ in which ψ has value 0 but χ has an equational value has

39 The uniqueness of Dδ
′

holds modulo the choice of Nt, but the ordinals involved are so small (ω at
most, if VŁ = [0, 1]) that there is virtually no dependence on the specific notation adopted. For
details, see the proof in the Appendix.

40 This treatment of determinateness also avoids the ‘trivial collapse’ of Field (2008): at no level of
ill-behaved iterations of D the resulting operator sends every sentence to 0.

41 For this line of criticism, see e.g., Horsten (2012, sec. 10.2).
42 This also holds for nonnumerical space values, e.g., the value space adopted in Field (2008, chap.

17). The approaches to revenge developed in Cook (2007, 2009), Schlenker (2010), Cook &
Tourville (2016) also suggest that the difference between liar-like and revenge paradoxes depends
on the available values. See also footnote 13.
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itself an equational value (and similarly for conditionals and universally quantified
sentences). These two variants—strong and weak Kleene—can, again, be adapted
to all compositional evaluation clauses for the logical vocabulary.

– Another immediate extension of the canonical evaluation would consist in treat-
ing naïve predicates for satisfaction, denotation, and other semantic notions. In
order to extend the canonical evaluation in this way, it would be sufficient to add
naïve evaluation clauses for the corresponding semantic predicates. Extending the
canonical evaluation to a language with a naïvely interpreted satisfaction predicate
would enable one to treat other paradoxical constructions, such as the Visser-Yablo
paradoxes.43

– Truth-teller–like sentences and revenge sentences are both assigned equation sys-
tems, with the former having systems with more than one solution, and the latter
having systems with no solutions (in the selected numerical value space). One
might want to make the difference between the two cases more explicit in the
evaluation itself, assigning them different kinds of values. One could therefore
replace the sets of equations employed in Definitions 4.14 and 4.18 with two new
conventional values, to be assigned to truth-teller–like and revenge sentences re-
spectively. A form of compositionality is also preserved in this variant. However,
while this solution might seem to be more explicit, it strikes me as less informative,
less uniform, and less elegant.

– Two liar sentences with different codes (e.g., with different Gödel numbering,
if �·� is defined via Gödelization) are assigned, strictly speaking, two different
equation systems, even though they only differ for the choice of Ł-variables. But
arguably, it might be objected, any two such sentences should be assigned the very
same equation system.44 This problem is easily solved, however: it is sufficient
to map all sentences which have equation systems that are identical modulo re-
naming of free Ł-variables to some fixed equation system, employing some fixed
Ł-variables.

– Propositions 4.25 and 4.26 show that the canonical evaluation can be associated
with some notions of consequence, including both logical and truth-theoretical
inferences. For instance, say that ϕ is a C1-consequence of a set of sentences �
if, if for every ψi ∈ �, C (ψi) = 1, then C (ϕ) = 1. C1-consequence can be shown
to extend strong Kleene logic with a strong rule of conditional-introduction (as
per Proposition 4.25).45 Other choices for the definition of consequence, such as
preservation of values greater than or equal to 1/2, preservation of the ordering of

43 See Visser (1989), Yablo (1985, 1993, 2006), and also Priest (1997), Beall (2001), Leitgeb
(2002), Bueno & Colyvan (2003), Ketland (2004, 2005), Cook (2006, 2014), Eldridge-Smith
(2015), Halbach & Zhang (2017). In Visser-Yablo cases, one has an unending sequence of
sentences, each one to the effect that the sentences that come after it are true, untrue, or else.
If one thinks that Visser-Yablo cases should be separated from liar-like, truth-teller–like, and
revenge sentences, then the canonical evaluation could be modified in order to categorise them
differently, distinguishing between paradoxical sentences involving a straightforward circularity
or self-reference, and paradoxical sentences involving a form of ungroundedness or nonwell-
foundedness.

44 Thanks to Joel Hamkins and Richard Kimberly Heck for pointing out this potential problem to
me.

45 For strong Kleene logic, see Urquhart (2001). For extensions of strong Kleene logic with
conditionals obeying stronger introduction rules, see Rossi (2016).
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numerical values, and so on, give rise to generalisations of other logics, such as LP,
ST, TS and more.46 However, all the standard choices for defining consequence
only involve numerical values, thus leaving the equational values ‘unused’. This has
some possibly unexpected consequences. For instance, consider C1-consequence:
since liar-like and revenge sentence don’t have value 1, one might expect that any
sentence is a C1-consequence of a liar-like or a revenge sentence. However, every
sentence also follows from truth-teller–like sentences, since such sentences also
don’t have value 1. But this might seem counterintuitive. Why should liar-like,
revenge, and truth-teller–like sentences all have the same consequences? Another
example might help illustrate the difficulty. Consider now a notion of consequence
defined à la LP, i.e., as preservation of values that are greater than or equal to 1/2

in C . Here the situation might seem even ‘worse’: while now not every sentence
follows from liar-like sentences, it is still the case that every sentence follows
from a revenge or a truth-teller–like sentence, which again might seem counter-
intuitive. However, these potentially counterintuitive features result from defining
consequence using only numerical values, in a semantic framework that also em-
ploys equations systems as semantic values. If consequence is defined using also
equational values, liar-like, revenge, and truth-teller–like sentences have different
sets of consequences.47 For example, say that ϕ follows from � if:

– either every sentence in {�, ϕ} has a numerical value and whenever every
sentence in � has value 1, so does ϕ,

– or every sentence in {�, ϕ} has an equation system as a value and whenever
the system of every sentence in � has a solution, so does ϕ.

To be sure, more refined notions of consequence could (and should) be devised, e.g.,
to account for premises � featuring sentences with both numerical and equational
values. However, this simple notion of consequence suffices for present purposes,
since it already separates truth-teller–like from revenge cases. More precisely, ev-
ery sentence now follows from revenge sentences, but not from truth-teller–like
sentences. In general, using both numbers and equations in defining one’s notions
on consequence based on C would make it possible to determine which forms of
reasoning are valid for every kind of paradox, distinguishing the consequences of
liar-like, truth-teller–like and revenge sentences. I plan to investigate the notions of
consequence definable within the semantic framework of the canonical evaluation
in future work.48

46 For LP see Priest (1979), for ST and TS see Cobreros et al., (2012). See Chemla, Égré, &
Spector (2017), Chemla & Égré (2019) for a systematic discussion of many-valued consequence
relations.

47 I am indebted to Emmanuel Chemla for suggesting to consider equation systems in the definition
of consequence.

48 One might argue that defining a notion of consequence using only one evaluation function is
not sufficiently general (even though this seems to be the approach adopted, e.g., in Field (2003,
2008)). However, one can define notions of consequences via sets of evaluations that properly
extend the canonical evaluation in its assignments of numerical values. Just like one obtains
nonminimal Kripkean fixed points by assigning value 1 or 0 to truth-teller–like sentences, one
obtains nonminimal, quasi-canonical evaluations that assign numerical values to truth-teller–
like sentences. In addition, the algebraic structure determined by quasi-canonical evaluations has
several features in common with the structure of Kripkean fixed points (e.g., there are maximal
evaluations, intrinsic evaluations, and more). While quasi-canonical evaluations do not provide
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– Consider an object-language featuring a predicate for the canonical evaluation itself
(such a predicate would be a partial naïve truth predicate, as per Proposition 4.26
and Lemmas 4.27 and 4.28), and now consider a revenge sentence ρC equivalent
to the claim that ρC has a canonical value different from 1. How is such a ρC
to be treated by the canonical evaluation (for the language in which ρC is for-
mulated)? The answer is quite clear: with an unsolvable equation system. If ρC
forces evaluation conditions that are impossible to satisfy—having simultaneously
a value identical to and different from 1 – then it is a revenge sentence, and it
should be evaluated as such. One might object that this is an undesirable result:
since C (ρC ) is an unsolvable equation system, then C (ρC ) is different from 1,
just as the sentence ρC says, so it should actually receive value 1, which is impos-
sible. However, the objection is far from being devastating: it simply shows that
the canonical evaluation is itself subject to revenge paradoxes—and this is to be
expected, since minimally expressive semantic theories are subject to revenge. The
advantage of the canonical evaluation is that it treats its own revenge sentences just
as it treats every other object-linguistic revenge sentences, namely by assigning
them unsolvable equation systems.

– What about axiomatising the semantic theory provided by the canonical evaluation?
It is clear that no axiomatisation that is adequate in the sense of Fischer, Halbach,
Kriener, & Stern (2015) is available, for reasons of computational complexity (the
truth-set determined by C exceed the�1

1-complete subsets of the relevant domain).
However, one might wonder whether there are nice ways of characterising the
computable fragment of C ; I plan to explore this issue in future work.

§5. Concluding remarks. The main objective of the present work has been to propose
a unified theory of truth and paradox, that is an (idealised) interpretation of a language with
a naïve truth predicate that also provides an interpretation of the paradoxical sentences
that arise from the combination of self-applicable semantic notions, logical principles,
and syntactic mechanisms. The canonical evaluation provides both a theory of naïve truth
and a theory of semantic paradoxes (see Proposition 4.26 and Lemmas 4.27 and 4.28).
As far as the theory of paradox goes, I have argued that (in addition to ‘nonparadoxi-
cal’ sentences) three main kinds of paradoxical sentences can be distinguished: liar-like
sentences, truth-teller–like sentences, and revenge-sentences (§2.1–§2.4 and §3.1–§3.4).
The canonical evaluation captures and expresses the distinction between these fundamental
types of paradoxical statements:

– Liar-like sentences: they are compatible with exactly one nonclassical numerical
value. The canonical evaluation assigns them their nonclassical numerical value.

– Truth-teller–like sentences: they are compatible with more than one numerical value
(classical or nonclassical). The canonical evaluation assigns them equation systems
with more than one solution.

– Revenge sentences: they are incompatible with any numerical value (classical or
nonclassical). The canonical evaluation assigns them equation systems with no
solution.

a nice theory of paradoxes (they conflate truth-teller–like sentences with either nonparadoxical
or liar-like sentences, just as it happens in Kripke’s theory), collections of quasi-canonical
evaluations can be used to give more general notions of consequence.
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The above classification is robust, in that it is independent from which compositional
semantics is selected for the logical vocabulary. Indeed, a variant of the canonical eval-
uation presented here can be given for any compositional interpretation for the logical
vocabulary.

Much work remains to be done in order to understand and account for the semantic
paradoxes. Much work remains to be done even in the framework I have introduced here—
some possible developments have been outlined in §4.7. I hope to have provided at least a
first step towards a unified account of semantic notions and of the paradoxical phenomena
they engender.

§6. Appendix: Proofs of the main results.

PROPOSITION 4.19.

(I) For every ϕ ∈ LTr and every ordinal α:

1. There is exactly one eαϕ .

2. eαϕ is a function, i.e., for every v ∈ Nϕ and every v0, v1 ∈ VŁ ∪ P(EŁ) :

if 〈v, v0〉 ∈ eαϕ and 〈v, v1〉 ∈ eαϕ, then v0 = v1.

I write ‘eαϕ(v) = v’ if 〈v, v〉 ∈ eαϕ , and ‘eαϕ = eβϕ ’ if, for every v ∈ Nϕ ,

eαϕ(v) = eβϕ(v).

3. For every v ∈ Nϕ , if eαϕ(v) = k for a k ∈ VŁ, then for every β > α,

eβϕ(v) = k.

4. For every v ∈ Nϕ , if eαϕ(v) = E for E ∈ P(EŁ), then for every β > α, if

there is no k ∈ VŁ s.t. eβϕ(v) = k, then eβϕ(v) = E.

(II) There is exactly one ordinal δ0 s.t. for every ϕ ∈ LTr, eδ0
ϕ is a fixed point of the

functions eαϕ , i.e., for every δ ≥ δ0 and ϕ ∈ LTr :

eδ0
ϕ = eδϕ

I indicate eδ0
ϕ simply as eϕ .

Proof. Ad (I), let ϕ be any LTr-sentence. Item 1 is immediate. Item 2 follows from the
next lemma:

LEMMA 6.1. For every ϕ ∈ L→
T , every ordinal α, and every v ∈ Nϕ :

– There are at most two v0, v1 ∈ VŁ ∪ P(EŁ) s.t. 〈v, v0〉, 〈v, v1〉 ∈ �ϕ(eαϕ).
– If 〈v, v0〉, 〈v, v1〉 ∈ ϕ(eαϕ), then one of v0 and v1 is in P(EŁ) and the other one is

in VŁ.

Proof. If α = 0, the result is trivial. For the successor case, assume the claim up to α,
and let v ∈ Nϕ be s.t. 〈v, v0〉, 〈v, v1〉 ∈ �ϕ(eαϕ), for two distinct v0, v1 ∈ VŁ ∪ P(EŁ).
By IH, for any such v ∈ Nϕ , v0 and v1 are the only two elements of VŁ ∪ P(EŁ) s.t.
〈v, vli〉, 〈v, vlj〉 ∈ �ϕ(eαϕ); moreover, one of them is in P(EŁ) (say v0), and the other is in
VŁ (say vl1). By Definition 4.18,

eα+1
ϕ := �ϕ(e

α
ϕ) \ {〈x, y〉 ∈ Nϕ × P(EŁ) | 〈x, y〉 ∈ �ϕ(eαϕ)

and there is a k ∈ VŁ s.t. 〈x, k〉 ∈ �ϕ(eαϕ)}
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so eα+1
ϕ is a function, where 〈v, v0〉 ∈ eα+1

ϕ , while 〈v, v1〉 /∈ eα+1
ϕ . Then, in order to

show the claim for �ϕ(eα+1
ϕ ), we only have to consider all the possible outcomes of an

application of �ϕ , namely of the clauses of Definition 4.14, to eα+1
ϕ . However, since eα+1

ϕ

is a function, there are at most two clauses of Definition 4.14 that can apply simultaneously
to it, namely:

(a) Clauses 4 and 7, 4 and 9, or 5 and 8: every such pair of clauses yields the same
values in VŁ.49

(b) Exactly one of clauses 11–14 and clause 15.50 If clause 15 and one of clauses
11–14 applies to eα+1

ϕ , exactly two pairs obtain, 〈v, v2〉 and 〈v, v3〉, where v1 ∈
P(EŁ) and v3 ∈ VŁ (since exactly one Łukasiewicz equation system and one
numerical value obtain), as desired.

The limit case is straightforward. (Lemma 6.1) �
If there are less than two values assigned to every node by �ϕ(eαϕ), the claim is immediate.
If there are at least two v0, v1 ∈ VŁ ∪ P(EŁ) assigned to v by �ϕ(eαϕ), by Lemma 6.1
they are the only distinct values, one of them is in P(EŁ) and the other one is in VŁ. By
Definition 4.18, 〈v, v0〉 is removed in the revision step (where v0 ∈ P(EŁ)), leaving only
〈v, v1〉 in eα+1

ϕ . The limit case is immediate.
Item 3 of the Proposition follows from the following lemma:

LEMMA 6.2. For every v ∈ Nϕ , if eαϕ(v) = k for k ∈ VŁ, then eα+1
ϕ (v) = k.

Proof. If α is 0, the claim is trivial. Let α be α0 + 1. Then, exactly one clause of
Definition 4.14 amongst 2–3, 4–10, and 15 applies to eαϕ .51 We reason by cases (I only do
a few examples.):

– If clause 2 or 3 applies, the claim is immediate, since it applies at every ordinal.
– If clause 8 applies, then α0 ≥ 1, Lϕ(v) = ψ → χ , and there are vm,vn in Nϕ ,

immediate successors of v, s.t. Lϕ(vm) = ψ and Lϕ(vn) = χ . By IH, Definitions
4.14 and 4.18:

eα0
ϕ (vm) = i, eα0

ϕ (vn) = j,

eα0+1
ϕ (v) = k = min[1, (1 − i + j)].

By IH eα0+1
ϕ (vm) = i and eα0+1

ϕ (vn) = j, so the conditions of clause 7 are satisfied
for α + 1, and

eα0+2
ϕ (v) = eα+1

ϕ (v) = k = min[1, (1 − i + j)].

– If clause 16 applies, the claim is immediate by the IH and our requirement of the
existence of unique solutions for equation systems.

The case where α is a limit is similar to the successor case. (Lemma 6.2) �

49 E.g., if a simple point v is labelled with ψ ∧ χ , both its immediate successors have a numerical
value, and at least one such value is 0, then both clauses 4 and 7 apply, assigning value 0 to v.

50 In other words, one of the clauses to assign an equation to a node (11–14) and the clause to solve
a given equation system, assigning the corresponding numerical values to nodes (clause 15).

51 For simplicity, I am ignoring the case of two clauses applying to the same node yielding the same
numerical value (as explained in the case (a) of the proof of Lemma 6.1).
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Suppose now that eαϕ(v) = k for a k ∈ VŁ, and let β ≥ α. If β = α, the claim is trivially
true. Suppose that β > α. If β is β0 + 1, assume the claim up to β0 as IH. Therefore:

eαϕ(v) = k = eβ0
ϕ (v) = eβ0+1

ϕ (v) = eβϕ(v),

by assumption, IH, Lemma 6.2, and the definition of β, respectively. Let β be a limit and
assume the claim as IH for every β0 such that α ≤ β0 < β. For every such every β0:

eαϕ(v) = k = eβ0
ϕ (v) = eβϕ(v),

by assumption, IH, and Definition 4.18, respectively.
Item 4 of the Proposition follows from the following lemma:

LEMMA 6.3. For every ϕ ∈ LTr and every ordinal α, if there is an E ∈ P(EŁ) s.t.
eαϕ(v) = E and there is no k ∈ VŁ s.t. eα+1

ϕ (v) = k, then eα+1
ϕ (v) = E.

Proof. If α is α0 + 1, then first exactly one clause of Definition 4.14 amongst 11–14
applies to eα0

ϕ , yielding that eαϕ(v) = E, for E ∈ P(EŁ). Assume the claim as IH up to α.
I only do one example. Suppose clause 12 applies and Lϕ(v) = ψ → χ . Then α0 ≥ 1
and either v has one immediate successor and it loops back to a predecessor, or v has two
immediate successors vm and vn, where Lϕ(vm) = ψ and Lϕ(vn) = χ . Suppose the latter
obtains. By IH, and Definitions 4.14 and 4.18:

eα0
ϕ (vm) = v0, eα0

ϕ (vn) = v1,

eα0+1
ϕ (v) = {uϕ→ψ =Ł min[1, (1 − sϕ + sψ)]}∪

{x ∈ EŁ | x is assigned by I to a node with the same loop top as v}.
where v0 ∈ P(EŁ) ∪ (VŁ \ {0}), vl1 ∈ P(EŁ) ∪ (VŁ \ {1}), at least one of v0 and v1 is
in P(EŁ), and sm and sn are the LŁ-terms assigned to vm and vn as per Definition 4.14.
Suppose that there are no i, j ∈ VŁ s.t. eα0+1

ϕ (vm) = i and eα0+1
ϕ (vn) = j. By IH then

eα0+1
ϕ (vm) = v0, eα0+1

ϕ (vn) = v1, and sm and sn are assigned to vm and vn as above.
Hence, the conditions of clause 12 are satisfied for α + 1, and

eα0+2
ϕ (v) = eα+1

ϕ (v).

The case where α is a limit is similar to the successor case. (Lemma 6.3) �
Suppose that eαϕ(v) = E for E ∈ P(EŁ), let β ≥ α, and suppose that there is no k ∈ VŁ

s.t. eβϕ(v) = k. If β = α, the claim is is trivially true. Suppose that β > α. If β is β0 + 1,

assume the claim up to β0 as IH. Since we supposed that there is no k ∈ VŁ s.t. eβϕ(v) = k,
then (by claim 3 of the Proposition) for every δ s.t. α ≤ δ < β there is no k ∈ VŁ s.t.
eδϕ(v) = k either. Therefore:

eαϕ(v) = E = eβ0
ϕ (v) = eβ0+1

ϕ (v) = eβϕ(v),

by assumption, the IH, Lemma 6.3, and the definition of β, respectively. Let β be a limit
and assume as IH the claim for every β0 s.t. α ≤ β0 < β. As above, since we supposed
that there is no k ∈ VŁ s.t. eβϕ(v) = k, then (by item 3 of the Proposition) for every δ s.t.
α ≤ δ < β there is no k ∈ VŁ s.t. eδϕ(v) = k either. Then, for every δ s.t. α ≤ δ < β:

eαϕ(v) = E = eδϕ(v) = eβϕ(v)

by assumption, the IH, and Definition 4.18, respectively.
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To prove claim (II) of the Proposition, given items 3 and 4 of claim (I), it suffices to
notice that there are at most �2 distinct functions eαϕ , since for every ϕ ∈ LTr, Nϕ is
countable and the cardinality of VŁ is either finite or �1. Therefore, there is a smallest
ordinal ζ0 at which the revision sequence of Definition 4.18 reaches a fixed point for
cardinality reasons. �

PROPOSITION 4.22. For every ϕ,ψ ∈ LTr, v ∈ Nϕ , w ∈ Nψ :

if Lϕ(v) = Lψ(w), then 〈Nvϕ,Svϕ〉 ∼=l 〈Nwψ,Swψ 〉.
Proof. I begin with two preliminary results.

LEMMA 6.4. For every ϕ,ψ ∈ LTr, v ∈ Nϕ , and w ∈ Nψ , if Lϕ(v) = Lψ(w) and
no looping clause applies to v and w, then v and w have the same number of immediate
successors, with identical labels.

Proof. I do only the case Lϕ(v) = χ → σ = Lψ(w). Since no looping clause applies
to v and w, by Definitions 4.2 and 4.3 the only clause that applies to v in the construction
of 〈Nϕ,Sϕ〉 as well as to w in the construction of 〈Nψ,Sψ 〉 is clause (5.1). Therefore, v
and w have two immediate successors, v0,v1 and w0,w1 respectively, s.t. Lϕ(v0) = χ =
Lψ(w0) and Lϕ(v1) = σ = Lψ(w1). (Lemma 6.4) �

LEMMA 6.5. For every ϕ,ψ ∈ LTr, v ∈ Nϕ , and w ∈ Nψ , if Lϕ(v) = Lψ(w) and there is
a v0 ∈ Predϕ(v) s.t. a looping clause applies to v and v0 but there is no w0 ∈ Predψ(w)
s.t. Lϕ(v0) = Lψ(w0) and a looping clause applies to w and w0, then w has a successor
w1 s.t. Lϕ(v0) = Lψ(w1).

Proof. I do only the case Lϕ(v) = ∀xχ(x) = Lψ(w). If there is a v0 ∈ Predϕ(v)
s.t. a looping clause applies to v and v0, then by Definition 4.2 such clause is (7.L) and
Lϕ(v0) = χ(tn) for some term tn. If there is no w0 ∈ Predψ(w) s.t. Lϕ(v0) = Lψ(w0)
and a looping clause applies to w and w0, then by Definition 4.2 the only possible clause
that applies to w is (7.1), which yields that w has an immediate successor w1 s.t. Lψ(w1) =
χ(tn), proving the claim. (Corollary 6.5) �
I now turn to the proof of the Proposition. There are three main cases:

Case 1. Let v be a dead end. By Definition 4.3, v is either labelled with an atomic L-
sentence, or with a sentence Tr(t)where t does not denote the code of a LTr-sentence. Since
Lϕ(v) = Lψ(w), w is also a dead end.

Case 2. Suppose for a contradiction that v is a simple point but w is not. As per Case 1,
w is not a dead end, so it belongs to at least one loop L, of the following form:52

L =
〈
〈w1,w2〉, . . . , 〈wi,w〉, 〈w,wi+1〉, . . . , 〈wj,wj+1〉, 〈wj+1,w1〉

〉
where a looping clause applies to wj+1 (and possibly other nodes). Since Lϕ(v) = Lψ(w),
by Lemmas 6.4 and 6.5, v and w can have many immediate successors, possibly infinitely
many, but in particular v has an immediate successor v1 s.t. Lψ(wi+1) = Lϕ(v1). But
since we assumed that v is a simple point, v1 cannot loop back to v nor to any of its
predecessors. Moreover, it is not the case that v1 only loops back to itself, because other-
wise wi+1 would do that as well (by the above Lemma and Corollary). So, v1 is also a

52 In this proof, I suppose for the sake of readability and without loss of generality that the nodes in
the loops and paths to be mentioned are enumerated progressively.
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simple point. Now we apply to v1 and wi+1 the same reasoning that we applied to v and
w: using again Lemmas 6.4 and 6.5 on v1 and wi+1 we conclude that, amongst possibly
many others, v1 has at least one successor labelled as the immediate successor of wi+1
that belongs to L, and that such successor of v1 is a simple point. Proceeding in this way,
by repeated applications of Lemmas 6.4 and 6.5, we generate a path P ∈ Rϕ(v) s.t., as set
of ordered pairs of sentences (labels), matches exactly the loop L.53 So, P has the form:

P =
〈
〈v,v1〉, 〈v1,v2〉, . . . , 〈vk,vk+1〉

〉
where Lϕ(v) = Lψ(w), . . . ,Lϕ(vk+1) = Lψ(wi) (the dots stand for the nodes in L) and
j = k. However, by our assumption that v is a simple point, a looping clause never applies
to a node in P and v or one of its predecessors. But, by Lemma 6.5 and Definition 4.3, a
looping clause applies at least once to vk+1 that loops back to v. Contradiction. So, if v
is a simple point, also w is a simple point. They have the same label by assumption and,
as shown, they have the same number of immediate successors, labelled with the same
sentences, by Lemma 6.4.

Case 3. Let v belong to at least one loop P∗ and suppose for a contradiction that there
is no loop P ∈ Rψ(w) s.t. P∗ and P have the same number of nodes and identical labels
for edges (within Lϕ and Lψ , respectively).54 P∗ is a finite set of ordered pairs of labelled
nodes of the following form:

P∗ =
〈
〈v1,v2〉, . . . , 〈vi,v〉, 〈v,vi+1〉, . . . , 〈vk,vk+1〉, 〈vk+1,v1〉

〉
where a looping clause applies to vk+1 that loops back to v1. By our supposition, there is
no loop in Rψ(w) that is loop-isomorphic to P∗. By cases 1 and 2, w is in at least one loop.
If w is not contained in any loop which is loop-isomorphic to P∗, then a looping clause
applies to w or to one of its successors (within Rψ(w)) that are labelled as a node in P∗, but
not to such node in P∗, or vice versa. Let wp+1 be the first node in Rψ(w) s.t. the first case
is given (otherwise, it is dual). So, there is a path P〈

〈w,wn+1〉, . . . , 〈wp,wp+1〉, 〈wp+1,wm〉
〉
= P ∈ Rψ(w)

s.t. Lψ(wn+1) = Lϕ(vi+1), . . ., Lψ(wp) = Lϕ(vi+(p−n)), Lψ(wp+1) = Lϕ(vi+(p−n)+1),
by Lemmas 6.4 and 6.5. A looping clause applies to wp+1 and some wm labelled as
vi+(p−n)+2 (by our assumption), but it does not apply to vi+(p−n)+1 and vi+(p−n)+2
(by our assumption). Then vi+(p−n)+1 is between vi+1 and vk in P∗, so there is an index
l s.t. vi+(p−n)+1 is vl. Therefore, P∗ looks as follows:

P∗ =
〈
〈v1,v2〉, . . . , 〈vi,v〉, 〈v,vi+1〉, . . . , 〈vl,vl+1〉, . . . , 〈vk,vk+1〉, 〈vk+1,v1〉

〉
.

Since a looping clause applies to wp+1, there is a path P1 s.t.

P �
〈
〈wm,wm+1〉, . . . , 〈w,wn+1〉, . . . , 〈wp,wp+1〉, 〈wp+1,wm〉

〉
= P1 ∈ Rψ(w)

53 Corollary 6.5 is used in generating the successor of v (within P) labelled as wj+1.
54 An anonymous referee has described the proof strategy employed in this case of the demonstration

as the application of a kind of pigeonhole principle. In fact, I show that, trying to systematically
falsify the claim of (this case of) the Proposition and constructing all the possible paths in Rψ(w)
that start from w, one can derive the existence of a path that is loop-isomorphic to P∗.
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where Lψ(wm) = Lϕ(vl+1) and Lψ(wm+1) = Lϕ(vl+2). Our assumption, however,
dictates that there is no path within Rψ(w) that is loop-isomorphic to P∗. So, any path
within Rψ(w) that contains nodes labelled as Lψ(〈wm,wm+1〉 ∪ P), with the same order of
labels as P∗, is not loop-isomorphic to P∗.55 There are at most countably many such paths
P1.1,P1.2, . . . and P1 is one of them. Considering all the (at most countably infinitely
many) possible cases, we have:〈

〈wm,wm+1〉,∼1, 〈w,wn+1〉, . . . , 〈wp+1,wm〉
〉
= P1.1 ∈ Rψ(w)

...〈
〈wm,wm+1〉,∼j, 〈wj,wjn+1〉, . . . , 〈wjp+1,wm〉

〉
= P1.j ∈ Rψ(w)

...

where ∼j indicates some path different in labels from Lϕ(P∗) \ [Lψ(〈wm,wm+1〉) ∪⋂
i Lψ(P1.i)] and in their order. Moreover, for i ∈ ω, Lψ(w) = Lψ(wi), Lψ(wn+1) =

Lψ(win+1), . . ., Lψ(wp+1) = Lψ(wip+1).
Lemmas 6.4 and 6.5 imply that there is a node in Rψ(wm+1) labelled as some member of

P∗ s.t. a looping clause applies to that node but not to the corresponding member of P∗, or
vice versa (otherwise there would be a path loop-isomorphic to P∗ within Rψ(w)). In terms
of the above list, this means that some node in some of the P1.n in the disagreeing part of
the path ∼n loops back to a predecessor of wm (so, such node is a predecessor of all nodes
that are successors of wm).56

Take any such path, call it P2. We have that:〈
〈wo,wo+1〉, . . . , 〈wq,wq+1〉, 〈wq+1,wo〉

〉
= P2 ∈ Rψ(w)

for Lψ(wo) = Lϕ(some node in P∗), Lψ(wo+1) = Lϕ(its successor labelled as the corre-
sponding node in P∗) and a looping clause applies to wq+1 and wo. Clearly Lψ(wq+1) �=
Lψ(wnp+1) for all n ∈ ω (by construction and because otherwise no path such as P1.n could
exist). By construction, wo,wo+1 are predecessors of any node in

⋃
i P1.i. Now, we reason

as we did after finding the path P1, deriving the existence of (possibly countably infinitely
many) paths P2.1,P2.2, . . . such that:〈

〈wo,wo+1〉,∼1, 〈wq,wq+1〉, . . . , 〈wq+1,wo〉
〉
= P2.1 ∈ Rψ(w)

...〈
〈wo,wo+1〉,∼j, 〈wjq,wjq+1〉, . . . , 〈wjq+1,w

j
o〉

〉
= P2.j ∈ Rψ(w)

...

where ∼j indicates a path that is different in labels and their order from Lϕ(P∗) \
Lψ [(〈wo,wo+1〉) ∪ ⋂

i Lψ(P2.i)].

55 I write Lψ(P) to denote the labels assigned by Lψ to the nodes in P.
56 Such a node exists by Lemmas 6.4 and 6.5 and our assumption.
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Then we take an arbitrary path P3, as we did for P2, i.e., s.t. a looping clause applies to
two nodes in it labelled as in P∗, but s.t. (by assumption) the resulting path is not loop-
isomorphic to P∗. By construction, the node labelled as a node in P∗ that loops back to
a node labelled as a node in P∗ is s.t. no node with the same label loops back to a node
labelled as a node in P∗ in P1 or P2 (just as above we had that Lψ(wq+1) �= Lψ(wnp+1)
for all n ∈ ω). Moreover, the node in P3 to which such node loops back is a predecessor
of every node in (

⋃
i P1.i ∪ ⋃

i P2.i) (just as we had that wo and wo+1 are predecessors of
every node in

⋃
i P1.i above).

Proceeding in this way, we derive the existence of more and more paths P4,P5, . . . s.t.
every Pt+1 in P1, P2, P3, P4, P5, . . . is loop-isomorphic to a proper subpath of P∗, but
is not loop-isomorphic to P∗ itself. The existence of such paths is guaranteed by iterated
applications of Lemmas 6.4 and 6.5, while the ‘asymmetric’ looping back we have seen in
the construction of P1, P2, P3, . . . is forced by our assumption that no such path can ever
be loop-isomorphic to P∗: if no node in the path in question looped back asymmetrically,
our assumption would be immediately falsified.

The key facts are: (1) for every Pt+1 amongst P1,P2,P3, . . ., a looping clause applies
to a node w′ in Pt+1 labelled as a node in P∗ but no node w′′ with the same label as w′ in
any of P1,P2,P3,P4, . . . ,Pt is s.t. a looping clause applies to w′′ and to a node labelled
as a node in P∗ (by construction and to avoid contradiction, as shown above); (2) for every
Pt+1 amongst P1,P2,P3, . . ., a node labelled as an element of P∗ loops back to a node
which is also labelled as an element of P∗: the latter is a predecessor of every node in⋃

m≤t(
⋃

i Pm.i) (by the definition of predecessor and the above construction, which in turn
is forced by Lemmas 6.4 and 6.5 together with our assumption).

But P∗ has only finitely many nodes, so the process described in key facts (1) and (2)
cannot go on forever. Deriving the existence of finitely many P1, P2, P3, P4, . . ., we should
find a path Pn+1 〈

〈wr,wr+1〉, . . . , 〈ws,ws+1〉, 〈ws+1,wr〉
〉
= Pn+1

s.t. Lψ(ws+1) is identical to the label of some node between vi+2 and vl−1 (by Lemmas
6.4 and 6.5) and a looping clause applies to ws+1 and wr (by our supposition and key fact
(1)). But this cannot be! For, if there were a node labelled as wr with which ws+1 is in
a loop, then there would have already been some node between wn+1 and wp (included)
within P1 in a loop with it. This is because wr is a predecessor of every node between wn+1
and wp (included), by key fact (2). So, no path such as P1 could have existed, because the
nodes between wn+1 and wp are labelled as the nodes between vi+2 and vl−1 (included)
and wp+1 would not be the first successor of w in Rψ(w) labelled as a member of a pair in
P∗ s.t. the rule (Loop) applies to it but not to the corresponding member of P∗. Then, we
derive the existence of the following path〈

〈ws,ws+1〉, 〈ws+1,ws+2〉
〉
= P̂1 ∈ Rψ(w)

where Lψ(ws+1) = Lϕ(vi+2) (by Lemmas 6.4 and 6.5) and no looping clause applies to
ws+1 and any other node labelled as in P∗.

We reiterate this reasoning k + 1 times, observing that a looping clause never applies to
ws+m (for m ≤ k + 1) and to some node in Rψ(w) labelled as a node in P∗, otherwise we
would have a contradiction with the existence of the paths P1,P2,P3,P4, . . . derived so
far. We therefore obtain the existence of the following paths:
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〈ws,ws+1〉, 〈ws+1,ws+2〉, 〈ws+2,ws+3〉

〉
= P̂2 ∈ Rψ(w)

...〈
〈ws,ws+1〉, 〈ws+1,ws+2〉, . . . , 〈ws+k,ws+k+1〉, 〈ws+k+1,ws〉

〉
= P̂k ∈ Rψ(w).

By construction and Lemmas 6.4 and 6.5, the labels of the edges of P̂k are pairwise
identical to those of P∗, i.e., P̂k ∼=l P∗. Contradiction. �

PROPOSITION 4.23. For every ϕ,ψ ∈ LTr, v ∈ Nϕ , w ∈ Nψ , and v ∈ VŁ ∪ P(EŁ), if
Lϕ(v) = Lψ(w):

1. there is an α s.t. eαϕ(v) = v if and only if there is a β s.t. eβψ(w) = v, and

2. eϕ(v) = eψ(w).

First, I prove a useful lemma.

LEMMA 6.6. Let ϕ,ψ ∈ LTr, v ∈ Nϕ , and w ∈ Nψ be s.t. Lϕ(v) = Lψ(w). For every
dead end or simple point vi ∈ Nvϕ there is a dead end or simple point wj ∈ Nwψ s.t.:

– Lϕ(vi) = Lψ(wj),
– Lϕ(the immediate predecessor of vi) = Lψ(the immediate predecessor of wj).

Proof. For vi as in the lemma, the immediate predecessor of vi, call it vi′, is in Nvϕ .
Since by Proposition 4.22 〈Nvϕ,Svϕ〉 ∼=l 〈Nwψ,Swψ 〉, there is a w′ ∈ Nwψ s.t. Lϕ(vi′) = Lψ(w′).
The existence of a node wj as in the statement of the lemma follows immediately from case
2 of the proof of Proposition 4.22—in fact, if wj is not in a loop, its being a simple point
or a dead end depends only on its label. (Lemma 6.6) �

Proof sketch of the Proposition. Let ϕ, ψ , v, and w be as in the statement of the
proposition. I only do the left-to-right direction. Let there be an α s.t. eαϕ(v) = v. By
Definition 4.14, the only nodes of Nϕ used in constructing eαϕ(v) are those in Nvϕ . Since
Lϕ(v) = Lψ(w), by Proposition 4.22 〈Nvϕ,Svϕ〉 ∼=l 〈Nwψ,Swψ 〉. As a consequence:

(i) Dead ends of 〈Nvϕ,Svϕ〉 are mapped to dead ends of 〈Nwψ,Swψ 〉 with identical labels,
and vice versa.

(ii) Simple points of 〈Nvϕ,Svϕ〉 are mapped to simple points of 〈Nwψ,Swψ 〉 with identical
labels, and by Lemma 6.6 every path made of simple points within 〈Nvϕ,Svϕ〉 (with
the only possible exception of starting with a looping point or ending in a dead end)
is reconstructed, identical in order and labels, within 〈Nwψ,Swψ 〉, and vice versa.

(iii) Every loop within 〈Nvϕ,Svϕ〉 is mapped to a loop of 〈Nwψ,Swψ 〉, with identical number
of nodes and labels, and vice versa.

It is easy to show that nodes with identical labels are assigned the same equations un the
first inductive construction, encoded by the minimal fixed point I. It follows that:

– If v is a dead end, e1
ϕ(v) = k = e1

ψ(w), by item (i) (where k = 0 or k = 1).
– If v is a looping leaf, then v and w belong to loop-isomorphic loops and so are

assigned the same equation system, by item (iii). And identical equation systems
have identical solutions or no solutions.
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– If v is a simple point and eαϕ(v) has a value, then one or more of the successors of
v has already a value in VŁ ∪ P(EŁ) at an ordinal γ < α;57 by item (ii), then for
some ordinal β the function eβψ(w) has the same value, for the very same reason.

– Finally, the evaluation functions move towards the root node either via paths of
simple points or via loops that are ‘closer’ to the root than those already evaluated.
In both cases (as seen with the two previous points), eϕ and eψ give identical values
to nodes with identical labels. �

PROPOSITION 4.25. For every ϕ,ψ ∈ LTr and χ(x) ∈ ForLTr , the following holds (⇐⇒
stands for the meta-linguistic ‘if and only if’, and �⇒ for ‘if . . . then’) :

C (¬ϕ) = 1 ⇐⇒ C (ϕ) = 0

C (ϕ ∧ ψ) = 1 ⇐⇒ C (ϕ) = 1 and C (ψ) = 1

C (ϕ → ψ) = 1 ⇐⇒ C (ϕ) = 0,

or C (ψ) = 1,

or C (ϕ) = j,C (ψ) = k, and j ≤ k

C (∀xχ(x)) = 1 ⇐⇒ C (χ(tk)) = 1 for all tk ∈ CTerLTr

C (Tr(�ϕ�)) = 1 ⇐⇒ C (ϕ) = 1.

In addition, modus ponens holds for the canonical evaluation:

C (ϕ) = 1 and C (ϕ → ψ) = 1 �⇒ C (ψ) = 1.

Proof sketch. I do only one case. Let C (ϕ → ψ) = 1, C (ϕ) = 1. Then eϕ→ψ(r1) = 1
and eϕ(r2) = 1, for Lϕ→ψ(r1) = ϕ → ψ , Lϕ(r2) = ϕ. r1 is not a dead end (→ is
binary). Since eϕ is the fixed point of the sequence of eαϕ , the evaluation clause of eϕ→ψ(r1)
is:

eϕ→ψ(r1) = 1 iff eϕ→ψ(v1) = 0, or

eϕ→ψ(v2) = 1, or

eϕ→ψ(v1) = j, eϕ→ψ(v2) = k, and j ≤ k

(1)

where Lϕ→ψ(v1) = ϕ and Lϕ→ψ(v2) = ψ . v1,v2 ∈ Nϕ→ψ by Definition 4.3 (they are
successors of the root node r1). Since eϕ(r2) = 1 and Lϕ(r2) = Lϕ→ψ(v1), by Propo-
sition 4.23 also eϕ→ψ(v1) = 1. By equation (1) (it’s an ‘if and only if’), eϕ→ψ(v2) = k
and 1 ≤ k, but k ∈ VŁ, so k = 1. Applying again Proposition 4.23 yields that eψ(r3) = 1,
for Lψ(r3) = Lϕ→ψ(v2) = ψ , therefore C (ψ) = 1 as desired.

Suppose now that C (ϕ) = 0, or C (ψ) = 1, or C (ϕ) = j and C (ψ) = k, for j ≤ k.
Then, eϕ(r2) = 0, or eψ(r3) = 1, or eϕ(r2) = j and eψ(r3) = k (with labels as above).
Let the last case be given (otherwise it is similar). By Proposition 4.23, eϕ→ψ(v1) = j and
eϕ→ψ(v2) = k (v1 and v2 exist by Definition 4.3), and by equation (1) eϕ→ψ(r1) = 1,
i.e., C (ϕ → ψ) = 1, as desired. �

Notice that Proposition 4.26 can also be proven essentially along the lines of the above
proof.

PROPOSITION 4.30 (Restall (1992)). There is no continuum-valued Łukasiewicsz eval-
uation for LTr that: (i) agrees with an ω-model for L, and (ii) validates the T-SCHEMA or
INTERSUBSTITUTIVITY.

57 See, for example, item 1.1 in Definition 4.14.
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Proof (Based on Field (2008), adapted to the present framework). Let ρ be the fixed
point of ¬∀nTr(�r.(n, x)�) (for the function r, see Definition 4.31). Consider the following
graph:

Fig. 9. The semantic graph of ρ.

The evaluation of the nodes in this graph yields an infinite system of equations at level
ω + 1. Suppose that this system has exactly one solution, and consider the following
cases:

– Suppose that C (ρ) = 1. An easy induction shows that the equation associated
with Dn(ρ), for all n ∈ ω, has 1 as its only solution. Therefore 1 = C (ρ) =
C (¬∀nTr(�r.(n, �ρ�)�)) = 1 − C (∀nTr(�r.(n, �ρ�)�)) = 1 − 1 = 0, which is
absurd.

– Suppose that C (ρ) = k, k < 1. If 0 ≤ k ≤ 1/2, the only solution to the equation as-
sociated with each sentence of the form Dn(ϕ) is 0, and so C (∀nTr(�r.(n, �ρ�)�)) =
0 and C (¬∀nTr(�r.(n, �ρ�)�)) = 1 = C (ρ), against our supposition. If 1/2 < k <
1, then there is a j ∈ ω s.t. the only possible solution for Dj(ρ) is less than or equal
to 1/2. Then consider Dj+1(ρ) and reason as above. �

PROPOSITION 4.32. For every ϕ ∈ LTr and every VŁ, if C (ϕ) = k, for k ∈ VŁ, then:

1. For all ordinals α ∈ OrdNt, C (Dα(ϕ)) ∈ VŁ. In particular (for γ limit):

C (Dα+1(ϕ)) = 1 − min[1, (1 − C (Dα(ϕ))+ 1 − C (Dα(ϕ)))]

C (Dγ (ϕ)) = inf{C (Dα(ϕ))|α < γ }
2. There is a unique ordinal δ′ ∈ OrdNt s.t. for all δ ∈ OrdNt greater than or equal to
δ′:

C (Dδ(ϕ)) = 1 if and only if C (ϕ) = 1

0 if and only if C (ϕ) ∈ VŁ and C (ϕ) < 1
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Proof. As for the first item, let α ∈ OrdNt and assume that the claim holds for γ < α.
Now, Dα+1(ϕ) = ¬(Dα(ϕ) → ¬Dα(ϕ)) and, by IH, C (Dα(ϕ)) ∈ VŁ. By Proposition
4.26, C (¬(Dα(ϕ) → ¬Dα(ϕ))) ∈ VŁ i.e., C (Dα+1(ϕ)) ∈ VŁ, and the successor case
holds by construction. A similar argument establishes the limit case.

As for the second item, note that if C (ϕ) ≤ 1/2, then C (D(ϕ)) = 0 (by Proposition 4.26
and simple calculation). We therefore distinguish two cases:

– VŁ = {0, 1/2m, . . . , 2m−1/2m, 1}. If C (ϕ) = k/2m (for 1/2 < k/2m < 1), then by
Proposition 4.26:

C (D(ϕ)) = 1 − min[1, (1 − k/2m + (1 − k/2m))] = (2k−2m)/2m. (2)

So, if C (ϕ) = k/2m (for 1/2 < k/2m < 1), then C (Dm(ϕ)) = 0 applying equation (2)
at most m times. Therefore, for all α ∈ OrdNt s.t. α ≥ m, C (Dα(ϕ)) = 0, by item 1
of the Proposition, equation (2), and Proposition 4.26. This proves item 2 for every
finite VŁ, in which case δ′ is the smallest l ≤ m s.t. C (Dl(ϕ)) = 0 (uniqueness is
immediate).

– VŁ = [0, 1] and C (ϕ) = k, for 0 ≤ k < 1. So, there is a j/2n s.t. k < j/2n < 1.
By the previous result on finite numerical value spaces, Dn(ϕ) = 0. Since such a
Dn exists for each k ∈ VŁ, the claim holds also for their limit Dω (which exists and
is unique by item 1 of the Proposition). Therefore, for all δ ∈ OrdNt s.t. δ ≥ ω,
C (Dδ(ϕ)) = 0, by item 1, equation (2), and Proposition 4.26, and this shows that
if VŁ = [0, 1], then δ′ = ω. �
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