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Abstract
In order to intercept a highly manoeuvering target with an ideal impact angle in the three-dimensional space, this
paper promises to probe into the problem of three-dimensional terminal guidance. With the goal of the highly target
acceleration and short terminal guidance time, a guidance law, based on the advanced fast non-singular terminal
sliding mode theory, is designed to quickly converge the line-of-sight (LOS) angle and the LOS angular rate within a
finite time. In the design process, the target acceleration is regarded as an unknown boundary external disturbance of
the guidance system, and the RBF neural network is used to estimate it. In order to improve the estimation accuracy
of RBF neural network and accelerate its convergence, the parameters of RBF neural network are adjusted online
in real time. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural
network, which improves the convergence speed of the guidance system. Theoretical analysis demonstrates that the
state and the sliding manifold of the guidance system converge in finite time. According to Lyapunov theory, the
stability of the system can be guaranteed by online adjusting the parameters of RBF neural network and adaptive
parameters. The numerical simulation results verify the effectiveness and superiority of the proposed guidance law.

Nomenclature
RBF radial basis function
LOS line of sight
PNGL proportional navigation guidance law
TPNGL true proportional navigation guidance law
GTPNGL generalized true proportional navigation guidance law
PPNGL pure proportional navigation guidance law
IPNGL ideal proportional navigation guidance law
MPC model predictive control
SMDO sliding mode disturbance observer
ISS input to state
NTSMGL nonlinear terminal sliding mode guidance law

1.0 Introduction
In the past few decades, proportional navigation guidance law (PNGL) has been the widely used hom-
ing missile interception strategy, because of its advantages such as simple calculation, robustness and
practicability [1]. References [2–6] also proposed some variation forms of proportional navigation guid-
ance law (PNGL), such as adaptive motion camouflage proportional guidance law, true proportional
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navigation guidance law (TPNGL), generalized true proportional navigation guidance law (GTPNGL),
pure proportional navigation guidance law (PPNGL) and ideal proportional navigation guidance law
(IPNGL), and discussed their advantages and disadvantages. In the terms of different requirements and
constraints, especially for manoeuvering targets and impact angle constraints, scholars have put forward
many improved PNGL forms, while PNGL is more suitable for interception of non-manoeuvering tar-
gets. When intercepting targets with strong manoeuverability, the performance of the PNGL algorithm
will be reduced. This defect promotes the research of advanced control method and its application in
the design of the missile guidance system.

In recent years, some progress has been made in the research of three-dimensional guidance law
design. In Ref. [7], a three-dimensional nonlinear trajectory tracking guidance law, on the back of differ-
ential geometry of space curves, got into the public scene. The guidance law makes the aircraft converge
to the ideal path of a given general shape and move along it without restrictions on the initial position
and velocity. In Ref. [8], an adaptive three-dimensional PNGL based on convex optimisation is proposed
to for the problem of LOS angle and acceleration constraints. By solving the optimisation problem, the
proportional guidance gain is obtained. In Ref. [9], based on multivariable control design method, a sub-
optimal three-dimensional guidance law with end-angle constraint is proposed for intercepting unknown
manoeuvering targets. The guidance law is essentially a compound control method, which is a combi-
nation of standard continuous model predictive control (MPC) and adaptive multivariable sliding mode
disturbance observer (SMDO). They are used to track the optimal LOS angle of non-manoeuverable tar-
gets and to estimate the unknown manoeuvering information of compensated targets online. In Ref. [10],
based on the finite time input-to-state (ISS) theory, a three-dimensional nonlinear guidance law with
finite time convergence is proposed in the absence of linearisation hypothesis and target acceleration
estimation. The line-of-sight angular rates can be stabilised within a small convergence range in a finite
time. In Ref. [11], a nonlinear suboptimal guidance law, which minimises an integrated quadratic per-
formance index, appears. To simplify the guidance algorithm, theta-D method is used to replace solving
Hamilton-Jacobi-Bellman equation of the nonlinear system. In Ref. [12], a three-dimensional guidance
law was designed based on the feedback linearisation method for the problem of missile intercepting
manoeuvering targets at any initial heading. In Ref. [13], a guidance law based on computational geome-
try of three-dimensional collision time and angle constraints is introduced. The guidance law allows the
missile to move to the target along a specific trajectory. The collision line forms a direction consistent
with the expected collision angle, so as to meet the collision angle constraint, and the impact time is
controlled by adjusting the length of the trajectory. In Ref. [14], based on sliding mode control theory
and backstepping design technology, a robust guidance law for three-dimensional manoeuvering target
interception considering autopilot dynamics and terminal angle constraints is raised. A second-order
adaptive sliding mode observer is used to estimate target manoeuver, so that the missile can accurately
intercept the target in a limited time. In Ref. [15], based on the approach of discrete-time partial stabili-
sation, a robust guidance law for intercepting manoeuvering targets in a three-dimensional environment
is presented.

For the past few years, sliding mode variable structure control theory has been widely used in guid-
ance law design because of its good robustness to external disturbances and parameter perturbations
[16]. However, most of the developed sliding mode guidance laws are only exponentially or asymptoti-
cally stable, and usually only when the time is close to infinity, will the designed sliding surface tend to
zero or its very small neighborhood [17]. Generally speaking, the flight time of missile terminal guidance
is very short, so the design of guidance law should consider the finite time convergence control method.
In recent years, novel sliding-mode guidance law with finite time convergence has been proposed, which
includes second-order sliding mode guidance law [18, 19], fast terminal sliding-mode guidance law [20],
nonsingular terminal sliding-mode guidance law [21–23], output feedback continuous terminal sliding
mode guidance law [24], adaptive second-order nonsingular terminal sliding mode guidance law [25],
integral sliding mode guidance law [26, 27] and super-twisting integral sliding mode guidance law [28].

However, chattering of sliding mode control is a tricky problem, which will cause serious harm to
guidance system. This undesirable phenomenon is caused by the discontinuous switching function in
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the guidance law. To solve this problem, it is common to approximate discontinuous sign functions with
continuous sigmoid functions [29]. However, there are still the following disadvantages. (1) The sigmoid
function cannot guarantee the finite time convergence of the sliding mode variables in the presence of
external perturbations. (2) The sigmoid function cannot make the sliding variable drive to zero. (3) The
sigmoid function is not directly considered in stability analysis.

So far, the techniques of disturbance and uncertainty estimation such as nonlinear disturbance
observer [30], nonhomogeneous disturbance observer with finite time convergence [31], fixed-time
convergence disturbance observer [32], extended high gain observer [33], robust nonlinear disturbance
observer [34], extended state observer [35, 36, 37] and nonlinear robust H-infinity observers [38], have
made important contributions to the treatment of many uncertain disturbances in guidance systems.

At present, although there are a large number of research results for the design of three-dimensional
guidance law, the following problems still need to be solved: (a) Under the condition that the overload
capability of the missile does not take an obvious advantage, it can intercept the large manoeuvering
target accurately; (b) accurately estimate the disturbance of the guidance system caused by the target
manoeuver; (c) line-of-sight angle and line-of-sight angle rate converge in finite time.

If the above problems are solved, the high manoeuvering target will be intercepted more accurately
in three-dimensional space. The main contributions and innovations of the guidance law proposed in
this paper are summarised as follows:

(1) In the guidance law proposed in this paper, non-singular terminal sliding surface is designed
and a fast power reaching law is selected. This allows the line-of-sight angle and line-of-sight angle
rate to converge in finite time. At the same time, the chattering phenomenon of sliding mode control is
eliminated.

(2) A new global RBF neural network is proposed to accurately estimate the perturbation of the
guidance system caused by target manoeuvering. Compared with Refs [14, 39, 40], this method can
realise the estimation and compensation of target manoeuvering without knowing the upper bound of
target manoeuvering. In order to improve the estimation accuracy and accelerate the convergence char-
acteristics of RBF neural network, the parameters of RBF neural network are adjusted online in real
time.

(3) An adaptive law is designed to compensate the estimation error of RBF neural network and
improve the convergence speed of the guidance system. This allows the missile without a significant
advantage in overload capability to successfully intercept more than 20g large manoeuvering targets
with higher accuracy.

Moreover, literature [41] also uses the RBF neural network disturbance observer and non-singular ter-
minal sliding mode control to design a guidance law. However, it differs from the guidance law proposed
in this article in the following aspects:

(a) The non-singular terminal sliding mode surface is different. The non-singular terminal slid-
ing mode surface proposed in this paper adopts a segmented design idea and has higher convergence
accuracy.

(b) RBF neural network adaptive parameter design methods are different, this paper can make RBF
neural network parameters adaptive adjustment to the optimal, and use the adaptive law to further elim-
inate the neural network disturbance estimation error. Therefore, the disturbance estimation accuracy is
higher than that of the method in Ref. [41].

(c) The guidance law proposed in this paper is based on three-dimensional space, while that of in
Ref. [41] only considers the two-dimensional plane.

The remainder of this article is organised as follows. In Section 2, equations of guidance system for
the missile intercepting the target is presented in three-dimensional space. In Section 3, a new three-
dimensional finite-time guidance law based on sliding mode adaptive RBF neural network is proposed
for highly manoeuvering targets, and the finite-time convergence and stability are proved. In Section 4,
the numerical simulation results are carried out under different kinds of scenarios of missile intercept-
ing highly manoeuvering targets to demonstrate and evaluate the effectiveness and superiority of the
proposed guidance law. In Section 5, the crucial conclusion of the whole paper is presented.
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Figure 1. Three-dimensional relative motion of a missile to a target.

2.0 Formulation of guidance mode
This article only models the navigation system. In the establishment of guidance model, we regard the
missile as a mass point, without considering its aerodynamic characteristics, mass characteristics, inertia
characteristics as well as propulsion characteristics, and without limiting its flight envelope. It assumes
that the available overload of the missile flight control system is 40g.

This section demonstrates equations of guidance system for the missile intercepting the target. In
order to be more practical and reduce the influence of coupling between channels, the three-dimensional
guidance model is considered. Figure 1 shows the three-dimensional relative motion of a missile to a
target. In the guidance model, the missile and the target are treated as particles. The missile is denoted
by M and the target is denoted by T . Mxyz is an inertial coordinate system. Mx4y4z4 is a line-of-sight
coordinate system. The relative distance between the missile and the target is denoted by R. The elevation
and azimuth angles of the line-of-sight are denoted by qε and qβ , respectively. The vectors of the missile’s
acceleration and target’s acceleration are denoted by aM = [ aMR aMε aMβ ]T and aT = [ aTR aTε aTβ ]T in
the line-of-sight coordinate system separately.

The relative motion equation of a missile to a target can be obtained from Fig. 1. Let the rotational
angular velocity of the line-of-sight coordinate system relative to the ground inertial coordinate system
be ω. The relative velocity vector is expressed in Equation (1).

V(R, qε, qβ) =
⎡
⎣ Ṙ

Rq̇ε

−Rq̇β cos qε

⎤
⎦ (1)

According to the solution method of vector derivative, Equation (2) can be obtained.

dV

dt
= ω × V + ∂V

∂t
= aT − aM (2)

In Equation (2), dV/dt is the derivative of the relative velocity with respecting to time in inertial
coordinates. ∂V/∂t is the derivative of the relative velocity with respecting to time in the line-of-sight
coordinate system. ω× is given by Equation (3).

ω× =
⎡
⎣ 0 −q̇ε q̇β cos qε

q̇ε 0 −q̇β sin qε

−q̇β cos qε q̇β sin qε 0

⎤
⎦ (3)

https://doi.org/10.1017/aer.2021.120 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.120


1128 Wu et al.

Substituting Equations (1) and (3) into Equation (2), we can get Equation (4).⎡
⎣ 0 −q̇ε q̇β cos qε

q̇ε 0 −q̇β sin qε

−q̇β cos qε q̇β sin qε 0

⎤
⎦
⎡
⎣ Ṙ

Rq̇ε

−Rq̇β cos qε

⎤
⎦+

⎡
⎣ R̈

Rq̈ε + Ṙq̇ε

−Rq̈β cos qε − Ṙq̇β cos qε + Rq̇εq̇β sin qε

⎤
⎦= aT − aM (4)

Expanding Equation (4) produces Equation (5).⎧⎪⎨
⎪⎩

R̈ − Rq̇2
ε
− Rq̇2

β
cos2qε = aTR − aMR

Rq̈ε + 2Ṙq̇ε + Rq̇2
β

sin qε cos qε = aTε − aMε

−Rq̈β cos qε − 2Ṙq̇β cos qε + 2Rq̇εq̇β sin qε = aTβ − aMβ

(5)

From Equation (5), we can solve for q̈ε and q̈β , given by Equation (6).⎧⎪⎪⎨
⎪⎪⎩

q̈ε = −2Ṙ

R
q̇ε − q̇2

β
sin qε cos qε − aMε

R
+ aTε

R

q̈β = −2Ṙ

R
q̇β + 2q̇εq̇β tan qε + aMβ

R cos qε

− aTβ

R cos qε

(6)

According to Ref. [20], the problem of missile collision angle constraint is equivalent to that of
line-of-sight angle tracking. The desired terminal line-of-sight angles are defined as qεd and qβd. let
x1 = qε − qεd, x2 = qβ − qβd, x3 = q̇ε, x4 = q̇β . The guidance system state equation in three-dimensional
space can be demonstrated by Equation (7).⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ3 = −2Ṙ

R
x3 − x4

2 sin qε cos qε − aMε

R
+ dε

ẋ4 = −2Ṙ

R
x4 + 2x3x4 tan qε + aMβ

R cos qε

+dβ

(7)

In Equation (7), dε and dβ are the disturbance caused by the manoeuvering information of the target.
The expressions of dε and dβ are respectively demonstrated by Equation (8).⎧⎨

⎩
dε = aTε

R
dβ = − aTβ

Rcos qε

(8)

Equation (7) can be further simplified into Equation (9). The expressions of f1, f2 and b1, b2 are
respectively demonstrated by Equations (10) and (11).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ3 = f1+b1aMε + dε

ẋ4 = f2 + b2aMβ + dβ

(9)

⎧⎪⎪⎨
⎪⎪⎩

f1 = −2Ṙ

R
x3 − x4

2 sin qε cos qε

f2 = −2Ṙ

R
x4 + 2x3x4 tan qε

(10)
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⎧⎪⎨
⎪⎩

b1 = − 1

R

b2 = 1

R cos qε

(11)

3.0 The design of guidance law
In this section, a new three-dimensional finite-time convergence guidance law is developed, based
on sliding mode adaptive RBF neural network against highly manoeuvering targets. By using the
Lyapunov stability theory, the finite-time convergence and stability are analysed, and the optimal
adaptive parameters are designed.

The guidance system Equation (9) can be rewritten as Equation (12)–(14).

x =
[

x1

x2

]
=
[

qε − qεd

qβ − qβd

]
(12)

ẋ =
[

ẋ1

ẋ2

]
=
[

x3

x4

]
=
[

q̇ε

q̇β

]
(13)

ẍ =
[

ẋ3

ẋ4

]
= f + Bu + d (14)

where

f =
[

f1

f2

]
=

⎡
⎢⎢⎣

−2Ṙ

R
x3 − x4

2 sin qε cos qε

−2Ṙ

R
x4 + 2x3x4 tan qε

⎤
⎥⎥⎦ (15)

B =
[

b1 0
0 b2

]
=

⎡
⎢⎢⎣

− 1

R
0

0
1

R cos qε

⎤
⎥⎥⎦ (16)

d =
[

d1

d2

]
=
[

dε

dβ

]
=
⎡
⎣

aTε

R
− aTβ

R cos qε

⎤
⎦ (17)

u =
[

u1

u2

]
=
[

uε

uβ

]
=
[

aMε

aMβ

]
(18)

3.1 Guidance law design and its stability analysis
In order to cancel the line-of-sight angle error and allow the line-of-sight angle rate to converge quickly
to zero, an appropriate non-singular terminal sliding surface is designed. The specific form is as follows:

s =
[

s1

s2

]
=
[

ẋ1 + α1x1 + α2g(x1)
ẋ2 + α1x2 + α2g(x2)

]
= ẋ + α1x + α2g(x) (19)

where α1 > 0, α2 > 0 and g(x) ∈ R is defined as follows:

g(x) =
[

g(x1)
g(x2)

]
(20)

g(xi) =
{

sig(xi)λ,

γ1xi + γ2sign(xi)xi
2 ,

|xi| > η

|xi| ≤ η
i = 1, 2 (21)
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γ1 = (2 − γ )ηλ−1 (22)

γ2 = (γ − 1)ηλ−2 (23)

where 0 < λ < 1, 0 < γ < 1 and η is a small positive constant. sig(xi)λ = |xi|λsgn(xi).

Remark 1. The sliding surface proposed in this paper can ensure that the sliding manifolds converge
to a small area instead of zero within a finite time, avoiding the system chattering phenomenon caused
by crossing the sliding surface, and at the same time, ensure that the system state converges to a small
area in a finite time. The following Theorem 1 reveals a detailed explanation.

The derivative of s is expressed as follows.

ṡ =
[

ṡ1

ṡ2

]
= ẍ + α1ẋ + α2ġ(x)= f + Bu + d+l (24)

where

l =α1ẋ + α2ġ(x) (25)

ġ(x) =
[

ġ(x1)
ġ(x2)

]
(26)

ġ(xi) =
{

λ|xi|λ−1ẋi,

γ1ẋi + 2γ2xiẋisign(xi) ,

|xi| > η

|xi| ≤ η
i = 1, 2 (27)

In order to make the system state trajectory converge rapidly from the initial state to the designed
sliding mode surfaces, a fast power reaching law is selected as follows:

ṡ =
[

ṡ1

ṡ2

]
= −k2s − k1sig(s)γ =

[−k2s1 − k1sig(s1)γ

−k2s2 − k1sig(s2)γ

]
(28)

where k1 > 0, k2 > 0.
Then design the guidance law as follows:

u = − B−1(f + d̂ + ad + l+k2s+k1sig(s)γ ) (29)

where d̂ shown as Equation (30) is the estimation term of the system disturbance d caused by the target
manoeuvering. ad is an adaptive term in order to eliminate the influence of system disturbance estimation
error on the guidance system and improve the convergence speed of the guidance system. The expression
of the adaptive term ad is designed as Equation (31). In this equation, the first term is used to accelerate
the convergence rate of the guidance system and the second term is used to reduce the impact of the
system disturbance estimation error.

d̂=
[

d̂1

d̂2

]
(30)

ad =
[

ad1

ad2

]
=
⎡
⎢⎣

s1

|s1| + μ
χ̂1 + δ̂1

s2

|s2| + μ
χ̂2 + δ̂2

⎤
⎥⎦ (31)

where
˙̂
δi = η1si, i = 1, 2 (32)

˙̂χi = si
2

|si| + μ
, i = 1, 2 (33)
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χ̃i = χ̂i−χi, i = 1, 2 (34)

Next, the stability and finite time convergence of the guidance system will be analysed and proved.
Before that, the following lemma is introduced.

Lemma 1. [39] For the nonlinear system ẋ =f (x, t), x ∈ Rn, it can assume that there exists a positive
definite and continuous function V(x).The derivative of V(x) satisfies inequality (35)

V̇(x) ≤ −μV(x) − λVα(x) (35)

where μ > 0, λ > 0 and 0 < α < 1, if the initial time is t0 and x(t0) = x0, the time from the initial state to
the equilibrium point of the system satisfies the following inequality:

T ≤ 1

μ(1 − α)
ln

μV1−α(x0) + λ

λ
(36)

This inequality indicates that the system states converge in a finite-time.

Theorem 1. For the guidance system (14), the sliding mode surface is given as Equation (19), the
reaching law is given as Equation (28) and the guidance law is given as Equation (29). We can achieve
the following conclusions.

(a) In a finite-time, the sliding manifold s is converged to the small region |s| ≤ ε1, where ε1 is a very
small positive constant.

(b) In a finite-time, the line-of-sight angle errors qε − qεd and qβ − qβd are converged to the small
regions |qε − qεd| < η and

∣∣qβ − qβd

∣∣< η, where η is a very small positive constant.
(c) In a finite-time, the line-of-sight angle rate q̇ε and q̇β are converged to the small regions |q̇ε| < ηη

and
∣∣q̇β

∣∣< ηη, where

ηη = α1η+α2η
λ+ε1 (37)

Proof. A Lyapunov function V1 is selected as Equation (38).

V1 = 1

2
sTs (38)

The residual estimation error of the guidance system disturbance is expressed as follows:∣∣∣d − d̂ − ad
∣∣∣≤ ε (39)

The derivative of V1 is expressed as follows.
V̇1 = sT ṡ

=sT(f + Bu + d+l)

=sT(d − d̂ − ad − k2s − k1sig(s)γ )

≤ −k2|s|2 − k1|s|γ+1+ε |s|

(40)

Rewrite the formula (40) into the following two forms:

V̇1 ≤ −k2|s|2 − (k1|s|γ − ε) |s| (41)

V̇1 ≤ −(k2 |s| − ε) |s| − k1|s|γ+1 (42)

When k1|s|γ − ε ≥ 0, |s| ≥ (ε/k1)1/γ ,

V̇1 ≤ −k2|s|2 = −2k2V1 (43)

When k2 |s| − ε ≥ 0, |s| ≥ (ε/k2),

V̇1 ≤ −k1|s|γ+1 = −2
γ+1

2 k1V1

γ+1
2 (44)
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It can be known from Lemma 1 and the inequality (43) and (44) that the sliding manifold s is con-
verged to the small region |s| ≤ min

{
(ε/k1)1/γ , (ε/k2)} = ε1 within a finite-time. where ε1 is a very small

positive constant. Therefore, conclusion (a) is proved.

Case 1. If |xi| ≥ η, i = 1, 2, A Lyapunov function V2 is selected as Equation (45).

V2=1

2
xixi, i = 1, 2 (45)

When |s| ≤ min
{
(ε/k1)1/γ , (ε/k2)} = ε1, according to Equation (19), the inequality (46) can be

obtained.

ẋi ≤ −α1xi − α2sig(xi)
λ+ε1 (46)

The derivation of V2 is expressed as the inequality (47).

V̇2 = xiẋi

≤ −xi(α1xi + α2sig(xi)λ − ε1)

≤ −α1|xi|2 − α2|xi|λ+1 + ε1 |xi|
(47)

Rewrite the inequality (47) in the following two forms:

V̇2 ≤ −α1|xi|2 − (α2|xi|λ − ε1) |xi| (48)

V̇2 ≤ −(α1 |xi| − ε1) |xi| − α2|xi|λ+1 (49)

When α2|xi|λ − ε1 ≥ 0, |xi| ≥ (ε1/α2)1/λ,

V̇2 ≤ −α1|xi|2 = − 2α1V2 (50)

When α1 |xi| − ε1 ≥ 0, |xi| ≥ (ε1/α1),

V̇2 ≤ −α2|xi|λ+1 = − 2
λ+1

2 α2V
λ+1

2
2 (51)

Supposed that min
{
(ε1/α2)

1/λ, (ε1/α1)} ≤ η, it can be known from Lemma 1 and the inequality
(50) and (51) that xi is converged to the very small region |xi| < η, i = 1, 2 within a finite-time. So the
line-of-sight angle errors qε − qεd and qβ − qβd are converged to the small regions |qε − qεd| < η and∣∣qβ − qβd

∣∣< η within a finite-time. Conclusion (b) is proved.

Case 2. If |xi| < η, i = 1, 2, when |s| ≤ min
{
(ε/k1)1/γ , (ε/k2)} = ε1, according to Equation (19), the

inequality (52) and (53) can be easily obtained.

ẋi ≤ −α1xi − α2(γ1xi + γ2sign(xi)xi
2)+ε1 (52)

|ẋi| ≤
∣∣α1xi+α2(γ1xi + γ2sign(xi)xi

2)
∣∣+ε1

≤ |α1xi| +
∣∣α2(γ1xi + γ2sign(xi)xi

2)
∣∣+ε1

≤ α1η+α2η
λ+ε1 = ηη

(53)

Then, ẋi is converged to the very small region |ẋi| < ηη, i = 1, 2 within a finite-time. So the line-of-
sight angle rate q̇ε and q̇β are converged to the small regions |q̇ε| < ηη and

∣∣q̇β

∣∣< ηη within a finite-time.
Conclusion (c) is proved.

3.2 RBF neural network disturbance observer design
In order to intercept large manoeuvering targets accurately, it is necessary to estimate the disturbance
of the guidance system caused by target manoeuvering. In this paper, a new global RBF neural network
is proposed to estimate the disturbance. The disturbance d = [

d1 d2

]T can be estimated using the RBF
neural network as Equation (54).
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di =
m∑

j=1

w∗
ijh

∗
ij + εi0 = Wi

∗Thi
∗ + εi0 = di

* + εi0, i = 1, 2 (54)

Where Wi
∗ = [

w∗
i1 w∗

i2 ... w∗
im

]T
, i = 1, 2 are optimal output weight vectors of the output layer of the

RBF neural network. εi0, i = 1, 2 are the optimal estimation error. di
∗, i = 1, 2 are the optimal approxi-

mation of the disturbance di, i = 1, 2. hi
∗ = [

h∗
i1 h∗

i2 ... h∗
im

]T
, i = 1, 2 are optimal vectors whose elements

are given by Equation (55) which represents the Gaussian activation function of RBF neural network
hidden layer neurons.

h∗
ij = exp

(−∥∥x − c∗
ij

∥∥2

2σ ∗2
ij

)
, i = 1, 2 (55)

Where c∗
ij is the optimal centre and σ ∗

ij is the optimal width for the jth Gaussian function.
The RBF neural network disturbance estimator is chosen as Equation (56).

d̂i =
m∑

j=1

ŵijĥij = ŴT
i ĥi, i = 1, 2, j = 1, 2, 3 · · · m (56)

Where Ŵi =
[
ŵi1 ŵi2 ... ŵim

]T
, i = 1, 2 that adaptively adjust online are output weight vector of the

RBF neural network linear output layer. ĥi =
[
ĥi1 ĥi2 ... ĥim

]T

, i = 1, 2 that also adaptively adjusts online
are the activation function vectors of the hidden layer neurons of the RBF neural network. The elements
of ĥi are given by Equation (57).

ĥij = exp

(
−∥∥x − ĉij

∥∥2

2σ̂ 2
ij

)
, i = 1, 2, j = 1, 2, 3 · · · m (57)

Let the optimal approximation of the disturbance di
∗, i = 1, 2 subtract the adaptive approximation of

the disturbance d̂i, i = 1, 2. Then we use linearisation techniques to expand it into a partially linear form
of Taylor expansion series. Equation (58) is obtained.

di
∗ − d̂i = Wi

∗Thi
∗ − ŴT

i ĥi = − W̃T
i ĥi − Ŵi

∂hi

∂ci

c̃i − Ŵi

∂hi

∂σi

σ̃i + εi1, i = 1, 2 (58)

Where W̃i=Ŵi − Wi
∗, i = 1, 2 are the deviation of weight vectors between the adaptive weight vectors

Ŵi and the optimal weight vectors Wi
∗ for the linear output layer of RBF neural network. c̃i = ĉi − ci

∗, i =
1, 2 are the deviation centre vectors of the Gaussian function between the adaptive centre vectors ĉi and
the optimal centre vectors ci

∗. σ̃i = σ̂i − σi
∗, i = 1, 2 are the deviation of the width vectors between the

adaptive width vectors σ̂i and the optimal width vectors σi
∗. εi1, i = 1, 2 are the error for the Taylor series.

∂hi
∂ci

, i = 1, 2 are given by Equation (59) and ∂hi
∂σi

, i = 1, 2 are given by Equation (60), respectively.

∂hi

∂ci

= h′
ci =

⎡
⎢⎢⎣

∂hi1
∂ci1

0 0 0
0 ∂hi2

∂ci2
0 0

· · · · · · · · · · · ·
· · · · · · · · · ∂him

∂cim

⎤
⎥⎥⎦ ∈ Rm×m, i = 1, 2 (59)

∂hi

∂σi

= h′
σ i =

⎡
⎢⎢⎣

∂hi1
∂σi1

0 0 0
0 ∂hi2

∂σi2
0 0

· · · · · · · · · · · ·
· · · · · · · · · ∂him

∂σim

⎤
⎥⎥⎦ ∈ Rm×m, i = 1, 2 (60)

Substituting Equation (29) into Equation (24), Equation (61) can be obtained.
ṡi = di − d̂i − adi − k2si − k1sig(si)

γ , i = 1, 2 (61)
Substituting Equations (31) and (58) into Equation (61), Equation (62) can be obtained.

ṡi = − W̃T
i ĥi − Ŵihσ ic̃i − Ŵih′

σ iσ̃i + δi

− si
|si|+μ

χ̂i − δ̂i − k2si − k1sig(si)γ , i = 1, 2
(62)
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Where δi = ε0i + ε1i, i = 1, 2 are total RBF neural network estimation error for the system disturbance.
It is the sum of the optimal estimation error (εi0, i = 1, 2) and the error for the Taylor series (εi1, i = 1, 2).

Define δ̃i, i = 1, 2 to be the deviation of the total RBF neural network estimation error for the system
disturbance between the adaptive estimation error δ̂i and the actual estimation error δi, which is expressed
by Equation (63).

δ̃i = δ̂i − δi, i = 1, 2 (63)

Substituting Equation (63) into Equation (62), Equation (64) can be obtained.

ṡi = − W̃T
i ĥi − Ŵih′

cic̃i − Ŵih′
σ iσ̃i − δ̃i − si

|si| + μ
χ̂i − k2si − k1sig(si)

γ , i = 1, 2 (64)

In order to prove the stability of the guidance system expressed in Equation (14) under the guidance
law expressed in Equation (29), the Lyapunov function is selected in Equation (65).

V0i = 1

2
si

2+1

2
χ̃ 2

i +
1

2η1

δ̃2
i +

1

2η2

W̃T
i W̃i+ 1

2η3

c̃T
i c̃i + 1

2η4

σ̃ T
i σ̃i, i = 1, 2 (65)

Where η1, η2, η3 and η4 are designed parameters, χ̃i = χ̂i−χi, i = 1, 2 are the error between the
adaptive gain χ̂i and the fixed gain χi.

Take the derivative of the Lyapunov function and get Equation (66).

V̇0i = siṡi+χ̃i
˙̃χi+ 1

η1

δ̃i
˙̃
δi+ 1

η2

W̃T
i

˙̃Wi+ 1

η3

c̃T
i
˙̃ci + 1

η4

σ̃ T
i

˙̃σi, i = 1, 2 (66)

Substituting in Equation (64) into Equation (66), Equation (67) can be obtained.

V̇0i = si

(
−W̃T

i ĥi − Ŵih′
cic̃i − Ŵih′

σ iσ̃i − δ̃i − si

|si| + μ
χ̂i − k2si − k1sig(si)

γ

)

+ χ̃i
˙̃χ i+ 1

η1

δ̃i
˙̃
δi+ 1

η2

W̃T
i

˙̃Wi+ 1

η3

c̃T
i
˙̃ci + 1

η4

σ̃ T
i

˙̃σ i, i = 1, 2 (67)

Substituting ˙̃
δi = ˙̂

δi, ˙̃χi = ˙̂χi, ˙̃Wi = ˙̂Wi, ˙̃ci = ˙̂ci and ˙̃σi = ˙̂σi into Equation (67), Equation (68) can be
obtained.

V̇0i = si

(
−W̃T

i ĥi − Ŵih′
cic̃i − Ŵih′

σ iσ̃i − δ̃i − si

|si| + μ
χ̂i − k2si − k1sig(si)

γ

)

+ χ̃i
˙̂χi+ 1

η1

δ̃i
˙̂
δi+ 1

η2

W̃T
i

˙̂Wi+ 1

η3

c̃T
i
˙̂ci + 1

η4

σ̃ T
i

˙̂σi, i = 1, 2 (68)

By rearranging and combining Equation (68), Equation (69) can be obtained.

V̇0i = si( − k2si − k1sig(si)
γ ) − si

2

|si| + μ
(χ̂i−χ̃i)+δ̃i

(
1

η1

˙̂
δi − si

)
+W̃T

i

(
1

η2

˙̂Wi − ĥisi

)

+ c̃T
i

(
1

η3

˙̂ci − h′
cisiŴi

)
+ σ̃ T

i

(
1

η4

˙̂σi − h′
σ isiŴi

)
, i = 1, 2 (69)

To guarantee that the guidance system expressed in Equation (14) under the guidance law expressed
in Equation (29) is globally stable and the first derivative of the Lyapunov function V̇0i < 0 is satisfied,
the time evolution of the adaptive estimation error δ̂i, the adaptive weight vectors Ŵi, the adaptive centre
vectors ĉi and the adaptive width vectors σ̂i are chosen as Equation (70).

˙̂
δi = η1si,

˙̂Wi = η2ĥisi, ˙̂ci = η3h′
cisiŴi, ˙̂σi = η4h′

σ isiŴi, i = 1, 2 (70)

Substituting Equations (34) and (70) into Equation (69), Equation (71) can be obtained.

V̇0i = si(− k2si − k1sig(si)
γ ) − si

2

|si| + μ
χi, i = 1, 2 (71)

According to Equation (71), the stability of the guidance system is guaranteed since the first derivative
of the Lyapunov function V̇0i < 0 with the gain χi, i = 1, 2 as a positive value.
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Table 1. Initial condition of the missile and the target for the simulation

Symbol Symbol description Value
θm(0) Initial elevation angle of the missile 15◦

φm(0) Initial azimuth angle of the missile 0◦[
xm(0), ym(0), zm(0)

]
Initial position of the missile [0 0 0](km)

vm(0) Initial velocity of the missile 1,000m/s
θt(0) Initial elevation angle of the target 0◦

φt(0) Initial azimuth angle of the target 0◦[
xt(0), yt(0), zt(0)

]
Initial position of the target [0,10,50] (km)

vt(0) Initial velocity of the target −600m/s

Table 2. Expected terminal line-of-sight angle

Missile qεd(◦) qβd(◦)
M1 30 −10
M2 20 0
M3 10 10
M4 0 20

The summary of the presented three-dimensional finite-time guidance law schemeis based on sliding
mode adaptive RBF neural network against highly manoeuvering targets is as follows:

u = − B−1(f + d̂ + ad + l+k2s+k1sig(s)γ )

=
[

u1

u2

]
=
[− 1

b1
(f1+d̂1+ad1+α1ẋ1 + α2ġ(x1)+k2s1+k1sig(s1)γ )

− 1
b2

(f2+d̂2+ad2+α1ẋ2 + α2ġ(x2)+k2s2+k1sig(s2)γ )

]

=

⎡
⎢⎢⎢⎢⎢⎣

− 1
b1

( − 2Ṙ
R

x3 − x4
2 sin qε cos qε+ŴT

1 ĥ1+
s1

|s1|+μ
χ̂1 + δ̂1+α1ẋ1 + α2ġ(x1)+k2s1+k1sig(s1)γ )

− 1
b2

( − 2Ṙ
R

x4 + 2x3x4 tan qε+ŴT
2 ĥ2+

s2
|s2|+μ

χ̂2 + δ̂2+α1ẋ2 + α2ġ(x2)+k2s2+k1sig(s2)γ )

⎤
⎥⎥⎥⎥⎥⎦

(72)

4.0 Simulation results
In this section, in order to demonstrate and evaluate the effectiveness and superiority of the proposed
guidance law in Equation (72), the numerical simulation results are carried out under different kinds
of scenarios of missile intercepting highly manoeuvering target. The simulation is divided into two
parts. The first part, aiming at two different target manoeuver scenarios, verifies the effectiveness of the
proposed guidance law at target interception accuracy and line-of-sight angle control accuracy. In the
second part, in order to illustrate the superiority of the proposed guidance law, we compare it with other
guidance laws in different manoeuver situations of the target.

In the following simulation, the guidance parameters of the guidance law designed in this paper are
as follows:

α1= 10, α2= 10, λ= 0.6, η= 0.01, γ= 0.9, k1= 6, k2= 2, η1= 1, η2= 15, η3= 15, η4= 1, μ= 1
The initial values of the integral variable parameters in the guidance law are as follows:
χ̂i(0)=10, δ̂i(0)= 0.001, Ŵi(0)= [− 60, −30, 0, 30, 60], ĉi(0)= [− 0.1, −0.05, 0, 0.05, 0.1],

σ̂i(0)= [3, 3, 3, 3, 3], i = 1, 2
It assume that the maximum available overload of the missile is 40g. Therefore, the guidance

command is artificially limited to 40g in the simulation.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 2. Simulation results of four expected line-of-sight angles attack targets with Case 1.

4.1 Effectiveness verification
To verify the effectiveness of the proposed guidance law, four missiles in the same initial position and
state are considered to attack targets in two manoeuvering situations at their desired terminal line-of-
sight angles. Initial conditions of the missile and the target for the simulation are shown as Table 1. The
expected terminal line-of-sight angles of the four missiles attacking the target are shown in Table 2. Two
different cases for target manoeuvers are as follows Case 1 and Case 2.

Case 1: aTε = 200 sin (0.5t)m/s2, aTβ = 200 cos (0.5t)m/s2.

Case 2: aTε = −200m/s2, aTβ = 200m/s2.

For Case 1, Fig. 2 and Table 3 show the simulation results of the proposed guidance law. The relative
motion curves of the missile and the target are elaborated in Fig. 2(a). It can be known that four missiles
with different expected terminal line-of-sight angles were all able to successfully intercept the target. The
curves of qε and qβ for the four missiles are demonstrated in Fig. 2(b) and (c). It can be obtained that qε

and qβ converge to different expected terminal line-of-sight angles precisely in a finite-time. The curves
of q̇ε and q̇β for the four missiles are shown in Fig. 2(d) and (e). It is clearly revealed that the guidance
system has the best convergence performance under the proposed guidance law in this paper. Figure 2(f)
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Table 3. Simulation results of four expected line-of-sight angles attack targets with Case 1

Line-of-sight dip Line-of-sight drift
Missile Miss distance(m) Angle error (◦) Angle error (◦) Flight time(s)
M1 1.7258e-03 0.0052 0.0038 42.656
M2 1.4356e-03 0.0021 0.0013 34.954
M3 1.9507e-04 0.0018 0.0022 35.226
M4 8.3823e-05 0.0016 0.0026 42.247

(a)

(b) (c) (d)

(e) (f) (g)

Figure 3. Simulation results of four expected line-of-sight angles attack targets with Case 2.

and (g) indicate the curves of uε and uβ , which are within reasonable bounds. From Table 3, it can be
known that all four missiles in the same initial state and at the same initial position under the proposed
guidance law in this paper are able to accurately hit a manoeuvering target with the specified terminal
line-of-sight angle. The maximum miss distance for the four missiles with different expected terminal
sight angles is less than 0.002m, and the errors of the terminal line-of-sight angles are all controlled
within 0.006◦. The excellent control ability of the proposed guidance law in this paper to miss distance
and expected terminal line-of-sight angle error is verified.
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Table 4. Simulation results of four expected line-of-sight angles attack targets with Case 2

Line-of-sight dip Line-of-sight drift
Missile Miss distance(m) Angle error (◦) Angle error (◦) Flight time(s)
M1 5.7938e-05 0.0057 0.0054 26.586
M2 2.1125e-05 0.0059 0.0067 23.936
M3 1.0087e-05 0.0066 0.0065 24.113
M4 1.3245e-05 0.0068 0.0058 26.859

For Case 2, when aTε = −200m/s2, aTβ = 200m/s2, Fig. 3 and Table 4 display the simulation results
of the proposed guidance law. The relative motion curves of the missile and the target are revealed in
Fig. 3(a). The curves of qε and qβ for the four missiles are manifested in Fig. 3(b) and (c). The curves of
q̇ε and q̇β for the four missiles are shown in Fig. 3(d) and (e). The curves of uε and uβ for the four missiles
are displayed in Fig. 3(f) and (g). Figure 3 shows the same situation as Fig. 2, so it will not be repeated
here. From Table 4, it can be known that all four missiles in the same initial state and at the same initial
position under the proposed guidance law in this paper are able to accurately hit a manoeuvering target
with the specified terminal line-of-sight angle. The maximum miss distance for the four missiles with
different expected terminal sight angles is less than 0.0001m, and the errors of the terminal line-of-sight
angles are all controlled within 0.007◦. The excellent control ability of the proposed guidance law in
this paper to miss distance and expected terminal line-of-sight angle error is verified.

4.2 Superiority verification
To further verify the superiority of the proposed guidance law, the conventional proportional navigation
guidance law and nonlinear terminal sliding mode guidance law [29] are selected for comparison. Initial
conditions of the missile and the target for the simulation are shown as Table 1. Select the expected ter-
minal line-of-sight angles qεd = 30◦, qβd = 10◦. Two different cases for target manoeuvers are as follows
Case 1 and Case 2.

Case 1: aTε = 200 sin (0.5t)m/s2, aTβ = 200 cos (0.5t)m/s2.

Case 2: aTε = −200m/s2, aTβ = 200m/s2.

The traditional proportional guidance law is shown as Equation (73).

uPNGL =
[

n1

∣∣Ṙ∣∣ q̇ε

n2

∣∣Ṙ∣∣ q̇β

]
(73)

Where n1 and n2 are guidance parameters of the uPNGL.
After a lot of simulations, the control effect of uPNGL is optimised by adjusting the parameters. The

final guidance parameters n1 = 4 and n2 = 4 are chosen.
The sliding surface of nonlinear terminal sliding mode guidance law (NTSMGL) is chosen as

Equation (74).

s =
[

s1

s2

]
= x + 1

β
ẋp/q (74)

Where β > 0, p and q are positive odd numbers, and they satisfy p > q, 1 < p/q < 2.
The NTSMGL is chosen as Equation (75).

uNTSMGL = −B−1

(
f + βq

p
ẋ2−p/q + ks + Hsgn(s)

)
(75)
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 4. Simulation results of three different guidance laws with Case 1.
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Table 5. Simulation results of three different guidance laws with Case 1

Line-of-sight dip Line-of-sight drift
Guidance law Miss distance(m) Angle error (◦) Angle error (◦) Flight time(s)
Proposed 0.0014 0.0031 0.0054 43.334
PNGL 4.26 0.0059 8.39 34.419
NTSMGL 0.1571 0.0066 0.6963 44.079

NTSMGL can make the guidance system state converge in finite time and is robust to system
disturbance. It can intercept manoeuvering targets.

After a lot of simulations, the control effect of uNTSMGL is optimised by adjusting the parameters.

Finally Select the guidance parameter of uNTSMGL as β = 10, p = 9, q = 7, k = 5.5, H =
[

0.01 0

0 0.01

]
.

For Case 1, when aTε = 200 sin (0.5t)m/s2, aTβ = 200 cos (0.5t)m/s2. Figure 4 and Table 5 reveal the
simulation results of sinusoidal wave manoeuvering target interception under three different guidance
laws, which are the proposed guidance law in this paper, the PNGL and the NTSMGL. The relative
motion curves of the missile and the target under three different guidance laws are shown in Fig. 4(a).
All three different guidance laws allow the missile to successfully intercept sinusoidal manoeuverable
targets, even if the missiles’ flight paths are different. Figure 4(b)–(e) shows the curves of qε, the curves
of qε partial enlarged detail, the curves of qβ and the curves of qβ partial enlarged detail, respectively. It
can be clearly seen from Fig. 4(b)–(e) that both the proposed guidance law in this paper and NTSMGL
guarantee the convergence of qε and qβ . However, PNGL cannot ensure the convergence of qε and qβ .
In addition, qε and qβ under the proposed guidance law in this paper obviously has faster convergence
speed and higher accuracy than those under NTSMGL. Figure 4(f)–(i) shows the curves of q̇ε, the curves
of q̇ε partial enlarged detail, the curves of q̇β and the curves of q̇β partial enlarged detail, respectively.
It can be clearly seen from Fig. 4(f)–(i) that the guidance law proposed in this paper makes q̇ε and
q̇β converge to near zero with high accuracy. Although NTSMGL also makes q̇ε and q̇β converge to
near zero, divergence phenomenon appears at the moment when the missile and the target are about
to encounter. And PNGL does not makes q̇ε and q̇β converge to near zero. Figure 4(j)–(k) shows the
curves of uε and uβ . The elevation and azimuth acceleration commands of the missile uε and uβ are in
a reasonable range under three different guidance laws. From Table 5 it can be known that under the
guidance law proposed in this paper, the missile’s miss distance to the target is much smaller than the
other two guidance laws. At the same time, the line-of-sight dip angle error and line-of-sight drift angle
error are far less than the other two guidance laws. Compared with NTSMGL, the flight time of the
missile under action of the guidance law proposed in this paper is shorter, which makes the interception
probability of the missile with shorter flight time increase in the terminal guidance phase. Although the
flight time of the missile under action of PNGL is the shortest, it cannot control the line-of-sight angle,
and the miss distance is large. In conclusion, by comparing the simulation results of the three guidance
laws, the guidance law proposed in this paper has better control performance.

For Case 2, when aTε = −200m/s2, aTβ = 200m/s2. Figure 5 and Table 6 reveal the simulation results
of constant manoeuvering target interception under three different guidance laws, which are the proposed
guidance law in this paper, the conventional PNGL and the NTSMGL. The relative motion curves of
the missile and the target under three different guidance laws are shown in Fig. 5(a). PNGL failed to
intercept the constant manoeuvering target, while the other two guidance laws succeeded. Figure 5(b)–
(e) indicates the curves of qε, the curves of qε partial enlarged detail, the curves of qβ and the curves of
qβ partial enlarged detail, respectively. Figure 5(f)–(i) displays the curves of q̇ε, the curves of q̇ε partial
enlarged detail, the curves of q̇β and the curves of q̇β partial enlarged detail, respectively. Figure 5(j)–(k)
shows the curves of uε and uβ . Figure 5(b)–(k) shows the same situation as Fig. 4(b)–(k), so it will not
be repeated here. It can be seen from Table 6 that, under the guidance law proposed in this paper, the
miss distance of the missile to the target is much less than NTSMGL, while PNGL cannot intercept the
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 5. Simulation results of three different guidance laws with Case 2.

constant manoeuver target with the acceleration of 20g. At the same time, the line-of-sight dip angle
error and line-of-sight drift angle error under action of the guidance law proposed in this paper are far
less than NTSMGL, while PNGL has no ability to control the line-of-sight angle. In conclusion, by
comparing the simulation results of the three guidance laws, the guidance law proposed in this paper
has better control performance.
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Table 6. Simulation results of three different guidance laws with Case 2

Line-of-sight dip Line-of-sight drift
Guidance law Miss distance(m) Angle error (◦) Angle error (◦) Flight time(s)
Proposed 7.7747e-06 0.0067 0.0084 22.702
PNGL 29481 48.1275 40.9223 23.999
NTSMGL 0.676 1.2262 1.7013 22.705

5.0 Conclusions
In this paper, a new sliding mode adaptive neural network guidance law is proposed to intercept highly
manoeuvering targets with ideal impact angles. The guidance law, based on fast nonsingular terminal
sliding mode, ensures that the line-of-sight angle and the line-of-sight angle rate converge in finite-time
rather than asymptotically. A fast-power-reaching law is adopted to ensure the fast convergence of the
sliding mode surface and overcome the chattering phenomenon of the sliding mode control. Aiming
at the external disturbance caused by the target manoeuvering, the RBF neural network without the
target prior information is proposed to estimate. At the same time, adopt the adaptive law to eliminate
estimation errors of RBF neural network. According to Lyapunov stability theory, the proposed guidance
law can ensure the guidance system stability. In order to verify the effectiveness of the proposed guidance
law in this paper, the numerical simulation is carried out for four missiles with the same initial state
intercepting 20g sine wave and constant two big manoeuvering target situation at different expected
terminal line-of-sight angles. The numerical simulation results demonstrate that the proposed guidance
law has small miss distance and line-of-sight angle error, so it has excellent control performance. In order
to verify the superiority of the proposed guidance law in this paper, it is compared with the conventional
PNGL and the NTSMGL. The numerical simulation is carried out for three different guidance laws that
are used to intercept 20g sine wave and constant big manoeuvering target situation at desired terminal
line-of-sight angles. The numerical simulation results demonstrate that the proposed guidance law is
superior to the other two guidance laws in both miss distance and line-of-sight angles error control.
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