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The primary object of this study is to derive new scaling laws for passive scalar statistical
quantities in temporally and spatially evolving plane turbulent jet flows. We apply Lie
symmetry analysis to the equations governing the evolution of the first three statistical
moments for the passive scalar quantities. The analysis is based on novel forms of the
two-point velocity–scalar and scalar–scalar correlation equations, which are naturally
based on the statistical moments derived from the instantaneous velocities and not on
those of the fluctuation velocities from the Reynolds decomposition. The newly derived
invariant solutions recover the gaps in the classical self-similarity analysis from three
major perspectives. First, the scaling laws are constructed as the direct consequence of
the symmetry approach, while an a priori set of similarity scales is not required. Second,
unlike in the classical laws, which show self-similarity primarily for the first moments,
here self-similarity is theoretically shown up to the third moments. Third, there is a
symmetry breaking induced by the integral invariant of the mean temperature that connects
the scaling symmetries of momentum and passive scalar equations, which results in a
close coupling of the scaling exponents of the first two moments and, further, determines
the scaling exponents of all higher moments. To verify the new theoretical findings, we
employ data from two direct numerical simulations of the mixing of a passive scalar driven
by a temporally evolving turbulent jet. The direct numerical simulation data very clearly
validate the new scaling laws up to the third moments.

Key words: shear layer turbulence, turbulence theory, jets

1. Introduction

Strong turbulent transport of passive scalars is among the most important beneficial effects
of turbulence, with obvious consequences for the dispersion of emitted pollutants and the
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efficiency of combustion and other chemical reactions. There is a vast literature on various
aspects of turbulent diffusion, transport and mixing of scalar fields and their application
to diverse engineering and environmental problems. Perhaps the significance of heat
transfer and passive scalars in turbulent flows was realized through an early wind-tunnel
experiment in an axially symmetric heated-air jet by Corrsin (1943). Thereafter, an
impressive amount of work has been devoted to the study of scalar fields in various
turbulent flows (e.g. Corrsin & Uberoi 1950; Wilson & Danckwerts 1964; Townsend 1976;
Warhaft & Lumley 1978; Tavoularis & Corrsin 1981; Dahm & Dimotakis 1990; Dowling
& Dimotakis 1990; George 1992b; Mydlarski & Warhaft 1998; Warhaft 2000; Lubbers,
Brethouwer & Boersma 2001; Hearst et al. 2012; Bahri et al. 2015; Sreenivasan 2019).

The interaction between the velocity and passive scalar (temperature) fields, among
other things, has been of great interest to the turbulence community. To study the influence
of the turbulent velocity field on the passive scalar field, a combination of the transport
equations for both the scalar and velocity fields is required to be considered. This study
has been closely connected to a variety of theoretical approaches to model the terms in
the transport equations, as early as the 1900s, when Prandtl proposed the eddy diffusivity
concept.

From a theoretical point of view, the mixing of the velocity and scalar fields has been
notably treated in terms of self-similarity theory. In the context of turbulence, one of
the great theoretical efforts has been to identify the relevant scaling parameters based
on self-similarity analysis with the aid of experimental and numerical data that enable
scientists to model turbulence quantities in flows that are experienced in real life. The
traditional concept of self-similarity, or self-preservation, which assumes that the flow
scales with single turbulent parameters, has been extensively used to describe the spatial
and temporal evolution of turbulence quantities. It is known that the classical scaling
parameters (based on a self-preservation analysis) for turbulent shear flows were identified
by Townsend (1956, 1976). He also proposed the idea of a ‘universal’ self-similar solution,
which indicates that such a solution is unique and independent of initial and boundary
conditions.

The turbulent jet is arguably known as one of the most intensely studied turbulent flows,
which has attracted a substantial amount of attention in terms of self-similarity analysis.
This is mainly because of its relevance to a plethora of applications such as combustion,
chemical processes, pollutant discharge and cooling, mixing and drying processes. Not
only the velocity field, but also the turbulent jet flow has been widely studied for its mixing
scalar properties using self-similarity analysis as can be found in various articles such as
Gouldin et al. (1986), Dahm & Dimotakis (1990), Dowling & Dimotakis (1990), Lubbers
et al. (2001), Mi, Nobes & Nathan (2001), Burattini & Djenidi (2004), Carazzo, Kaminski
& Tait (2006), Darisse, Lemay & Benaïssa (2005) and Darisse, Lemay & Benaïssa (2013).

According to the classical self-similarity (e.g. Townsend’s) approach, the equations
governing the evolution of the mean scalar field, turbulent scalar flux and scalar variance
in a turbulent jet satisfy similarity if the following hold (Dahm & Dimotakis 1990):

Θ̄ = Θs(t)fθ (x2/Lθ ), (1.1)

R0
iθ = Us(t)Θs(t)giθ (x2/Lθ ) (1.2)

and
R0

θθ = Θs(t)2gθθ (x2/Lθ ), (1.3)

where Θ̄ is the mean scalar field, R0
iθ (= uiθ ) is the turbulent scalar flux and R0

θθ (= θ2) is
the scalar variance (here, x2 represents the cross-stream direction and t is time). Note that

919 A5-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

37
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.376


New scaling laws of scalar transport in turbulent plane jets

we denote the one-point scalar quantities with the superscript ‘0’ throughout this paper
in order to clearly distinguish them from the corresponding two-point double correlation
functions. Further, Θs is a scalar scale, Us is a velocity scale and Lθ is a (scalar) length
scale, which may all depend on time. In (1.1)–(1.3), fθ , giθ and gθθ are the dimensionless
self-similar functions, which depend on x2, which is scaled by Lθ , that may also depend
on time.

While the similarity of the mean profile has been well supported by experimental
and numerical data (Dahm & Dimotakis 1990; Darisse et al. 2005, 2013), there has
been substantial scatter between the results of different investigations in terms of the
self-similarity of the turbulent scalar flux and the scalar variance in the turbulent jet
(Lockwood & Moneib 1980; Dahm & Dimotakis 1990; Dowling & Dimotakis 1990;
Lubbers et al. 2001). For example, through conducting a numerical study, Lubbers et al.
(2001) noted that the mean scalar profiles are self-similar in agreement with the classical
similarity analysis; however, the variance of the scalar fluctuations is found to be not
self-similar. They commented that this observation is in contrast with the results of
Dowling & Dimotakis (1990) who claimed that this variance is also self-similar. Lubbers
et al. (2001) concluded that the self-similarity is unlikely from a theoretical point of view.

In order to contrast it with the new scaling in § 3, here we also examined the classical
scaling of the turbulent flux R0

iθ and scalar variance R0
θθ by using (1.2) and (1.3), and

a new set of direct numerical simulation (DNS) data, which are plotted in figure 1.
Additionally, the mean scalar field Θ̄ scaled using (1.1) is included in figure 1. As widely
used in the literature, Θs was chosen to be the maximum magnitude of the mean scalar Θ̄

on the centreline (Θ̄c), and Lθ was selected to be the mean scalar half-width δθ defined
as the distance between the location along x2 at which the mean scalar is equal to half
of the maximum mean scalar and the centreline. As expected, the self-similarity of the
mean scalar field is satisfactory. However, for the second moments, only the profiles of the
turbulent scalar flux R0

2θ show a good collapse for different t whereas the turbulent scalar
flux R0

1θ and scalar variance R0
θθ obviously depart from a full similarity. As discussed

above, despite the fact that the classical self-similarity and scaling parameters for turbulent
jets have been known for a long time, some significant deviation from the complete
self-similarity of the second and higher moments of the scalar or velocity is observed
when using the classical scalings (where an a priori set of similarity scales is used). This
is clearly noted in the literature as well as a wide scatter in the results implies the strong
need of investigating this problem using more advanced methods. Therefore, it is the main
aim of this paper to use a more general technique based on Lie symmetry group analysis to
formally derive the similarity of the first, second and third moments for the passive scalar
quantities for a temporally evolving turbulent plane jet. A temporally evolving turbulent
jet set-up is known to be a good compromise between our ability to use accurate numerical
methods, the computational efforts for sufficiently large Reynolds number and capturing
the physics of turbulent jets (e.g. da Silva & Pereira 2008; van Reeuwijk & Holzner 2013;
Krug et al. 2017; Cimarelli et al. 2020; Denker et al. 2020). Therefore, the combination of
newly derived similarity solutions and DNS of temporal jets seems to represent a useful
combination of tools for the analysis of the important features of turbulent jet flows.

Sophus Lie, in the nineteenth century, introduced symmetry analysis of a system of
differential equations based on continuous transformation groups to unify and extend
various specialized methods for solving differential equations, which has had a profound
influence in various areas of mathematics and physics. What makes Lie symmetry a
powerful method in relation to the turbulence problem is its capacity to unify and
extend various specialized methods for solving complex differential equations. In simple
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Figure 1. The mean scalar field, Θ̄ (a), the turbulent scalar fluxes, R0
1θ (b) and R0

2θ (c), and the scalar variance,
R0

θθ (d), normalized by classical scaling parameters according to (1.1)–(1.3). The data are from the current DNS
(DNS2), the details of which are provided in § 4.

language, when applying a symmetry transformation to equations, their formal structures
remain unchanged. The Lie symmetry contains many profound concepts, a detailed
description of which is available in several textbooks such as Hydon (2000) and Bluman,
Cheviakov & Anco (2010) and previous publications by the present authors (e.g. Oberlack
2001; Oberlack et al. 2015; Sadeghi, Oberlack & Gauding 2018; Sadeghi & Oberlack
2020). Therefore, in this paper, we only briefly review a schematic of this method in
Appendix A.

The application of Lie symmetry group theory in turbulence has been developed by
Oberlack and co-authors over a time span of 20 years (e.g. Oberlack 2001; Oberlack &
Rosteck 2010; Avsarkisov, Oberlack & Hoyas 2014; Waclawczyk et al. 2014; Oberlack
et al. 2015; Sadeghi et al. 2018; Sadeghi & Oberlack 2020; Sadeghi, Oberlack & Gauding
2020). For example, they have studied the turbulent channel, the velocity field of a
temporally evolving jet, the isotropic homogeneous turbulence and some other canonical
wall-bounded and shear flows using Lie symmetry theory by investigating the infinite
series of two-point correlation (TPC) and multi-point correlation equations. The symmetry
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analysis of these equations together with the application of invariant surface condition have
allowed them to derive a variety of classical and new scaling laws in turbulence as the exact
solutions of symmetry-invariant type of TPC and multi-point correlation.

In this context, it should be mentioned that in addition to the classical symmetry theory,
the so-called equivalence transformation is a methodological approach that is at least
similar (e.g. Bluman et al. 2010). Here, the unclosed terms are taken as free functions
and, as with symmetries, the structure of the equation is preserved, but the unclosed terms
can take a different form. Indeed, unclosed equations such as those in § 2 involve a greater
number of equivalence transformations than symmetry transformations; however, they are
then no longer inevitably consistent with the equations for the higher correlations. Against
this background, in the present work we focus solely on symmetry transformations that are
also consistent with all higher correlation equations.

In the present research, we employ the Lie symmetry method to the thermal energy
and a new type of TPC equations of a temporally evolving turbulent plane jet, which are
the fundamental basis to find scaling laws. This is the first study to apply the symmetry
analysis of passive scalar transport in a turbulent jet flow. As a consequence of the
current analytical work, we propose new scaling laws (self-similar solutions) for the scalar
quantities. The results of DNS are used to validate the new scaling laws.

This paper is organized as follows. The governing equations required for the symmetry
analysis of a temporally evolving plane jet are given in § 2. In § 3, we present the theoretical
(Lie symmetry) analysis of the governing equations for the current flow and derive new
scaling laws. The DNS details and verification of scaling laws are presented in § 4. Finally,
a summary is presented and conclusions drawn in § 5.

2. Governing equations

The first equation of interest is derived after employing the Reynolds decomposition Ui =
Ūi + ui and Θ = Θ̄ + Θ into the transport equation for the (instantaneous) passive scalar

∂Θ

∂t
+ Uk

∂Θ

∂xk
= α

∂2Θ

∂xk∂xk
, (2.1)

followed by applying an ensemble averaging to obtain its averaged version, namely a
transport equation of the mean scalar, i.e.

∂Θ̄

∂t
+ Ūk

∂Θ̄

∂xk
= −∂R0

kθ
∂xk

+ α
∂2Θ̄

∂xk∂xk
, (2.2)

where θ and uk are respectively the fluctuating parts of the scalar and velocity fields. Here,
Θ̄ is the mean scalar and Ūk is the mean velocity (note that in this paper the overbar
signifies the average). Additionally, the quantity R0

kθ = ukθ represents the effect of the
turbulence in the transport of heat and it is commonly known as the turbulent heat flux
vector. Recall that α is the thermal diffusion coefficient.

For a temporally evolving plane jet, where the flow is considered statistically
homogeneous in the mean flow x1 and lateral x3 directions and spreads in the
inhomogeneous direction x2 over time t, (2.2) reduces to

∂Θ̄

∂t
+ ∂R0

2θ

∂x2
− α

∂2Θ̄

∂x2
2

= 0. (2.3)
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By integrating (2.3) across the cross-stream direction (x2) and assuming both zero free
stream turbulence and a vanishing gradient of Θ̄ for x2 → ±∞, it is also confirmed that

I =
∫ ∞

−∞
Θ̄(x2, t) dx2 (2.4)

is an integral invariant, i.e. a constant.
At this point, we present new forms of the equations for TPC, which are the main basis

for the present analysis. As fully explained in Oberlack et al. (2015), Sadeghi et al. (2018)
and Sadeghi & Oberlack (2020), the concept of TPC has become an important analytical
tool in turbulence for two main reasons. First, it delivers additional information on the
turbulence statistics such as length scale. Second, in every higher-moment equation, only
one additional unclosed function appears. Besides, a general symmetry analysis of the
TPC equations has resulted in additional symmetries compared with only those that are
implied by Navier–Stokes equations (Oberlack & Rosteck 2010, 2011; Avsarkisov et al.
2014). These symmetries, which are denoted statistical symmetries, have been shown to
play a key role in the understanding of the scaling laws in turbulent flows, especially for
higher moments of the velocity. Traditionally, the dynamic equations for the TPC of the
fluctuating parameters have been of interest to the turbulence community, mainly because
of their straightforward relations to the one-point turbulent Reynolds stress or heat flux
components. However, the nonlinear character of the TPC equations complicates further
analysis concerning the symmetry (and similarity) analysis of them. To resolve this issue,
we follow the idea in Oberlack & Rosteck (2010) to establish a novel set of two-point
equations based on the instantaneous quantities (not the classical fluctuating quantities),
which leads us to arrive at a set of linear equations. In the present work, we derive the
equations for the TPC of the instantaneous velocity–scalar and instantaneous scalar–scalar
functions, which in their most general forms respectively read (see detailed derivation steps
in Appendix B)

∂HiΘ

∂t
+ ∂PΘ

∂xi
− ∂PΘ

∂ri
+ ∂H(ik)Θ

∂xk
− ∂H(ik)Θ

∂rk
+ ∂Hi(Θk)

∂rk

− ν

[
∂2HiΘ

∂x2
k

− 2
∂2TiΘ

∂xk∂rk
+ ∂2HiΘ

∂rk∂rk

]
− α

[
∂2HiΘ

∂rk∂rk

]
= 0 (2.5)

and
∂HΘΘ

∂t
+ ∂H(Θk)Θ

∂xk
− ∂H(Θk)Θ

∂rk
+ ∂HΘ(Θk)

∂rk

− α

[
∂2HΘΘ

∂x2
k

− 2
∂2HΘΘ

∂xk∂rk
+ 2

∂2HΘΘ

∂rk∂rk

]
= 0, (2.6)

where correlation vectors and tensors are defined as

HiΘ = Ui(x, t)Θ(x + r, t), HΘΘ = Θ(x, t)Θ(x + r, t),

PΘ = P(x, t)Θ(x + r, t),

H(ik)Θ = Ui(x, t)Uk(x, t)Θ(x + r, t), H(Θk)Θ = Θ(x, t)Uk(x, t)Θ(x + r, t),

Hi(Θk) = Ui(x, t)Uk(x + r, t)Θ(x + r, t),

HΘ(Θk) = Θ(x, t)Uk(x + r, t)Θ(x + r, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.7)
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Here, x and r are coordinates in the physical and correlation spaces, respectively. We also
define the function H0

ΘΘ as the limit r → 0 of the TPC function HΘΘ , i.e.

HΘΘ(x, r = 0, t) = H0
ΘΘ(x, t) = Θ2(x, t), (2.8)

where the superscript ‘0’ is again an indication of the limit r → 0 of a TPC function.
Similarly, we can define

HiΘ(x, r = 0, t) = H0
iΘ(x, t) = UiΘ(x, t). (2.9)

For a temporally evolving jet, the TPC equations (2.5) and (2.6) reduce to

∂HiΘ

∂t
+ δi2

∂PΘ

∂x2
− ∂PΘ

∂ri
+ ∂H(i2)Θ

∂x2
− ∂H(ik)Θ

∂rk
+ ∂Hi(Θk)

∂rk

− ν

[
∂2HiΘ

∂x2
2

− 2
∂2HiΘ

∂x2∂r2
+ ∂2HiΘ

∂rk∂rk

]
− α

[
∂2HiΘ

∂rk∂rk

]
= 0 (2.10)

and

∂HΘΘ

∂t
+ ∂H(Θ2)Θ

∂x2
− ∂H(Θk)Θ

∂rk
+ ∂HΘ(Θk)

∂rk

− α

[
∂2HΘΘ

∂x2
2

− 2
∂2HΘΘ

∂x2∂r2
+ 2

∂2HΘΘ

∂rk∂rk

]
= 0, (2.11)

since ∂( )/∂x1 = ∂( )/∂x3 = 0.
Subsequently, we also present the classical form of TPC equations, i.e. all correlation

functions are based on the fluctuating quantities u, p and θ as introduced by Reynolds and
not on the full instantaneous quantities as introduced in (2.10) and (2.11). The resulting
equations for the TPC of the fluctuating velocity–scalar and scalar–scalar in the temporally
evolving jet read as

∂Riθ

∂t
+ R2θ

∂Ūi(x, t)
∂x2

+ Ri2
∂Θ̄(x, t)

∂x2

∣∣∣∣
x+r

+ [Ū1(x + r, t) − Ū1(x, t)]
∂Riθ

∂r1

+ δi2
∂pθ

∂x2
− ∂pθ

∂ri
+ ∂R(i2)θ

∂x2
− ∂R(ik)θ

∂rk
+ ∂Ri(θk)

∂rk

− ν

[
∂2Riθ

∂x2
2

− 2
∂2Riθ

∂x2∂r2
+ ∂2Riθ

∂rk∂rk

]
− α

[
∂2Riθ

∂rk∂rk

]
= 0 (2.12)

and

∂Rθθ

∂t
+ R2θ

∂Θ̄(x, t)
∂x2

+ Rθ2
∂Θ̄(x, t)

∂x2

∣∣∣∣
x+r

+ [Ū1(x + r, t) − Ū1(x, t)]
∂Rθθ

∂r1

+ ∂R(θ2)θ

∂x2
− ∂R(θk)θ

∂rk
+ ∂Rθ(θk)

∂rk
− α

[
∂2Rθθ

∂x2
2

− 2
∂2Rθθ

∂x2∂r2
+ 2

∂2Rθθ

∂rk∂rk

]
= 0, (2.13)
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where

Riθ = ui(x, t)θ(x + r, t), Rθθ = θ(x, t)θ(x + r, t),

Rik = ui(x, t)uk(x + r, t), pθ = p(x, t)θ(x + r, t),

R(ik)θ = ui(x, t)uk(x, t)θ(x + r, t), R(θk)θ = θ(x, t)uk(x, t)θ(x + r, t),

Ri(θk) = ui(x, t)uk(x + r, t)θ(x + r, t), Rθ(θk) = θ(x, t)uk(x + r, t)θ(x + r, t).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.14)

At the limit r → 0, the double correlations Riθ , Rθθ and Rik respectively reduce to the
turbulent scalar flux R0

iθ , the scalar variance R0
θθ and the Reynolds stress tensor R0

ik, i.e.

Riθ (x, r = 0, t) = R0
iθ (x, t) = uiθ(x, t), (2.15)

Rθθ (x, r = 0, t) = R0
θθ (x, t) = θ2(x, t), (2.16)

Rik(x, r = 0, t) = R0
ik(x, t) = uiuk(x, t), (2.17)

which are typical quantities in turbulence.
Similar to (2.10) and (2.11), also (2.12) and (2.13) are expected to imply all relevant

statistical information of the flow. However, apart from the latter simple relations to
the turbulent scalar flux and scalar variance (2.15) and (2.16), they possess the key
disadvantage of being a nonlinear system of differential equations, in which there
exists a strong cross-coupling between the first and second moments. This makes the
extraction of Lie symmetries from these equations rather cumbersome. As can be noted,
such a cross-coupling is eliminated in (2.10) and (2.11), which simplifies the analysis
considerably. Of course and as widely discussed in Oberlack & Rosteck (2010) and
Oberlack et al. (2015), there is a unique relation between the instantaneous and the
fluctuation approach, which simply allows us to change from one approach to the other.
For example, in the present case, the following relations exist:

HiΘ(x, r, t) = Riθ (x, r, t) + Ūi(x, t)Θ̄(x + r, t) (2.18)

and

HΘΘ(x, r, t) = Rθθ (x, r, t) + Θ̄(x, t)Θ̄(x + r, t). (2.19)

Here, we also need to mention that the transport equation of the mean scalar (2.3) keeps
the same form in both approaches in a temporally evolving plane jet. This is because of
the vanishing velocity Ū2, and hence we have

R0
2θ = H0

2Θ = u2θ(x2, t). (2.20)

Finally, we should note that we construct the scaling laws from the TPC equations (2.10)
and (2.11) while the viscous and diffusivity terms are neglected; that is, we consider only
length scales that are way beyond the Kolmogorov and Corrsin–Obukhov scales, i.e. |r| �
ηk and |r| � ηco (Sadeghi & Oberlack 2020). This is mainly because that for the statistical
behaviour of turbulence at the limit of small viscosity, viscosity is almost always neglected
(e.g. Townsend 1956; George 1989, 1992a), such that self-similarity of the turbulence
quantities can be fully constructed. More details to justify this assumption can be found in
Oberlack & Peters (1993), Lundgren (2003) and Sadeghi & Oberlack (2020).
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New scaling laws of scalar transport in turbulent plane jets

3. Derivation of new symmetry-based scaling laws

In the present paper, Lie symmetry analysis is applied to (2.3), (2.10) and (2.11), with ν =
α = 0, which leads us to obtaining symmetry transformations of them and, subsequently,
constructing the group-invariant (self-similar) solutions and scaling laws.

3.1. Symmetries of the base equations
The basis of our analysis will be symmetries of the Euler and thermal energy equations as
follows (Sadeghi & Oberlack 2020)

Tt1 : t∗ = t + at, x∗ = x, U∗ = U, P∗ = P, Θ∗ = Θ (3.1)

and

Tt2 : t∗ = exp(ast)t, x∗ = exp(asx)x, U∗ = exp(asx − ast)U,

P∗ = exp[2(asx − ast)]P, Θ∗ = exp(aΘ)Θ.

}
(3.2)

Further, as fully discussed in Oberlack & Rosteck (2010) and Sadeghi & Oberlack (2020),
taking the average of the transformation of the above instantaneous quantities would
preserve their symmetry groups, i.e.

T̄t1 : t∗ = t + at, x∗ = x, Ū
∗ = Ū, P̄∗ = P̄, Θ̄∗ = Θ̄ (3.3)

and

T̄t2 : t∗ = exp(ast)t, x∗ = exp(asx)x, Ū
∗ = exp(asx − ast)Ū,

P̄∗ = exp[2(asx − ast)]P̄, Θ̄∗ = exp(aΘ)Θ̄.

}
(3.4)

New turbulent scaling laws of passive scalar transport in a temporally evolving turbulent
plane jet from the TPC equation are derived based on the corresponding symmetry
transformations of equations (2.3), (2.10) and (2.11), with ν = α = 0. The first set
of essential symmetries to construct scaling laws are derived directly by transferring
the induced classical symmetries of Euler and thermal energy equations, as given in
(3.1)–(3.2), to their corresponding ones for the novel proposed TPC equations (2.10) and
(2.11). As such, the following symmetries result for the TPC:

T̄C1 : t∗ = t + at, x∗ = x, r∗ = r, H∗
ΘΘ = HΘΘ, H∗

iΘ = HiΘ,

H∗
(Θk)Θ = H(Θk)Θ, H∗

Θ(Θk) = HΘ(Θk), PΘ
∗ = PΘ,

H∗
(ik)Θ = H(ik)Θ, H∗

i(Θk) = Hi(Θk)

⎫⎪⎪⎬⎪⎪⎭ (3.5)

and

T̄C2 : t∗ = exp(ast)t, x∗ = exp(asx)x, r∗ = exp(asx)r,

H∗
ΘΘ = exp(2aΘ)HΘΘ, H∗

iΘ = exp(aΘ + asx − ast)HiΘ,

H∗
(Θk)Θ = exp(2aΘ + asx − ast)H(Θk)Θ, H∗

Θ(Θk) = exp(2aΘ + asx − ast)HΘ(Θk),

PΘ
∗ = exp(aΘ + 2asx − 2ast)PΘ, H∗

(ik)Θ = exp(aΘ + 2asx − 2ast)H(ik)Θ,

H∗
i(Θk) = exp(aΘ + 2asx − 2ast)Hi(Θk).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.6)

In (3.5) and (3.6), we present symmetries implied by Euler and thermal energy equations.
Now we consider statistical symmetries on the basis of the TPC equations (2.10) and
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(2.11), which are annotatively derived as a linear set of equations, being either the TPC
equations such as (2.10) and (2.11) or one-point type of equations such as (2.3) for the
present temporally enveloping plane jet. This concept was first developed in Oberlack &
Rosteck (2010), while more details of it and its key importance for turbulence may be
found in Waclawczyk et al. (2014). This statistical scaling group reads

T̄s : t∗ = t, x∗ = x, r∗ = r, Ū∗
i = exp(ass)Ūi, Θ̄∗ = exp(ass)Θ̄,

H∗
ΘΘ = exp(ass)HΘΘ, H∗

iΘ = exp(ass)HiΘ, H∗
(Θk)Θ = exp(ass)H(Θk)Θ,

H∗
Θ(Θk) = exp(ass)HΘ(Θk), PΘ

∗ = exp(ass)PΘ,

H∗
(ik)Θ = exp(ass)H(ik)Θ, H∗

i(Θk) = exp(ass)Hi(Θk),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.7)

while in Waclawczyk et al. (2014) it was shown that (3.7) represents a measure of
intermittency, a property that has been discussed for decades as a special characteristic
of turbulence.

3.2. Condition of the symmetry-invariant solutions
As indicated earlier, the main intention of this paper is to generate new turbulent scaling
laws for large-scale scalar quantities, such as the mean value of the passive scalar as well
as the scalar variance and turbulent scalar flux, which are the parameters most investigated
theoretically, experimentally and numerically. As such, we consider the limit r → 0 of
the TPC in our analysis, i.e. H0

ΘΘ(x, t) = Θ2(x, t) and H0
iΘ(x, t) = UiΘ(x, t). For the

derivation of the turbulent scaling laws, the corresponding characteristic equations for the
invariant solutions (A14) in the context of a temporally evolving turbulent plane jet, i.e.
Θ̄(x, t) = Θ̄(x2, t), H0(x, t) = H0(x2, t),. . . , reduce to the following form:

dt
ξt

= dx2

ξx2

= dΘ̄

ηΘ̄

= dH0
ΘΘ

ηH0
ΘΘ

= dH0
iΘ

ηH0
iΘ

= dH0
Θ2Θ

ηH0
Θ2Θ

= dH0
i2Θ

ηH0
i2Θ

= dPΘ
0

η
PΘ

0
, (3.8)

the distinction being given by the form of the symmetries given as infinitesimals ξ and η
as defined in Appendix A. Now, by adapting (A8a,b)–(A10a,b), the symmetries T̄t2, T̄C1,
T̄C2 and T̄s in (3.4)–(3.7) can be presented in terms of infinitesimals ξ and η, in which the
condition (3.8) in this case is specified as

dt
astt + at

= dx2

asxx2
= dΘ̄

[aΘ + ass]Θ̄
= dH0

ΘΘ

[2aΘ + ass]H0
ΘΘ

= dH0
iΘ

[aΘ + (asx − ast) + ass]H0
iΘ

= dH0
Θ2Θ

[2aΘ + (asx − ast) + ass]H0
Θ2Θ

= dH0
i2Θ

[aΘ + 2(asx − ast) + ass]H0
i2Θ

= dPΘ
0

[aΘ + 2(asx − ast) + ass]PΘ
0 . (3.9)

It should be noted that currently we are not looking at TPCs and therefore the r component
does not occur in the latter condition.

3.3. Symmetry breaking and turbulent scaling laws
In Oberlack et al. (2015) and Sadeghi & Oberlack (2020), the importance of a symmetry
breaking and its implication for the construction of scaling laws is explained in detail.
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New scaling laws of scalar transport in turbulent plane jets

We recall that symmetry breaking is referred to as that one or more group parameters are
assigned specific values because some of the symmetries are not admitted by boundary
conditions or other external constraints.

A key step in constructing the scaling laws in the present flow is that the integral
invariant (2.4) induces a symmetry breaking. To comprehend this we implement (3.4)
and (3.7) into (2.4) to obtain

I =
∫ ∞

−∞
Θ̄∗ dx∗

2 exp(−(aΘ + ass + asx)). (3.10)

For the latter being invariant under any of the above given groups, the following condition
has to hold:

aΘ + ass + asx = 0. (3.11)

Equation (3.11) is apparently symmetry breaking and in the following we replace ass using
ass = −aΘ − asx. With this consideration, (3.9) now reduces to

dt
astt + at

= dx2

asxx2
= dΘ̄

−asxΘ̄
= dH0

ΘΘ

[aΘ − asx]H0
ΘΘ

= dH0
iΘ

−astH0
iΘ

= dH0
Θ2Θ

[aΘ − ast]H0
Θ2Θ

= dH0
i2Θ

[asx − 2ast]H0
i2Θ

= dPΘ
0

[asx − 2ast]PΘ
0 . (3.12)

From (3.12) we now construct the scaling laws for a temporally evolving plane turbulent
jet. Integration of (3.12) leads to a set of invariants which are taken as the new independent
and dependent variables as follows:

x̃2 = x2

(t + t0)n , (3.13)

Θ̃(x̃2) = Θ̄(x2, t)
(t + t0)−n , (3.14)

H̃0
ΘΘ(x̃2) = H0

ΘΘ(x2, t)
(t + t0)−m−n , (3.15)

H̃0
iΘ(x̃2) = H0

iΘ(x2, t)
(t + t0)−1 , (3.16)

H̃0
Θ2Θ(x̃2) = H0

Θ2Θ(x2, t)
(t + t0)−m−1 , (3.17)

H̃0
i2Θ(x̃2) = H0

i2Θ(x2, t)
(t + t0)n−2 , (3.18)

P̃Θ
0
(x̃2) = PΘ

0
(x2, t)

(t + t0)n−2 , (3.19)

where
n = asx

ast
, m = −aΘ

ast
, t0 = at

ast
. (3.20a–c)

Here, the variables marked with a tilde are the invariants of the system composed of (2.3),
(2.4), (2.10) and (2.11) and t0 is a virtual (temporal) origin. By transferring to the classical
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notation, (3.15)–(3.19) are presented as follows:

H̃0
ΘΘ(x̃2) = R0

θθ (x2, t) + Θ̄(x2, t)2

(t + t0)−m−n , (3.21)

H̃0
iΘ(x̃2) = R0

iθ (x2, t) + Ūi(x2, t)Θ̄(x2, t)
(t + t0)−1 , (3.22)

H̃0
Θ2Θ(x̃2) = R0

θ2θ (x2, t) + 2R0
2θ (x2, t)Θ̄(x2, t)

(t + t0)−m−1 , (3.23)

H̃0
i2Θ(x̃2) = R0

i2θ (x2, t) + R0
i2(x2, t)Θ̄(x2, t) + R0

2θ (x2, t)Ūi(x2, t)
(t + t0)n−2 (3.24)

and

P̃Θ
0
(x̃2) = pθ

0
(x2, t) + P̄(x2, t)Θ̄(x2, t)

(t + t0)n−2 , (3.25)

where we have used the relation between the H-notation and R-notation

H0
ΘΘ(x, t) = R0

θθ (x, t) + Θ̄(x, t)2, (3.26)

H0
iΘ(x, t) = R0

iθ (x, t) + Ūi(x, t)Θ̄(x, t), (3.27)

H0
Θ2Θ(x, t) = R0

θ2θ (x, t) + 2R0
2θ (x, t)Θ̄(x, t), (3.28)

H0
i2Θ(x, t) = R0

i2θ (x, t) + R0
i2(x, t)Θ̄(x, t) + R0

2θ (x, t)Ūi(x, t) (3.29)

and
PΘ

0
(x, t) = pθ

0
(x, t) + P̄(x, t)Θ̄(x, t). (3.30)

For a temporally evolving turbulent jet, we have Ū2 = Ū3 = 0 and with this (3.22) reduces
to

H̃0
1Θ(x̃2) = R0

1θ (x2, t) + Ū1(x2, t)Θ̄(x2, t)
(t + t0)−1 , (3.31)

H̃0
2Θ(x̃2) = R0

2θ (x2, t)
(t + t0)−1 , (3.32)

H̃0
3Θ(x̃2) = R0

3θ (x2, t)
(t + t0)−1 , (3.33)

and (3.24) reduces to

H̃0
12Θ(x̃2) = R0

12θ (x2, t) + R0
12(x2, t)Θ̄(x2, t) + R0

2θ (x2, t)Ū1(x2, t)
(t + t0)n−2 , (3.34)

H̃0
22Θ(x̃2) = R0

22θ (x2, t) + R0
22(x2, t)Θ̄(x2, t)

(t + t0)n−2 (3.35)

and

H̃0
32Θ(x̃2) = R0

32θ (x2, t) + R0
32(x2, t)Θ̄(x2, t)

(t + t0)n−2 . (3.36)

Additionally, U3 decorrelates from U2 and Θ , and hence the terms R0
3θ , R0

32 and R0
32θ

vanish identically and therefore do not need to be considered.
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New scaling laws of scalar transport in turbulent plane jets

The scaling law (3.32) corresponds to the classical scaling law (1.2) and we illustrate
this in the following section. However, other scaling laws like (3.21) or (3.31) have a
significantly different structure compared with the corresponding classical laws such as
(1.3). If, for example, we rearrange the scaling law (3.21) in the classical notation on the
basis of the correlations from the fluctuations, then we have to use the scaling law (3.14).
So we see that after a rearrangement to R0

θθ

R0
θθ (x2, t) = H̃0

ΘΘ(x̃2)(t + t0)−m−n − Θ̃(x̃2)
2(t + t0)−2n, (3.37)

it is composed of two different power laws, which have different decay exponents −m − n
and −2n.

Hence, in order to compare with plain canonical power laws, the comparison of the
above theoretical results against the new DNS data obtained in a temporally evolving plane
jet in the next section is exclusively based on the H-correlations.

4. Direct numerical simulation and validation of the scaling laws

4.1. Numerical scheme and DNS details
The subsequent analysis is based on highly resolved DNS of a temporally evolving
turbulent plane jet flow. It should be pointed out that several previous works have
commented on turbulent scaling laws and considered whether the shape of the self-similar
profiles and the scaling exponents might depend on the DNS initial conditions (Oberlack
& Zieleniewicz 2013; Sadeghi et al. 2018; Sadeghi & Oberlack 2020; Sadeghi et al. 2020).
To address the possible effects of different DNS initial conditions, we validate the new
scaling laws using two different sets of DNS with slightly different initial conditions and
Reynolds numbers.

A detailed description of the set-up of the simulation and a validation of the results is
provided by Hunger, Gauding & Hasse (2016), Hunger et al. (2018) and Sadeghi et al.
(2018). In the following, the main features of the DNS concerning the passive scalar
that was not highlighted in Sadeghi et al. (2018) are summarized. The DNS solves the
incompressible Navier–Stokes equations and an advection–diffusion equation (2.1) for a
passive scalar Θ(x, t). The computational domain has periodic boundary conditions in
streamwise x1 and spanwise x3 directions, while free-slip boundary conditions are used
in the cross-wise x2 direction. The flow is statistically homogeneous in x1–x3 planes.
Statistics are averaged over these planes and depend only on time t and the cross-wise
coordinate x2. Simulation DNS1 is performed on a numerical grid with 3072 × 1024 ×
1024 points, where the size of the computational domain equals Lx1 = 60, Lx2 = 24.4 and
Lx3 = 20. A uniform equidistant mesh is used for the inner part of the domain, while the
outer part is slightly coarsened towards the cross-wise boundaries. The simulation DNS2 is
performed on an equidistant mesh with 3072 × 3072 × 1536 points, where the size of the
computational domain is Lx1 = 40, Lx2 = 40 and Lx3 = 30. In both cases, the size of the
computational domain is large enough to minimize confinement effects at later integration
times. The DNS is well resolved, since the grid width is smaller than or equal to the
Kolmogorov length scale.

For non-dimensionalization, the initial centreline velocity Ū1(0) and the initial jet
thickness δ0.5(0) are used. The passive scalar Θ(x, t) is non-dimensionalized by its
centreline value at initialization. The initial Reynolds number is defined as Re0 =
Ū1(0)δ0.5(0)/ν and equals 2200 for case DNS1 and 2500 for case DNS2. The initial
Péclet number is defined as Pe0 = Re0Sc, with the Schmidt number Sc being the ratio
of kinematic viscosity ν and molecular diffusivity α. The Schmidt number is set to
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unity for both cases. A careful initialization of the velocity field is important for
temporally evolving turbulent flows. The initial velocity profile is composed of two
mirrored hyperbolic-tangent mean profiles. Its initial velocity profile is perturbed around
the position of the highest shear rate with broadband random Gaussian fluctuations to
facilitate a quick transition to fully developed turbulence. The fluctuating field satisfies a
prescribed energy spectrum, defined as

E(κ, t = 0) ∝ κ4 exp(−2(κ/κ0)
2), (4.1)

where κ denotes the wavenumber and κ0 is the wavenumber at which the maximum of the
initial energy spectrum occurs. The value of κ0 is set to 6.0 for DNS1 and 6.4 for DNS2.
The initial fluctuation intensity is 2 % for both cases. The initial scalar profile is identical
to the mean velocity profile, but non-perturbed. As a consequence, scalar fluctuations are
created solely through the convection by the turbulent velocity field.

4.2. Validation of the new scaling laws
In this subsection, the scaling laws (3.13)–(3.19) derived in § 3 are validated against the
DNS data (DNS1 and DNS2) of the temporally evolving jet. According to Lie symmetry
analysis, the variable x2 is self-similar when it is scaled by a power-law function of time
with arbitrary exponent n (3.13). We may estimate n from a variety of the scaled variables
for x2. We select the mean scalar half-width δθ defined as the distance between the location
along x2 at which the mean scalar is equal to half of the maximum mean scalar and the
centreline as the relevant scale, which is also widely used in the context of turbulent jet
flows in the literature. In figure 2, the temporal evolution of δθ is plotted for DNS1 and
DNS2. According to the similarity analysis, the length scale should evolve in a power-law
fashion, as required by (3.13). It is found that δθ perfectly follows a power law (for t � 21)
as

δθ ∝ (t + t0)n, (4.2)

with t0 = −1.70 and n = 0.55 for DNS1 and t0 = −5 and n = 0.56 for DNS2. It can be
observed that the two DNS datasets exhibit very similar exponents n, while the virtual
origin t0 is slightly further departed. We will later observe that even slight changes in n
and t0 may affect the shape of the self-similar profiles (e.g. height). The scaling behaviour
for the mean temperature contains in the classical notation in (1.1) the temporal variation
of Θs(t), which essentially corresponds to the variation of the centreline at x2 = 0.
Comparing this with the symmetry-induced law in (3.14), we find

Θs ∝ (t + t0)−n, (4.3)

where n is expected to exhibit the same value as above, i.e. n = 0.55 for DNS1 and n =
0.56 for DNS2. This is also reflected using the symmetry-induced scalings (3.13) and (3.14)
in the integral invariant (2.4), i.e. the temperature scale should scale inversely with δθ .

To verify the evolution of this scale, we use the maximum magnitude of the mean scalar
Θ̄ on the centreline (Θ̄c) as the relevant scale, again as it is widely used in the literature,
and plot the temporal evolution of Θ̄c in figure 3. As can be seen, Θ̄c is nicely fitted with
(4.3) with the previously obtained t0 and n for DNS1 and DNS2. This again highlights that
the exponent n can be solely identified by the mean scalar half-width δθ measurements,
and no additional information is needed for the rest of the present analysis.

The self-similar solutions of the mean scalar profiles Θ̄(x2, t) or rather Θ̃(x̃2), based
the on symmetry result (3.14), are plotted in figure 4, with t0 = −1.70 and n = 0.55 for
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4

3

δθ 2

15 20 25 30 35 40 45

t

1

Figure 2. The temporal variation of δθ . The dashed lines are the DNS data (note that DNS1 data are shifted
up 1.5 times). The solid lines are power-law fits to the DNS data δθ ∝ (t + t0)n in (4.2). In DNS1, t0 = −1.70
and n = 0.55; in DNS2, t0 = −5 and n = 0.56. The range of DNS data up to t = 15 is strongly transient and is
not shown here.

1.0

0.8

0.6

0.4
Θ
−
c

0.2
15 20 25 30 35 40 45

t
Figure 3. The temporal variation of Θ̄c. The dashed lines are the DNS data (note that DNS1 data are shifted
up 2 times). The solid lines are power-law fits to the DNS data Θ̄c ∝ (t + t0)−n in (4.3). The respective n and
t0 may be taken from the caption of figure 2.

DNS1 (for t ≥ 22) and with t0 = −5 and n = 0.56 for DNS2 (for t ≥ 25). As can be seen,
there is an excellent agreement between Θ̃(x̃2) at different t for both DNS1 and DNS2.
It is also apparent that the self-similar solution for the mean scalar Θ̄(x2, t) based on
a symmetry analysis recovers the classical similarity solutions for this quantity where a
scalar scale such as Θ̄c is proportional to the denominator of (3.14) and a length scale such
as δθ is proportional to the denominator of (3.13). Therefore, interchangeably they can
be used for the self-similarity of Θ̄(x2, t) and also the higher moments (i.e. Θs = Θ̄c and
Lθ = δθ in (1.1)), as shown in figure 1(a). Additionally, it is apparent that the self-similarity
shapes for each set of DNS data are dependent on their own virtual origin and power-law
exponent, and can be expected to be different from one condition to another as previously
noted. We will expect similar differences in other profiles as well. We now contrast the
traditional self-similarity, i.e. (1.2) and (1.3), with the new symmetry-based self-similar
solutions (3.21), (3.31) and (3.32), comparing it also to the DNS data. As shown in § 3,
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Figure 4. The self-similar solution (3.14), compared with DNS1 (a) and DNS2 (b).
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Figure 5. The self-similar solution (3.31), compared with DNS1 (a) and DNS2 (b).

the second-order moment velocity–scalar vector H0
iΘ(x2, t) is to be scaled with (t + t0)−1

according to (3.16). To verify this solution, both DNS1 and DNS2 are fitted to (3.31)
and (3.32) (i = 1, 2 in (3.16)) and presented in figures 5 and 6, respectively. As can
be observed, the DNS data nicely collapse based on the new scaling laws. For this, no
parameter had to be adjusted and, to be consistent, even the virtual origin t0 = −1.7 or
t0 = −5 were taken from the previous fitting.

Then, we consider the self-similarity of H0
ΘΘ(x2, t) and this quantity was found to

scale with (t + t0)−m−n (3.15). The exponent n was previously given from a length-scale
analysis, i.e. n = 0.55 for DNS1; n = 0.56 for DNS2. Unlike the scalar–velocity
second-order moments, the power-law constant for H0

ΘΘ cannot be obtained using Lie
group analysis alone as m is a free exponent which is likely to be dependent on external
conditions (such as initial conditions or virtual origin). This exponent can, however, be
estimated by employing the numerical results if a self-similar solution such as derived in
(3.15) exists. As such, the DNS data are fitted to (3.21) (which is an extended version
of (3.15)) and presented in figure 7 for both DNS1 and DNS2. It is observed that the
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Figure 6. The self-similar solution (3.32), compared with DNS1 (a) and DNS2 (b).
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Figure 7. The self-similar solution (3.21), compared with DNS1 with t0 = −1.70 and m = 0.48 (a) and
compared with DNS2 with t0 = −5 and m = 0.50 (b).

DNS data nicely collapse based on the new scaling laws, with the parameters from fitting
the scaling laws to the data of m = 0.48 and m + n = 1.03 for DNS1 and m = 0.50
and m + n = 1.06 for DNS2. Additionally, the present solutions show that other than the
exponent n, the exponent m is also slightly affected by different DNS initial conditions,
while this leads to affect the shape of self-similar profiles, even though very small m are
not markedly departed in the present cases. With the latter it becomes apparent that the
statistical symmetry (3.7) plays a weak role for the present scaling laws, as may be taken
from relation (3.11). Using this relation, isolating for ass and dividing by ast we obtain
ass/ast = −(aΘ/ast) − asx/ast = m − n = −0.07 for DNS1, or m − n = −0.06 for DNS2.
Additionally, since m is slightly smaller than n, based on (3.21) and (3.26), this may suggest
that (even though not explicitly) the scalar variance θ2 decays more slowly than Θ̄2

c , and
subsequently, the relative intensity of the scalar fluctuations, defined as

Iθθ = θ21/2
/Θc, (4.4)
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Figure 8. The temporal variation of Iθθ as defined in (4.4). The dashed lines are the DNS data (note that DNS1
data are shifted up 1.5 times). The solid lines are power-law fits to the DNS data. In DNS1, Iθθ ∝ (t + t0)0.08;
in DNS2, Iθθ ∝ (t + t0)0.09.
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Figure 9. The self-similar solution (3.23), compared with DNS1 with t0 = −1.70 and m = 0.48.

slightly increases with time (see figure 8). Such an attitude on the relative intensity of
the scalar (or velocity fluctuations) has been observed in a large number previous works
concerning turbulent jet flows (e.g. Lockwood & Moneib 1980; Dahm & Dimotakis 1990;
Dowling & Dimotakis 1990; Lubbers et al. 2001; Mi et al. 2001; Quinn 2006; Sadeghi &
Pollard 2012; Sadeghi, Lavoie & Pollard 2015). When the relative intensity of the scalar
fluctuations Iθθ deviates from constancy, one should expect that (1.3) does not fully hold
over time or downstream of the jet, which is other evidence that classical scaling may not
lead to a complete self-similarity of the scalar fluctuations. The present approach, however,
proposed a novel similarity-based form of the second and higher moments, which has a
different structure compared with the classical scaling. Therefore, if m and n are not equal,
which may lead to unsatisfactory results based on (1.3) as shown in figure 1, the new
self-similar solutions for higher moments are still nicely validated.
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Figure 10. The self-similar solutions (3.34) (a) and (3.35) (b), compared with DNS1 with t0 = −1.70 and
n = 0.55.

Finally, we verify the new derived turbulent scaling laws for the higher moments of
the velocity–scalar and the pressure–scalar terms (3.17)–(3.19) or rather their extended
versions (3.23), (3.24) and (3.34), (3.35). The higher moments are indeed known as rather
complex parameters in turbulence where their self-similarity behaviour is of particular
interest. From (3.17)–(3.19) it is quite apparent that their self-similar behaviour should
be naturally obtained based on the exponents and parameters that have been already
identified from the second moments and length-scale evolution. For the sake of brevity,
therefore, only the results for DNS1 are presented for higher moments. We begin with the
self-similarity of H0

Θ2Θ(x2, t), where in (3.23) it was found to scale as (t + t0)−m−1. The
exponent m was previously given from the self-similarity of H0

ΘΘ(x2, t), i.e. m = 0.48 for
DNS1. Using this m, the DNS data are fitted to (3.23) and presented in figure 9. It can
be seen that the DNS data nicely collapse based on the new scaling laws, while using
the previously obtained parameters from fitting the scaling laws to the data. According
to (3.18), the third-order moment velocity–scalar vector H0

i2Θ(x2, t) should scale as
(t + t0)n−2, while again n is already known. This solution is verified by fitting DNS1 to
(3.34) and (3.35) (i = 1, 2 in (3.18)) and presented in figure 10. It is observed that the DNS
data and the new scaling laws for the third-order moment velocity–scalar vector show a

very good agreement. Finally, we consider the self-similarity of PΘ
0
(x2, t), where this

quantity was also found to scale with (t + t0)n−2. As such, we fit the DNS data to (3.24)
and present the self-similar solutions in figure 11. It is seen that the new scaling law for the
pressure–scalar term is also adequately verified using the DNS data. While for the higher
moments, we did not have to fit any data to get new exponents as the self-similarity only
depends on previously derived parameters from the lower-order moments. The very good
agreement between DNS and the derived scaling laws even for higher moments confirms
the accuracy of the present theoretical approach and the significance of a symmetry
method to connect scaling laws of different moments.

As a final note, we should highlight that while in this study we derived and validated
scaling laws for temporally evolving plane jets, we also performed additional analysis to
derive the equivalent scaling laws for spatially developing plane jets, presented in detail
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Figure 11. The self-similar solution (3.25), compared with DNS1.

in Appendix C. This will allow the new scaling laws to be well compared also with the
experimental or DNS data of spatially developing jet flows.

5. Summary and conclusions

We employ Lie group analysis to derive new turbulent scaling laws. This approach is
applied to the system of differential equations consisting of the mean thermal energy
transport equation and the TPC equations of the velocity and the temperature applied
to a temporally evolving plane turbulent jet. The TPC equations were derived based on
an instantaneous approach, which has led to a new linear-type of governing equations.
A set of different invariant (self-similar) solutions for the turbulent scalar quantities has
been constructed. This work showed that the scaling laws for the turbulent quantities are
due to both symmetries that are initiated from the Euler and thermal energy equations
and statistical symmetries that are implied by the correlation equations. Additionally, the
connection between the velocity and scalar scaling law is a consequence of the symmetry
breaking induced by the integral invariant of the mean scalar transport equation.

Two different sets of DNS for the turbulent plane jet flow were performed for the purpose
of validating the new scaling laws. The DNS data nicely supported the new scaling laws
derived based on the symmetry analysis, even for the higher moments, the similarity of
which has been of interest for decades. It was also shown that regardless of the imposed
DNS conditions, the group symmetry parameters were able to predict the self-similarity
and scaling law. But it was apparent that each self-similar profile would exhibit a unique
shape for each DNS, dependent on their own virtual origin and exponents. Additionally,
it was found that the statistical symmetry played a weak role for the present scaling laws.
Future work is recommended to fully investigate the possible influence of initial conditions
on the scaling laws in other turbulent flows.

Additional analysis was also performed to derive the scaling laws in a spatially evolving
plane turbulent jet. Like the temporally evolving plane turbulent jet, the symmetry
breaking induced by the integral invariant of the thermal energy and mean momentum
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equations played a crucial role to derive scaling laws. However, the conditions of the
symmetry breaking for the temporally and spatially evolving plane turbulent jets were
not quite alike since the integral invariant, which is symmetry breaking, and is a key result
for the subsequent scaling laws, is different in these flows.

Finally, it should be noted that it is now widely accepted that the scaling laws, including
the presently derived ones, are basically valid for a limited range of times and downstream
distances. Future experiments or DNS with much larger domain of measurements are
recommended to fully investigate the range of validity (in time or distance) of the present
scaling laws in turbulent jets.

Acknowledgements. We thank Paul Hollmann for parts of the LaTeX corrections.

Funding. H.S. acknowledges the financial support of the Alexander von Humboldt Foundation. M.O.
gratefully acknowledges partial financial support from the German Research Foundation (DFG) through
project OB 96/48-1. The authors gratefully acknowledge the Gauss Center for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time through the John von Neumann
Institute for Computing (NIC) on the GCS Supercomputer JUQUEEN at Jülich Supercomputing Center (grant
hfg02).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
H. Sadeghi https://orcid.org/0000-0003-4575-2807;
M. Oberlack https://orcid.org/0000-0002-5849-3755.

Appendix A. A brief introduction to Lie symmetries

A.1. The basics of symmetries
Here, we briefly review the essence of the concept of symmetries. Full details can be
found in previous publications by the present authors (e.g. Oberlack 2001; Oberlack et al.
2015; Sadeghi et al. 2018; Sadeghi & Oberlack 2020). The concept of symmetries may be
best approached from the question as to how to extend a given solution y = Ω(x) of the
differential equation

F (x, y, y(1), y(2), . . .) = 0 (A1)

to a new solution y∗ = Ω∗(x∗) by means of transformations. Here, x is the set of
independent variables, y is the set of dependent variables and y(n) refers to the set of all
nth-order derivatives of y with respect to x. By definition, y∗ = Ω∗(x∗) is a solution of the
original equation

F (x∗, y∗, y∗(1), y∗(2), . . .) = 0 (A2)

written in the ‘∗’ variables. In order to accomplish the above task of finding new solutions,
we have to find a transformation

x∗ = φ(x, y), y∗ = ψ(x, y) (A3a,b)

such that the following equivalence holds for (A3a,b):

F (x, y, y(1), y(2), . . .) = 0, ⇔ F (x∗, y∗, y∗(1), y∗(2), . . .) = 0, (A4)

i.e. the transformation (A3a,b) does not alter the functional form of the differential
equation (A1), and, hence, the transformation is also referred to as a form-invariant
transformation. Further, as an immediate result we can find that a symmetry maps
a solution to a new solution. For the present purpose, we are primarily interested
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in symmetries (A3a,b) which are continuous transformation groups (which allow for
the construction of analytic solutions). Such transformations depend on a continuous
parameter ε ∈ R of the form

x∗ = φ(x, y; ε), y∗ = ψ(x, y; ε). (A5a,b)

The easiest way to show the merit and power of symmetries is to use a very relevant
example as can be found, for example, in Bluman et al. (2010).

A.2. Infinitesimal transformations and invariant solutions
Following the determination of symmetries of a differential equation such as the Galilean
or scaling symmetries as one the first principles in fluid mechanics, it is possible to derive
invariant solutions as an exceptional capacity of symmetry analysis. They are usually
referred to as self-similar solutions in the fluid mechanics community, when scaling
symmetries are involved.

We now return to the generic symmetry transformations (A5a,b), which are presumed to
be admitted by (A1). In the context of symmetry, it is common to assume that the identity
transformation corresponds to ε = 0:

x∗ = φ(x, y; ε = 0) = x, y∗ = ψ(x, y; ε = 0) = y. (A6a,b)

In the above-mentioned context (restriction of the analysis to continuous transformation
groups), it is of considerable importance to introduce infinitesimal transformations, i.e. we
do a Taylor series expansion about ε = 0 of the transformation groups (A5a,b) to obtain

x∗ = φ(x, y; ε = 0) + ∂φ

∂ε

∣∣∣∣
ε=0

ε + O(ε2), y∗ = ψ(x, y; ε = 0) + ∂ψ

∂ε

∣∣∣∣
ε=0

ε + O(ε2).

(A7a,b)
The first term on each of the right-hand sides can be replaced by (A6a,b) and terms of
order O(ε) are formally replaced by ξ and η:

x∗ = x + ξ(x, y)ε + O(ε2), y∗ = y + η(x, y)ε + O(ε2), (A8a,b)

where ξ and η are called ‘infinitesimals’. The continuous transformation group (A5a,b)
and its infinitesimal form (A8a,b) are fully equivalent, which is a key implication of the
Lie group method. Once the infinitesimal of a transformation is known, the global form
can be determined using Lie’s first theorem:

dx∗(ε)
dε

= ξ(x∗(ε), y∗(ε)),
dy∗(ε)

dε
= η(x∗(ε), y∗(ε)), (A9a,b)

with initial conditions

ε = 0 : x∗(ε) = x and y∗(ε) = y. (A10a,b)

Now, similar to Sadeghi et al. (2018) and Sadeghi & Oberlack (2020), we define y =
Ω(x) as an invariant solution of a differential equation if:

(i) y −Ω(x) is an invariant function with respect to the operator X,

X[y −Ω(x)] = 0 with y = Ω(x), (A11)

where X is given by

X = ξi
∂

∂xi
+ ηj

∂

∂yj
; (A12)

(ii) y = Ω(x) is a solution of a differential equation (F = 0).
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Differentiating out (A11), we obtain the hyperbolic system

ξk(x,Ω)
∂Ωl

∂xk
= ηl(x,Ω) (A13)

to be solved by the method of characteristics, which finally ends up with the characteristic
condition

dx1

ξ1(x, y)
= dx2

ξ2(x, y)
= · · · = dxm

ξm(x, y)
= dy1

ηsx(x, y)
= dy2

ηst(x, y)
= · · · = dym

ηn(x, y)
,

(A14)
where Ω has been replaced by y. The latter is usually referred to an invariant surface
condition and forms the basic equation for invariant solutions and this also applies to the
present study.

Appendix B. Derivation of the TPC equation for the turbulent energy flux

This appendix presents a derivation of the equations for TPC of the instantaneous
velocity–scalar function (2.5). The starting points to derive these equations are the
Navier–Stokes equation at a point x(0) ≡ x and the energy equation at a second point
x(1) ≡ x + r, i.e.

∂Ui(x(0))

∂t
+ Uk(x(0))

∂Ui(x(0))

∂xk(0)

= −∂P(x(0))

∂xi(0)

+ ν
∂2Ui(x(0))

∂xk(0)∂xk(0)

(B1)

and
∂Θ(x(1))

∂t
+ Uk(x(1))

∂Θ(x(1))

∂xk(1)

= α
∂2Θ(x(1))

∂xk(1)∂xk(1)

, (B2)

where (0) and (1) respectively refer to the quantities at the first point x and the second point
x + r. After cross-wise multiplying (B1) and (B2) by Θ(x(1)) and Ui(x(0)) and adding, we
get

∂Ui(x(0))Θ(x(1))

∂t
+ ∂Ui(x(0))Uk(x(0))Θ(x(1))

∂xk(0)

+ ∂Ui(x(0))Uk(x(1))Θ(x(1))

∂xk(1)

= −∂P(x(0))Θ(x(1))

∂xi(0)

+ ν
∂2Ui(x(0))Θ(x(1))

∂xk(0)∂xk(0)

+ α
∂2Ui(x(0))Θ(x(1))

∂xk(1)∂xk(1)

, (B3)

where also continuity has been employed.
Considering x(0) ≡ x and x(1) ≡ x + r, the chain rules of differentiation read

∂

∂xk(0)

= ∂

∂xk
− ∂

∂rk
,

∂

∂xk(1)

= ∂

∂rk
(B4a,b)

and
∂2

∂xk(0)∂xk(0)

= ∂2

∂xk∂xk
+ 2

∂2

∂xk∂rk
+ ∂2

∂rk∂rk
,

∂2

∂xk(1)∂xk(1)

= ∂

∂rk∂rk
. (B5a,b)

Applying these transformations to (B3), and after carrying out an ensemble averaging and
employing the definitions

HiΘ = Ui(x, t)Θ(x + r, t), PΘ = P(x, t)Θ(x + r, t), (B6a,b)

H(ik)Θ = Ui(x, t)Uk(x, t)Θ(x + r, t), (B7)

Hi(Θk) = Ui(x, t)Uk(x + r, t)Θ(x + r, t), (B8)
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we obtain
∂HiΘ

∂t
+ ∂PΘ

∂xi
− ∂PΘ

∂ri
+ ∂T(ik)Θ

∂xk
− ∂H(ik)Θ

∂rk
+ ∂Hi(Θk)

∂rk

− ν

[
∂2TiΘ

∂x2
k

− 2
∂2HiΘ

∂xk∂rk
+ ∂2HiΘ

∂rk∂rk

]
− α

[
∂2HiΘ

∂rk∂rk

]
= 0, (B9)

which is shown as (2.5) in § 2. Using the same procedure, we can derive the TPC equation
(2.6) while considering the energy equation at the separate points x(0) and x(1).

Appendix C. Scaling laws for spatially developing plane jets

In this appendix, we present scaling laws of spatially evolving plane jets, equivalent to
the temporally evolving jet developed in the main body of the paper, i.e. (3.13)–(3.19), by
adjusting the corresponding symmetries and assuming that the jet evolves downstream, i.e.
in the x1 direction (instead of time for a temporally evolving jet). By adapting (A7a,b) and
(A8a,b), the symmetries T̄t2, T̄C1, T̄C2 and T̄s in (3.4)–(3.7) can be presented in terms of
infinitesimals ξ and η, in which the condition (3.8) in this case is specified as

dx1

asxx1 + ax
= dx2

asxx2
= dΘ̄

[aΘ + ass]Θ̄
= dH0

ΘΘ

[2aΘ + ass]H0
ΘΘ

= dH0
iΘ

[aΘ + (asx − ast) + ass]H0
iΘ

= dH0
Θ2Θ

[2aΘ + (asx − ast) + ass]H0
Θ2Θ

= dH0
i2Θ

[aΘ + 2(asx − ast) + ass]H0
i2Θ

= dPΘ
0

[aΘ + 2(asx − ast) + ass]PΘ
0 . (C1)

Similar to those obtained for temporally evolving jets, we require an integral invariant to
derive self-similar solutions and scaling laws. This can be obtained from conservation of
thermal energy (2.2), i.e.

I2 =
∫ ∞

−∞
U1Θ(x2, x1) dx2 = const. (C2)

(see e.g. Kotsovinos & List 1977). Like the scaling law obtained for temporally evolving
plane jets, the key step for constructing the scaling laws in the spatially developing plane
jet flow is that the integral invariant (C2) induces symmetry breaking as follows:

I2 =
∫ ∞

−∞
U1Θ

∗
dx∗

2 exp(−(aΘ + 2asx − ast + ass)) = const. (C3)

For the the above relation being invariant under any of the above given groups, the
following condition has to hold:

aΘ + 2asx − ast + ass = 0. (C4)

With the above relations, and replacing ass = −aΘ + ast − 2asx, (C1) now reduces to

dx1

asxx1 + ax
= dx2

asxx2
= dΘ̄

[ast − 2asx]Θ̄
= dH0

ΘΘ

[aΘ + ast − 2asx]H0
ΘΘ

= dH0
iΘ

[−asx]H0
iΘ

= dH0
Θ2Θ

[aΘ − asx]H0
Θ2Θ

= dH0
i2Θ

[−ast]H0
i2Θ

= dPΘ
0

[−ast]PΘ
0 . (C5)
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From (C5) we now construct the scaling laws for a spatially evolving plane turbulent jet.
Integration of (C5) leads to a set of invariants which are taken as the new independent and
dependent variables as follows:

x̃2 = x2

x1 + x0
, (C6)

Θ̃(x̃2) = Θ̄(x2, x1)

(x1 + x0)−2+p , (C7)

H̃0
ΘΘ(x̃2) = H0

ΘΘ(x2, x1)

(x1 + x0)−2+p+q , (C8)

H̃0
iΘ(x̃2) = H0

iΘ(x2, x1)

(x1 + x0)−1 , (C9)

H̃0
Θ2Θ(x̃2) = H0

Θ2Θ(x2, x1)

(x1 + x0)−1+q , (C10)

H̃0
i2Θ(x̃2) = H0

i2Θ(x2, x1)

(x1 + x0)−p , (C11)

P̃Θ
0
(x̃2) = PΘ

0
(x2, x1)

(x1 + x0)−p , (C12)

where
q = aΘ

asx
, p = ast

asx
, x0 = ax

asx
. (C13a–c)
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