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ABSTRACT
This paper has proposed a new robust hybrid nonlinear guidance law, which accounts for a
missile’s terminal line-of-sight (LOS) angle constraint, in order to intercept a non-cooperative
maneuvering target. The proposed hybrid nonlinear guidance strategy consists of two phases;
in the first phase, a guidance law named PIGL is derived from prescribed performance control
and the inertial delay control method. In PIGL, a revised prescribed performance function
is put forward, and a prescribed performance controller with unknown uncertainties is then
derived. The controller smoothly drives both the LOS angle and its rate to a predesigned small
region under unknown uncertainties that are induced by target’s maneuvers within a fixed
time. Then, a guidance law named SIGL is activated, which is derived from sliding mode
control and inertial delay control. By driving the desired sliding mode variable to zero within
a finite time, the SIGL guidance law is able to achieve high terminal interception accuracy.
The robustness of both of the proposed sub-guidance laws has been proved explicitly in this
paper. The hybrid guidance law has the advantage of a tunable convergence rate of the LOS
angle and the rate of the LOS angle at the beginning period, by which an excessive large
initial maneuver can be avoided. Meanwhile, the hybrid guidance law also has the advantage
of lower sensitivity to errors in the estimation of the time-to-go.
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NOMENCLATURE

T the target
M the missile
VM missile velocity

Received 13 May 2019; revised 11 August 2019; accepted 21 August 2019.

https://doi.org/10.1017/aer.2019.121 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.121
https://orcid.org/0000-0002-2282-6001
mailto:yan804@nwpu.edu.cn
https://doi.org/10.1017/aer.2019.121


430 THE AERONAUTICAL JOURNAL MARCH 2020

AM missile acceleration
γM flight path angle of the missile
VT target velocity
AT target acceleration
γT flight path angle of the target
R distance between the target and the missile
λ LOS angle between the target and the missile
ATR target’s acceleration along the LOS
ATλ target’s acceleration normal to the LOS
sx sliding mode variable
ρ prescribed performance variable
uρ virtual control command
td predetermined time constant
β weighting parameter
tgo estimated time-to-go

1.0 INTRODUCTION
Intercepting non-cooperative maneuvering targets is a very important task when construct-
ing an effective defense system. In decades past, many contributions have been made to
the design of advanced terminal homing guidance laws based on prescribed performance
control (PPC)(1), feedback linearization control(2), nonlinear H∞ control(3), proportional
navigation(4), and so on. These guidance laws accomplished highly accurate interception
by eliminating the zero-miss distance and reducing the line-of-sight (LOS) angle rate to
zero. Furthermore, interception probability of the missile being intercepted is enhanced by
imposing an additional terminal impact angle constraint in these guidance laws.

Although effective, the interception accuracy of these model-based guidance laws may
deteriorate where modeling errors and uncertainties exist. To solve this issue, sliding mode
control (SMC) was proposed(5–7) due to its ability to inhibit any modeling errors and uncer-
tainties(8). To improve the SMC’s performance, the disturbance observer(9,10) and the extended
state observer(11,12) have been generally applied to estimate the uncertainties. Although the
effectiveness has been verified, additional parameters have been introduced which were pre-
designed for the observer, and the estimated parameters often have large and abrupt changes.
Recently, the inertial delay control (IDC) method was proposed to assure the continuity of the
estimate, even without knowing the bounds of uncertainties in advance(6,13). However, these
SMC-based guidance laws usually generate large discontinuous commands in the homing
phase even if IDC is used(14). On the one hand, a portion of the guidance law with fixed con-
trol gains are proportional to the sliding mode variable, which is often initialized with a large
value at the begin period. The saltation of guidance commands cannot be avoided once the
guidance law is switched on. On the other hand, when an unexpected maneuver is performed
by a non-cooperative target, the observers will produce an abruptly changed output, which
induces discontinuous guidance commands. The sudden changes of the guidance commands
is undesirable due to the limitation of the control system, as well as the short flight time in the
terminal homing phase(15). Therefore, SMC-based guidance laws still need to be improved
in order to deal with the challenge of sensitivity to the initial conditions and the uncertainty
induced by the target’s maneuvers.

On consideration of the above content, a robust hybrid nonlinear guidance law has been pro-
posed in this paper. Firstly, a new time-varying continuous prescribed performance function
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(PPF) was constructed in the prescribed performance controller. Then, based on the new pro-
posed PPF, a novel PPC-type guidance law was derived to drive both the LOS angle and its
rate to a predesigned small region with unknown uncertainties. The new PPC-type guidance
law is able to mitigate extremely abrupt changes of the guidance commands, especially, at
the initial period of the homing phase. Secondly, in order to overcome the limitations of time-
dependence and the bounded convergence of the sliding mode variable, an improved SMC and
IDC-based guidance law has been developed to theoretically drive the desired sliding mode
variable to zero within a finite time. Accordingly, the proposed hybrid guidance law has the
properties of tunable transient performance of the guidance commands and is able to achieve
high interception accuracy.

2.0 PROBLEM STATES

2.1 Modeling
In the current work, Fig. 1 has shown a scenario where an interception missile is approaching
a maneuvering target. M denotes the missile while T denotes the target, the distance from M
to T is denoted by R. The line-of-sight (LOS) angle between M and T is λ, and VM denotes
the velocity of M while VT denotes the velocity of T Moreover, the accelerations of M and
T are denoted by AM and AT , respectively. Meanwhile, the flight path angles of M and T are
denoted by γM and γT , respectively.

Assuming the velocities of M and T are non-varying and have constant values, the M-T
relative kinematics of the engagement can be formulated from(14)

Ṙ = VT cos(γT − λ) − VM cos(γM − λ) < 0 . . . (1)

λ̇ = 1

R
[VT sin(γT − λ) − VM sin(γM − λ)] . . . (2)

γ̇M = AM

VM
. . . (3)

γ̇T = AT

VT
. . . (4)

From Eq. (1) and Eq. (2)(14), the derivative of Ṙ and λ̇ can be derived as follows:

R̈ = Rλ̇2 + ATR − AM sin(λ − γM ) . . . (5)

λ̈ = −2Ṙλ̇ − ATλ + AM cos(λ − γM )

R
. . . (6)

where ATR = AT sin(λ − γT ) represents the target’s acceleration along the LOS, and
ATλ = AT cos(λ − γT ) represents the target’s acceleration normal to the LOS. Here, a new
variable h is defined as:

h = AM + ATλ − AM cos(λ − γM ) . . . (7)

Consequently, the angle rate dynamics from Eq. (6) of the LOS can be rewritten as

λ̈ = −2Ṙλ̇ − h + AM

R
. . . (8)
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Figure 1. Schematic of terminal homing engagement.

On account of the non-cooperative nature of the target, ATλ is obviously unknown for the
interception missile in advance. Therefore, the variable h can be taken as a model uncertainty
and can be assumed to be bounded with the form as(14):∣∣∣∣d jh

dt j

∣∣∣∣ ≤ μ j = 0, 1, 2, ..., n . . . (9)

where μ is an unknown positive constant.

2.2 The linear sliding mode manifold for the state errors
Considering a system such as

ẍ = f (x, ẋ, t) + g(x, ẋ, t)u . . . (10)

In Eq. (10), f (x, ẋ, t) and g(x, ẋ, t) are known functions, u is the control input.
A linear sliding mode manifold can be defined as(16):

sx = ẋ + kx = 0, k > 0 . . . (11)

where sx is a sliding mode variable. If sx = 0, the system states x and ẋ will be asymptotically
driven to zero(16).

As stated in the literatures(17,18), the interception guidance law for a missile determines the
guidance commands needed to control the missile to capture the target with a predesigned
LOS angle λd if the value of R is lower than a constant value Rf . Accordingly, the LOS angle
error of the missile is yielded as eλ = λ − λd . Moreover, the angle error dynamics is yielded
by as per the literatures(17,18)

ëλ = λ̈ = −2Ṙλ̇ − h + AM

R
. . . (12)

According to Eq. (11), a sliding mode variable can be determined as:

se = ėλ + keλ . . . (13)
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and its derivative is yielded as

ṡe = ëλ + kėλ = −2Ṙλ̇ − h + AM

R
+ kėλ . . . (14)

3.0 DESIGNING THE TERMINAL HOMING GUIDANCE
LAW

3.1 PPC and IDC-based guidance law (PIGL)
Since the performance of guidance commands is coupled to the convergence rate of the slid-
ing mode variable, a prescribed performance controller with a revised PPF, which inherits the
initial time-varying properties of the sliding mode variable, can enhance the transient per-
formance of commands, such as, avoiding large sudden changes in the guidance commands.
Accordingly, an equivalent second-order system can be constructed as(19):

{
ρ̇ = uρ

u̇ρ = ujerk
. . . (15)

where ρ is the prescribed performance variable (PPV) and is treated as an equivalent system
state, uρ is the virtual control command and is also treated as another equivalent system state,
ujerk represents the virtual jerk. An optimal cost function can be defined as follows:

min J =
∫ td

0

(
(t − td/β)2 + 1

)−1
u2

jerk

/
2dt . . . (16)

where td is a predetermined time, and β is a weighting parameter used to adjust the
characteristics of uρ . The boundary conditions of the equivalent second-order system are
ρ|t=0 = s0, ρ|t=td = sd , uρ

∣∣
t=0

= uρ0, uρ

∣∣
t=td

= uρd , where s0 is the initial value of se, uρ0 is

the initial value of the approximate derivative of the sliding mode variable ˙̂se without consid-
ering the unknown uncertainty h, uρd is the predesigned virtual control command at t = td ,
and sd is a predetermined value of s at t = td .

The Hamilton function of the optimal problem can be written as:

H = λρuρ(t) + λuρ ujerk + (
(t − td/β)2 + 1

)−1
u2

jerk/2 . . . (17)

where λρ and λuρ are covariant variables.
As per the literature(20), the solutions are as follows:

λ̇ρ = −∂H

∂ρ
= 0 ⇒ λρ = a1 . . . (18)

λ̇uρ = − ∂H

∂uρ

= −λρ ⇒ λuρ = −a1t + a2 . . . (19)

∂H

∂ujerk
= (

(t − td/β)2 + 1
)−1

ujerk + λuρ = 0 ⇒ ujerk = − (
(t − td/β)2 + 1

)
λuρ . . . (20)
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Consequently, the general solutions for uρ and ρ are as follows:

uρ = a3 −
(

a2 + a2t2d
β2

)
t +

(
a1
2 + a2td

β
+ a2t2d

2β2

)
t2

−
(

a2
3 + 2a1td

3β

)
t3 + a1t4

4

. . . (21)

ρ = a4 + a3t − 1
2

(
a2 + a2t2d

β2

)
t2 + 1

3

(
a1
2 + a2td

β
+ a2t2d

2β2

)
t3

− 1
4

(
a2
3 + 2a1td

3β

)
t4 + a1t5

20

. . . (22)

Accordingly, with t increasing from 0 to td , the coefficients a1, a2, a3 and a4 are determined
by the boundary conditions of uρ and ρ.

A transformed error z can be defined as follows(1).

z = ln

(
se/ρ − Mmin

Mmax − se/ρ

)
. . . (23)

where Mmax > 2 and Mmin = 2 − Mmax. When s0 and sd are nonzero and they both have the
same sign, an appropriate value of β in Eq. (22) should be chosen to avoid ρ being zeroed in
Eq. (23). In reality, at the beginning of terminal homing phase, s0 always satisfies or could be
controlled as |s0| ≥ εs, where εs has a small positive value.

In Eq. (23), if z asymptotically converges to zero, se will also asymptotically converge to ρ.
The derivative of z is yielded as follows:

ż = C

ρ2
(ṡeρ − ρ̇se) . . . (24)

where

C = Mmax − Mmin

(se/ρ − Mmin)(Mmax − se/ρ)
. . . (25)

A Lyapunov function ν can be constructed as:

ν = 1

2
z2 . . . (26)

Substituting Eq. (12) and Eq. (14) into Eq. (24) yields ż as follows:

ż = C

ρ2

[(
−2Ṙλ̇ − h + AM

R
+ kėλ

)
ρ − ρ̇se

]
. . . (27)

AM can be defined as:

AM = −R
(

ueq1 + ρ

C
u2

)
. . . (28)

where

ueq1 = 2Ṙλ̇

R
+ ρ̇

ρ
se − kėλ . . . (29)
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and h1 can be defined as:

h1 = Ch

ρR
. . . (30)

Substituting Eqs. (28), (29) and (30) into Eq. (27), the revised term ż is yielded as follows:

ż = h1 + u2 . . . (31)

h1 is passed through a broadband filter Gf (s), such as(13):

Gf (s) = 1

τ s + 1
. . . (32)

where τ is a constant. The dynamics of the estimate of h1 is yielded as:

τ
˙̂h1 + ĥ1 = ż − u2 . . . (33)

If u2 is designed as

u2 = −kzz − ĥ1 . . . (34)

Then Substituting Eq. (34) into Eq. (33) yields the following:

τ
˙̂h1 = ż + kzz . . . (35)

Integrating both sides of Eq. (35) yields the following:

ĥ1 = ĥ1

∣∣∣
t=0

+ 1

τ

(
z − z|t=0 +

∫ t

0
kz zdt

)
. . . (36)

As ρ|t=0 = s0, as per Eq. (23), z|t=0 is zero. Accordingly, Eq. (36) can be revised as:

ĥ1 = ĥ1

∣∣∣
t=0

+ 1

τ

(
z +

∫ t

0
kz zdt

)
. . . (37)

By substituting Eqs. (29), (34) and (37) into Eq. (28), the PPC and IDC-based guidance
law are yielded as follows.

AM = −R

(
2Ṙλ̇

R
+ ρ̇

ρ
se − kėλ − ρ

C

(
kzz + ĥ1

∣∣∣
t=0

+ 1

τ

(
z +

∫ t

0
kz zdt

)))
. . . (38)

In order to avoid Am having large and discontinuous changes at the initial time, ĥ1

∣∣∣
t=0

is

necessary to be predesigned. Assuming AM |t=0− is known, then, AM |t=0+can be subsequently
determined from Eq. (38) as:

Am|t=0+ = Am|t=0− + R|t=0+ ĥ1

∣∣∣
t=0

+ ε|t=0+ . . . (39)
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where ε|t=0+ is a small value. Then, ĥ1

∣∣∣
t=0

should be zeroed; then, Eq. (38) should be

revised to:

AM = −R

(
2Ṙλ̇

R
+ ρ̇

ρ
se − kėλ − kzzρ

C
− ρ

Cτ

(
z +

∫ t

0
kz zdt

))
. . . (40)

Then, the proposed guidance law (PIGL) which integrates PPC and IDC can be obtained
from Eq. (40).

Next, the stability and robustness of the system from Eq. (24) has been analyzed by
applying PIGL from Eq. (38).

By substituting Eq. (38) into Eq. (27), the derivative of z can be obtained as:

ż = −kzz + (
h1 − ĥ1

)
. . . (41)

Then h̃1 = h1 − ĥ1 can be defined and the derivative of h̃1 is obtained as

˙̃h1 = −τ−1h̃1 + ḣ1 . . . (42)

A Lyapunov function ν
(
z, h̃1

)
can be constructed as

ν
(
z, h̃1

) = 1

2
z2 + 1

2
h̃2

1 . . . (43)

Substituting Eqs. (41) and (42) into the derivative of ν
(
z, h̃1

)
, ν̇

(
z, h̃1

)
yields the following:

ν̇
(
z, h̃1

) = −kzz2 + h̃1z − τ−1h̃2
1 + h̃1ḣ1

≤ − (kz − 1/2) z2 − (
τ−1 − 1

)
h̃2

1 + ḣ2
1

. . . (44)

From Eq. (9) and Eq. (30), it can be seen that ḣ2
1 is bounded. Therefore, the necessary

conditions which assure ν
(
z, h̃1

)
converges to a boundary region around zero are kz > 1/2

and 0 < τ < 1. z is substantially bounded at t = td , and se|t=td could converge to a small region
around sd

(21).

Remark 1. The proposed PIGL is only able to drive the desired sliding mode variable to a
predesigned small region around its predesigned value at the desired time notwithstanding
large sudden changes in guidance commands which can be avoided, and the dominated gain
kz in the guidance law can be loosely chosen.

3.2 SMC and IDC-based guidance law (SIGL)
PIGL is capable of controlling both the LOS angle and its rate to a small region without an
abrupt command altering it under the unknown uncertainty induced by the target’s maneuvers.
However, it is not able to accurately drive the LOS angle and LOS angle rate to the desired
value. Here, a SMC and IDC-based guidance law (SIGL) has been proposed to implement the
final convergence of both the LOS angle and its rate.

The auxiliary variable σ (13) can be defined as:

σ = se + zs, zs|t=t0 = − se|t=t0 . . . (45)
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Where, t0 is the initial time when SMC and IDC-based guidance law are applied and the
derivative of zs is as follows:

żs = ksse + ls (t − t0) sign(se) . . . (46)

where ks is a positive value and ls is a small positive value.
Consequently, by substituting Eqs. (12), (14) and (46) into the derivative of σ yields σ̇ as

follows.

σ̇ = −2Ṙλ̇ − h + AM

R
+ kėλ + ksse + ls (t − t0) sign(se) . . . (47)

AM can be defined as:

AM = −R(ueq + u1) . . . (48)

where

ueq = 2Ṙλ̇

R
− (kėλ + ksse + ls(t − t0)sign(se)) . . . (49)

and h1 can be defined as follows:

h2 = h

R
. . . (50)

Accordingly, substituting Eqs. (48), (49) and (50) into Eq. (47) yields h2 as follows.

h2 = σ̇ − u1 . . . (51)

If h2 is passed through a broadband filter Gf (s) from Eq. (32), then, the dynamics of the
estimate of h2 is yielded as

τ
˙̂h2 + ĥ2 = σ̇ − u1 . . . (52)

u1 can be designed as:

u1 = −kσ σ − ĥ2 . . . (53)

Substituting Eq. (53) into Eq. (52) yields ˙̂h2 as follows.

˙̂h2 = τ−1 (σ̇ + kσ σ ) . . . (54)

Integrating both sides of Eq. (54) yields ĥ2 as follows.

ĥ2 = ĥ2

∣∣∣
t=t0

+ 1

τ

(
σ +

∫ t

t0

kσ σdt

)
. . . (55)
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Accordingly, the SMC and IDC-based guidance law (SIGL) are yielded as follows

AM = −R

(
2Ṙλ̇

R − (kėλ + ksse + ls(t − t0)sign(se))

− (
kσ + 1

τ

)
σ − ĥ2

∣∣∣
t=t0

− 1
τ

∫ t

t0

kσ σdt

) . . . (56)

Next, the stability and robustness of the system from Eq. (45) by applying SIGL from Eq.
(56) has been analyzed.

Substituting Eq. (56) into Eq. (47), the derivative of σ is yielded as

σ̇ = −kσ σ + (
h2 − ĥ2

)
. . . (57)

Defining h̃2 = h2 − ĥ2 and the derivative of h̃2 can be written as:

˙̃h2 = −τ−1h̃2 + ḣ2 . . . (58)

A Lyapunov function ν
(
σ , h̃2

)
can be constructed as

ν
(
σ , h̃2

) = 1

2
σ 2 + 1

2
h̃2

2 . . . (59)

Substituting Eq. (57) and Eq. (58) into the derivative of ν
(
σ , h̃2

)
yields ν̇

(
σ , h̃2

)
as follows.

ν̇
(
σ , h̃2

) = −kσ σ 2 + h̃1σ − τ−1h̃2
2 + h̃2ḣ2

≤ − (kσ − 1/2) σ 2 − (
τ−1 − 1

)
h̃2

2 + ḣ2
2

. . . (60)

As per Eqs. (9) and (50), ḣ2
2 is bounded, the necessary conditions where ν

(
σ , h̃2

)
converges

to a boundary region are kσ > 1/2 and 0 < τ < 1.
Furthermore, a Lyapunov function νse can be defined as

νse = 1

2
s2

e . . . (61)

Substituting Eqs. (46) and (57) into the derivative of νse yields ν̇se as follows.

ν̇se = se

( − ksse − ls(t − t0)sign(se) − kσ σ + h̃2
)

≤ −2ksVse − √
2
(

ls(t − t0) − |kσ σ | −
∣∣∣h̃2

∣∣∣ )
V 1/2

se

. . . (62)

Since |σ | and
∣∣∣h̃2

∣∣∣ are bounded, |σ | ≤ |σ |max and
∣∣∣h̃2

∣∣∣ ≤
∣∣∣h̃2

∣∣∣
max

can be defined.

Theoretically, different values of ls exist, if tf > t ≥ ts > t0, ls (t − t0)|t>ts = υ + |σ |max +∣∣∣h̃2

∣∣∣
max

, where tf denotes the terminal guidance time. Accordingly, if tf > t ≥ ts > t0, then

Eq. (62) can be revised as follows:

ν̇se

∣∣
t>ts

≤ −2ksνse

∣∣
t>ts

− √
2υν1/2

se

∣∣∣
t>ts

. . . (63)
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Figure 2. Hybrid guidance law scheme.

As per the literature(22), νse will converge to zero in a finite time; consequently, se converges
to zero in a finite time. Furthermore, eλ and ėλ will asymptotically converge to zero.

Remark 2. The proposed SIGL with terminal LOS angle constraint, is able to guarantee the
desired sliding mode variable’s convergence to zero in a finite time and drive both the LOS
angle and the LOS angle rate to asymptotically converge. However, the guidance command is
still sensitive to the starting value of the sliding mode variable.

3.3 The hybrid strategy
Considering the strengths and weaknesses of both PIGL and SIGL, a hybrid guidance strategy
has been proposed here to capture a non-cooperative maneuvering target without knowing the
uncertainty h in advance. The guidance strategy for the terminal homing phase consists of
two phases.

In the first phase, the PIGL guidance law is adopted to control se in a small predesigned
range without large and abrupt changes of the guidance commands in a fixed time td , where
td = tgo0 − tswitch. tgo0 is the initial estimated time-to-go between the missile and the target,
and determined by tgo0 ≈ − R|t=0

/
Ṙ
∣∣
t=0

. tswitch is a predetermined time point, at which, the
PIGL is shifted to SIGL. In order to achieve smooth switching, uρd is established as −kssd .
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Table 1
Initial values of the missile and the target

Parameter Value Parameter Value Parameter Value

xM |t=0 0m yM |t=0 24000m xT |t=0 12000m
yT |t=0 12000m VM 400m/s VT 200m/s
γM |t=0 π/12rad γT |t=0 π rad AM |t=0 0m/s2

In the second phase, SIGL is applied to guarantee that se converges to zero in a finite time in
order to pursue high interception accuracy with reduced sensitivity to errors in the estimation
of the time-to-go.

From the analysis of both phases, the time-to-go estimation will not be used as per PIGL
in Eq. (40) and SIGL in Eq. (56) in the application process. The hybrid guidance law scheme
has been shown in Fig. 2.

4.0 SIMULATION
In this section, a situation of the terminal homing phase for defensive missile has been exam-
ined. The first part contains a comparison between the proposed robust hybrid nonlinear
guidance law and the other guidance laws. The second part includes a performance test of
the proposed robust hybrid nonlinear guidance law.

4.1 Comparison with the other guidance laws
The initial simulation conditions have been provided in Table 1. The maneuvering acceleration
profile of the target was assumed as AT = −4g sin(π t

/
4), where g = 9.8m/s2 denotes the

value of the acceleration du to gravity. The desired terminal LOS angle was λd = π/6rad, and
the upper bound of acceleration of interception missiles is assumed to be 20g. For comparison,
another two guidance laws were introduced. One was the continuous impact angle homing
guidance law in Ref.(5), named S Cont.-SMC for short. The other is a second order sliding
mode guidance law with uncertainty and disturbance estimator in Ref.(6), named Est.-SMC
for short.

Cont.-SMC is represented per the literature as(5):

AM = R

cos(λ − γM )

[
−2Ṙλ̇

R
+ q

ηp

∣∣λ̇∣∣2− p
q sgmf

(
λ̇
) + k1

R
s + k2

R
|s|ω sgmf (s)

]
. . . (64)

where

s = eλ + η |ėλ|
p
q sign(ėλ) . . . (65)

sgmf (s) = 2

(
1

1 + exp(−as)
− 1

2

)
, a > 0 . . . (66)

Est.-SMC is represented per the literature as(6):

AM = ue + us + ĥ . . . (67)
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where

ue = −(k3 + k4 + 2)Ṙλ̇ − (k4 + 1)k3

tgo
Ṙ (λ − λd) . . . (68)

us = −R {−b1 |κ|α1 sign(κ) + w} . . . (69)

ĥ = (Rκ + w2)/τm . . . (70)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ = sb + mz, mz|t=0 = − sb|t=0

sb = λ̇ + k3
λ−λd

tgo

ṁz = k4sb
tgo

ẇ = −b2 |κ|α2 sign(κ)

ẇ2 = −Ṙκ + us

. . . (71)

The parameters of the proposed Hybrid guidance law were assigned as k = 30,
ks = 1.0, ls = 1.0 × 10−3, Mmin = −2, Mmax = 4, kσ = kz = 2, τ = 0.05s, β = 0.01, tswitch = 8s,
se|t=td = s0/50.

The parameters for the Cont.-SMC guidance law were η = 1, p = 21, q = 19, k1 = 60,
k2 = 400, ω = 0.5, a = 100.

The values of the parameter for the Est.-SMC guidance law were k3 = 3, k4 = 1.5, b1 = 1,
b2 = 1, α1 = 0.7, α2 = 0.7, τm = 0.05s.

To avoid chattering in the guidance commands caused by the discontinuous signum
function, a saturation function sat(x) was used to address the problem as per the literature(14):

sat(x) =
{

sign(x), |x| > ϑ

x/ϑ , |x| ≤ ϑ
. . . (72)

Where, ϑ is a small positive constant and was selected as 0.001. The simulation step was 2ms,
and the simulation was terminated when R ≤ Rf = 20m.

The results of simulation have been shown in Fig. 3. The terminal guidance errors have
been listed in Table 2. Figure 3(a) has shown the trajectories of the missile during the terminal
homing interception phase. The curvatures of the trajectories at the beginning of the terminal
homing phase generated by Cont.-SMC and Est.-SMC were greater than that for the Hybrid
guidance law. Meanwhile, the commanded accelerations of the missile have been shown in
Fig. 2(b). The largest acceleration in the initial homing phase determined by Hybrid guidance
law was smaller than the other two guidance laws. Figure 3(c) and (d) indicate that the ter-
minal LOS angle and its rate finally converged rapidly to the desired value and around zero,
respectively. During the convergence phase, the LOS angle and the LOS angle rate yielded by
the Hybrid guidance law were not affected by target’s maneuvers, while those from the other
two guidance law were deeply affected by target’s maneuver. Compared with Cont.-SMC and
Est.-SMC, the values of the LOS angle and the LOS angle rate reached zero more quickly and
could stay in small regions around zero. In Fig. 3(e), the sliding mode variable determined by
the hybrid guidance law could be driven into the predesigned region at a fixed time and con-
verged to zero to pursue high terminal interception precision. Even though the time-to-go is
not used by the Hybrid guidance law, the terminal interception precision can be guaranteed as
the performance of the Est.-SMC guidance law.
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Figure 3. Comparison results from the Hybrid guidance law, the Cont.-SMC guidance law and the Est.-
SMC guidance law: a) interception trajectories, b) the accelerations the missile achieved, c) the LOS angle

rate, d) the LOS angle, e) the sliding mode variables.

4.2 Performance test
In order to verify the robustness and performance of the proposed guidance law, Monte Carlo
simulation with 100 cases was then carried out. The dispersion of the parameters for the
Monte Carlo simulation has been listed in Table 3. Moreover, the dominated control gain kz,
assumed to be loosely chosen in boundary regions, was dealt with as an uncertainty.

Figure 4(a) has shown the acceleration commands of the missile under different initial
states and for various values of the control gain kz. It also indicates that large abrupt changes
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Table 2
Terminal guidance errors

Guidance law Hybrid guidance Cont.-SMC Est.-SMC

law guidance law guidance law

Terminal LOS angle error
(◦)

0.0001 −0.5631 0.0007
Terminal LOS anglerate error

(◦
/s

) −0.0007 0.6112 −0.0088
Terminal zero-effort miss

∣∣ėr2/ṙ
∣∣, m 0.0001 0.0075 0.0001

Interception time, s 31.962 31.874 31.380

Table 3
Lower and upper bounds for the uncertainty

parameters

Parameters Lower value Upper value

VM(m/s) 380 420
VT(m/s) 180 220
γM|t=0 (rad) −π/18 −π/6
γt|t=0 (rad) 8π/9 π

kz 2 20
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Figure 4. Monte Carlo results with the Hybrid guidance law: (a) Acceleration the missile achieved,
(b) Scatter diagram of the terminal LOS angle error, (c) Scatter diagram of the terminal LOS angle rate

error, (d) Cumulative distribution of zero-effort miss.
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in the beginning period were eliminated notwithstanding the initial states, and that the control
gain kz varied. Therefore, it demonstrated one critical advantage where the yielded guidance
commands were insensitive to the initial state errors between the initial states and the desired
states as well as the uncertainty caused by the target’s maneuvers. Figure 4(b) and (c) have
depicted the scatter of the terminal LOS angle error and the LOS angle rate error of the
missile, they have demonstrated that the proposed guidance law has a good robustness in guar-
anteeing the convergent accuracy of the LOS angle and the LOS angle rate errors. Figure 4(d)
has depicted the zero-effort miss between the missile and the target; it reflects that fact that
the proposed robust hybrid nonlinear guidance law can guide the missile to achieve high inter-
ception accuracy. Subsequently, another advantage, where it loosely chooses the control gain
kz without acquiring the uncertainties in advance, has been demonstrated by this numerical
simulation.

5.0 CONCLUSIONS
This paper has proposed a new robust hybrid nonlinear guidance law to intercept a non-
cooperative maneuvering target, which possesses the advantages of two sub-guidance laws:
PIGL and SIGL. The proposed guidance law provides a tunable method to drive the LOS
angle and LOS angle rate-based sliding mode variable to a small predesigned region within a
fixed time, and it can eliminate large acceleration changes when the guidance law is activated
and target perform a significant maneuver. Accordingly, high terminal interception precision
can be assured notwithstanding that the time-to-go of the missile is not used by the hybrid
guidance law in the application process. Moreover, the robustness of both the proposed sub-
guidance laws has been proved explicitly.
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