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In this paper, we consider exponentiated location-scale model and obtain several ordering
results between extreme order statistics in various senses. Under majorization type partial
order-based conditions, the comparisons are established according to the usual stochas-
tic order, hazard rate order and reversed hazard rate order. Multiple-outlier models are
considered. When the number of components are equal, the results are obtained based
on the ageing faster order in terms of the hazard rate and likelihood ratio orders. For
unequal number of components, we develop comparisons according to the usual stochastic
order, hazard rate order, and likelihood ratio order. Numerical examples are considered
to illustrate the results.
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1. INTRODUCTION

Order statistics have received a great amount of attention from various authors. It plays an
important role in statistical theory and methodology. Let X1, . . . , Xn be n independent and
identically distributed observations taken from a population with cumulative distribution
function (CDF) FX and probability density function (PDF) fX . The ordered sample values
X1:n ≤ · · · ≤ Xn:n are called the order statistics. The order statistic Xn−k+1:n represents
the reliability of a k -out-of-n system. Thus, to study a k -out-of-n system, it is sufficient to
study (n − k + 1)th order statistic and vice versa. Note that k -out-of-n system reduces to
series and parallel systems for k = 1 and n, respectively. There are several applications of
extreme values in hydrology (floods and droughts), aeronautics (gust loads), oceanography
(waves and tides), material strength (weakest link theory), and meteorology (extremes of
temperature, pressure, wind velocity, and precipitation). Order statistics occur naturally
in life testing. Suppose n similar items are simultaneously placed on a life test. Then, the
life of the first to fail is the first-order statistic of the sample of size n from the life dis-
tribution, second to fail is the second-order statistic, and so on. For more details, please
refer to [1,13]. At the beginning, most of the studies focused mainly on the case when order
statistics are from independent and identically distributed random variables. The studies
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of order statistics from heterogeneous samples started in early 70s motivated by the issues
of robustness. It is worth pointing that heterogeneous samples arise in various practical
situations. For example, a complex engineering system is often constructed based on several
different types of electrical components. Thus, naturally, heterogeneous samples arise while
investigating the reliability of such system. Here, the samples represent the failure times of
electrical components, which can be collected from the experiments. Further, in insurance,
a total claim for the portfolio of an insurer may be consisted of different sub-claims. These
are of different distributions. Because of its usefulness, the topic of heterogenous samples
attracts researchers from different areas. As a result a wide variety of work has been com-
pleted in single-outlier models and multiple-outlier models on order statistics constructed
from heterogeneous samples.

There are many distributions for which comparisons can not be done based on the
standard measures such as mean and standard deviation. Thus, more informative methods
are required. Again, the distributions can be expressed by many functional forms. These
are survival function, hazard rate function, and reverse hazard rate function. Comparisons
based on these functional forms of the underlying distributions often establish partial orders,
which are called as stochastic orders. Stochastic orders have been used in several areas
of probability and statistics such as reliability theory, queueing theory, survival analysis,
and operations research. We refer to [38] for elaborate discussion on this topic. Stochastic
orderings and related inequalities are used in reliability theory for various aims. We present
few of these below.

• In reliability theory, it is always desirable to deduce probabilistic properties of a sys-
tem from available information regarding its structure. This is a difficult job to the
practitioners. Thus, to get approximations of the original system, easier systems are
required. This results in comparisons between stochastic performance processes. Use-
ful bounds for the characteristics of the original system are obtained by establishing
a stochastic order between these processes.

• Sometimes, it is also required to examine which modifications of a system result in
an improvement. A system is improved if one uses shorter repair times. Again, the
repair times are stochastic variables. Thus, stochastic ordering is needed to define
meaning of shorter.

In this direction, we refer to [7,11,18,19,25,35]. There is an extensive literature for the
use of stochastic orderings in reliability to compare locations of the lifetime, residual life-
time, or inactivity time of the systems. See, for instance, Khaledi and Shaked [24]. We also
see some other types of stochastic orderings for the measurement of variability and spread.
The use of these measures has become classical in insurance literature. In this direction, we
refer the readers to [14,15] and the references therein. Sometimes, we find its application
in statistical inference while studying the robustness of estimators of reliability parameters
of a statistical model when independent random observations are taken from heteroge-
neous distributions (see [37]). For more applications of the stochastic orderings, we refer
to [10,30,32].

Motivated by these, various authors have considered problems of stochastic compar-
isons of the lifetimes of parallel and series systems when their components are comprising
of independent and heterogeneous distributions. Few recent references in this direction are
[5,12,36,44]. However, there have been recent interest on studying stochastic comparisons
of extreme order statistics for various general statistical models. Khaledi et al. [22] stud-
ied conditions under which the series and parallel systems consisting of components with
lifetimes from scale family of distributions are ordered in terms of the hazard rate and
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reversed hazard rate orderings, respectively. Kochar and Torrado [27] revisited the problem
and obtained a stronger result than the result presented in [22] for the largest order statis-
tics. They established likelihood ratio ordering of the largest order statistics for general
scale model. Bashkar et al. [9] discussed stochastic comparisons of extreme order statistics
from independent heterogeneous exponentiated scale models. Barmalzan et al. [8] provided
stochastic comparison between the smallest claim amounts in the sense of the usual stochas-
tic and hazard rate orders. These are done using the concept of vector majorization and
related orders. Torrado [40] obtained various ordering results for the comparisons of two
extreme order statistics from scale models when one set of scale parameters majorizes the
other. Hazra et al. [20] obtained various stochastic comparisons of the maximum order
statistics from the location-scale family of distributions. Recently, Hazra et al. [21] consid-
ered stochastic comparisons of the minimum order statistics from the location-scale family
of distributions. Under certain conditions, they showed that the minimum order statis-
tic of one set of random variables dominates that of other set of random variables with
respect to various stochastic orders. We also refer to [3,16,17,39] for more results in this
direction.

Consider two sets of independent random samples drawn from heterogeneous exponen-
tiated location-scale family of distributions. Comparisons between the maximum and the
minimum order statistics arising from these sets have not been considered so far in the
literature. This motivates our study in this direction. The established results generalize and
strengthen some known results in the literature. Further, it is well-known that the life-
times of the series and parallel systems are described by the minimum and the maximum
order statistics. So, our investigation finds various relations among parameters for which
one parallel/series system dominates the other with respect to various stochastic orders. A
random variable X is said to follow the exponentiated location-scale model if its cumulative
distribution function (CDF) is given by

FX(x) ≡ FX(x;λ, θ, α) =
[
F

(
x − λ

θ

)]α

= Fα

(
x − λ

θ

)
, x > λ, (1.1)

where λ ∈ R, α > 0, θ > 0 and F is the baseline distribution function. Here, λ, θ, and
α are respectively known as the location, scale, and shape parameters. We write X ∼
ELS(λ, θ, α) if X has the distribution function given by (1.1). The probability density
function (PDF) of the exponentiated location-scale model with CDF (1.1) is denoted by
fX . Further, the hazard rate and reversed hazard rate functions of this model are given by
rX = fX/F̄X and r̃X = fX/FX , respectively, where F̄X = 1 − FX . The PDF, hazard rate,
and reversed hazard rate of a baseline distribution with CDF F are denoted by f, r∗ =
f/F̄ and r̃∗ = f/F, respectively. When α = 1, (1.1) reduces to the location-scale family of
distributions. Further, when (α, λ) = (1, 0) and (α, θ) = (1, 1), then (1.1) becomes scale and
location models, respectively.

The plan of this paper is described as follows. In the next section, we provide definitions
and preliminary results. Section 3 is devoted to obtain comparisons between the extreme
order statistics in terms of the usual stochastic order when sets of parameters are related
with the majorization-based orders. In Section 4, we obtain results in terms of the hazard
rate and reversed hazard rate orders. Multiple-outlier models are considered in Section 5,
where we establish various stochastic orders. In Section 6, some special cases of our main
results are added. Section 7 provides applications of the established results. Finally, in
Section 8, we include some concluding remarks.
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2. PRELIMINARY RESULTS AND NOTATIONS

In this section, we review some definitions and well-known notions of majorization concepts
and stochastic orders. We only focus on the nonnegative random variables. Throughout
the article, the terms “increasing” and “decreasing” are used in nonstrict sense. First, we
present definitions of various stochastic orders.

2.1. Stochastic orders

Assume that X and Y are two nonnegative random variables with PDFs fX and fY , CDFs
FX and FY , survival functions F̄X = 1 − FX and F̄Y = 1 − FY , hazard rates rX = fX/F̄X

and rY = fY /F̄Y , reversed hazard rates r̃X = fX/FX and r̃Y = fY /FY , respectively.

Definition 2.1: A random variable X is said to be smaller than Y in the

• usual stochastic order (denoted by X ≤st Y ) if F̄X(x) ≤ F̄Y (x) for all x.
• hazard rate order (denoted by X ≤hr Y ) if rX(x) ≥ rY (x) for all x.
• reversed hazard rate order (denoted by X ≤rh Y ) if r̃X(x) ≤ r̃Y (x) for all x.
• likelihood ratio order (denoted by X ≤lr Y ) if fY (x)/fX(x) is increasing in x.
• aging faster order in terms of hazard rate order (denoted by X ≤R−hrY) if

rX(x)/rY (x) is increasing in x for which the ratio is well defined, for all x.

For greater details on different stochastic orderings, we refer the reader to [38]. The
notion of majorization plays an important role in studying stochastic inequalities among
various order statistics. Below, we present a few majorization and related orders which will
be useful for the subsequent sections. We refer to [31] for detailed discussion on this topic.

2.2. Majorization and some related orders

Let A ⊂ R
n. Here R

n is an n-dimensional Euclidean space. Further, let x = (x1, . . . , xn) and
y = (y1, . . . , yn) be two points in A. Assume that x1:n ≤ . . . ≤ xn:n and y1:n ≤ . . . ≤ yn:n

denote the order coordinates of the vectors x and y, respectively.

Definition 2.2: A vector x is said to be

• majorized by another vector y, denoted by x �m y, if for each k = 1, . . . , n − 1, we
have

∑k
i=1 xi:n ≥ ∑k

i=1 yi:n and
∑n

i=1 xi:n =
∑n

i=1 yi:n.
• weakly submajorized by another vector y, denoted by x �w y, if for each k =

1, . . . , n, we have
∑n

i=k xi:n ≤ ∑n
i=k yi:n.

• weakly supermajorized by another vector y, denoted by x �w y, if for each k =
1, . . . , n, we have

∑k
i=1 xi:n ≥ ∑k

i=1 yi:n.

• p-larger than the vector y, denoted by x 	p y if
∏k

i=1 xi:n ≤ ∏k
i=1 yi:n for k =

1, . . . , n.
• reciprocally majorized by another vector y, denoted by x �rm y, if

∑k
i=1 x−1

i:n ≤∑k
i=1 y−1

i:n for all k = 1, . . . , n.

The implication chain is well-known: x
m	 y ⇒ x

w	 y ⇒ x
p

	 y ⇒ x
rm	 y. Next, we

present definition of the Schur-convex and Schur-concave functions.
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Definition 2.3: A function ξ : R
n → R is said to be Schur-convex (Schur-concave) on

R
n if

x
m	 y ⇒ ξ(x) ≥ (≤)ξ(y) for all x,y ∈ R

n.

Throughout the paper, we will use the following notations:

Notation 2.1: (i) D+ = {(x1, . . . , xn) : x1 ≥ x2 ≥ · · · ≥ xn > 0}, (ii) E+ = {(x1, . . . , xn) :
0 < x1 ≤ x2 ≤ . . . ≤ xn}.

Denote α = (α1, . . . , αn),β = (β1, . . . , βn), λ = (λ1, . . . , λn),μ = (μ1, . . . , μn), θ =
(θ1, . . . , θn), and δ = (δ1, . . . , δn). Next, we provide lemmas which are required to establish
the main results. The proofs follow after some simple algebraic derivations, hence omitted.
Note that the first part of the following lemma is already proved by Torrado [39].

Lemma 2.1: Let w1 : (0,∞) × (0, 1) → (0,∞) be defined as w1(α, t) = αtα/(1 − tα). Then,
(i) for each t ∈ (0, 1), w1(α, t) is decreasing with respect to α, (ii) for each α ∈ (0,∞),
w1(α, t) is increasing with respect to t.

Lemma 2.2: Let w2 : (0,∞) × (0, 1) → (0,∞) be defined as w2(α, t) = αtα ln t/(1 − tα).
Then, (i) for each t ∈ (0, 1), w2(α, t) is increasing with respect to α, (ii) for each α ∈ (0,∞),
w2(α, t) is decreasing with respect to t.

3. THE USUAL STOCHASTIC ORDER

Let two sets of n independent random variables be taken from heterogeneous exponentiated
location-scale family of distributions. This section deals with the comparisons for extreme
order statistics in terms of the usual stochastic ordering. For simplicity of the presentation
of the subsequent results, we first state the following assumption.

Assumption 3.1: Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of n independent random
variables such that Xi ∼ ELS(λi, θi, αi) and Yi ∼ ELS(μi, δi, βi), where λi, θi, αi, μi, δi, βi >
0, i = 1, . . . , n. For convenience, we denote X ∼ ELS(λ,θ,α) and Y ∼ ELS(μ, δ,β),
where X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn).

Under the above assumption, the distribution function of Xn:n and the survival function
of X1:n are respectively given by

FXn:n(x) =
n∏

i=1

Fαi

(
x − λi

θi

)
and F̄X1:n(x) =

n∏
i=1

[
1 − Fαi

(
x − λi

θi

)]
, (3.1)

where x > max{λi, i = 1, . . . , n}. We assume that λi’s are positive. Below, we provide
comparison results between the largest order statistics Xn:n and Yn:n. The proofs of the
results are presented in Appendix A. The first part shows that the largest order statistic
of one set of independent random variables dominate that of the other set when the set
of shape parameters of the first set weakly submajorized that of the second set. Second
part shows that the dominance relation gets reversed when the set of shape parameters
of the first set is weakly supermajorized by that of the second set. Third part establishes
dominance result similar to the first part when the set of reciprocal of shape parameters of
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the first set is weakly supermajorized by that of the second set. We assume same sets of
location and scale parameters.

Theorem 3.1: Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of n independent random
variables as in Assumption 3.1 with λi = μi and θi = δi, i = 1, . . . , n.

(i) Let α,β,λ,θ ∈ E+(D+). Then, α 	w β ⇒ Xn:n ≥st Yn:n.
(ii) Let α,β ∈ D+(E+) and λ,θ ∈ E+(D+). Then, α 	w β ⇒ Yn:n ≥st Xn:n.
(iii) Let α,β,λ,θ ∈ E+(D+). Then, α−1 	w β−1 ⇒ Xn:n ≥st Yn:n.

To illustrate first two parts of the above theorem, we present the following example.

Example 3.1: (i) Let (X1,X2,X3) be a vector of heterogeneous ELS(λi, θi, αi) with param-
eters vectors λ = (1, 1.5, 1.7), θ = (2, 2.1, 2.3) and α = (2, 4, 6). Let (Y1, Y2, Y3) be another
vector of heterogeneous ELS(λi, θi, βi) with β = (1, 3, 5). Consider a baseline distribution
with distribution function F (x) = 1 − e−x, x > 0. Evidently, (α1, α2, α3) 	w (β1, β2, β3)
and α,β,λ,θ ∈ E+. Thus, as an application of Theorem 3.1(i), we have X3:3 ≥st Y3:3.

(ii) Let us take two sets of random vectors (X1,X2,X3) and (Y1, Y2, Y3) as in
Example 3.1 such that α = (2, 2.5, 3), λ = μ = (0.3, 0.2, 0.1), β = (3, 3.5, 4), θ = δ =
(1.3, 1.2, 1.1). In this case, it is easy to see that α,β ∈ E+ and λ,θ ∈ D+. Further,
(α1, α2, α3) 	w (β1, β2, β3). Thus, from Theorem 3.1(ii), we have Y3:3 ≥st X3:3.

In the following theorem, we show that Xn:n is larger than Yn:n in the sense of the
usual stochastic ordering when a vector of reciprocal of scale parameters is p-larger than
that of another vector of the reciprocal of scale parameters with some additional conditions.
Similar results also hold under reciprocally majorized based conditions among the reciprocal
of scale parameters. We assume that two sets of random variables have the same sets of
location and shape parameters.

Theorem 3.2: Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of n independent random
variables as in Assumption 3.1 with λi = μi, αi = βi, i = 1, . . . , n and α,λ,θ, δ ∈
D+(E+).

(i) Let ur̃∗(u) be decreasing in u. Then, θ−1 	p δ−1 ⇒ Xn:n ≥st Yn:n.
(ii) Let u2r̃∗(u) be decreasing in u. Then, θ−1 	rm δ−1 ⇒ Xn:n ≥st Yn:n.

Remark 3.1: Note that if all the location and shape parameters are known and set to zero
and one, respectively, then the assumption made in Theorem 3.2(i) can be relaxed as shown
in Theorem 3.2 of Khaledi et al. [22].

Remark 3.2: Let α = β = (1, . . . , 1) and λ = μ. Then, Theorems 3.2(i) and 3.2(ii) respec-
tively reduce to Theorems 3(i) and 3(ii) of Hazra et al. [20].

An application of Theorem 3.2(i) is as follows.

Example 3.2: Consider two three-component parallel Systems A and B. Assume
(X1,X2,X3) and (Y1, Y2, Y3) are the component lifetimes of Systems A and B, respec-
tively. Let the random lifetimes of the components follow exponentiated location-scale
model with baseline distribution function F (x) = 1 − exp{1 − xα}, x ≥ 1, α > 0. This is
known as the lower truncated Weibull distribution. In this case, when α = 2, clearly, xr̃∗(x)
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is decreasing. Set (α1, α2, α3) = (1, 5, 7.1), (λ1, λ2, λ3) = (2, 5.2, 8.1), (θ1, θ2, θ3) = (3, 5, 6),
and (δ1, δ2, δ3) = (2, 4, 9). All the conditions of Theorem 3.2(i) are satisfied. Thus, as an
application of Theorem 3.2(i), we conclude that System A has better performance than
System B in the sense of the usual stochastic ordering.

Further, it may be of interest to examine the existence of the usual stochastic order
between Xn:n and Yn:n for two completely different sample sets with different sets of
parameters. In this regard, we have the following results.

Theorem 3.3: Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of n independent random
variables as in Assumption 3.1 Further, let α,β,θ, δ,λ,μ ∈ E+(D+). Then,

(i) θ−1 	p δ−1,α 	w β,λ 	w μ ⇒ Xn:n ≥st Yn:n, provided ur̃∗(u) is decreasing in u.
(ii) θ−1 	rm δ−1,α 	w β,λ 	w μ ⇒ Xn:n ≥st Yn:n, provided ur̃∗(u) and u2r̃∗(u) are

decreasing in u.

Remark 3.3: Let (α1, . . . , αn) = (1, . . . , 1) and (β1, . . . , βn) = (1, . . . , 1). Then, Theorems
3.3(i) and 3.3(ii) respectively reduce to Theorems 5(i) and 5(ii) in [20].

Next, we provide comparison results with respect to the usual stochastic ordering
between the smallest order statistics X1:n and Y1:n. We show that the smallest order statis-
tic of one set dominates that of other set when the set of shape parameters of the first set
weakly supermajorized that of the second set. Similar result is also shown when two sets of
shape parameters are related to p-larger order.

Theorem 3.4: Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of n independent random
variables as in Assumption 3.1 such that λi = μi and θi = δi, i = 1, . . . , n.

(i) Let α,β,λ,θ ∈ E+(D+). Then, α 	w β ⇒ Y1:n ≥st X1:n.
(ii) Let α,β,λ,θ ∈ E+. Then, α 	p β ⇒ Y1:n ≥st X1:n.

The following result deals with the comparison of the lifetimes of series systems in terms
of the usual stochastic order when two sets of reciprocal of scale parameters are related to
p-larger order and sub-weakly majorization order.

Theorem 3.5: Consider two sets of random variables {X1, . . . , Xn} and {Y1, . . . , Yn}
as described in Assumption 3.1. Assume λi = μi and αi = βi, i = 1, . . . , n. Further, let
α,λ,θ, δ ∈ D+(E+). Then,

(i) θ−1 	p δ−1 ⇒ X1:n ≥st Y1:n, provided ur̃∗(u) is decreasing in u.
(ii) θ−1 	w δ−1 ⇒ X1:n ≤st Y1:n, provided ur̃∗(u) is increasing in u.

Remark 3.4: Let u = (u1, . . . , un) and v = (v1, . . . , vn). Further, assume that u,v ∈ R
+
n .

Then, it is known that u 	w v ⇐ u 	m v ⇒ u 	w v ⇒ u 	p v ⇒ u 	rm v. Thus, under
the assumptions made as in Theorems 3.4(ii) and 3.5, the desired usual stochastic order
holds under the majorization-based conditions on the same sets of parameters.

Next, we establish the usual stochastic order between X1:n and Y1:n. This can be proved
after combining Theorems 3.4(i) and 3.5(ii).
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Theorem 3.6: Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of n independent ran-
dom variables as in Assumption 3.1. Further, let α,β,θ, δ,λ ∈ D+(E+) and λi = μi, i =
1, . . . , n. Then, θ−1 	w δ−1,α 	w β ⇒ X1:n ≤st Y1:n, provided ur̃∗(u) is increasing in u.

To illustrate the usefulness of Theorem 3.6, we consider the following example.

Example 3.3: Consider two Systems I and II each having three components connected in
series. Let the component lifetimes of System I be denoted by (X1,X2,X3) and that for
System II by (Y1, Y2, Y3). Further, assume that the random lifetimes of the components
have heterogeneous exponentiated location-scale models with baseline distribution F (x) =
(x/a)l, 0 < x < a and l > 0. Set (α1, α2, α3) = (0.3, 0.71, 0.91), (β1, β2, β3) = (0.51, 0.81, 1),
(θ1, θ2, θ3) = (0.2, 0.31, 0.4), and (δ1, δ2, δ3) = (0.3, 0.5, 0.6). Clearly, the assumptions are
satisfied. Thus, from Theorem 3.6, we can conclude that System II has better performance
than System I in the sense of the usual stochastic ordering.

Most of the results presented above can be used to get bounds of survival functions of a
parallel and a series systems. For example, Theorem 3.4 can be used to compute an upper
bound for the survival function of a series system consisting of independent heterogeneous
exponentiated location-scale components, in terms of the corresponding functions of a series
system comprising homogeneous exponentiated location-scale components. It is known that
(α1, . . . , αn) 	m (ᾱ, . . . , ᾱ), where ᾱ = n−1

∑n
i=1 αi. Further, let λi = μi = λ and θi = δi =

θ. Then, as an application of Theorem 3.4(i), for the baseline distribution function F (x) =
e−1/x, x > 0, one can derive the following upper bound of X1:n as

F̄X1:n(x) ≤
(
1 − e−θᾱ/(x−λ)

)n

, x > λ.

Remark 3.5: It is noted that the usual stochastic order implies cumulative residual entropy
order (see [42]). Thus the results developed in this section enable us to compare two parallel
and series systems with heterogeneous exponentiated location-scale components in the sense
of the cumulative residual entropy order.

Remark 3.6: Consider two electronic systems with random lifetimes X and Y. In this section,
we have obtained various results based on the usual stochastic order, say X ≤st Y . Now,
suppose that at time t > 0, both systems are observed to be working. Then, one might
conjecture that their residual lives would also be stochastically ordered. However, this is
not true in general. Please refer to [31,33] in this direction. Hence, a stronger concept than
the usual stochastic order is needed. Further, we assume that the systems have failed before
the inspection time t > 0. Now, if X ≤st Y , it is not necessarily true that the inactivity time
of X is stochastically larger than that of Y. To resolve this issue, the concept of reversed
hazard rate order is required. In the subsequent section, we consider comparison based on
these stronger ordering concepts.

4. HAZARD RATE AND REVERSED HAZARD RATE ORDERS

Here, we obtain comparison results for the extreme order statistics in terms of the hazard
rate and reversed hazard rate orderings. The proofs of the theorems of this section are pre-
sented in Appendix B . Note that for a set of n independent random variables {X1, . . . , Xn}
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with Xi ∼ ELS(λi, θi, αi), the hazard rate and reversed hazard rate functions of X1:n and
Xn:n are given by

r1:n(x) =
n∑

i=1

αi

θi
r̃∗

(
x − λi

θi

) [
Fαi(x−λi

θi
)

1 − Fαi(x−λi

θi
)

]
and r̃n:n(x) =

n∑
i=1

αi

θi
r̃∗

(
x − λi

θi

)
,

(4.1)

respectively. We denote s1:n(x) and s̃n:n(x) for the hazard rate and reversed hazard rate
functions of the smallest and the largest order statistics of the set of independent ran-
dom observations {Y1, . . . , Yn}. First, we consider comparisons between the maximum order
statistics. The following theorem shows that the largest order statistic of a set of indepen-
dent random observations is smaller or larger than that of another set in terms of the
reversed hazard rate ordering depending upon different sufficient conditions.

Theorem 4.1: Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors as
mentioned in Assumption 3.1. Also, let ur̃∗(u) be decreasing in u. Then, {α ≤ (≥)β, δ ≥
(≤)θ,μ ≥ (≤)λ} ⇒ Xn:n ≤rh (≥rh)Yn:n.

Remark 4.1: Let F (x) = 1 − e−x, x > 0 be the baseline distribution. Then, Theorem 4.1
generalizes Corollary 4.1 of Kundu et al. [29].

The first part of the following result states that the largest order statistic of one set
of independent observations dominates that of the other set when the vector of location
parameters of the second set is weakly submajorized by that of the first set. We assume
that two sets have the same sets of scale and shape parameters. Second part of the theorem
shows similar result for the same sets of location and shape parameters.

Theorem 4.2: Let X and Y be two random vectors as in Assumption 3.1.

(i) Let θi = δi, αi = βi, i = 1, . . . , n and α,λ,μ,θ ∈ E+ or D+. If u2r̃∗′(u) and r̃∗(u)
are respectively increasing and decreasing in u, then λ 	w μ ⇒ Xn:n ≥rh Yn:n.

(ii) Let λi = μi, αi = βi, i = 1, . . . , n and α ∈ D+ (or E+), λ, δ,θ ∈ E+ (or D+). If
ur̃∗(u) is convex in u> 0, then θ−1 	m δ−1 ⇒ Xn:n ≥rh Yn:n.

Remark 4.2: For α = (1, . . . , 1), Theorem 4.2(ii) reduces to Theorem 8(i) of Hazra et al.
[20].

Next result generalizes Theorem 8(iii) of Hazra et al. [20]. We assume that two sets of
independent random variables have the same sets of location and shape parameters, but
different sets of scale parameters.

Theorem 4.3: Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of n independent ran-
dom variables such that Xi ∼ ELS(μi, θi, αi) and Yi ∼ ELS(μi, δi, αi) with α,μ, δ,θ ∈
D+ (or E+).

(i) Then, θ−1 	p δ−1 ⇒ Xn:n ≥rh Yn:n if ur̃∗(u) and u[r̃∗(u) + ur̃∗
′
(u)] are decreasing

and increasing in u, respectively.
(ii) Then, θ−1 	rm δ−1 ⇒ Xn:n ≥rh Yn:n provided ur̃∗(u) is decreasing and u2r̃∗(u) is

convex in u.
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Remark 4.3: On using α = (1, . . . , 1), Theorem 4.3(i) reduces to Theorem 8(iii) of Hazra
et al. [20].

Note that Theorem 4.3(ii) can be thought of an extension of Theorem 8(iv) of Hazra
et al. [20]. They established similar result to Theorem 4.3(ii) for the location-scale family of
distributions with the same set of location parameters. Evidently, Theorem 4.3(ii) reduces
to Theorem 8(iv) of Hazra et al. [20] for α = (1, . . . , 1). Below, we obtain reversed hazard
rate ordering between the largest order statistics when the vector of reciprocal of scale
parameters of a set weakly supermajorized that of the other set. The proof is similar to
Theorem 8(ii) of Hazra et al. [20]. Thus, it is omitted.

Theorem 4.4: Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of n independent ran-
dom variables as in Assumption 3.1 with λi = μi, αi = βi, i = 1, . . . , n. Further, let α ∈
D+ (or E+), μ, δ,θ ∈ D+ (or E+). Then, θ−1 	w δ−1 ⇒ Xn:n ≥rh Yn:n provided ur̃∗(u) is
convex and decreasing in u.

Remark 4.4: For α = (1, . . . , 1), Theorem 4.4 reduces to Theorem 8(ii) of Hazra et al. [20].

In the first part of the following theorem, we consider that both sets of random variables
have the same set of scale and location parameters. The second part is a consequence of
Theorems 4.2(i) and 4.5(i). Thus, the proof is omitted. We assume the same set of scale
parameters for both sets of the random variables.

Theorem 4.5: Take two sets of independent random variables {X1, . . . , Xn} and
{Y1, . . . , Yn} as in Assumption 3.1.

(i) Let λi = μi and θi = δi, i = 1, . . . , n. Further, assume that α,β, δ,μ ∈ E+ (or D+).
Then, α 	w β ⇒ Xn:n ≥rh Yn:n provided, ur̃∗(u) is decreasing in u.

(ii) Let α,β,θ, δ,μ ∈ E+ or D+. Then, α 	w β and λ 	w μ imply Xn:n ≥rh Yn:n if
ur̃∗(u) and r̃∗(u) are decreasing, and u2r̃∗′(u) is increasing in u.

The following example illustrates Theorem 4.5(i).

Example 4.1: Let F (x) = (1 − exp{−x})β , x > 0, β > 0. In this case, ur̃∗(u) is decreas-
ing in u > 0 for any value of β. Let (X1,X2,X3) and (Y1, Y2, Y3) be the random lifetimes
of three components of System A and System B, respectively. Assume that the compo-
nents are connected parallel. Further, let the component lifetimes follow exponentiated
location-scale model with exponentiated exponential baseline distribution function. The val-
ues of the parameters are taken as (λ1, λ2, λ3) = (μ1, μ2, μ3) = (9.1, 9.2, 9.3), (θ1, θ2, θ3) =
(δ1, δ2, δ3) = (8.1, 8.3, 8.7), (α1, α2, α3) = (5.1, 6.1, 7.1), and (β1, β2, β3) = (2.1, 3.1, 4.1).
Thus, from Theorem 4.5(i), one can easily conclude that System A is better than System
B in the sense of the reversed hazard rate ordering.

Analogous to Theorem 3.3, here, we obtain reversed hazard rate ordering between Xn:n

and Yn:n for two completely different sample sets with different sets of parameters. The
proof of the first part follows after combining the results in Theorems 4.2(i), 4.3(ii), and
then with Theorem 4.5(i). The second part follows from Theorems 4.2(i), 4.3(i), and then
with Theorem 4.5(i).

Theorem 4.6: Let us take two sets of independent random variables {X1, . . . , Xn} and
{Y1, . . . , Yn} as in Assumption 3.1. Further, let α,β,λ,μ,θ, δ ∈ D+(E+). Then,
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(i) λ 	w μ,α 	w β,θ−1 	rm δ−1 ⇒ Xn:n ≥rh Yn:n, provided r̃∗(u) and ur̃∗(u) are
decreasing, u2r̃∗′(u) is increasing and u2r̃∗(u) is convex in u.

(ii) λ 	w μ,α 	w β,θ−1 	p δ−1 ⇒ Xn:n ≥rh Yn:n, provided r̃∗(u) and ur̃∗(u) are
decreasing, u2r̃∗′(u) and u[r̃∗(u) + ur̃∗′(u)] are increasing in u.

It can be shown that for any nonnegative random variables the statement “u2r̃∗′(u) is
increasing” and “ur̃∗(u) is convex” are equivalent. Using this result, in the following remark,
we show that Theorem 4.6 extends last two parts of [20, Thm. 10].

Remark 4.5: Let α = (1, . . . , 1) = β. Then, Theorems 4.6(i) and 4.6(ii) reduce to Theo-
rems 10(iv) and 10(iii), respectively in [20].

The following example shows an application of Theorem 4.6(i).

Example 4.2: Consider two parallel systems having three components each. Let
the lifetimes of the components of the first system be denoted by (X1,X2,X3)
and that of the second system be denoted by (Y1, Y2, Y3). Assume that the life-
times follow exponentiated location-scale models with baseline distribution func-
tion F (x) = 1 − exp{1 − xα}, x ≥ 1, α > 0. Let (λ1, λ2, λ3) = (5, 7, 9.1), (μ1, μ2, μ3) =
(4, 4.5, 6), (α1, α2, α3) = (5, 5.6, 7), (β1, β2, β3) = (3, 3.9, 4), (θ1, θ2, θ3) = (6.11, 6.51, 6.71),
and (δ1, δ2, δ3) = (3.15, 3.45, 3.65). Thus, clearly (λ1, λ2, λ3) 	w (μ1, μ2, μ3), (α1, α2, α3) 	w

(β1, β2, β3), and (θ−1
1 , θ−1

2 , θ−1
3 ) 	rm (δ−1

1 , δ−1
2 , δ−1

3 ). Further, for α = 2, assumptions on
r̃∗(u), ur̃∗(u), u2r̃∗′(u) and u2r̃∗(u) are satisfied. Thus, from Theorem 4.6(i), we say that
first system performs better than the second system in the sense of the reversed hazard rate
ordering.

Now, we consider comparison results for the minimum order statistics of two sets of n
independent observations. Take λ = μ = λ and θ = δ = θ. It is shown that the minimum
order statistic of one set of random variables is smaller than that of the other set if the set
of shape parameters of the second set is weakly supermajorized by that of the first set.

Theorem 4.7: Let X ∼ ELS(λ, θ,α) and Y ∼ ELS(λ, θ,β) with α,β ∈ D+. Then, α 	w

β ⇒ X1:n ≤hr Y1:n.

To illustrate Theorem 4.7, we provide the following example.

Example 4.3: Consider (X1,X2,X3) as a vector of heterogeneous ELS(1.2, 2,α) with
α = (3, 2.5, 2). Further, let (Y1, Y2, Y3) be another set of independent heterogeneous
ELS(1.2, 2,β) random variables with β = (4, 3.5, 3). Assume the baseline distribution as
F (x) = 1 − e−x, x > 0. It is easy to show that (3, 2.5, 2) 	w (4, 3.5, 3). Then, as an applica-
tion of Theorem 4.7, we get X1:3 ≤hr Y1:3, which can be verified using graphical plots. We
do not present the plots for brevity.

Theorem 4.7 can be used to compute a lower bound of a series system compris-
ing of independent heterogeneous exponentiated location-scale components, in terms of
the corresponding functions of a series system consisting of independent homogeneous
exponentiated location-scale components. Consider the baseline distribution function as
F (x) = 1 − e−x, x > 0. Because (α1, . . . , αn) 	m (ᾱ, . . . , ᾱ), where ᾱ = n−1

∑n
i=1 αi, the
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following lower bound for the hazard rate function of X1:n based on Theorem 4.7 can be
derived. It is given by

rX1:n(x) ≥ nᾱ

θ
e−(x−λ)/θ

(
1 − e−(x−λ)/θ

)ᾱ−1

1 − (
1 − e−(x−λ)/θ

)ᾱ , x > λ. (4.2)

5. MULTIPLE-OUTLIER MODELS

In real-life situations, we face systems where the components are from multiple-outlier
models. A multiple-outlier model is a collection of independent random variables (lifetimes)
X1, . . . , Xn such that Xi

st= X, i = 1, . . . , p and Xi
st= X∗, i = p + 1, . . . , n, where 1 ≤ p < n.

Here, the notation Xi
st= X means that the distributions of Xi and X are same. These mod-

els have been widely used in various fields of statistics, especially in studying robustness
of different estimators of parameters of some distributions. Readers may refer to [2] for
various theoretical properties of a multiple-outlier model with its applications in robustness
issues. Further, for some stochastic comparison results on this model, we refer the readers
to [6,41,43]. In the following theorem, we show that under some conditions, the majoriza-
tion order between the shape parameter vectors of exponentiated location-scale distributed
components of parallel system implies R-hr ordering. Note that the proofs of the results of
this section are provided in Appendix C .

Theorem 5.1: Assume two vectors of n independent nonnegative random variables X and
Y such that Xi ∼ ELS(λ, θ, α), i = 1, . . . , p, Xi ∼ ELS(λ∗, θ∗, α∗), i = p + 1, . . . , p + q (=
n) and Yi ∼ ELS(λ, θ, β), i = 1, . . . , p, Yi ∼ ELS(λ∗, θ∗, β∗), i = p + 1, . . . , p + q (= n). Let
(α, α∗), (β, β∗) ∈ E+ (or D+). Then,

(α, . . . , α︸ ︷︷ ︸
p

, α∗, . . . , α∗︸ ︷︷ ︸
q

) 	m (β, . . . , β︸ ︷︷ ︸
p

, β∗, . . . , β∗︸ ︷︷ ︸
q

) ⇒ Xn:n ≤R−hr Yn:n

if λ ≥ (≤)λ∗, θ ≥ (≤)θ∗, ur̃∗(u) is decreasing and ur̃∗′(u)/r̃∗(u) is increasing in u.

We obtain below sufficient conditions for the likelihood ratio order between the largest
order statistics.

Theorem 5.2: Consider two vectors of independent random variables as in Theorem 5.1
with (α, α∗), (β, β∗) ∈ D+. Then,

(α, . . . , α︸ ︷︷ ︸
p

, α∗, . . . , α∗︸ ︷︷ ︸
q

) 	m (β, . . . , β︸ ︷︷ ︸
p

, β∗, . . . , β∗︸ ︷︷ ︸
q

) ⇒ Xn:n ≤lr Yn:n

if λ = λ∗, θ ≤ θ∗ and ur̃∗(u) is decreasing and ur̃∗′(u)/r̃∗(u) is increasing in u.

We will now establish a result for the comparison of the smallest order statistics con-
structed from multiple-outlier exponentiated location-scale models. In particular, we obtain
likelihood ratio order between X1:n and Y1:n if the shape parameters are ordered according
to the majorization order.
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Theorem 5.3: Let us assume two vectors of n independent random observations X and Y
such that Xi ∼ ELS(λ, θ, α) and Yi ∼ ELS(λ, θ, β) for i = 1, . . . , p and Xi ∼ ELS(λ, θ, α∗)
and Yi ∼ ELS(λ, θ, β∗) for i = p + 1, . . . , p + q(= n), where (α, α∗), (β, β∗) ∈ D+. Then,

(α, . . . , α︸ ︷︷ ︸
p

, α∗, . . . , α∗︸ ︷︷ ︸
q

) 	m (β, . . . , β︸ ︷︷ ︸
p

, β∗, . . . , β∗︸ ︷︷ ︸
q

) ⇒ X1:n ≤lr Y1:n.

To illustrate Theorem 5.3, we consider the following example.

Example 5.1: Let F (x) = 1 − e−x, x > 0 be the baseline distribution of X. Further,
assume two vectors of three independent random variables (X1,X2,X3) and (Y1, Y2, Y3)
such that X1 ∼ ELS(λ, θ, α) and Y1 ∼ ELS(λ, θ, β); X2,X3 ∼ ELS(λ, θ, α∗) and Y2, Y3 ∼
ELS(λ, θ, β∗). Here, we assume that p = 1, q = 2, α = 5, α∗ = 1, β = 3, β∗ = 2, λ = 5, and
θ = 6. Further, it can be shown that (5, 1, 1) 	m (3, 2, 2). Hence, as an application of
Theorem 5.3, we obtain X1:3 ≤lr Y1:3.

Next, we consider multiple-outlier models, where Xi
st= X, i = 1, . . . , p and Xi

st=
Y, i = p + 1, . . . , p + q(= n) for a set of independent random variables X1, . . . , Xn.
Let Xn:n(p, q) and Xn∗:n∗(p∗, q∗) be the largest order statistics from the sets
(X1, . . . , Xp,Xp+1, . . . , Xp+q=n) and (X1, . . . , Xp∗ ,Xp∗+1, . . . , Xp∗+q∗=n∗), respectively
such that n �= n∗. Denote the distribution functions of X and Y as F1 and F2, respectively.
Then, from Arnold et al. [1], the distribution function of Xn:n(p, q) is given by

Fp,q(x) = [F1(x)]p[F2(x)]q, x > 0. (5.1)

Below, we obtain comparison results for the largest and the smallest order statistics in terms
of various stochastic orders. The first result is on the usual stochastic order.

Theorem 5.4: Let X1, . . . , Xp be a random sample of size p considered from a ran-
dom variable X with CDF Fα1((x − λ1)/θ1) and Xp+1, . . . , Xn be another independent
random sample of size q drawn from a random variable Y with CDF Fα2((x − λ2)/θ2),
where n= p+ q and 1 ≤ p ≤ q. Further, let 1 ≤ p∗ ≤ q∗, p∗ ≤ p ≤ q ≤ q∗, 0 < α2 ≤ α1,
0 < θ2 ≤ θ1, 0 < λ2 ≤ λ1, and n∗ = p∗ + q∗. Then, (p∗, q∗) 	w (p, q) ⇒ Xn∗:n∗(p∗, q∗) ≤st

Xn:n(p, q).

Next, we consider an example to illustrate the result stated in Theorem 5.4.

Example 5.2: Take (p∗, q∗) = (2, 7) and (p, q) = (5, 6). Further, set (α1, α2) = (2, 1.5),
(θ1, θ2) = (4, 3), and (λ1, λ2) = (4, 3.5). Here, p∗ ≤ p ≤ q ≤ q∗. It can be seen that
(p∗, q∗) 	w (p, q). Then, for the baseline distribution with distribution function F (x) =
1 − e−x, x > 0, we obtain X9:9(2, 7) ≤st X11:11(5, 6). This can be verified using graphical
plots, which have been omitted for the sake of conciseness.

Theorem 5.5: Let X1, . . . , Xp be a random sample of size p considered from a random
variable X with CDF Fα1((x − λ1)/θ1) and Xp+1, . . . , Xn be another independent ran-
dom sample of size q drawn from a random variable Y with CDF Fα2((x − λ2)/θ2), where
n= p+ q and 1 ≤ p ≤ q. Further, let 1 ≤ p∗ ≤ q∗, p∗ ≤ p ≤ q ≤ q∗, 0 < α2 ≤ α1, 0 < θ2 ≤
θ1, 0 < λ2 ≤ λ1, and n∗ = p∗ + q∗. Then, (p∗, q∗) 	w (p, q) ⇒ Xn∗:n∗(p∗, q∗) ≤rh Xn:n(p, q)
if ur̃∗(u) is decreasing in u.
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Next, we establish comparison results between the smallest order statistics for multiple-
outlier exponentiated location-scale models.

Theorem 5.6: Assume X1, . . . , Xp be the random sample of size p taken from a random
variable X with CDF Fα1((x − λ)/θ) and Xp+1, . . . , Xn be another independent random
sample of size q taken from a random variable Y with CDF Fα2((x − λ)/θ) such that 0 <
α1 ≤ α2, n = p + q, and 1 ≤ p ≤ q. Further, assume n∗ = p∗ + q∗ and 1 ≤ p∗ ≤ q∗, p∗ ≤
p ≤ q ≤ q∗. Then, (p∗, q∗) 	w (p, q) ⇒ X1:n∗(p∗, q∗) ≥hr X1:n(p, q).

Example 5.3: Set (p∗, q∗) = (2, 7) and (p, q) = (5, 6). Further, set (α1, α2) = (1, 2), λ = 1
and θ = 2. In this case, p∗ ≤ p ≤ q ≤ q∗ and (p∗, q∗) 	w (p, q). Then, for the baseline
distribution as in Example 5.2, we obtain X1:9(2, 7) ≥hr X1:11(5, 6).

6. SOME SPECIAL CASES

In this section, we discuss some special cases of the results established in the previous
sections.

6.1. Weibull distribution

Assume that the baseline distribution in (1.1) is the Weibull distribution with CDF
F (x) = 1 − exp{−√

x}, x > 0. Then, the corresponding cumulative distribution function
of the exponentiated location-scale model is FX(x) = (1 − exp{−√

(x − λ)/θ})α, x > λ.
We denote it by ELSw(λ, θ, α).

• Let {X1,X2,X3} and {Y1, Y2, Y3} be two sets of independent random vari-
ables such that Xi ∼ ELSw(λi, θi, αi) and Yi ∼ ELSw(μi, δi, βi), i = 1, . . . , n.
Let α = (1.5, 3.5, 6.5), β = (0.5, 2.5, 5.5), λ = (2.4, 4.4, 6.4), μ = (0.4, 3.4, 5.4), θ =
(5, 9.1, 10), and δ = (2, 3.1, 5). Clearly, α,β,λ,μ,θ, δ ∈ E+, α 	w β,λ 	w μ, and
θ−1 	p δ−1. Also ur̃∗(u) is decreasing in u. Thus, as an application of Theorem
3.3(i), we have X3:3 ≥st Y3:3.

• Consider two sets of independent random variables {X1,X2,X3} and {Y1, Y2, Y3}
such that Xi ∼ ELSw(μi, θi, αi) and Yi ∼ ELSw(μi, δi, αi), i = 1, . . . , n. Let μ =
(0.5, 0.91, 1), θ = (1.2, 1.5, 1.8), δ = (1, 1.01, 1.05), and α = (1.3, 1.6, 2.9). Clearly,
α,μ, δ,θ ∈ E+ and θ−1 	w δ−1. Further, ur̃∗(u) is convex and decreasing in u.
Then, from Theorem 4.4, we have X3:3 ≥rh Y3:3.

6.2. Log-normal distribution

Let the baseline distribution in the exponentiated location-scale model be the log-normal dis-
tribution. The CDF of the log-normal distribution is F (x) =

∫ x

0
(1/t

√
2π) exp{−(ln t)2/2}dt,

x > 0. We denote the exponentiated location-scale model with log-normal as the baseline
distribution by ELSln(λ, θ, α).

• Let {X1,X2,X3} and {Y1, Y2, Y3} be two sets of independent random observa-
tions with Xi ∼ ELSln(λi, θi, αi) and Yi ∼ ELSln(λi, θi, βi) for i = 1, . . . , n. Take
λ = (2, 2.5, 2.75),θ = (4, 4.9, 5),α = (2.3, 2.5, 6.5),β = (3, 3.5, 4.5). Clearly, α,β ∈
E+ and λ,θ ∈ E+. Further, ur̃∗(u) is decreasing with respect to u. It is also not
difficult to see that α 	w β holds. Thus, as an application of Theorem 4.5(i), we
obtain X3:3 ≥rh Y3:3.
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• We assume that {X1,X2,X3} and {Y1, Y2, Y3} are sets of independent random obser-
vations with Xi ∼ ELSln(λi, θi, αi) and Yi ∼ ELSln(λi, δi, αi) for i = 1, . . . , n. Let
α = (4.5, 5.1, 6.1), μ = (5.5, 6.1, 7.2), θ = (3.5, 6.5, 7.5), and δ = (2.5, 5.5, 6.5). Note
that α, μ, θ, δ ∈ E+. Further, ur̃∗(u) is decreasing and θ−1 	p δ. As a result, from
Theorem 3.5(i), we conclude that X1:3 ≥st Y1:3.

6.3. Mixture distribution

In this subsection, we consider a mixture distribution as the baseline distribution. In
particular, we take the mixture of two Weibull distributions. Its distribution function is
F (x) = 1

3 (1 − e−x0.1
) + 2

3 (1 − e−x0.8
), x > 0. The exponentiated location-scale model with

this distribution as the baseline distribution is denoted by ELSmx(λ, θ, α).

• Let {X1,X2,X3} and {Y1, Y2, Y3} be two sets of independent random variables such
that Xi ∼ ELSmx(λi, θi, αi) and Yi ∼ ELSmx(λi, δi, αi), i = 1, . . . , n. Consider λ =
(5.5, 6.5, 7.9), δ = (4.5, 5.5, 6),α = (9.1, 9.5, 9.9), and θ = (8.2, 8.4, 8.9). It is easy to
see that these vectors belong to E+ and θ−1 	p δ−1. Further, ur̃∗(u) is decreasing
in u. Thus, an application of Theorem 3.2(i) confirms that X3:3 ≥st Y3:3.

• Let {X1,X2,X3} and {Y1, Y2, Y3} be the sets of independent random observa-
tions with Xi ∼ ELSmx(μi, θi, αi) and Yi ∼ ELSmx(μi, θi, βi), i = 1, . . . , n. Consider
α = (7.9, 4.6, 3.5), β = (9.9, 5.6, 4.5), μi = 0.25, and θi = 0.75. Clearly, α,β ∈ D+.
Further, α 	w β. Thus, as an application of Theorem 4.7, we get X1:3 ≤rh Y1:3.

7. APPLICATIONS IN AUCTION THEORY

There are many real-life applications of the ordering results. In this section, we discuss
applications of few of our established results in auction theory. Auction theory has been
an interest topic to various scientists because of its usefulness for sale of variety of items
or purchasing services. For more details in auction theory, we refer to [26]. In real world,
among all types of auctions, the sealed-bid private-value auction is of theoretical interest.
Also, this type of auction has been used extensively. In this case, bidders hand in their bids
to the auctioneer simultaneously and can neither observe their rivals’ bids nor revise their
own bids. The bidders having the highest bid wins. The bidders with the lowest bid wins in
the reverse auction. Consequently, the bidder pays his own bid in the sealed-bid first-price
auction (FPA). Few of our established results could be useful for some new light in the
auction theory.

Let the bids follow exponentiated location-scale model. Then, under some conditions,
Theorems 3.1(i), 3.1(iii), 3.2(i), and 3.2(ii) respectively conclude that the final price in
the FPA with more heterogeneous shape parameters (in the weakly submajorized order),
reciprocal of the shape parameters (in the weakly supermajorized order), reciprocal of the
scale parameters (in the p-larger and reciprocally majorized orders) is stochastically larger.
Theorems 4.2(i), 4.2(ii), and 4.5(i) respectively state that the final price in the FPA with
more heterogeneous location parameters (in the subweakly majorization order), reciprocal
of scale parameters (in the majorization order), and shape parameters (in the subweakly
majorization order) is larger in the sense of the reversed hazard rate ordering. Further,
let the bids be from multiple-outlier models. Then, Theorems 5.1 and 5.2 conclude that
the final price in the FPA with more heterogeneous shape parameters in the majorization
order is smaller in the sense of R-hr and likelihood ratio orderings, respectively. Similar
observations for the first price in the FPA can be pointed out from other theorems.
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8. CONCLUDING REMARKS

In this paper, we have considered two sets of n independent random lifetimes following
heterogeneous exponentiated location-scale models. Various results comparing the extreme
order statistics have been established. The comparisons are studied in terms of the usual
stochastic, hazard rate, and reversed hazard rate orders. Further, we have considered
multiple-outlier models. In this case, we have established some results comparing the
extreme order statistics constructed from two sets of n independent random lifetimes. The
comparisons are shown based on the usual stochastic order, ageing faster order in terms of
the hazard rate, and likelihood ratio orders. The sufficient conditions involve majorization,
weak majorization, reciprocal majorization, and p-larger orders. The results obtained in this
paper extend some of the existing results. From the established results, we get some useful
insights into the determination of a better reliability structure or system under different
criteria. Also, this study is useful for placing different components in a structure. Further,
these results are also useful in obtaining bounds of various characteristics of a reliability
system in terms of that of other system.

There are situations in practice, where the system components are dependent. Hence,
we get a set of statistically dependent observations instead of independent observations.
One can consider this dependence with the help of the concept of copula (see [34]). Thus,
one may study similar problem assuming dependence structure in the components.
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10. Bäuerle, N. & Bayraktar, E. (2014). A note on applications of stochastic ordering to control problems

in insurance and finance. Stochastics An International Journal of Probability and Stochastic Processes
86(2): 330–340.

https://doi.org/10.1017/S0269964819000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000408


ORDERING RESULTS ON EXTREMES OF EXPONENTIATED LOCATION-SCALE MODELS 347

11. Boland, P.J., El-Neweihi, E., & Proschan, F. (1994). Applications of the hazard rate ordering in

reliability and order statistics. Journal of Applied Probability 31(1): 180–192.
12. Chowdhury, S. & Kundu, A. (2017). Stochastic comparison of parallel systems with log-Lindley

distributed components. Operations Research Letters 45(3): 199–205.
13. David, H.A. & Nagaraja, H.N. (2004). Order statistics. Encyclopedia of Statistical Sciences 10: 29–43.
14. Denuit, M. & Lefevre, C. (1997). Some new classes of stochastic order relations among arithmetic

random variables, with applications in actuarial sciences. Insurance: Mathematics and Economics 20(3):
197–213.

15. Denuit, M. & Vermandele, C. (1999). Lorenz and excess wealth orders, with applications in reinsurance
theory. Scandinavian Actuarial Journal 1999(2): 170–185.

16. Dolati, A., Towhidi, M., & Shekari, M. (2011). Stochastic and dependence comparisons between extreme
order statistics in the case of proportional reversed hazard model. Journal of the Iranian Statistical
Society 10(1): 29–43.

17. Fang, L. & Yang, F. (2015). Usual multivariate stochastic order on the proportional reversed hazard
rates model. Chineese Journal of Applied Probability and Statistics 31: 539–546.

18. Finkelstein, M. (2008). Failure rate modelling for reliability and risk. Springer Science & Business
Media. London: Springer.

19. Finkelstein, M. & Cha, J.H. (2013). Stochastic modeling for reliability. In Hoang Pham (ed.), Shocks,
burn-in and heterogeneous populations. Springer Series in Reliability Engineering, London: Springer.

20. Hazra, N.K., Kuiti, M.R., Finkelstein, M., & Nanda, A.K. (2017). On stochastic comparisons of max-
imum order statistics from the location-scale family of distributions. Journal of Multivariate Analysis
160: 31–41.

21. Hazra, N.K., Kuiti, M.R., Finkelstein, M., & Nanda, A.K. (2018). On stochastic comparisons of
minimum order statistics from the location–scale family of distributions. Metrika 81(2): 105–123.

22. Khaledi, B.E., Farsinezhad, S., & Kochar, S.C. (2011). Stochastic comparisons of order statistics in the
scale model. Journal of Statistical Planning and Inference 141(1): 276–286.

23. Khaledi, B.E. & Kochar, S.C. (2002). Dispersive ordering among linear combinations of uniform random
variables. Journal of Statistical Planning and Inference 100(1): 13–21.

24. Khaledi, B.-E. & Shaked, M. (2007). Ordering conditional lifetimes of coherent systems. Journal of
Statistical Planning and Inference 137(4): 1173–1184.

25. Khalema, T. (2015). Stochastic ordering with applications to reliability theory. PhD thesis, University
of the Free State.

26. Klemperer, P. (2004). Auctions: Theory and practice. New York: Princeton University Press.
27. Kochar, S.C. & Torrado, N. (2015). On stochastic comparisons of largest order statistics in the scale

model. Communications in Statistics-Theory and Methods 44(19): 4132–4143.
28. Kundu, A. & Chowdhury, S. (2018). Ordering properties of sample minimum from Kumaraswamy-G

random variables. Statistics 52(1): 133–146.
29. Kundu, A., Chowdhury, S., Nanda, A.K., & Hazra, N.K. (2016). Some results on majorization and their

applications. Journal of Computational and Applied Mathematics 301: 161–177.
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APPENDIX A

Proof of Theorem 3.1(i): The partial derivative of (3.1) with respect to αi, i = 1, . . . , n is obtained
as

∂FXn:n(x)

∂αi
= ln

[
F

(
x − λi

θi

)]
FXn:n(x), (A.1)

which is at most zero. This implies that FXn:n(x) is decreasing with respect to αi for i = 1, . . . , n.
Moreover, under the assumption made, for 1 ≤ i ≤ j ≤ n, we have λi ≤ (≥)λj and θi ≤ (≥)θj .
Hence, (x − λi)/θi ≥ (≤)(x − λj)/θj . As a result, we obtain

∂FXn:n(x)

∂αi
− ∂FXn:n(x)

∂αj
≥ (≤)0, (A.2)

which ensures that ∂FXn:n(x)/∂αi is decreasing (increasing) in i = 1, . . . , n. From Lemma 3.3
(Lemma 3.1) of Kundu et al. [29], it can be shown that FXn:n(x) is Schur-concave with respect to
αi ∈ E+(D+), i = 1, . . . , n. Now, the rest of the proof follows from [31, Thm. A.8]. This completes
the proof. �

Proof of Theorem 3.1(ii): Based on the assumptions made, it is shown in the proof of Theorem
3.1(i) that the partial derivative of FXn:n(x) with respect to αi is decreasing (increasing) in i =
1, . . . , n. Thus, from Lemma 3.1 (Lemma 3.3) of Kundu et al. [29], FXn:n(x) is Schur-convex with
respect to αi ∈ D+(E+), i = 1, . . . , n. Using [31, Thm A.8], the proof readily follows. �

Proof of Theorem 3.1(iii): The distribution function of Xn:n can be expressed as the function
of ai, where ai = 1/αi, i = 1, . . . , n. We denote it by φ1(a; x, λ, θ), where a = (a1, . . . , an).
Differentiating φ1(a; x, λ, θ) with respect to ai partially, we obtain

∂φ1(a; x, λ, θ)

∂ai
= − 1

a2
i

ln

[
F

(
x − λi

θi

)]
φ1(a; x, λ, θ), (A.3)

which is nonnegative. Thus, φ1(a; x, λ, θ) is increasing with respect to ai, i = 1, . . . , n. Let 1 ≤ i ≤
j ≤ n. Then, under the assumptions on the parameters, it can be shown that ∂φ1/∂ai is increasing
(decreasing) in i = 1, . . . , n. Hence, the function φ1(a; x, λ, θ) is Schur-concave in ai ∈ D+(E+).
Now, the proof is completed from [31, Thm A.8]. �

Proof of Theorem 3.2(i): We write the distribution function of Xn:n as φ2(e
v; x, λ, α), where

vi = − ln θi, i = 1, . . . , n. The partial derivative of φ2(e
v; x, λ, α) with respect to vi is given by

∂φ2(e
v; x, λ, α)

∂vi
= αie

vi(x − λi)r̃
∗((x − λi)e

vi)φ2(e
v; x, λ, α), (A.4)

where r̃∗(u) = f(u)/F (u). Clearly, the expression in the right-hand side of (A.4) is nonnegative,
which implies that φ2(e

v; x, λ, α) is increasing in vi, i = 1, . . . , n. Under the assumed conditions,
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for 1 ≤ i ≤ j ≤ n, it can be shown that

∂φ2(e
v; x, λ, α)

∂vi
− ∂φ2(e

v; x, λ, α)

∂vj
≥ (≤)0. (A.5)

This implies that ∂φ2(e
v; x, λ, α)/∂vi is decreasing (increasing) in i = 1, . . . , n. Thus,

φ2(e
v; x, λ, α) is Schur-concave in vi ∈ E+(D+). Now, the rest of the proof is completed from

[23, Lem. 2.1]. �

Proof of Theorem 3.2(ii): The proof follows using similar arguments as in the proof of Theorem
3.2(i), and thus it is omitted. �

Proof of Theorem 3.4(i): Differentiating (3.1) with respect to αi partially, we get

∂F̄X1:n(x)

∂αi
= − ln

[
F

(
x − λi

θi

)]
Fαi(x−λi

θi
)

1 − Fαi(x−λi
θi

)
F̄X1:n(x), (A.6)

which is nonnegative. Thus, F̄X1:n(x) is increasing in αi, i = 1, . . . , n. Let 1 ≤ i ≤ j ≤ n. Then,
under the assumption made, (x − λi)/θi ≥ (≤)(x − λj)/θj . Thus, from [4, Lem. 2], we have

∂F̄X1:n(x)

∂αi
− ∂F̄X1:n(x)

∂αj
≥ (≤)0, (A.7)

which implies that ∂F̄X1:n(x)/∂αi is decreasing (increasing) in i = 1, . . . , n. So, from Lemma 3.3
(Lemma 3.1) of Kundu et al. [29], F̄X1:n(x) is Schur-concave with respect to αi ∈ E+(D+). Hence,
the desired result readily follows from [31, Thm A.8]. �

Proof of Theorem 3.4(ii): The distribution function of X1:n is

FX1:n(x) = 1 −
n∏

i=1

[
1 − e

−eaiH
(

x−λi
θi

)]
= φ4(e

a; x, λ, θ), (say), (A.8)

where H((x − λi)/θi) = − ln[F ((x − λi)/θi)] and ai = ln αi. Further, similar to Theorem 3.2(i), it
can be shown that the function φ4(e

a; x, λ, θ) is Schur-convex in ai ∈ E+, i = 1, . . . , n. The proof
now follows from [23, Lem. 2.1]. �

Proof of Theorem 3.5(i): The distribution function of X1:n is given by

FX1:n(x) = 1 −
n∏

i=1

[
1 − Fαi

(
(x − λi) evi

)]
= φ5(e

v; x, λ, α), say, (A.9)

where vi = − ln θi, i = 1, . . . , n. The rest of the proof follows similar to that of Theorem 3.4(ii).
Thus, it is omitted. We omit the proof of Part (ii) for brevity. �
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APPENDIX B

Proof of Theorem 4.1: Denote

l(x) =
FXn:n(x)

FYn:n(x)
=

∏n
i=1 Fαi

(
x−λi

θi

)
∏n

i=1 Fβi

(
x−μi

δi

) . (B.1)

To prove the required result, our goal is to show that l(x) is decreasing (increasing) in x. The
derivative of l(x) with respect to x is obtained as

l′(x) =
FXn:n(x)

FYn:n(x)

[
n∑

i=1

αi

θi
r̃∗

(
x − λi

θi

)
−

n∑
i=1

βi

δi
r̃∗

(
x − μi

δi

)]
. (B.2)

Now, l′(x) ≤ (≥)0 if
n∑

i=1

αi

θi
r̃∗

(
x − λi

θi

)
≤ (≥)

n∑
i=1

βi

δi
r̃∗

(
x − μi

δi

)
. (B.3)

Further, under the assumption made, we have (x − μi)/δi ≤ (≥)(x − λi)/θi, and hence(
x − λi

θi

)
r̃∗

(
x − λi

θi

)
≤ (≥)

(
x − μi

δi

)
r̃∗

(
x − μi

δi

)
since ur̃∗(u) is decreasing in u. Again, for i = 1, . . . , n, αi/(x − λi) ≤ (≥)(βi/(x − μi)). Combining
these, inequalities given in (B.3) follow. Thus, the proof is completed. �

Proof of Theorem 4.2(i): We prove this theorem when the parameter vectors belong to E+. The
proof is similar for the case when they belong to D+. Under the assumption made, it can be shown
that the reversed hazard rate function of Xn:n given by (4.1) is increasing in each λi, i = 1, . . . , n.
Further, for 1 ≤ i ≤ j ≤ n,

∂r̃n:n(x)

∂λi
− ∂r̃n:n(x)

∂λj
=

n∑
i=1

αi

θ2
i

r̃∗′
(

x − λi

θi

)
−

n∑
j=1

αj

θ2
j

r̃∗′
(

x − λj

θj

)
≥ 0 (B.4)

if

αi

(x − λi)2

(
x − λi

θi

)2

r̃∗′
(

x − λi

θi

)
≥ αj

(x − λj)2

(
x − λj

θj

)2

r̃∗′
(

x − λj

θj

)
. (B.5)

Note that when 1 ≤ i ≤ j ≤ n, we have αi ≤ αj , λi ≤ λj and θi ≤ θj . Thus, (x − λj)/θj ≤
(x − λi)/θi and 1/(x − λj)

2 ≥ 1/(x − λi)
2. Moreover, u2r̃∗′(u) is increasing in u > 0. Hence, after

some simplification, the inequality in (B.5) holds. This implies that r̃n:n(x) in (4.1) is Schur-convex
with respect to λ ∈ E+ (from Kundu et al. [29, Lem. 3.3]). Thus, the desired result follows from
[31, Thm. A.8]. �

Proof of Theorem 4.2(ii): The reversed hazard rate of Xn:n can be written as

r̃n:n(x) = φ6(p; x, μ, α), say, (B.6)

where pi = 1/θi, i = 1, . . . , n. Let 1 ≤ i ≤ j ≤ n. Then, under the assumption, αi ≥ αj , θi ≤ θj and
μi ≤ μj . This imply that pj(x − μj) ≤ pi(x − μi). Further, ur̃∗(u) is convex, that is, (d/du)(ur̃∗(u))
is increasing in u. Using this, it can be shown that for 1 ≤ i ≤ j ≤ n, ∂φ6/∂pj − ∂φ6/∂pi ≤ 0, that
is, ∂φ6/∂pi is decreasing in i = 1, . . . , n. Thus, from [29, Lem. 3.1], the rest of the proof follows.
The proof is similar when α ∈ E+ and μ, δ, θ ∈ D+. Thus, it is omitted. �
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Proof of Theorem 4.3(i): To prove the result, we denote the reversed hazard rate of Xn:n given
by (4.1) as φ7(e

p; x, μ, α), where pi = − ln θi, i = 1, . . . , n. Since ur̃∗(u) is decreasing in u > 0,
φ7(e

p; x, μ, α) is decreasing in each pi, i = 1, . . . , n. Now, for 1 ≤ i ≤ j ≤ n,

∂φ7(e
p; x, μ, α)

∂pi
− ∂φ7(e

p; x, μ, α)

∂pj
≤ (≥)0 (B.7)

if

αi

x − μi
[−u(r̃∗(u) + ur̃∗′(u))]u=(epi (x−μi)) ≥ (≤)

αj

x − μj
[−u(r̃∗(x) + xr̃∗′(x))]x=(epj (x−μj)).

(B.8)

Further, we have αi ≥ (≤)αj , θi ≥ (≤)θj and μi ≥ (≤)μj imply (x − μj)e
pj ≥ (≤)(x − μi)e

pi .

Moreover, it is assumed that u[r̃∗(u) + ur̃∗
′
(u)] is increasing in u. Hence, the inequality in (B.8)

holds. Now, by Lemma 3.3 (Lemma 3.1) of Kundu et al. [29], it can be shown that φ7(e
p; x, μ, α)

is Schur-convex with respect to p ∈ E+(D+). Now, the rest of the proof follows from [23, Lem. 2.1],
thus it is omitted. �

Proof of Theorem 4.3(ii): Here, we denote

r̃n:n(x) =
n∑

i=1

αi

θi
r̃∗

(
x − μi

θi

)
= φ8(θ

−1; x, μ, α), say. (B.9)

Under the assumption made, it can be shown that φ8(θ
−1; x, μ, α) is increasing in each θi, i =

1, . . . , n. Furthermore, analogous to the above proof, it can be shown that φ8(θ
−1; x, μ, α) is

Schur-convex in θ ∈ D+(or E+). Thus, the rest of the proof follows from [20, Lem. 2.1]. �

Proof of Theorem 4.5(i): Note that the reversed hazard rate of Xn:n, denoted by r̃n:n(x) is increas-
ing in each αi, i = 1, . . . , n. Further, under the assumption made, it can be shown that ∂r̃n:n(x)/∂αi

is increasing (decreasing) in i = 1, . . . , n. Thus, from Lemma 3.3 (Lemma 3.1) of Kundu et al. [29],
r̃n:n(x) is Schur-convex with respect to α ∈ E+(or D+). Now, the required result follows from [31,
Thm. A.8]. �

Proof of Theorem 4.7: The hazard rate of X1:n can be written as

r1:n(x) =
n∑

i=1

1

θ
φ(αi), (B.10)

where

φ(αi) = αi
Fαi−1(x−λ

θ )f(x−λ
θ )

1 − Fαi(x−λ
θ )

. (B.11)

Differentiating (B.11) with respect to αi we get

φ′(αi) =
Fαi−1(x−λ

θ )f(x−λ
θ )[1 − Fαi(x−λ

θ ) + αi ln F (x−λ
θ )]

(1 − Fαi(x−λ
θ ))2

, (B.12)

which is nonpositive by [28, Lem. 2.2]. Thus, φ(αi) is decreasing in αi. Further, differentiating
(B.12) with respect to αi, we obtain

φ′′(αi) =
Fαi−1(x−λ

θ )f(x−λ
θ ) ln F (x−λ

θ )

(1 − Fαi(x−λ
θ ))3

σ(αi), (B.13)
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where σ(αi) = 2 − 2Fαi((x − λ)/θ) + ln Fαi((x − λ)/θ) + αiF
αi((x − λ)/θ) ln F ((x − λi)/θi).

Moreover, differentiating σ(αi) with respect to αi we get

σ′(αi) = ln F

(
x − λi

θi

)
η(αi), (B.14)

where η(αi) = 1 − Fαi((x − λ)/θ) + αiF
αi((x − λ)/θ) ln F ((x − λ)/θ), which on differentiating

again with respect to αi, gives

η′(αi) = αiF
αi

(
x − λ

θ

) [
ln F

(
x − λ

θ

)]2

> 0. (B.15)

Further, η(αi) is increasing in αi with η(αi) = 0 at αi = 0. Thus, η(αi) > 0 for all αi > 0. So,
from Equation (B.14), σ(αi) is decreasing in αi with σ(αi) = 0 at αi = 0. Hence σ(αi) < 0, for
all αi > 0. Finally, from (B.13), φ′′(αi) ≥ 0, gives that φ(αi) is convex in αi, i = 1, . . . , n. Now,
from [29, Thm. 3.1(b)(ii)], r1:n(x) is Schur-convex in α ∈ D+. Further, it is shown that r1:n(x) is
decreasing in each αi. Hence, the proof follows from [31, Thm. A.8]. �

APPENDIX C

Proof of Theorem 5.1: To prove the required result, we need to show that

k1(x) =
r̃n:n(x)

s̃n:n(x)
=

∑n
i=1

αi
θi

r̃∗(x−λi
θi

)∑n
i=1

βi

θi
r̃∗(x−λi

θi
)

(C.1)

is increasing in x > 0, where λ1 = · · · = λp = λ, θ1 = · · · = θp = θ, λp+1 = · · · = λn = λ∗, θp+1 =
· · · = θn = θ∗, α1 = · · · = αp = α, αp+1 = · · · = αn = α∗, β1 = · · · = βp = β, βp+1 = · · · = βn =
β∗. On differentiating (C.1) with respect to x, we get

k′1(x)
sign
=

∑n
i=1

αi

θ2
i
r̃∗′(x−λi

θi
)∑n

i=1
αi
θi

r̃∗(x−λi
θi

)
−

∑n
i=1

βi

θ2
i
r̃∗′(x−λi

θi
)∑n

i=1
βi

θi
r̃∗(x−λi

θi
)

. (C.2)

Denote ξ1(α) =
∑n

i=1(αi/θ2
i )r̃∗′((x − λi)/θi)/

∑n
i=1(αi/θi)r̃

∗((x − λi)/θi). Differentiating this
function with respect to αi, i = 1, . . . , n we get

∂ξ1(α)

∂αi

sign
=

1

θ2
i

r̃∗′
(

x − λi

θi

) n∑
i=1

αi

θi
r̃∗

(
x − λi

θi

)
− 1

θi
r̃∗

(
x − λi

θi

) n∑
i=1

αi

θ2
i

r̃∗′
(

x − λi

θi

)
.

Now, consider the following cases:
Case-(i) For 1 ≤ i ≤ j ≤ p, let αi = αj = α and βi = βj = β. Then, ∂ξ1/∂αi − ∂ξ1/∂αj = 0.
Case-(ii) For p + 1 ≤ i ≤ j ≤ n, let αi = αj = α∗ and βi = βj = β∗. Then, ∂ξ1/∂αi −

∂ξ1/∂αj = 0.
Case-(iii) Let 1 ≤ i ≤ p and p + 1 ≤ j ≤ n. Further, let αi = α, αj = α∗, βi = β and βj = β∗.

In this case,

∂ξ1(α)

∂αi
− ∂ξ1(α)

∂αj
≤ (≥)0,

if (1/θ)r̃∗′((x − λ)/θ)/r̃∗((x − λ)/θ) ≤ (≥)(1/θ∗)r̃∗′((x − λ∗)/θ∗)/r̃∗((x − λ∗)/θ∗), which is ensured
from the assumptions made. Thus, from Lemma 3.3 (Lemma 3.1) of Kundu et al. [29], the desired
result follows. �
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Proof of Theorem 5.2: We prove the result when α, β ∈ D+. The reversed hazard rate of Xn:n can
be written as

r̃n:n(x) =
n∑

i=1

uig(αi), (C.3)

where g(αi) = αi and ui = (1/(x − μ))((x − μ)/θi)r̃
∗((x − μ)/θi). Now, under the assumption

made, it can be shown that ui is decreasing whenever θ ∈ E+. Further, since α ∈ D+, g(αi) is
decreasing. Also, g(αi) is convex. Thus, from Kundu et al. [29], it can be concluded that r̃n:n(x) is
Schur-convex in α ∈ D+. This implies Xn:n ≥rh Yn:n. Now, using [38, Thm. 1.C.4], the proof fol-
lows if r̃n:n(x)/s̃n:n(x) increases in x > 0. This readily follows from Theorem 5.1, which completes
the proof. �

Proof of Theorem 5.3: In order to prove the theorem, we have to show that

h(x) =
fX1:n(x)

fY1:n(x)

sign
=

∑n
i=1

αi
θ

F αi ( x−λ
θ )

1−F αi ( x−λ
θ )∑n

i=1
βi

θ
F βi ( x−λ

θ )

1−F βi ( x−λ
θ )

(C.4)

is decreasing in x > 0, where α1 = · · · = αp = α, αp+1 = · · · = αn = α∗, β1 = · · · = βp = β, βp+1 =
· · · = βn = β∗. Now, differentiating k(x) given by (C.4) with respect to x we get

h′(x)
sign
=

[
n∑

i=1

1

θ2

α2
i Fαi(x−λ

θ )

[1 − Fαi(x−λ
θ )]2

] [
n∑

i=1

βi

θ

Fβi(x−λ
θ )

1 − Fβi(x−λ
θ )

]

−
[

n∑
i=1

1

θ2

β2
i Fβi(x−λ

θ )

[1 − Fβi(x−λ
θ )]2

] [
n∑

i=1

αi

θ

Fαi(x−λ
θ )

1 − Fαi(x−λ
θ )

]
. (C.5)

Denote

ξ2(α; x, θ, λ) =

∑n
i=1

α2
i F αi ( x−λ

θ )

(1−F αi ( x−λ
θ ))2∑n

i=1
αiF αi ( x−λ

θ )

1−F αi ( x−λ
θ )

=

∑n
i=1 η1(αi; x)η2(αi; x)∑n

i=1 η1(αi; x)
, (C.6)

where η1(αi; x) = αiF
αi((x − λ)/θ)/(1 − Fαi((x − λ)/θ)) and η2(αi; x) = αi/(1 − Fαi((x − λ)/

θ)), i = 1, . . . , n. Now, differentiating (C.6) with respect to αi, i = 1, . . . , n, we obtain

∂ξ2(α)

∂αi

sign
= [η′1(αi; x)η2(αi; x) + η′2(αi; x)η1(αi; x)]

n∑
i=1

η1(αi; x)

− η′1(αi; x)

n∑
i=1

η1(αi; x)η2(αi; x). (C.7)

Now, consider the following cases:
Case-(i) For 1 ≤ i ≤ j ≤ p, let αi = αj = α and βi = βj = β. Then, ∂ξ2/∂αi − ∂ξ2/∂αj = 0.
Case-(ii) For p + 1 ≤ i ≤ j ≤ n, let αi = αj = α∗ and βi = βj = β∗. Then, ∂ξ2/∂αi −

∂ξ2/∂αj = 0.
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Case-(iii) Let 1 ≤ i ≤ p and p + 1 ≤ j ≤ n. Further, let αi = α, αj = α∗, βi = β and βj = β∗.
In this case,

∂ξ2(α)

∂αi
− ∂ξ2(α)

∂αj

sign
=

[
(pη1(α; x) + (n − p)η1(α

∗; x))

(
η1(α, x)

∂η2(α, x)

∂α
− η1(α

∗, x)
∂η2(α

∗, x)

∂α∗

)]
+

[
η1(α; x)η1(α

∗; x)(η2(α; x) − η2(α
∗, x))

(
(n − p)η3(α; x)

α
+

pη3(α
∗; x)

α∗

)]
, (C.8)

where η3(x) = 1 + α ln F (x)/(1 − Fα(x)). Now, using [28, Lem. 2.5], it can be shown that
η1(α, x)(∂η2(α, x)/∂α) < η1(α

∗, x)(∂η2(α
∗, x)/∂α∗). Thus, the first bracketed term of (C.8) is neg-

ative. Further, from [28, Lem. 2.4], ∂η1/∂α = η1η3/α, where η1 is decreasing in α > 0. Moreover,
η1 is positive valued function, implies that η3 is negative. Again, from [28, Lem. 2.3], η2(α) is
increasing in α and then η2(α) ≥ η2(α

∗) since α ≥ α∗. Thus, the second bracketed term is also
negative. Hence from (C.8), ∂ξ2(α)/∂αi − ∂ξ2(α)/∂αj ≤ 0. This completes the proof. �

Proof of Theorem 5.4: To prove the result, it is sufficient to show that

α1(p − p∗) ln

[
F

(
x − λ1

θ1

)]
≤ α2(q

∗ − q) ln

[
F

(
x − λ2

θ2

)]
. (C.9)

Now, (p∗, q∗) �w (p, q) ⇒ p − p∗ ≥ q∗ − q ⇒ α1(p − p∗) ln F ((x − λ2)/θ2) ≤ α2(q
∗ − q) ln F ((x −

λ2)/θ2) since α1 ≥ α2 > 0. Further, under the assumption made, (x − λ1)/θ1 ≤ (x − λ2)/θ2 ⇒
ln F ((x − λ1)/θ1) ≤ ln F ((x − λ2)/θ2) ⇒ α1(p − p∗) ln F ((x − λ1)/θ1) ≤ α1(p − p∗)
ln F ((x − λ2)/θ2). Thus, clearly, (C.9) holds. This completes the result. �

Proof of Theorem 5.5: The reversed hazard rate of Xn:n(p, q) is obtained as

r̃p,q(x) = p
α1

θ1
r̃∗

(
x − λ1

θ1

)
+ q

α2

θ2
r̃∗

(
x − λ2

θ2

)
. (C.10)

Analogously, the reversed hazard rate of Xn∗:n∗(p∗, q∗) is

r̃p∗,q∗(x) = p∗ α1

θ1
r̃∗

(
x − λ1

θ1

)
+ q∗ α2

θ2
r̃∗

(
x − λ2

θ2

)
. (C.11)

From (C.10) and (C.11), the theorem is proved if (α1/θ1)(p − p∗)r̃∗((x − λ1)/θ1) ≥ (α2/θ2)
(q∗ − q)r̃∗((x − λ2)/θ2), equivalently (α1/(x − λ1))(p − p∗)((x − λ1)/θ1)r̃

∗((x − λ1)/θ1) ≥ (α2/
(x − λ2))(q

∗ − q)((x − λ2)/θ2)r̃
∗((x − λ2)/θ2), which can be achieved after some calculations based

on the assumptions taken. Hence, the proof is completed. �

Proof of Theorem 5.6: The hazard rate of X1:n(p, q) is

rp,q(x) = p
α1

θ
r∗

(
x − λ

θ

)
Fα1(x−λ

θ )

1 − Fα1(x−λ
θ )

+ q
α2

θ
r∗

(
x − λ

θ

)
Fα2(x−λ

θ )

1 − Fα2(x−λ
θ )

. (C.12)

Similarly, the hazard rate of X1:n∗(p∗, q∗) is

rp∗,q∗(x) = p∗ α1

θ
r∗

(
x − λ

θ

)
Fα1(x−λ

θ )

1 − Fα1(x−λ
θ )

+ q∗ α2

θ
r∗

(
x − λ

θ

)
Fα2(x−λ

θ )

1 − Fα2(x−λ
θ )

. (C.13)

Thus, to prove the theorem, we need to show the following inequality:

α1(p − p∗)
Fα1(x−λ

θ )

1 − Fα1(x−λ
θ )

≥ α2(q
∗ − q)

Fα2(x−λ
θ )

1 − Fα2(x−λ
θ )

.

This can be shown using [28, Lem. 2.2] since (p∗, q∗) �w (p, q) and α1 ≤ α2. �
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