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ABSTRACT

This paper studies optimal risk redistribution between firms, such as banks or
insurance companies. The introduction of the Basel II regulation and the Swiss
Solvency Test has increased the use of risk measures to evaluate financial or
insurance risk. We consider the case where firms use a distortion risk measure
(also called dual utility) to evaluate risk. The paper first characterizes all Pareto
optimal redistributions. Thereafter, it characterizes all competitive equilibria.
It presents three conditions that are jointly sufficient for existence of a unique
equilibrium redistribution. This equilibrium’s redistribution and prices are pro-
vided in closed form via a representative agent.

KEYWORDS

Competitive equilibria, distortion risk measures, capital asset pricing model.

1. INTRODUCTION

In this paper, we study the question how to redistribute risk if firms use a dis-
tortion risk measure in order to evaluate risk. There is a relatively large litera-
ture that analyzes optimal redistributions of risk, based on the seminal work of
Borch (1962) and Wilson (1968). This paper mainly differs in terms of the ob-
jective of firms. In this paper, we study optimal risk sharing in the context of dis-
tortion risk measures instead of Von Neumann–Morgenstern expected utilities.
Distortion risk measures are used to define the preference relations of the firms.
De Giorgi and Post (2008) show that the capital asset pricing model (CAPM)
with distortion risk measures is empirically better-fitting US stock returns.

Distortion risk measures have applications in both actuarial science and
finance, being related both to the dual theory of risk (Yaari, 1987) and co-
herent risk measures (Artzner et al., 1999). Existing literature has investigated
the use of distortion risk measures as pricing mechanisms, e.g., Yaari (1987),
Chateauneuf et al. (1996), Wang (1996, 2000), and Wang et al. (1997). Yaari
(1987) characterizes dual utility by a modification of the independence axiom

Astin Bulletin 45(3), 703-728. doi: 10.1017/asb.2015.11 C© 2015 by Astin Bulletin. All rights reserved.

https://doi.org/10.1017/asb.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.11


704 TIM J. BOONEN

in expected utility theory. Instead of requiring independence with respect to
probability mixtures of risks, he requires independence with respect to direct
mixing the realizations of the risks. The evaluation of a risk is linear in the pay-
offs but non-linear in the probabilities. Distortion risk measures coincide with
dual utility if firms are risk averse. Distortion risk measures differ in two fun-
damental ways from expected utility theory. First, they reflect cash-equivalent
preferences, implying that cash payments do not affect risk preferences. For ex-
ample, in insurance this implies that the price of a risk is independent of the
initial wealth of the insurer. Second, distortion risk measures attempt to reflect
business practices where Expected Shortfall has been gaining practitioner inter-
est. In line with mean-variance preferences, we can formulate a risk preference
based on a distortion risk measure by any trade-off between the expectation and
a distortion risk measure. This leads to risk-reward preferences as in De Giorgi
and Post (2008).

The approach that we propose to optimally redistribute risk is twofold. First,
we analyze Pareto optimal redistributions, where all transfers such that all risk
is redistributed are allowed. Pareto optimality of redistributions based on risk
measures is first studied by Jouini et al. (2008) and it is applied to distortion
riskmeasures by Ludkovski andRüschendorf (2008) and Ludkovski andYoung
(2009). Ludkovski andRüschendorf (2008) focus on existence of Pareto optima.
Jouini et al. (2008) and Ludkovski and Young (2009) characterize all comono-
tone Pareto optimal risk redistributions as a finite sum of stop-loss contracts on
the aggregate risk. We introduce one condition that guarantees that all Pareto
optimal risk redistributions are comonotone. Moreover, we derive two condi-
tions that are jointly sufficient to ensure unique Pareto optimal risk redistribu-
tions up to side-payments.

Second,we analyze the problemof determining the size of the side-payments.
We focus on the competitive equilibria in a well-functioning market where firms
act as price-takers. Filipović andKupper (2008), Dana andLeVan (2010), Dana
(2011), and Flåm (2011) analyze existence of equilibria in markets where firms
use risk measures. Our focus is on uniqueness of the equilibrium. We provide
three jointly sufficient conditions to guarantee that there is a unique equilibrium
risk redistribution. The equilibrium prices are derived from the preferences of a
representative agent. From this unique equilibrium, we derive a corresponding
CAPM for distortion risk measures.

An important application of the problemdescribed in this paper is insurance.
Particularly for the trading of insurance products, tranching of the aggregate
risk is empirically observed. Typically, the idiosyncratic part of insurance risk
can be hedged via pooling. This creates incentives for insurance in the first place.
We show that only the systematic component of insurance risk is priced. Multi-
ple small firms can benefit from this by pooling their risk with other firms. The
systematic part of insurance risk cannot be hedged by pooling risk. However,
firms can still benefit from trading the systematic part of insurance risk with
other firms which face insurance risk in other insurance risk classes. The sys-
tematic risk can be shared and, therefore, firms can benefit by redistributing. For
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instance, the class of longevity risk is an application where there is potential to
redistribute risk since death benefit insurers and pension funds have negatively
correlated risk exposures (see e.g., Tsai et al. 2010; Wang et al. 2010).

This paper contributes to the literature on ambiguity. Distortion risk mea-
sures are derived via distorted probabilities. Distorted probabilities are typi-
cally used to include ambiguity (see e.g., Chateauneuf et al. 2000; Werner 2001;
Tsanakas and Christofides 2006; De Castro and Chateauneuf 2011; Strzalecki
and Werner 2011; Rigotti and Shannon 2012). With ambiguity, utility of firms
is often determined via distorted probabilities and a concave utility function
via a Choquet expected utility (Schmeidler, 1989). Chateauneuf et al. (2000),
Werner (2001), and Tsanakas and Christofides (2006) study Pareto optima and
equilibria, and assume that the expected utility function is strictly concave. We
extend these results by allowing for linear utility functions, i.e., firms are neutral
towards risk and averse towards ambiguity (also called Knightian uncertainty).
Ambiguity aversion is captured by concavity of the probability distortions (see
e.g., Yaari, 1987; Schmeidler, 1989). In this way, we get a more explicit solution.
De Castro and Chateuneuf (2011) analyze the trading volumes under ambigu-
ity. They show that more ambiguity leads to a smaller set of Pareto optimal
risk redistributions. If the utility functions are linear and firms use strictly con-
cave probability distortions, we derive in this paper that the set of Pareto op-
timal risk redistributions is independent of the degree of ambiguity aversion.
Strzalecki and Werner (2011) analyze comonotonicity of Pareto optimal risk
redistributions in the context of ambiguity. They show that all Pareto optimal
risk redistributions are comonotone if firms use strictly convex preferences. If
the utility function is linear, however, the preferences are not strictly convex.
Moreover, Rigotti and Shannon (2012) show existence of a finite number of
competitive equilibria with ambiguity. In our setting, existence is guaranteed as
shown by Filipović and Kupper (2008). Our specific setting allows us to analyze
uniqueness of the competitive equilibrium.

This paper is set out as follows. Section 2 introduces distortion risk mea-
sures and the risk redistribution problem. Section 3 analyzes Pareto optimal-
ity. We hereby focus explicitly on uniqueness of Pareto optimal risk redistribu-
tions. Section 4 derives the competitive equilibrium prices, as well as conditions
such that the corresponding equilibrium risk redistribution is unique. Finally,
Section 5 concludes this paper.

2. DISTORTION RISK MEASURES AND RISK REDISTRIBUTION PROBLEMS

2.1. Distortion risk measures

Distortion risk measures are developed from research on dual utility by Yaari
(1987).Moreover, they are developed as premium principle byWang (1995). Let
� a finite state space and P the physical probability measure on the power set
2�. Moreover, denote IR� as the space of all real valued stochastic variables on
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� that are realized at a well-defined reference time. These stochastic variables
are referred to as risks. A realization of a risk is interpreted as a future loss.

A risk measure is a function ρ : IR� → IR, i.e., a risk measure maps risks
into real numbers. For every risk Y ∈ IR�, we refer to ρ(Y) as the risk-adjusted
value of the liabilities. Wang (1995) defines a distortion risk measure by

ρ(Y) =
∫ ∞

0
gρ(1−FY(x)) dx+

∫ 0

−∞
(gρ(1−FY(x))−1) dx, for all Y ∈ IR�, (1)

for a continuous, concave and increasing distortion function gρ : [0, 1] → [0, 1]
with gρ(0) = 0 and gρ(1) = 1, where FY is the cumulative density function
(CDF) of risk Y. Here, convergence of the integrals is guaranteed by bounded-
ness of the risk Y.

We continue with an alternative representation of distortion risk measures
that we use throughout this paper. We get via direct calculations that

ρ(Y) = EQY [Y], for all Y ∈ IR�, (2)

where QY : 2� → (0, 1] is the additive mapping such that

QY({ω}) = gρ(P(Y ≥ Y({ω}))) − gρ(P(Y > Y({ω}))), for all ω ∈ �. (3)

Since gρ is increasing and such that gρ(0) = 0 and gρ(1) = 1, it holds that QY
is a probability measure for a given Y. A distortion risk measure evaluated in
risk Y is its expectation under the probability measure QY that assigns higher
probabilities to worst-case realizations of the risk Y.

Distortion risk measures are characterized as the risk measures that are co-
herent and satisfying the two properties Conditional State Independence and
Comonotonic Additivity (see Wang et al., 1997). Coherence is later formally in-
troduced by Artzner et al. (1999). A risk measure ρ : IR� → IR is called co-
herent if and only if it satisfies the four properties Sub-additivity,Monotonicity,
Positive Homogeneity, and Translation Invariance. The relevance of these prop-
erties is widely discussed by Artzner et al. (1999).

Artzner et al. (1999) show that a risk measure ρ is coherent if and only if
there exists a set of probability measures Q such that

ρ(Y) = sup
{
EQ[Y] : Q ∈ Q

}
, for all Y ∈ IR�. (4)

Denote P(�) as the set of all probability measures on the state space �. Based
on Denneberg (1994), it holds that a representation of the set Q in (4) for dis-
tortion risk measures is given by

Q(ρ) = {Q ∈ P(�) : Q(A) ≤ gρ(P(A)) for all A⊂ �} . (5)

In the sequel, we discuss the problem to redistribute risk where all firms use
distortion risk measures to evaluate risk.
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2.2. Risk redistribution problems

Throughout this paper, we fix the set of firms and the discrete state space such
that:

• the finite collection of firms is given by N = {1, . . . , n};
• the state space is finite and given by �. Without loss of generality, it is as-

sumed that |�| > 1;1

• the physical probability measure is given by P : 2� → (0, 1].2 This measure
is common knowledge.

Assuming a finite state space will help us later to solve and display the compet-
itive equilibria. Therefore, the reason to assume a finite state space is computa-
tional tractability. The techniques we use in this paper are similar to Heath and
Ku (2004) and De Giorgi and Post (2008), who also assume a finite state space.

Next, we define risk redistribution problems with distortion risk measures.

Definition 2.1. A risk redistribution problem with distortion risk measures is a
tuple (Xi , ρi )i∈N, where

• Xi ∈ IR� is the risk held by firm i ∈ N;
• ρi : IR� → IR is the distortion risk measure that firm i ∈ N is endowed with.
The corresponding distortion function is denoted by gi .3

The class of risk redistribution problems with distortion risk measures is denoted
byR.
In the sequel, we refer to a risk redistribution problem with distortion risk mea-
sures as a risk redistribution problem. There is common knowledge about the
risks and risk measures of all firms. Moreover, we define the aggregate risk as
X = ∑

i∈N Xi .
For a risk redistribution problem, we aim to redistribute the aggregate risk

X among firms. The objective of a firm is to minimize its risk-adjusted value
of the liabilities. We allow for all forms of risk redistributions, as long as the
aggregate risk is redistributed. The set of feasible risk redistributions of a risk
redistribution problem R ∈ R is given by

F(R) =
{

(X̃i )i∈N ∈ (IR�)N :
∑
i∈N

X̃i = X

}
. (6)

The set of risk redistributions in (6) allows for, e.g., proportional or stop-loss
contracts on the aggregate risk X.

Notation: In the following two sections, we use the following notation. Without
loss of generality, we order the state space � = {ω1, . . . , ωp} such that

X(ω1) ≥ · · · ≥ X(ωp). (7)
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Moreover, we define the set�k = {ω1, . . . , ωk} for all k ∈ {1, . . . , p−1},�0 = ∅,
and the risk eA ∈ IR� for A⊆ � is given by

eA(ω) =
{
1 if ω ∈ A,

0 otherwise, (8)

for all ω ∈ �.

3. PARETO OPTIMALITY

3.1. Definition and characterization

In this section, we summarize two results in the literature that we need in this pa-
per. Tsanakas and Christofides (2006), Acciaio (2007), Kiesel and Rüschendorf
(2007, 2010), Burgert and Rüschendorf (2008), Filipović and Svindland (2008),
Jouini et al. (2008), Kaina and Rüschendorf (2009), and Ludkovski and Young
(2009) all analyze existence of Pareto optimal risk redistributions in settings
where risk is measured by a risk measure. A risk redistribution is called Pareto
optimal if there does not exist another feasible redistribution that is weakly bet-
ter for all firms, and strictly better for at least one firm. The set of Pareto optimal
risk redistributions of a risk redistribution problem R ∈ R is given by

PO(R) = {
(X̃i )i∈N ∈ F(R) : �(X̂i )i∈N ∈ F(R) s.t. (ρi (X̂i ))i∈N � (ρi (X̃i ))i∈N

}
.

(9)

Similar to Borch (1962) where firms use expected utilities, the set PO(R) only
depends on the risks Xi , i ∈ N, via their sum X.

Next, we introduce side-payments. These are used to characterize Pareto op-
timal risk redistributions. A risk Y ∈ IR� is a side-payment if there exists a
constant c ∈ IR such that Y = c · e� (i.e., the risk Y is a degenerated stochas-
tic variable). For all R ∈ R, it holds that (X̃i )i∈N ∈ PO(R) if and only if
(X̃i + ci · e�)i∈N ∈ PO(R) for any c ∈ IRN such that

∑
i∈N ci = 0. This fol-

lows straightforwardly from Translation Invariance of ρi and is also stated by
Ludkovski and Young (2009). So, if we find a Pareto optimal risk redistribution
(X̃i )i∈N, we can construct a set of Pareto optimal risk redistributions by adding
zero-sum side-payments (ci · e�)i∈N such that

∑
i∈N ci = 0 to (X̃i )i∈N. If there

exists a risk redistribution (X̃i )i∈N, such that the set of risk redistributions that
arises from adding zero-sum side-payments equals the set of Pareto optimal
risk redistributions, we call this risk redistribution (X̃i )i∈N the unique element
of PO(R) up to side-payments.
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Definition 3.1. For an R ∈ R, the risk redistribution (X̃i )i∈N ∈ PO(R) is, up to
side-payments, the unique element of PO(R) if

PO(R) =
{

(X̃i + ci · e�)i∈N : c ∈ IRN,
∑
i∈N

ci = 0

}
.

The term side-payment is inspired by the procedure that first firms pick a
Pareto optimal risk redistribution and, thereafter, add or subtract zero-sum
side-payments. Uniqueness up to side-payments is first introduced in the context
of risk measures by Jouini et al. (2008) in the case where one firm is endowed
with a very specific risk measure.

If firms use expected utilities, one obtains every Pareto optimal risk redis-
tribution by maximizing a weighted sum of expected utilities (see Borch, 1962).
Then, under mild regularity conditions, every (normalized) weight-vector yields
a unique risk redistribution. For distortion risk measures, we also get the Pareto
optimal risk redistributions by minimizing the weighted aggregate risk-adjusted
value of the liabilities, i.e., for every k ∈ IRN

++ we minimize
∑

i∈N kiρi (X̃i ) over
all (X̃i )i∈N ∈ F(R). However, in case of distortion risk measures this minimiza-
tion problem only has a solution if k equals the ones-vector. If k equals the
ones-vector, we get all Pareto optimal risk redistributions as shown by Filipović
and Kupper (2008) and Jouini et al. (2008). So, for all R ∈ R, it holds that
(X̃i )i∈N ∈ PO(R) if and only if (X̃i )i∈N ∈ F(R) and

∑
i∈N

ρi (X̃i ) = min

{∑
i∈N

ρi (X̂i ) : (X̂i )i∈N ∈ F(R)

}
. (10)

3.2. Special case

The following proposition shows that if there is a firm that is endowed with a
smaller distortion function than all other firms, it is Pareto optimal to shift all
risk to this firm.

Proposition 3.2. If R ∈ R is such that there exists a firm i ∈ N such that

gi (x) ≤ g j (x), for all x ∈ [0, 1] and j ∈ N, (11)

then for X̃i = Xand X̃ j = 0·e� for all j ∈ N\{i}, it holds that (X̃ j ) j∈N ∈ PO(R).
Moreover, if

gi (x) < g j (x), for all x ∈ (0, 1) and j ∈ N\{i}, (12)

then (X̃ j ) j∈N is, up to side-payments, the unique element of PO(R).

Proposition 3.2 extends the result of Schmidt (1999), who shows that if (12)
holds we have (X̃ j ) j∈N ∈ PO(R). We show that this risk redistribution is, up
to side-payments, the unique element of PO(R). The result of Schmidt (1999)
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is later generalized by Ludkovski and Young (2009), who determine a subset of
all Pareto optimal risk redistributions.

Condition (11) seems restrictive. However, we next provide examples where
this condition holds. These examples focus on the case where firms use Expected
Shortfall risk measures (see e.g., Acerbi and Tasche 2002).

Example 3.3. In this example, we discuss two cases where condition (11) holds.
For all j ∈ N, let firm j use the risk measure Expected Shortfall with signif-
icance level α j ∈ (0, 1], which is the distortion risk measure with distortion
function g j (x) = min{ x

α j
, 1}, for all x ∈ [0, 1] (Dhaene et al., 2006). One can

easily verify that condition (11) is satisfied, where i ∈ argmax{α j : j ∈ N}.
Hence, according to Proposition 3.2, it is Pareto optimal to redistribute all risk
to firm i . Note that it might seem unfair that firm i takes over all risk. Firm
i is, however, willing to bear all risk only if the side-payments it receives are
sufficiently high. This problem is examined in Section 4.

As a second example, we let every firm j ∈ N use the risk measure Mean-
Expected Shortfall with significance levels ζ ∈ [0, 1] and α j ∈ (0, 1), i.e.,

ρMES
ζ,α j

(Y) = ζEP[Y] + (1 − ζ )ρES
α j

(Y), for all Y ∈ IR�, (13)

where ρES
α j

(Y) is the Expected Shortfall with significance level α j ∈ (0, 1]. The
(ζ, α j )-Mean-Expected Shortfall is a distortion risk measure with distortion
function g j (x) = ζx+ (1− ζ )min{ x

α j
, 1} for all x ∈ [0, 1]. One can again verify

that condition (11) is satisfied, where i ∈ argmax{α j : j ∈ N}. This result is also
shown by Asimit et al. (2013) in the context of optimal risk transfers between
two divisions within an insurance company, where the objective of the insurer
is equal to (10). Generalizing this to multiple divisions is straightforward. More
generally, if a firm uses a weighted average of a distortion risk measure and the
expectation, its preferences can again be formalized via a distortion risk mea-
sure. If every firm j ∈ N uses

ρ j (Y) = ζ j EP[Y] + (1 − ζ j )ρ(Y), for all Y ∈ IR�, (14)

for some distortion risk measure ρ and ζ j ∈ [0, 1], it is Pareto optimal to shift
all risk to a firm i ∈ argmax{ζ j : j ∈ N}. �

3.3. Comonotonicity with the aggregate risk

A risk redistribution (X̃i )i∈N ∈ F(R) is comonotone with the aggregate risk
if there exists an ordering (ω1, . . . , ωp) on the state space � such that � =
{ω1, . . . , ωp}, and X̃i (ω1) ≥ · · · ≥ X̃i (ωp) for all i ∈ N. So, all stochastic vari-
ables in (X̃i )i∈N are comonotone with each other. For distortion risk measures,
comonotonicity of Pareto optimal risk redistributions is first studied by Lud-
kovski and Rüschendorf (2008). Their main result, which is based on Lands-
berger and Meilijson (1994), states that there exists a Pareto optimal risk re-
distribution such that all individual posterior risks are comonotone with the
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aggregate risk X. For a broader class than distortion risk measures, this result
is extended by Kiesel and Rüschendorf (2010) by characterizing all Pareto opti-
mal risk redistributions as beingμ-comonotone. This is a weaker condition than
comonotonicity. We provide a sufficient condition such that all Pareto optimal
risk redistributions are comonotone with the aggregate risk X.

We first define a risk measure ρ∗
N that plays a central role in obtaining Pareto

optimal risk redistributions.

Definition 3.4. The function g∗
N : [0, 1] → [0, 1] of a risk redistribution problem

R ∈ R is given by g∗
N(x) = min{gi (x) : i ∈ N} for all x ∈ [0, 1]. Moreover, ρ∗

N is
the risk measure as defined in (1) with gρ∗

N = g∗
N.

The function g∗
N is continuous, concave, increasing and such that g∗

N(0) = 0
and g∗

N(1) = 1. Concavity of the function g∗
N follows from the fact that the min-

imumof concave functions is concave as well. This leads directly to the following
proposition.

Proposition 3.5. For all R ∈ R, the risk measure ρ∗
N is a distortion risk measure.

We show in the sequel of this section that the risk measure ρ∗
N plays a central

role in obtaining Pareto optimal risk redistributions.
Next, we provide a closed-form expression of a set of Pareto optimal risk

redistributions. To do so, we first define the set of functions M(R) of a risk
redistribution problem R ∈ R by

M(R) = {
m : {1, . . . , p − 1} → N

∣∣m(k) ∈ argmin
j∈N

g j (P(�k))

for all k ∈ {1, . . . , p − 1}}. (15)

A function m ∈ M(R) assigns to every k ∈ {1, . . . , p − 1} a firm i for which the
distortion function gi is minimal at P(�k), i.e., for all k ∈ {1, . . . , p−1} it holds
that gm(k)(P(�k)) = g∗

N(P(�k)). Ludkovski and Young (2009) determine some
Pareto optimal risk redistributions as follows. For all R ∈ R, m ∈ M(R) and
d ∈ IRN with

∑
i∈N di = X(ωp) = min X, it holds that (X̃i )i∈N ∈ PO(R) where

X̃i =
p−1∑
k=1

[X(ωk) − X(ωk+1)] · 1m(k)=i · e�k + di · e�, for all i ∈ N, (16)

and 1m(k)=i = 1 if m(k) = i and zero otherwise. Via the risks di · e�, i ∈ N, the
functional form (16) allows for all side-payments that ensure (X̃i )i∈N ∈ F(R).
The size of these side-payments is a central topic in the next section.

In the following proposition, we characterize all Pareto optimal risk redis-
tributions. This result provides the minimum aggregate risk-adjusted value of
the liabilities in the market after any Pareto optimal risk redistribution.
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Proposition 3.6. For all R ∈ R, we have (X̃i )i∈N ∈ PO(R) if and only if
(X̃i )i∈N ∈ F(R) and ∑

i∈N
ρi (X̃i ) = ρ∗

N(X). (17)

From Proposition 3.6, it follows that the Pareto optimal aggregate risk-
adjusted value of the liabilities depends on the risk measures ρi , i ∈ N, via ρ∗

N
only. One can interpret this as that there exists a representative agent whose dis-
tortion risk measure equals ρ∗

N. The agent is representative in the sense that its
preferences are sufficient to calculate the Pareto optimal aggregate risk-adjusted
value of the liabilities in the market. In contrast to actuarial equilibrium mod-
els with utility functions, the representative agent is a hypothetical firm with
a risk measure that is least risk-averse in the market instead of an average (cf.
Bühlmann, 1980).

We observe that every risk redistribution of the form (16) is comonotone
with the aggregate risk X. If the following condition holds, we show that all
Pareto optimal redistributions are comonotone with the aggregate risk.

Condition [SC]: The function g∗
N is strictly concave, i.e.,

λg∗
N(x) + (1 − λ)g∗

N(y) < g∗
N(λx+ (1 − λ)y),

for all λ ∈ (0, 1) and x, y ∈ [0, 1] such that x = y.
We next show our main contribution to the literature on Pareto optimal risk

redistributions. We will later use this to characterize uniqueness of Pareto opti-
mal risk redistributions up to side-payments.

Proposition 3.7. If R ∈ R is such that condition [SC] holds, all Pareto optimal
risk redistributions are comonotone with each the aggregate risk X.

If the function g∗
N is piecewise linear (e.g., if ρ∗

N equals α-Expected Short-
fall), comonotonicity with the aggregate risk X is not guaranteed for Pareto
optimal risk redistributions. However, if the distortion functions gi , i ∈ N are
all strictly concave, the function g∗

N is strictly concave as well. Wirch and Hardy
(2001) show that strict concavity of a distortion function is a necessary and suf-
ficient condition for risk measures to strongly preserve second order stochastic
dominance. From Proposition 3.7, we get that if R ∈ R is such that condition
[SC] holds and k ∈ {1, . . . , p − 1} is such that X(ωk) = X(ωk+1), it holds for
all (X̃i )i∈N ∈ PO(R) that X̃i (ωk) = X̃i (ωk+1) for all i ∈ N. So, when con-
sidering Pareto optimal risk redistributions, the states ωk, ωk+1 ∈ � such that
X(ωk) = X(ωk+1) are treated in the same manner.

3.4. Uniqueness up to side-payments

If there is a unique Pareto optimal risk redistribution up to side-payments, the
only question left is to determine the size of the side-payments. From (10), and
Sub-additivity and Positive Homogeneity of the risk measures, it can be shown
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that the set of Pareto optimal risk redistributions is convex, i.e., for all (X̃i )i∈N,
(X̂i )i∈N ∈ PO(R), it holds that (λX̃i + (1−λ)X̂i )i∈N ∈ PO(R) for all λ ∈ [0, 1].
Therefore, the set of Pareto optimal risk redistributions can be large even up to
side-payments. In this section, we identify two joint conditions under which the
Pareto optimal risk redistributions are, up to side-payments, unique.

Uniqueness up to side-payments of Pareto optimal risk redistributions
would hold if the risk measures are strictly concave (see Filipović and Svind-
land, 2008; Kiesel and Rüschendorf, 2010). Distortion risk measures are, how-
ever, not strictly concave. This can be seen from the properties Comonotonic
Additivity and Positive Homogeneity of distortion risk measures as it holds that
αρ(X)+ (1− α)ρ(Y) = ρ(αX+ (1−α)Y) for all comonotone X,Y ∈ IR� such
that X = Y and α ∈ (0, 1).

To show uniqueness up to side-payments of Pareto optimal risk redistribu-
tions, we first introduce the following condition on R.

Condition [U]: For all k ∈ {1, . . . , p − 1} such that X(ωk) > X(ωk+1)

there exists a firm i ∈ N such that for all m ∈ M(R) it holds that m(k) = i .

If condition [SC] holds, we get from Proposition 3.7 that all Pareto optimal risk
redistributions are comonotone with the aggregate risk. From this combined
with Theorem 2 of Ludkovski and Young (2009) follows the next result.

Theorem 3.8. If R ∈ R is such that condition [SC] holds, there exists a risk
redistribution that is, up to side payments, the unique element of PO(R) if and
only if condition [U] holds

The least risk-averse agent is the analogue to the risk-neutral agent under ex-
pected utility. If there exists a globally least risk-averse firm, then this firm bears
all the aggregate risk. If there does not exist a globally least risk-averse firm,
then it is Pareto optimal that the locally least risk-averse firm bears the local
aggregate risk. Under condition [SC], this risk redistribution is unique if there
exists a unique least strictly risk-averse firm for those states with local aggregate
risk.

Note that |M(R)| = 1 is a sufficient condition for condition [U] to hold.
Hence, if |M(R)| = 1 and condition [SC] holds, it follows from Theorem 3.8
that all Pareto optimal risk redistributions are uniquely determined up to side-
payments. One can determine a Pareto optimal risk redistribution via (16).
Condition [U] implies that all functions in M(R) differ only for k such that
X(ωk) = X(ωk+1).

Even if the function g∗
N is not strictly concave, it might be possible to define

a strict concave distortion function such that it coincides with the function g∗
N

on the relevant subdomain. This subdomain is the following finite collection
of probabilities {P(�k) : k = 1, . . . , p − 1}. We illustrate this special case in the
following example, where we also illustrate the construction of Pareto optimal
risk redistributions.
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g
∗ N

(x
)
→

FIGURE 1: Construction of the function g∗
N via the distortion functions g1 and g2 corresponding to Example

3.9. The function g1 is the dash–dotted line, g2 is the dashed line and g∗
N is the solid line.

Example 3.9. Let N = {1, 2}, � = {ω1, ω2, ω3}, P({ω}) = 1
3 for all ω ∈ �,

g1(x) = min{11
2x, 1}, g2(x) = √

x, X(ω1) = 2, X(ω2) = 1, X(ω3) = 0 and X1 =
X2 = 1

2X. So, we consider the case where all benefits from risk redistributions
arise from the use of different risk measures. Firm 1 uses 2

3 -Expected Shortfall
and Firm 2 uses a so-called proportional hazard distortion risk measure with
parameter 1

2 . The function g
∗
N is given by

g∗
N(x) = min{gi (x) : i ∈ N} =

{
11
2x if x ≤ 4

9 ,√
x otherwise.

The distortion functions g1, g2 and g∗
N are displayed in Figure 1. From this fig-

ure, we see that there is a unique i ∈ argmax{g j (x) : j ∈ N} that is minimal at
x = P({ω1}) = 1

3 and at x = P({ω1, ω2}) = 2
3 . Hence, it holds that |M(R)| = 1

and, therefore, condition [U] holds. Moreover, it holds that m(1) = 1 and
m(2) = 2 for m ∈ M(R). According to (16) with c1 = c2 = 0, a Pareto op-
timal risk redistribution is given by X̃1 and X̃2 such that X̃1(ω1) = 1, X̃1(ω2) =
0, X̃1(ω3) = 0, X̃2(ω1) = 1, X̃2(ω2) = 1 and X̃2(ω3) = 0. The construction of
this Pareto optimal risk redistribution is shown in Figure 2.

One can readily verify that ρ2(X̃2) > ρ2(X2) and, so, Firm 2 needs to receive
a side-payment from Firm 1 in order to be willing to trade. We investigate the
size of this side-payment in Section 4.
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ω1g1(1
3 ) < g2(1
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g1(2
3 ) > g2(2

3 )

FIGURE 2: Graphical illustration of the construction of Pareto optimal risk redistributions corresponding to
Example 3.9. The figure displays g(1 − FX(x)) for g equal to g1 (dotted line), g2 (dashed line), and g∗

N (solid
line). If lines coincide, the solid line is shown. From (1) with P(X < 0) = 0, it follows that the area under g∗

N

equals ρ∗
N(X). The two shaded blocks are assigned to the firms m(1) = 1 and m(2) = 2; the risk X̃1 = e�1 is

assigned to Firm 1 and the risk X̃2 = e�2 is assigned to Firm 2. The area of the shaded block with m(i) in it
represents ρi (X̃i ) for i = 1, 2.

In this example, the function g∗
N is not strictly concave. However, we can

define a strictly concave distortion function that coincides with the function g∗
N

on the subdomain {P(�k) : k = 1, . . . , p − 1} = { 13 , 2
3 }. Since also condition

[U] holds, we get from Theorem 3.8 that there is a unique Pareto optimal risk
redistribution up to side-payments.

The distortion functions g1 and g2 cross only once on the subdomain (0, 1),
i.e., g1(x) < g2(x) for x ∈ (0, x∗) and g1(x) > g2(x) for x ∈ (x∗, 1) with x∗ = 4

9 .
This implies that every Pareto optimal risk redistribution is a stop-loss contract
or a deductible on the aggregate risk X and a side-payment; every (X̃i )i∈N ∈
PO(R) is such that there exists a c ∈ IR such that X̃1 = (X− 1)+ + c · e� and
X̃2 = min{X, 1} − c · e�. �

4. COMPETITIVE EQUILIBRIA

4.1. Uniqueness of the competitive equilibrium

In the previous section, we analyzed Pareto optimality of risk redistributions.
Under the conditions [SC] and [U] in Theorem 3.8, there exists a unique Pareto
optimal risk redistribution up to side-payments. In this section, we identify some
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Pareto optimal risk redistributions as the competitive equilibria. Competitive
equilibria in insurance markets are studied by, e.g., Aase (1993, 2010) for the
case where firms use expected utility functions. Under three regularity condi-
tions on the utility functions, Aase (1993, 2010) proves existence and uniqueness
of the equilibrium. This result is inspired by Borch (1962), who shows this for
special cases. For mean-variance investors, the competitive equilibrium corre-
sponds with the classical CAPM equilibrium price of risk as derived by Sharpe
(1964). Dana (2011) finds existence of a representative agent in themarket where
firms use strictly concave risk measures. If firms use distortion risk measures, we
show in this section some conditions under which the market prices are unique.

Chateauneuf et al. (2000) and Tsanakas and Christofides (2006) analyze
equilibria in the case in which firms evaluate risk via ρi (ui (Xi )),4 where ui is
a strictly concave utility function and ρi a risk measure. Here, the role of risk
measures is to include ambiguity aversion via max–min ambiguity-averse pref-
erences. They assume strict concavity of the utility function as a sufficient condi-
tion to have uniqueness of the competitive equilibrium. In this section, we relax
the assumption of a strictly concave utility function and obtain the competitive
equilibria and corresponding CAPM.

Let there be a complete market. This implies existence of state prices, i.e.,
prices for the Arrow-Debreu assets e{ω} with ω ∈ �. The pricing formula is
given by π( p̂,Y) = ∑p

k=1 p̂kY(ωk) for some price vector p̂ ∈ IR�
+. We assume

that the risk-free rate is zero, i.e., π( p̂, e�) = 1. A competitive equilibrium is a
vector of prices p̂ ∈ IR�

+ and a risk redistribution (X̂i )i∈N ∈ (IR�)N such that
given the prices, each firm i ∈ N individually minimizes ρi (X̂i ) under a budget
constraint, i.e., X̂i solves

min
X̃i∈IR�

ρi (X̃i ), (18)

s.t. π( p̂, X̃i ) ≥ π( p̂, Xi ), (19)

and the price vector p̂ satisfies π( p̂, e�) = 1 and induces market clearing by
equating aggregate supply and demand, i.e., (X̂i )i∈N ∈ F(R). Competitive equi-
libria rely on the assumption that there is a competitive environment, where
individual transactions have no influence on the prices. So, the number of firms
needs to be sufficiently large.

The following lemma follows directly from Theorem 3.2 of Filipović and
Kupper (2008). This result is an adjustment of the First Fundamental Welfare
Theorem in case firms use distortion riskmeasures. Filipović andKupper (2008)
show this for the class of monetary utility functions, which include distortion
risk measures as a subclass.

Lemma 4.1. For all risk redistribution problems in R, there exists a competitive
equilibrium. Moreover, every equilibrium risk redistribution is Pareto optimal.

Next, we focus on characterizing uniqueness of the competitive equilibrium.
We introduce the following condition, which assumes that there are no states in
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� in which the realization of the aggregate risk X is the same.

Condition [SO]: X(ω1) > · · · > X(ωp).

The following theorem shows that conditions [SC] and [SO] are jointly
sufficient to guarantee uniqueness of the equilibrium prices.

Theorem 4.2. If R ∈ R is such that condition [SC] holds, it holds that

• an equilibrium price vector is given by

p̂k = g∗
N(P(�k)) − g∗

N(P(�k−1)), for all k ∈ {1, . . . , p}; (20)

• the equilibrium price vector p̂ is unique if and only if condition [SO] holds.

If conditions [SC] and [SO] hold, we have that p̂ is unique, and such that
p̂ = QX ∈ Q(ρ∗

N), where QX is as in (3) with gρ = g∗
N, and Q(ρ∗

N) is defined
in (5).5 If condition [SC] does not hold, we can show that the vector p̂ in (20)
is still the unique equilibrium price vector if condition [SO] holds. However, the
reversed statement does not necessarily hold true. If condition [SO] does not
hold, we get that the equilibrium risk redistribution is still unique if conditions
[SC] and [U] hold. However, the prices are not unique (see Theorem 4.2).

We show in the following proposition that under conditions [SC] and [SO],
the risk-adjusted value of the liabilities of every equilibrium risk redistribution
equals the equilibrium price of the prior risk of the firms.

Proposition 4.3. If R ∈ R is such that conditions [SC] and [SO] hold, every
equilibrium risk redistribution (X̂i )i∈N is such that

ρi (X̂i ) = EQX [Xi ] =
p∑

k=1

[g∗
N(P(�k)) − g∗

N(P(�k−1))]Xi (ωk), (21)

for all i ∈ N.

Theorem 4.2 states the unique equilibrium prices under conditions [SC] and
[SO]. Moreover, Theorem 3.8 states that under the additional condition [U]
these unique equilibrium prices correspond with a unique risk redistribution.
If firms use expected utilities, Aase (1993) shows that under two regularity con-
ditions on utility functions only, there is existence of the equilibria. Existence of
the equilibria in the risk redistribution problem is guaranteed. If firms use ex-
pected utilities, there is a third regularity condition necessary to ensure unique-
ness of the equilibrium risk redistribution. All three regularity conditions in
Aase (1993) are imposed on the utility functions only. From Theorem 3.8 and
Theorem 4.2, we get the following main result of this paper.

Theorem 4.4. If R ∈ R is such that conditions [SC], [SO] and [U] hold, there
is a unique equilibrium risk redistribution.
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In contrary to the conditions of Aase (1993) for expected utilities, the two con-
ditions [SO] and [U] also depend on the aggregate risk.

Condition [SC] implies that the results in Theorem 4.2, Proposition 4.3 and
Theorem 4.4 do not apply to Expected Shortfall. Suppose that condition [SC]
does not hold. Ludkovski and Rüschendorf (2008) show that there exists a
Pareto optimal risk redistribution that is comonotone with the aggregate risk.
Then, we derive the following result in the same way as for Theorem 4.2.

Proposition 4.5. If R ∈ R is such that conditions [SO] and [U] hold, then there
exists a unique equilibrium (X̃i )i∈N that is comonotone with the aggregate risk.

Note that many authors explicitly assume that risk redistributions are comono-
tone with the aggregate risk (see e.g., Ludkovski and Young, 2009; Asimit et al.,
2013).

In this paper, we assume that there is a finite space. This allows us to solve the
competitive equilibria in Theorem 4.2 via linear programming. Generalizing the
characterization of the uniqueness of competitive equilibria to an infinite state
space would be an interesting topic for future research. Whereas condition [U]
has a straightforward translation to the class of continuous risks, condition [SO]
has not.

Next, we return to the problem in Example 3.9 and compute the equilibrium
risk redistribution for this case.

Example 4.6. In this example, we provide the equilibrium risk redistribution
problem in Example 3.9. We get that QX =(

1
2 ,
√

2
3− 1

2 ,1−
√

2
3

)
. This leads to

ρi (X̂i ) = EQX [Xi ] = 1√
6

+ 1
4

≈ 0.66, (22)

for all i ∈ N, where X̂i is the corresponding risk redistribution. This implies
that for the risk redistribution (X̃i )i∈N provided in Example 3.9, there is a side-
payment of size 1√

6
− 1

4 ≈ 0.16 made by Firm 1 to Firm 2. Then, the risk redis-

tribution X̂1 and X̂2 is given by X̂1(ω1) ≈ 1.16, X̂1(ω2) ≈ 0.16, X̂1(ω3) ≈ 0.16,
X̂2(ω1) ≈ 0.84, X̂2(ω2) ≈ 0.84, and X̂2(ω3) ≈ −0.16. �

Next, we proceed with a more complex example, in which we illustrate two
issues with uniqueness of the equilibrium.

Example 4.7. Let N = {1, 2, 3}, � = {ω1, ω2, ω3, ω4, ω5}, P({ω}) = 1
5 for all

ω ∈ �, g1(x) = min
{
11
2x, 1

}
, g2(x) = √

x, g3(x) = min{11
2x,

1
2 + 1

2x} X(ω1) =
4, X(ω2) = 1, X(ω3) = 0, X(ω4) = −1, X(ω5) = −4 and X1 = X2 = X and
X3 = −X. Firm 3 uses the ( 12 ,

1
2 )−Mean-Expected Shortfall risk measure. This

example resembles a situation where firms face a systematic risk-factor, but have
different exposure to it.

The distortion function g∗
N is not strictly concave on the relevant subdo-

main. Moreover, condition [U] does not hold. We get for all m ∈ M(R) that
m(3) = m(4) = 2. From this and (16), we get that it is Pareto optimal if
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Firm 2 bears the risk 4 · e� + min{X, 0} = e�3 + 3 · e�4 . Moreover, we get
that m(1),m(2) ∈ {1, 3} for all m ∈ M(R). From (16) and the fact that the
set of Pareto optimal risk redistributions is convex, we get that any comono-
tone risk redistribution of (X)+ = 3 · e�1 + e�2 to the firms in {1, 3} is Pareto
optimal. However, since the distortion function g∗

N is linear on the subdomain
{0, P(�1), P(�2)}, we get that every non-negative risk redistribution of (X)+ to
the firms in {1, 3} is Pareto optimal. Hence, a Pareto optimal risk redistribution
is not necessarily comonotone with the aggregate risk.

Now adjust the problem such that the distortion function of Firm 3 is
strictly higher on the subdomain (0, 1) than before, i.e., ĝ3(x) > g3(x) for all
x ∈ (0, 1), and let the rest remain the same. Then, condition [U] is satisfied.
We get that the Pareto optimal risk redistributions are not unique up to side-
payments (note that condition [SC] is still not satisfied). The only risk redis-
tribution that is comonotone with the aggregate risk is given by X̃1 = (X)+,
X̃2 = min{X, 0} and X3 = 0 · e�. The unique equilibrium prices are given by
QX = (0.3, 0.3,

√
0.6 − 0.6,

√
0.8 − √

0.6, 1 − √
0.8). From Proposition 4.5,

we get that the unique equilibrium risk redistribution that is comonotone with
the aggregate risk, denoted by (X̂i )i∈N, is such that ρ1(X̂1) = EQX [X1] ≈ 0.96,
ρ2(X2) = EQX [X2] ≈ 0.96, and ρ3(X̂3) = EQX [X3] ≈ −0.96. This leads to
X̂1 ≈ (X)+ − 0.54 · e�, X̂2 = min{X, 0} + 1.5 · e�, and X̂3 = −0.96 · e�.

Note that the equilibrium does not depend on the distortion function ĝ3 as
long as we have ĝ3(x) > g∗

N(x) for all x ∈ {P(�k) : k = 1, . . . , p−1}. Moreover,
the risk-adjusted value of the liability corresponding to the equilibrium is lower
for Firm 3 due to that the risk of this firm is anti-comonotone with the aggregate
risk, and hence useful for diversification. The fact that the distortion function
ĝ3 is never minimal on the interval (0, 1) does not influence this value. �

Next, we discuss some comparative statics of the equilibrium. Assume that
conditions [SC], [SO] and [U] hold. Letm ∈ M(R) and pick a k ∈ {1, . . . , p−1}
and a firm i ∈ N. Now, suppose that we increase the distortion function gi only
in gi (P(�k)) such that it is still concave on the subdomain {0} ∪ {P(�k) : k =
1, . . . , p}, ceteris paribus. Denote the new distortion function for firm i by g̃i .
This leads possibly to a different function m̃ ∈ M(R̃). We get the following three
possible effects:

• ifm(k) = i and m̃(k) = i , the risk [X(ωk)−X(ωk+1)]·e�k is now borne by firm
m̃(k) in equilibrium. Firm m(k) charges, however, a higher price for bearing
this risk, i.e., the equilibrium price for the state ωk increases with the amount
gm̃(k)(P(�k))−gi (P(�k)). The equilibrium price for state ωk+1 decreases with
this amount. The aggregate risk-adjusted value of the liabilities in the market
increases, but the sign of the individual effect on the risk-adjusted value of
the liabilities for firm i is unknown;

• if m(k) = i and m̃(k) = i , then the risk [X(ωk) − X(ωk+1)] · e�k is still borne
by firm i in equilibrium. Firm i charges, however, a higher price for bearing
this risk, i.e., the equilibrium price for the state ωk increases with the amount
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g̃i (P(�k)−gi (P(�k)). The equilibrium price for the state ωk−1 decreases with
this amount. The aggregate risk-adjusted value of the liabilities in the market
increases, but the sign of the individual effect on the risk-adjusted value of
the liabilities for firm i is unknown;

• if m(k) = i , the equilibrium prices and risk redistributions are not changed.

4.2. Capital asset pricing model

In this section, we derive a CAPM under conditions [SC], [SO] and [U]. One
can interpret p̂ = QX in Proposition 4.3 as a risk neutral probability measure
for obtaining the price of all Xi . The Radon–Nikodym derivative is given by

dQX

dP
({ωk}) = g∗

N(P(�k)) − g∗
N(P(�k−1))

P({ωk}) , (23)

for all k ∈ {1, . . . , p}, which extends the Radon–Nikodym derivative used by
Tsanakas (2004) and De Giorgi and Post (2008) for heterogeneous risk mea-
sures. So, the equilibrium prices are such that π( p̂, Xi ) = EP

[
Xi

dQX
dP

]
for all

i ∈ N. This leads to

π( p̂, Xi ) = EP[Xi ] + cov
(
Xi ,

dQX

dP

)
, for all i ∈ N, (24)

where p̂ is the unique equilibrium price vector. So, if the risk Xi is independent
of the aggregate X, firm i only gets a risk where its risk-adjusted value of the
liabilities equals the expectation of its prior risk Xi . The stochastic variable

dQX
dP

is comonotone with the risk X due to concavity of the function g∗
N. Therefore,

only co-movements with the market risk X are priced. Also, the equilibrium
price depends on the aggregate risk X via the ordering on the state space � such
that X(ω1) ≥ · · · ≥ X(ωp) only.

If the equilibrium prices are unique, it follows from (24) that for all R ∈ R
such that conditions [SC] and [SO] hold, we have

EP[RRi ] − 1 = βi (EP[RRm] − 1) , (25)

where i ∈ N, RRi = Xi
π( p̂,Xi )

and RRm = X
π( p̂,X)

and

βi = cov
(
RRi ,

dQX
dP

)
cov

(
RRm, dQX

dP

) . (26)

The factor βi in (25) is a market beta in a representation of the CAPM-model
with distortion risk measures. Note that the risk-free rate is assumed to be zero.

De Giorgi and Post (2008) empirically test the CAPM model for the case
where all firms use the same distortion risk measure using US stock returns
and find a better fit than the CAPMmodel with mean-variance investors. If we
would test the equilibrium prices with distortion risk measures, we would as-
sume a functional form of the representative distortion function g∗

N. De Giorgi
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and Post (2008) assume a functional form of the distortion function that all
firms use. Hence, to test our model is analogue to the test of De Giorgi and Post
(2008). Hence, our model with distortion risk measures has a better fit than the
CAPM model with mean-variance investors as well.

5. CONCLUSION

This paper studies optimal risk redistribution between firms. In contrast to pre-
vious literature on preferences given by distortion functions, we study unique-
ness of the competitive equilibrium.We provide three conditions that are jointly
sufficient to have a unique equilibrium. Two out of the three conditions that we
propose do depend on the aggregate risk in the market. This is in contrast to
the literature on uniqueness of the equilibrium with expected utilities, where
sufficient conditions do typically depend on the utility functions only (Aase,
1993).

The equilibrium prices follow from the preferences of a hypothetical repre-
sentative agent. In contrast to when firms use expected utilities, this representa-
tive agent resembles a least risk-averse agent in the market instead of an average
risk-averse agent (cf. Bühlmann, 1980).

We derive the results in this paper for concave distortion functions. This
assumption allows us to study risk redistributions that are comonotone with
the aggregate risk. Whereas the Expected Shortfall is a popular used distortion
risk measure, this assumption excludes the use of Value-at-Risk. Studying com-
petitive equilibria with Value-at-Risk is a promising topic for future research.
Another topic for future research is to examine competitive equilibria in the
presence of agents that minimize distortion risk measures, and agents that max-
imize expected utilities. Whereas distortion risk measures might be induced by
regulation for firms, the preferences of individual consumers are often modeled
via expected utilities.
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NOTES

1. We denote |�| for the cardinality of the state space �.
2. We assume that P({ω}) > 0 for each state ω ∈ �, i.e., the probability that a state occurs

is strictly positive. As the state space is finite, this is without loss of generality; states with zero
probability can be omitted from the state space.

3. For notational convenience, we write gi instead of gρi .
4. For a wider class of risk measures ρi , this is also called Choquet-, max–min- or rank-

dependent expected utility.
5. Note that QX is a probability measure whereas p̂ is a vector. Here, we mean that QX({ωk}) =

p̂k for all k ∈ {1, . . . , p}. In the sequel, we interpret p̂ as a probability measure as well.
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APPENDIX A. PROOFS

Proof of Proposition 3.2. The first part of the proof follows from Ludkovski and Young
(2009).

Next, let R ∈ R be such that there exists a firm i ∈ N for which (12) holds. One can easily
verify that from (2)–(3) it follows that

ρi (Y) ≤ ρ j (Y), for all Y ∈ IR� and j ∈ N. (27)

Suppose that there exists an (X̂ j ) j∈N ∈ PO(R) such that for at least one firm j = i its risk
X̂ j is not a side-payment. For every risk Y ∈ IR� that is not a side-payment, it holds that

ρi (Y) =
p−1∑
k=1

gi (P({ω1, . . . , ωk}))[Y(ωk) − Y(ωk+1)] + Y(ωp) (28)

<

p−1∑
k=1

g j (P({ω1, . . . , ωk}))[Y(ωk) − Y(ωk+1)] + Y(ωp) (29)

= ρ j (Y), (30)

for all j = i , whereY(ω1) ≥ · · · ≥ Y(ωp). Here, (28) follows from direct calculations with (1),
(29) follows from (12) and that there exists a k ∈ {1, . . . , p−1} such thatY(ωk)−Y(ωk+1) > 0
and P({ω1, . . . , ωk}) ∈ (0, 1). From this it follows directly that

ρi (X) ≤
∑
j∈N

ρi (X̂j ) (31)

<
∑
j∈N

ρ j (X̂ j ), (32)

where (31) follows from Sub-additivity of ρi , and (32) follows from (27) and (28)–(30). Com-
bining (31)–(32) with ρ j (0 · e�) = 0 for all j ∈ N\{i} yields a contradiction with (10). Hence,
for all (X̂ j ) j∈N ∈ PO(R) and j = i it follows that X̂ j is a side-payment. This concludes the
second part of the proof. �

Proof of Proposition 3.6. Let R ∈ R. From (10), we get that it is sufficient to show that∑
i∈N ρi (X̃i ) = ρ∗

N(X) for an (X̃i )i∈N ∈ PO(R). Pick (X̃i )i∈N ∈ PO(R) as in (16) with
m ∈ M(R) and d ∈ IRN such that

∑
i∈N di = X(ωp). The risk X̃i is constructed such that

X̃i (ωk) − X̃i (ωk+1) =
p−1∑

=k

[X(ω
) − X(ω
+1)] · 1m(
)=i + di (33)

−
(

p−1∑

=k+1

[X(ω
) − X(ω
+1)] · 1m(
)=i + di

)

= [X(ωk) − X(ωk+1)] · 1m(k)=i , (34)
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for all k ∈ {1, . . . , p − 1} and i ∈ N and, moreover,
∑

i∈N X̃i (ωp) = ∑
i∈N di = X(ωp). So, it

holds that X̃i (ω1) ≥ · · · ≥ X̃i (ωp) for all i ∈ N. From this and (33)–(34) it follows that

∑
i∈N

ρi (X̃i ) =
∑
i∈N

[
p−1∑
k=1

gi (P(�k))[X̃i (ωk) − X̃i (ωk+1)] + X̃i (ωp)

]

=
∑
i∈N

[
p−1∑
k=1

gi (P(�k))[X(ωk) − X(ωk+1)] · 1m(k)=i + di

]

=
p−1∑
k=1

∑
i∈N

gi (P(�k))[X(ωk) − X(ωk+1)] · 1m(k)=i +
∑
i∈N

di

=
p−1∑
k=1

[X(ωk) − X(ωk+1)]
∑
i∈N

gi (P(�k)) · 1m(k)=i + X(ωp)

=
p−1∑
k=1

[X(ωk) − X(ωk+1)] min{gi (P(�k)) : i ∈ N} + X(ωp)

=
p−1∑
k=1

[X(ωk) − X(ωk+1)]g∗
N(P(�k)) + X(ωp)

= ρ∗
N(X).

This concludes the proof. �
Proof of Proposition 3.7. Let R ∈ R be such that condition [SC] holds and suppose that

(X̃ j ) j∈N ∈ PO(R) is such that there exist i ∈ N and k ∈ {1, . . . , p − 1} where X̃i (ωk) <

X̃i (ωk+1). Recall from (2) and (3) that ρ∗
N(X) = EQX [X], where QX is the additive probability

measure such thatQX({ω
}) = g∗
N(P(�
))−g∗

N(P(�
−1)) for all 
 ∈ {1, . . . , p}. One can verify
that, due to concavity of the function g∗

N, it holds that QX ∈ Q(ρ∗
N) ⊆ Q(ρ j ) for all j ∈ N

and, so,
ρ j (X̃ j ) ≥ EQX [X̃ j ], for all j ∈ N. (35)

Next, we show that
ρi (X̃i ) > EQX [X̃i ]. (36)

Since Q(ρ∗
N) ⊆ Q(ρi ), it follows that ρi (X̃i ) ≥ ρ∗

N(X̃i ) and, so, it is sufficient to show
ρ∗
N(X̃i ) > EQX [X̃i ]. We will show that

[g∗
N(P(�k−1 ∪ {ωk+1})) − g∗

N(P(�k−1))]X̃i (ωk+1)

+ [g∗
N(P(�k+1)) − g∗

N(P(�k−1 ∪ {ωk+1}))]X̃i (ωk)

> [g∗
N(P(�k)) − g∗

N(P(�k−1))]X̃i (ωk) + [g∗
N(P(�k+1)) − g∗

N(P(�k))]X̃i (ωk+1). (37)

Equivalently, (37) can be written as

X̃i (ωk+1)[g∗
N(P(�k−1 ∪ {ωk+1})) − g∗

N(P(�k−1)) − g∗
N(P(�k+1)) + g∗

N(P(�k))]

> X̃i (ωk)[g∗
N(P(�k−1 ∪ {ωk+1})) − g∗

N(P(�k−1)) − g∗
N(P(�k+1)) + g∗

N(P(�k))]. (38)
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Since the function g∗
N is strictly concave and P({ω}) > 0 for all ω ∈ �, it follows that

g∗
N(P(�k−1 ∪ {ωk+1})) − g∗

N(P(�k−1)) − g∗
N(P(�k+1)) + g∗

N(P(�k)) > 0.

From this it follows that (38) holds and, so, (37) holds.
From (37), we get that EQ′ [X̃i ] > EQX [X̃i ] where

Q′(ω) =

⎧⎪⎪⎨⎪⎪⎩
g∗
N(P(�k+1)) − g∗

N(P(�k−1 ∪ {ωk+1})) if ω = ωk,

g∗
N(P(�k−1 ∪ {ωk+1)) − g∗

N(P(�k−1)) if ω = ωk+1,

QX(ω) otherwise.

From Q′ ∈ Q(ρ∗
N) it follows that ρ∗

N(X̃i ) ≥ EQ′ [X̃i ]. So, we have shown that (36) holds. To
conclude, it follows that ∑

j∈N
ρ j (X̃ j ) ≥

∑
j∈N\{i}

EQX [X̃j ] + ρi (X̃i ) (39)

>
∑
j∈N

EQX [X̃ j ] (40)

= EQX [X] (41)

= ρ∗
N(X), (42)

where (39) follows from (35), (40) follows from (36), and (42) follows from (2) and (3). From
Proposition 3.6, we get that a risk redistribution (X̂ j ) j∈N ∈ F(R) is Pareto optimal only if∑

j∈N ρ j (X̂ j ) = ρ∗
N(X). So, it follows that (X̃ j ) j∈N is not Pareto optimal, which is a contra-

diction. Hence, we have X̃ j (ω1) ≥ · · · ≥ X̃ j (ωp) for all j ∈ N and (X̃ j ) j∈N ∈ PO(R). This
concludes the proof. �

Proof of Theorem 4.2. Let R ∈ R be such that condition [SC] holds. First, we show
the second result, i.e., that the equilibrium price vector p̂ is unique if and only if condi-
tion [SO] holds. Next, we show the “⇐” (“if”) part of the proof. Let condition [SO] hold.
According to Lemma 4.1, there exists an equilibrium. Pick an equilibrium ( p̂, (X̂i )i∈N).
Lemma 4.1 states that every equilibrium risk redistribution is Pareto optimal and, so, we have
(X̂i )i∈N ∈ PO(R). From this, strict concavity of the function g∗

N and Proposition 3.7 it follows
that all risks X̂i , i ∈ N are comonotone with the aggregate risk, i.e., X̂i (ω1) ≥ · · · ≥ X̂i (ωp)

for all i ∈ N. Hence, the objective function for firm i ∈ N in (18) can be written as

ρi (X̃i ) =
p∑

k=1

[gi (P(�k)) − gi (P(�k−1))]X̃i (ωk), (43)

which is minimized over all X̃i ∈ IR� such that X̃i (ω1) ≥ · · · ≥ X̃i (ωp) and π( p̂, X̃i ) ≥
π( p̂, Xi ). A minimum is obtained in X̃i = X̂i .

Since the constraints and the objective function in (43) are all affine, we get that the equi-
librium risk redistribution (X̂i )i∈N satisfies the Kuhn–Tucker conditions. The Kuhn–Tucker
conditions are obtained by the first-order conditions of the following function with respect
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to X̃i (ωk):

p∑
k=1

(
[gi (P(�k)) − gi (P(�k−1))]X̃i (ωk) − λi p̂k[X̃i (ωk) − Xi (ωk)]

)

−
p−1∑
k=1

γi,k
[
X̃i (ωk) − X̃i (ωk+1)

]
(44)

in X̃i (ωk) = X̂i (ωk), for all k ∈ {1, . . . , p} and i ∈ N, where λi ≥ 0 and γi,k ≥ 0 are the
Kuhn–Tucker multipliers of the constraints π( p̂, X̃i ) ≥ π( p̂, Xi ) and X̃i (ωk) ≥ X̃i (ωk+1),
respectively. These Kuhn–Tucker conditions are then given by

gi (P(�k)) − gi (P(�k−1)) =
⎧⎨⎩

λi p̂k + γi,k if k = 1,
λi p̂k + γi,k − γi,k−1 if k = 2, . . . , p − 1,
λi p̂k − γi,k−1 if k = p,

(45)

for all k ∈ {1, . . . , p} and i ∈ N, which hold under the constraints λi [π( p̂, X̂i ) − π( p̂, Xi )] =
0, λi ≥ 0, γi,k

[
X̂i (ωk) − X̂i (ωk+1)

] = 0 and γi,k ≥ 0 for all k ∈ {1, . . . , p − 1} and i ∈ N.
Since gi (0) = 0 and gi (1) = 1, it holds that

p∑
k=1

[gi (P(�k)) − gi (P(�k−1))] = 1, (46)

and, moreover, it holds that
p∑

k=1

p̂k = 1, (47)

since π( p̂, e�) = 1 and

γi,1 +
p−1∑
k=2

(
γi,k − γi,k−1

) − γi,p−1 = 0. (48)

From (45)–(48), it follows that λi = 1 for all i ∈ N and, so, we can write (45) as

gi (P(�k)) − gi (P(�k−1)) =
⎧⎨⎩
p̂k + γi,k if k = 1,
p̂k + γi,k − γi,k−1 if k = 2, . . . , p − 1,
p̂k − γi,k−1 if k = p,

(49)

for all k ∈ {1, . . . , p} and i ∈ N. Since X(ω1) > X(ω2), it holds that there exists at least one
firm i0 ∈ N such that γi0,1 = 0. From this and γ j,1 ≥ 0 for all j ∈ N, it follows that

p̂1 = gi0(P(�1)) = g∗
N(P(�1)) and γi,1 = gi (P(�1)) − g∗

N(P(�1)), for all i ∈ N. (50)

If p > 2, it follows from (49) and (50) that for k = 2 we get

gi (P(�2)) − g∗
N(P(�1)) = p̂2 + γi,2, for all i ∈ N, (51)

and, so, we get

p̂2 = g∗
N(P(�2)) − g∗

N(P(�1)) and γi,2 = gi (P(�2)) − g∗
N(P(�2)), (52)
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for all i ∈ N. Continuing this procedure for all k ∈ {1, . . . , p}, we obtain by induction the
unique equilibrium price vector p̂. This concludes the first part of the proof.

Next, we show the “⇒” (“only if”) part of the proof. Let there exists a unique equilibrium
price vector p̂. Suppose condition [SO] does not hold. Then, there exists a k ∈ {1, . . . , p− 1}
such that X(ωk) = X(ωk+1). Construct the price vectors as in (20) for every ordering on the
state space� such that X(ω1) ≥ · · · ≥ X(ωp). These vectors are all equilibrium prices as they
satisfy the conditions in (45) for some Kuhn–Tucker multipliers. Due to strict concavity of
the function g∗

N (condition [SC]), these price vectors are not identical. This is a contradiction
with the assumption that there is a unique equilibrium price vector.

The first result follows from the fact that p̂, as defined in (20), satisfies (49). This concludes
the proof. �

Proof of Proposition 4.3. Let R ∈ R be such that conditions [SC] and [SO] hold. From
Theorem 4.2, it follows that p̂ = QX ∈ Q(ρ∗

N), where QX({ωk}) = g∗
N(P(�k)) − g∗

N(P(�k−1))

for all k ∈ {1, . . . , p}. So, from (5) it follows that p̂ ∈ ⋂
j∈N Q(ρ j ) ⊆ Q(ρi ) for all i ∈ N.

From this and (4), it follows that π( p̂,Y) ≤ ρi (Y) for all i ∈ N and all Y ∈ IR�. So, any
risk X̂i ∈ IR� such that ρi (X̂i ) = π( p̂, X̂i ) = π( p̂, Xi ) = Ep̂[Xi ] minimizes the system
(18)–(19). �
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