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Abstract. A theorem of Brudno says that the Kolmogorov–Sinai entropy of an ergodic
subshift over N equals the asymptotic Kolmogorov complexity of almost every word in the
subshift. The purpose of this paper is to extend this result to subshifts over computable
groups that admit computable regular symmetric Følner monotilings, which we introduce
in this work. For every d ∈ N, the groups Zd and UTd+1(Z) admit computable regular
symmetric Følner monotilings for which the required computing algorithms are provided.
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1. Introduction
It was proved by Brudno in [3] that the Kolmogorov–Sinai entropy of an ergodic
N-dynamical system equals almost everywhere the Kolmorogov complexity of its orbits.
An important special case is that of subshifts over N. This says that if X = (X, μ, N) is an
ergodic subshift over N with some finite alphabet �, then for μ-almost every (a.e.) ω ∈ X
we have

h(X) = lim sup
n→∞

K(ω|[1,...,n])

n
,

where h(X) is the Kolmogorov–Sinai entropy of X and K(ω|[1,...,n]) is the Kolmogorov
complexity of the word ω|[1,...,n] of length n. Roughly speaking, K(ω|[1,...,n]) is the length
of the shortest description of ω|[1,...,n] for an ‘optimal decompressor’ which takes finite
binary words as the input and produces finite words over the alphabet � as the output. A
similar result can be easily proved for ergodic subshifts over the group Z of integers, and
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a partial generalization to the case of ergodic subshifts over Zd was given by Simpson
in [15]. The question remains if one can generalize this theorem beyond the Z and
Zd cases.

The purpose of this paper is to extend Brudno’s theorem to the case of ergodic subshifts
over computable groups that admit computable regular symmetric Følner monotilings
(see §2.6 for the definition). The class of all such groups includes, for every d ∈ N, the
group Zd and the group of unipotent upper-triangular matrices UTd+1(Z) with integer
entries of dimension d + 1.

The paper is structured as follows. We devote §2.1 to the general preliminaries on
amenable groups and entropy theory. Regular Følner monotilings, which are a special type
of Følner monotilings from the work of Weiss [16], are introduced in §2.2. We provide
some basic notions from the theory of computability and Kolmogorov complexity in §2.3,
and in §2.4 we define computable spaces, word presheaves and (asymptotic) Kolmogorov
complexity of sections of these presheaves. Section 2.5, based on the work [14], contains
the definition of a computable group and some basic examples. We proceed by introducing
computable Følner monotilings in §2.6 and explaining why the groups Zd and UTd+1(Z)

do admit computable regular symmetric Følner monotilings for every d ≥ 1. The main
result of this paper (Theorem 3.1) is proved in §3.

This paper is based on the preprint [13], which has some overlap with the previous
preprint [12], where the original results [2] of Brudno about the topological entropy of
subshifts and Kolmogorov complexity were extended. It is also worth mentioning that
an alternative approach towards generalizing the original results of Brudno has been
suggested in a more recent preprint [1]. We will not discuss these results in this work.

2. Preliminaries
2.1. Amenable groups and ergodic theory. In this section we will remind the reader of
the classical notion of amenability and state some results from ergodic theory of amenable
group actions. We stress that all the groups that we consider are discrete and countably
infinite. In what follows we shall rely mostly on [10, 17].

Let � be a group with the counting measure | · |. A sequence of finite sets (Fn)n≥1 is
called:
(1) a left weak Følner sequence (respectively, right weak Følner sequence) if for every

finite set K ⊆ � one has

|Fn�KFn|
|Fn| → 0

(
respectively,

|Fn�FnK|
|Fn| → 0

)
;

(2) a left strong Følner sequence (respectively, right strong Følner sequence) if for every
finite set K ⊆ � one has

|∂L
K(Fn)|
|Fn| → 0

(
respectively,

|∂R
K(Fn)|
|Fn| → 0

)
,

where the sets

∂L
K(F ) := K−1F ∩ K−1F c
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and

∂ r
K(F ) := FK−1 ∩ F cK−1

are the left K-boundary of F and the right K-boundary of F , respectively;
(3) a (C-)tempered sequence if there is a constant C such that for every j one has∣∣∣∣ ⋃

i<j

F−1
i Fj

∣∣∣∣ < C|Fj |.

One can show that a sequence of sets (Fn)n≥1 is a weak left Følner sequence if and only
if it is a strong left Følner sequence (see [4], §5.4), hence we will simply call it a left Følner
sequence. The same holds for right Følner sequences. If we call a sequence of sets a Følner
sequence without saying if it is ‘left’ or ‘right’, we always mean a left Følner sequence. A
sequence of sets (Fn)n≥1 which is simultaneously a left and a right Følner sequence is
called a two-sided Følner sequence. A group � is called amenable if it admits a left Følner
sequence. It can be shown that every amenable group admits a two-sided Følner sequence.
Since � is infinite, for every Følner sequence (Fn)n≥1 we have |Fn| → ∞ as n → ∞. For
a finite subset K ⊆ � and a subset F ⊆ � the sets

intLK(F ) := F \ ∂L
K(F )

and
intRK(F ) := F \ ∂R

K(F )

are called the left K-interior of F and the right K-interior of F , respectively. It is clear
that if a sequence of finite sets (Fn)n≥1 is a left (respectively, right) Følner sequence, then
for every finite K ⊆ � one has

|intLK(Fn)|/|Fn| → 1 (respectively, |intRK(Fn)|/|Fn| → 1)

as n → ∞.
One of the reasons why Følner sequences are of interest in this work is that they are

‘good’ for averaging group actions. In what follows all group actions are left actions.
We denote the averages by Eg∈F := 1/|F | ∑

g∈F . The following important theorem was
proved by Lindenstrauss in [10].

THEOREM 2.1. Let X = (X, μ, �) be a measure-preserving dynamical system, where the
group � is amenable and (Fn)n≥1 is a tempered left Følner sequence. Then for every
f ∈ L1(X) there is a �-invariant f ∈ L1(X) such that

lim
n→∞ Eg∈Fnf (g · ω) = f (ω)

for μ-a.e. ω ∈ X. If the system X is ergodic, then

lim
n→∞ Eg∈Fnf (g · ω) =

∫
f dμ

for μ-a.e. ω ∈ X.

We will need a weighted variant of this result. A function c on � is called a good weight
for pointwise convergence of ergodic averages along a tempered left Følner sequence
(Fn)n≥1 in � if for every measure-preserving system X = (X, μ, �) and every f ∈ L∞(X)
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the averages

Eg∈Fnc(g)f (g · ω)

converge as n → ∞ for μ-a.e. ω ∈ X.
We will use a special case of [17, Theorem 1.3].

THEOREM 2.2. Let � be a group with a tempered Følner sequence (Fn)n≥1. Then for every
ergodic measure-preserving system X = (X, μ, �) and every f ∈ L∞(X) there exists a
full-measure subset X̃ ⊆ X such that for every x ∈ X̃ the map g 	→ f (g · x) is a good
weight for the pointwise ergodic theorem along (Fn)n≥1.

We will now briefly remind the reader of the notion of the Kolmogorov–Sinai entropy
for amenable group actions. Let α = {A1, . . . , An} be a finite measurable partition of
a probability space X endowed with a probability measure μ. The function ω 	→ α(ω),
mapping a point ω ∈ X to the atom of the partition α containing ω, is defined almost
everywhere. The information function of α is defined as

Iα(ω) := −
n∑

i=1

1Ai
(ω) log μ(Ai) = − log(μ(α(ω))).

Then Iα ∈ L∞(X). The Shannon entropy of a partition α is defined by

hμ(α) := −
n∑

i=1

μ(Ai) log(μ(Ai)) =
∫

Iα dμ.

The entropy of a partition is always a non-negative real number. If α, β are two finite
measurable partitions of X, then

α ∨ β := {A ∩ B : A ∈ α, B ∈ β}
is a finite measurable partition of X as well. Given a measure-preserving dynamical system
X = (X, μ, �), where the discrete amenable group � acts on X, we can also define
the (dynamical) entropy of a partition. First, for every element g ∈ � and every finite
measurable partition α we define a finite measurable partition g−1α by

g−1α = {g−1A : A ∈ α}.
Next, for every finite subset F ⊆ � and every partition α we define the F -refinement
of α by

αF :=
∨
g∈F

g−1α.

Let (Fn)n≥1 be a Følner sequence in � and α be a finite measurable partition of X. Then
the limit

hμ(α, �) := lim
n→∞

hμ(αFn)

|Fn|
exists, and it is a non-negative real number independent of the choice of a Følner sequence
due to the lemma of Ornstein and Weiss (see [6, 9]). The limit hμ(α, �) is called the
dynamical entropy of α. We define the Kolmogorov–Sinai entropy of a measure-preserving
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system X = (X, μ, �) by

h(X) := sup{hμ(α, �) : α a finite measurable partition of X}.
We will need the Shannon–McMillan–Breiman theorem for amenable group actions.

For the proof see [10].

THEOREM 2.3. Let X = (X, μ, �) be an ergodic measure-preserving system and α be a
finite partition of X. Assume that (Fn)n≥1 is a tempered Følner sequence in � such that
|Fn|/log n → ∞ as n → ∞. Then there is a constant h′

μ(α, �) such that

IαFn (ω)

|Fn| → h′
μ(α, �) (1)

as n → ∞ for μ-a.e. ω ∈ X and in L1(X).

Integrating both sides of equation (1) with respect to μ, we deduce that

hμ(αFn)

|Fn| → hμ(α, �) = h′
μ(α, �)

as n → ∞. The Shannon–McMillan–Breiman theorem has the following important
corollary that will be used in the proof of Theorem 3.3 [4].

COROLLARY 2.1. Let X = (X, μ, �) be an ergodic measure-preserving system, and
(Fn)n≥1 be a tempered Følner sequence in � such that |Fn|/log n → ∞ as n → ∞. Let
α be a finite partition. Then, given ε > 0 and δ > 0, there exists n0 such that the following
assertions hold.
(a) For all n ≥ n0,

2−|Fn|(hμ(α,�)+ε) ≤ μ(A) ≤ 2−|Fn|(hμ(α,�)−ε)

for all atoms A ∈ αFn with the exception of a set of atoms whose total measure is less
than δ.

(b) For all n ≥ n0,

2−|Fn|(hμ(α,�)+ε) ≤ μ(αFn(ω)) ≤ 2−|Fn|(hμ(α,�)−ε)

for all but at most δ fraction of elements ω ∈ X.

Proof. By Theorem 2.3, IαFn (ω)/|Fn| → hμ(α, �) for a.e. ω and hence also in measure.
Thus, given ε, δ > 0 as above, there is n0 such that for all n ≥ n0 we have

μ

{
ω ∈ X :

∣∣∣∣IαFn (ω)

|Fn| − hμ(α, �)

∣∣∣∣ ≥ ε

}
< δ.

It is now clear that both assertions follow.

2.2. (Regular) Følner monotilings. The purpose of this section is to discuss the notion
of a Følner monotiling, which was introduced by Weiss in [16]. However, in this article we
have to introduce both ‘left’ and ‘right’ monotilings, while the original notion introduced
by Weiss is a ‘left’ monotiling. The (new) notion of a regular Følner monotiling, central
to the results of this paper, will also be suggested below.
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A left monotiling [F , Z] in a discrete group � is a pair of a finite set F ⊆ �, which
we call a tile, and a set Z ⊆ �, which we call a set of centers, such that {Fz : z ∈ Z} is
a covering of � by disjoint translates of F . Similarly, Given a right monotiling [Z, F ],
we require that {zF : z ∈ Z} is a covering of � by disjoint translates of F . A left
Følner monotiling (respectively, right Følner monotiling) is a sequence of monotilings
([Fn, Zn])n≥1 (respectively, ([Zn, Fn])n≥1) such that (Fn)n≥1 is a left (respectively, right)
Følner sequence in �. A left Følner monotiling ([Fn, Zn])n≥1 is called symmetric if for
every k ≥ 1 the set of centers Zk is symmetric, that is, Z−1

k = Zk . It is clear that if
([Fn, Zn])n≥1 is a symmetric Følner monotiling, then ([Zn, F−1

n ])n≥1 is a right Følner
monotiling.

We begin with a basic example.

Example 2.4. Consider the group Zd for some d ≥ 1 and the Følner sequence (Fn)n≥1 in
Zd given by

Fn := [0, 1, 2, . . . , n − 1]d .
Furthermore, for every n let

Zn := nZd .
It is easy to see that ([Fn, Zn])n≥1 is a symmetric Følner monotiling of Zd , and that
(Fn)n≥1 is a tempered two-sided Følner sequence.

A less trivial example is given by Følner monotilings of the discrete Heisenberg group
UT3(Z). We will return to Følner monotilings of UTd(Z) for d > 3 later.

Example 2.5. Consider the group UT3(Z), the discrete Heisenberg group H3. By
definition,

UT3(Z) :=
⎧⎨⎩

⎛⎝1 a c

0 1 b

0 0 1

⎞⎠ : a, b, c ∈ Z

⎫⎬⎭ .

To simplify the notation, we will denote a matrix⎛⎝1 a c

0 1 b

0 0 1

⎞⎠ ∈ UT3(Z)

by the corresponding triple (a, b, c) of its entries. Then the products and inverses in
UT3(Z) can be computed by the formulas

(a, b, c)(x, y, z) = (a + x, b + y, c + z + ya),

(a, b, c)−1 = (−a, −b, ba − c).

For every n ≥ 1, consider the subgroup

Zn := {(a, b, c) ∈ UT3(Z) : a, b ∈ nZ, c ∈ n2Z}.
This is a finite-index subgroup, and it is easy to see that for every n the finite set

Fn := {(a, b, c) ∈ UT3(Z) : 0 ≤ a, b < n, 0 ≤ c < n2}
is a fundamental domain for Zn. One can show (see [11]) that (Fn)n≥1 is a left Følner
sequence, and a similar argument shows that it is a right Følner sequence as well.
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([Fn, Zn])n≥1 is a symmetric Følner monotiling. In order to check the temperedness of
(Fn)n≥1, note that for every n > 1,⋃

i<n

F−1
i Fn ⊆ F−1

n Fn,

where

F−1
n ⊆ {(a, b, c) : −n < a, b ≤ 0, −n2 < c < n2}.

It is easy to see that for every n > 1,

F−1
n Fn ⊆ {(a, b, c) : −n < a, b < n, −3n2 < c < 3n2}.

Since |Fn| = n4 for every n, the sequence (Fn)n≥1 is tempered.

For the purposes of this work we need to introduce special Følner monotilings where
one can ‘average’ along the intersections Fn ∩ Zk for every fixed k and n → ∞. This,
together with some other requirements, leads to the following definition. We call a left
Følner monotiling ([Fn, Zn])n≥1 regular if the following assumptions hold:
(a) the sequence (Fn)n≥1 is a tempered two-sided Følner sequence;
(b) for every k the function 1Zk

∈ L∞(�) is a good weight for pointwise convergence of
ergodic averages along the sequence (Fn)n≥1;

(c) |Fn|/log n → ∞ as n → ∞;
(d) e ∈ Fn for every n.

Of course, our motivating example for the notion of a regular Følner monotiling is
Example 2.4. Below we explain why the corresponding indicator functions 1Zk

are good
weights for every k. Checking the remaining conditions for the regularity of the Følner
monotiling ([Fn, Zn])n≥1 is straightforward.

Example 2.6. Let � be an amenable group with a fixed tempered Følner sequence (Fn)n≥1,
and H ≤ � be a finite-index subgroup. Let F ⊆ � be the fundamental domain for left
cosets of H . Then [F , H ] is a left monotiling of �. Furthermore, the indicator function
1H is a good weight. To see this, consider the ergodic system X := (�/H , | · |·, �), where
� acts on the left on the finite set �/H with the normalized counting measure | · |· by

g(f H) := gf H , f ∈ F , g ∈ �.

Let f := 1eH ∈ L∞(�/H) and x := eH ∈ �/H . Then 1H (g) = f (g · x) for all g ∈ �

and the statement follows from Theorem 2.2. However, one can also prove this directly
without referring to Theorem 2.2.

In what follows we will need the following simple proposition.

PROPOSITION 2.1. Let ([Fn, Zn])n≥1 be a left Følner monotiling of � such that e ∈ Fn

for every n. Then for every fixed k ≥ 1,

|intLFk
(Fn) ∩ Zk|
|Fn| → 1

|Fk| (2)
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and
|Fn ∩ Zk|

|Fn| → 1
|Fk| (3)

as n → ∞. If, additionally, (Fn)n≥1 is a two-sided Følner sequence, then for every
fixed k,

|intLFk
(Fn) ∩ intR

F−1
k

(Fn) ∩ Zk|
|Fn| → 1

|Fk| (4)

as n → ∞.

Proof. Observe first that, under the initial assumptions of the theorem, for every set A ⊆
�, k ≥ 1 and g ∈ � we have

g ∈ intLFk
(A) ⇔ Fkg ⊆ A

and

g ∈ intR
F−1

k

(A) ⇔ gF−1
k ⊆ A.

Let k ≥ 1 be fixed. For every n ≥ 1, consider the finite set An,k := {g ∈ Zk : Fkg ∩
intLFk

(Fn) �= ∅}. Then the translates {Fkz : z ∈ An,k} form a disjoint cover of the set
intLFk

(Fn). It is easy to see that

� = intLFk
(Fn) � ∂L

Fk
(Fn) � intLFk

(F c
n).

Since An,k ∩ intLFk
(F c

n) = ∅, we can decompose the set of centers An,k as follows:

An,k = (An,k ∩ intLFk
(Fn)) � (An,k ∩ ∂L

Fk
(Fn)).

Since (Fn)n≥1 is a Følner sequence,

|Fk(An,k ∩ ∂L
Fk

(Fn))|
|Fn| = |Fk| · |An,k ∩ ∂L

Fk
(Fn)|

|Fn| → 0

and |intLFk
(Fn)|/|Fn| → 1 as n → ∞. Then from the inequalities

|intLFk
(Fn)|

|Fn| ≤ |Fk(An,k ∩ ∂L
Fk

(Fn))|
|Fn| + |Fk(An,k ∩ intLFk

(Fn))|
|Fn|

≤ |Fk(An,k ∩ ∂L
Fk

(Fn))|
|Fn| + 1

we deduce that

|Fk| · |An,k ∩ intLFk
(Fn)|

|Fn| → 1 (5)

as n → ∞. It remains to note that An,k ∩ intLFk
(Fn) = Zk ∩ intLFk

(Fn) and the first
statement follows. The second statement follows trivially from the first. To obtain the last
statement, observe that |intR

F−1
k

(Fn)|/|Fn| → 1 as n → ∞ since (Fn)n≥1 is a right Følner
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sequence, thus

lim
n→∞

|intLFk
(Fn) ∩ Fn ∩ Zk|

|Fn| = lim
n→∞

|intLFk
(Fn) ∩ intR

F−1
k

(Fn) ∩ Zk|
|Fn| = 1

|Fk| .

This proposition has an important corollary, which we now state.

THEOREM 2.7. Let ([Fn, Zn])n≥1 be a regular Følner monotiling. Then for every
measure-preserving system X = (X, μ, �), every f ∈ L∞(X) and every k ≥ 1 the limits

|Fk| lim
n→∞ Eg∈Fn1Zk

f (g · ω) = lim
n→∞ Eg∈Fn∩Zk

f (g · ω)

= lim
n→∞ Eg∈intLFk

(Fn)∩intR
F

−1
k

(Fn)∩Zk
f (g · ω)

exist and coincide for μ-a.e. ω ∈ X.

Proof. The existence of the limit on the left-hand side follows from the definition of a
good weight and the definition of a regular Følner monotiling, and equality of the limits
follows from the previous proposition.

Later, in §2.6, we will add a computability requirement to the notion of a regular Følner
monotiling. The central result of this paper says that Brudno’s theorem holds for groups
admitting a computable regular symmetric Følner monotiling.

2.3. Computability and Kolmogorov complexity. In this section we will discuss the
standard notions of computability and Kolmogorov complexity that will be used in this
work. We refer to [7, Ch. 7] for details, more definitions and proofs.

For a natural number k, a k-ary partial function is any function of the form f : D →
N ∪ {0}, where D, the domain of definition, is a subset of (N ∪ {0})k for some natural k.
A k-ary partial function is called computable if there exists an algorithm which takes a
k-tuple of non-negative integers (a1, a2, . . . , ak), prints f (a1, a2, . . . , ak) and terminates
if (a1, a2, . . . , ak) is in the domain of f , while yielding no output otherwise (in particular,
it might fail to terminate). A function is called total if it is defined everywhere.

The term algorithm above stands, informally speaking, for a computer program. One
way to formalize it is through introducing the class of recursive functions, and the resulting
notion coincides with the class of functions computable on Turing machines. We do
not focus on these question in this work, and we will think about computability in an
‘informal’ way.

A set A ⊆ N is called recursive (or computable) if the indicator function 1A of A is
computable. It is easy to see that finite and cofinite subsets of N are computable. Further-
more, for computable sets A, B ⊆ N their union and intersection are also computable. If a
total function f : N → N is computable and A ⊆ N is a computable set, then f −1(A), the
full preimage of A, is computable. The image of a computable set via a total computable
bijection is computable, and the inverse of such a bijection is a computable function.

A sequence of subsets (Fn)n≥1 of N is called computable if the total function 1F· :
(n, x) 	→ 1Fn(x) is computable. It is easy to see that a total function f : N → N is
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computable if and only if the sequence of singletons (f (n))n≥1 is computable in the sense
above.

It is very often important to have a numeration of elements of a set by natural numbers.
A set A ⊆ N is called enumerable if there exists a total computable surjective function
f : N → A. If the set A is infinite, we can also require f to be injective. This leads to an
equivalent definition because an algorithm computing the function f can be modified so
that no repetitions occur in its output. Finite and cofinite sets are enumerable. It can be
shown [7, Proposition 7.44] that a set A is computable if and only if both A and N \ A are
enumerable. Furthermore, for a set A � N the following are equivalent:
(i) A is enumerable;

(ii) A is the domain of definition of a partial recursive function.
Finally, we can introduce the Kolmogorov complexity for finite words. Let A be a

computable partial function defined on a domain D of finite binary words with values in
the set of all finite words over a finite alphabet �. Of course, we have defined computable
functions on subsets of (N ∪ {0})k with values in N ∪ {0} above, but this can be easily
extended to (co)domains of finite words over finite alphabets. We can think of A as a
‘decompressor’ that takes compressed binary descriptions (or ‘programs’) in its domain,
and decompresses them to finite words over alphabet �. Then we define the Kolmogorov
complexity of a finite word ω with respect to A as follows:

K0
A(ω) := inf{l(p) : A(p) = w},

where l(p) denotes the length of the description. If some word ω0 does not admit a
compressed version, then we let K0

A(ω0) = ∞. The average Kolmogorov complexity with
respect to A is defined by

K0
A(ω) := K0

A(ω)

l(ω)
,

where l(ω) is the length of the word ω. Intuitively speaking, this quantity tells us how
effective the compressor A is when describing the word ω.

Of course, some decompressors are intuitively better than others. This is formalized by
saying that A1 is not worse than A2 if there is a constant c such that for all words ω,

K0
A1

(ω) ≤ K0
A2

(ω) + c. (6)

A theorem of Kolmogorov says that there exist a decompressor A∗ that is optimal, that is,
for every decompressor A there is a constant c such that for all words ω we have

K0
A∗(ω) ≤ K0

A(ω) + c.

An optimal decompressor is not unique, so from now on we let A∗ be a fixed optimal
decompressor.

The notion of Kolmogorov complexity can be extended to words defined on finite
subsets of N, and this will be essential in the following sections. More precisely, let X ⊆ N

be a finite subset, ıX : X → {1, 2, . . . , card X} an increasing bijection, � a finite alphabet,
A a decompressor and ω ∈ �Y a word defined on some set Y ⊇ X. Then we let

KA(ω, X) := K0
A(ω ◦ ı−1

X ). (7)
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and

KA(ω, X) := K0
A(ω ◦ ı−1

X )

card X
. (8)

We call KA(ω, X) the Kolmogorov complexity of ω over X with respect to A, and
KA(ω, X) is called the mean Kolmogorov complexity of ω over X with respect to A. If
a decompressor A1 is not worse than a decompressor A2 with some constant c, then for all
X, ω as above,

KA1(ω, X) ≤ KA2(ω, X) + c.

If X ⊆ N is an infinite subset and (Fn)n≥1 is a sequence of finite subsets of X such
that card Fn → ∞, then the asymptotic Kolmogorov complexity of ω ∈ �X with respect
to (Fn)n≥1 and a decompressor A is defined by

K̂A(ω) := lim sup
n→∞

KA(ω|Fn , Fn).

The dependence on the sequence (Fn)n≥1 is omitted in the notation. It is easy to see that
for every decompressor A and ω ∈ �X,

K̂A∗(ω) ≤ K̂A(ω). (9)

From now on, we will (mostly) use the optimal decompressor A∗ and write K(ω, X),
K(ω, X) and K̂(ω) omitting any explicit reference to A∗.

When estimating the Kolmogorov complexity of words we will often have to encode
non-negative integers using binary words. We will now fix some notation that will be used
later. When n is a non-negative integer, we write n for the binary encoding of n and n for the
doubling encoding of n, that id, if blbl−1 · · · b0 is the binary expansion of n, then n is the
binary word blbl−1 · · · b0 of length l + 1 and n is the binary word blblbl−1bl−1 · · · b0b0

of length 2l + 2. We denote the length of the binary word w by l(w), and is clear that
l(n) ≤ �log n� + 1 and l(n) ≤ 2�log n� + 2.

2.4. Computable spaces, word presheaves and complexity. The goal of this section is
to introduce the notions of computable space, computable function between computable
spaces and word presheaf over computable spaces. The complexity of sections of word
presheaves and asymptotic complexity of sections of word presheaves are introduced in
this section as well.

An indexing of a set X is an injective mapping ı : X → N such that ı(X) is a
computable subset. Given an element x ∈ X, we call ı(x) the index of x. If i ∈ ı(X),
we denote by xi the element of X having index i. A computable space is a pair (X, ı)

of a set X and an indexing ı. Preimages of computable subsets of N under ı are called
computable subsets of (X, ı). Each computable subset Y ⊆ X can be seen as a computable
space (Y , ı|Y ), where ı|Y is the restriction of the indexing function. Of course, the set N
with identity as an indexing function is a computable space, and the computable subsets
of (N, id) are precisely the computable sets of N in the sense of §2.3.

Let (X1, ı1), (X2, ı2), . . . , (Xk , ık), (Y , ı) be computable spaces. A (total) function f :
X1 × X2 × · · · × Xk → Y is called computable if the function f̃ : ı1(X1) × ı2(X2) ×
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· · · × ık(Xk) → ı(Y ) determined by the condition

f̃ (ı1(x1), ı2(x2), . . . , ık(xk)) = ı(f (x1, x2, . . . , xk))

for all (x1, x2, . . . , xk) ∈ X1 × X2 × · · · × Xk is computable. This definition extends the
standard definition of computability from §2.3 when the computable spaces under con-
sideration are (N, id). A computable function f : (X, ı1) → (Y , ı2) is called a morphism
between computable spaces. This yields the definition of the category of computable
spaces. Let (X, ı1), (X, ı2) be computable spaces. The indexing functions ı1 and ı2 of X are
called equivalent if id : (X, ı1) → (X, ı2) is an isomorphism. It is clear that the classes of
computable functions and computable sets do not change if we pass to equivalent indexing
functions.

Given a computable space (X, ı), we call a sequence of subsets (Fn)n≥1 of X

computable if the function 1F· : N × X → {0, 1}, (n, x) 	→ 1Fn(x) is computable. We will
also need a special notion of computability for sequences of finite subsets of (X, ı). A
sequence of finite subsets (Fn)n≥1 of X is called canonically computable if there is an
algorithm that, given n, prints the set ı(Fn) and halts. One way to make this more precise is
by introducing the canonical index of a finite set. Given a finite set A = {x1, x2, . . . , xk} ⊂
N, we call the number I(A) := ∑k

i=1 2xi the canonical index of A. Hence a sequence of
finite subsets (Fn)n≥1 of X is canonically computable if and only if the total function
n 	→ I(ı(Fn)) is computable. Of course, a canonically computable sequence of finite sets
is computable, but the converse is not true due to the fact that there is no effective way of
determining how large a finite set with a given computable indicator function is. It is easy to
see that the class of canonically computable sequences of finite sets does not change if we
pass to an equivalent indexing. The proof of the following proposition is straightforward.

PROPOSITION 2.2. Let (X, ı) be a computable space.
(a) If (Fn)n≥1, (Gn)n≥1 are computable (respectively, canonically computable)

sequences of sets, then the sequences of sets (Fn ∪ Gn)n≥1, (Fn ∩ Gn)n≥1 and
(Fn \ Gn)n≥1 are computable (respectively, canonically computable).

(b) If (Fn)n≥1 is a canonically computable sequence of sets and (Gn)n≥1 is a computable
sequence of sets, then the sequence of sets (Fn ∩ Gn)n≥1 is canonically computable.

Let (X, ı) be a computable space and � be a finite alphabet. A word presheaf F� on X

consists of
(1) a set F�(U) of �-valued functions defined on the set U for every computable subset

U ⊆ X;
(2) a restriction mapping ρU ,V : F�(U) → F�(V ) for each pair U , V of computable

subsets such that V ⊆ U , which takes functions in F�(U) and restricts them to the
subset V .

It is easy to see that the standard ‘presheaf axioms’ are satisfied: ρU ,U is the identity
on F�(U) for every computable U ⊆ X, and for every triple V ⊆ U ⊆ W we have that
ρW ,V = ρU ,V ◦ ρW ,U . Elements of F�(U) are called sections over U , or words over U .
We will often write s|V for ρU ,V s, where s ∈ F�(U) is a section.
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We have introduced Kolmogorov complexity of words supported on subsets of N in the
previous section, now we want to extend this by introducing complexity of sections. Let
(X, ı) be a computable space and let F� be a word presheaf over (X, ı). Let U ⊆ X be a
finite set and ω ∈ F�(U). Then we define the Kolmogorov complexity of ω ∈ F�(U) by

K(ω, U) := K(ω ◦ ı−1, ı(U)), (10)

and the mean Kolmogorov complexity of ω ∈ F�(U) by

K(ω, U) := K(ω ◦ ı−1, ı(U)). (11)

The quantities on the right-hand side here are defined in equations (7) and (8), respectively
(which are special cases of the more general definition when the computable space X is
(N, id)).

Let (Fn)n≥1 be a sequence of finite subsets of X such that card Fn → ∞. Then we
define the asymptotic Kolmogorov complexity of a section ω ∈ F�(X) along the sequence
(Fn)n≥1 by

K̂(ω) := lim sup
n→∞

K(ω|Fn , Fn).

Dependence on the sequence (Fn)n≥1 is omitted in the notation for K̂, but it will be always
clear from the context which sequence we take.

We close this section with an interesting result on invariance of asymptotic Kolmogorov
complexity. It says that asymptotic Kolmogorov complexity of a section ω ∈ F�(X) does
not change if we pass to an equivalent indexing.

THEOREM 2.8. (Invariance of asymptotic complexity) Let ı1, ı2 be equivalent indexing
functions of a set X. Let (Fn)n≥1 be a sequence of finite subsets of X such that:
(a) (Fn)n≥1 is a canonically computable sequence of sets in (X, ı1);
(b) card Fn/log n → ∞ as n → ∞.
Let ω ∈ F�(X). Then

lim sup
n→∞

K(ω|Fn ◦ ı−1
1 , ı1(Fn)) = lim sup

n→∞
K(ω|Fn ◦ ı−1

2 , ı2(Fn)),

that is, asymptotic Kolmogorov complexity of ω does not change when we pass to an
equivalent indexing.

Proof. Since the indexing functions ı1, ı2 are equivalent, there is a computable bijection
φ : ı2(X) → ı1(X) such that φ(ı2(x)) = ı1(x) for all x ∈ X. Furthermore, the sequence
(Fn)n≥1 is canonically computable in (X, ı2).

Let n be fixed. By definition,

K(ω|Fn ◦ ı−1
1 , ı1(Fn)) = K0

A∗((ω|Fn ◦ ı−1
1 ) ◦ ı−1

ı1(Fn))

card Fn

,

where ω|Fn ◦ ı−1
1 is seen as a word on ı1(Fn) ⊆ N and ω̃1 := (ω|Fn ◦ ı−1

1 ) ◦ ı−1
ı1(Fn) is

a word on {1, 2, . . . , card Fn} ⊆ N. Let p1 be an optimal description of (ω|Fn ◦ ı−1
1 ) ◦

ı−1
ı1(Fn). Similarly, ω̃2 := (ω|Fn ◦ ı−1

2 ) ◦ ı−1
ı2(Fn) is a word on {1, 2, . . . , card Fn}. It is clear
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that ω̃1 is a permutation of ω̃2, hence we can describe ω̃2 by giving the description of ω̃1

and saying how to permute it to obtain ω̃2. We make this intuition formal below.
We define a new decompressor A′. The domain of definition of A′ consists of the

‘proper’ programs of the form

l01p, (12)

where l is a doubling encoding of an integer l and p is an input for A∗. It will be clear in a
moment what we mean by ‘proper’.

The decompressor A′ works as follows. Compute the subsets ı1(Fl) and ı2(Fl) of N. We
let φ be the element of Symcard Fl

such that the diagram

ı1(Fl)

ıı1(Fl )

��

ı2(Fl)

ıı2(Fl )

��

φ
��

{1, 2, . . . , card Fl} {1, 2, . . . , card Fl}
φ

��

commutes. We compute the word ω′ := A∗(p). If card Fl �= l(ω′), then the input is not
‘proper’ and the algorithm terminates without producing output. Otherwise, the word ω′ ◦
φ is printed. It follows that there is a constant c such that the following holds: for all l ∈ N

and for all words ω′ of length card Fl we have

K0
A∗(ω′ ◦ φ) ≤ K0

A∗(ω′) + 2 log l + c,

where φ is the permutation of {1, 2, . . . , card Fl} defined above.
Finally, consider the program p′ := n01p1. Then A′(p′) = ω̃2. We deduce that

K0
A∗(ω̃2) ≤ K0

A∗(ω̃1) + 2 log n + c. The statement of the theorem follows trivially.

To simplify the notation in the following sections, we adopt the following convention.
We say explicitly what indexing function we use when introducing a computable space,
but later, when the indexing is fixed, we often omit the indexing function from the notation
and think about computable spaces as computable subsets of N. Words defined on subsets
of a computable space become words defined on subsets of N. This will help to simplify
the notation without introducing much ambiguity.

2.5. Computable groups. In this section we provide the definitions of a computable
group and a few related notions, connecting results from algebra with computability. This
section is based on [14].

Let � be a group with respect to the multiplication operation ∗. An indexing ı of � is
called admissible if the function ∗ : (�, ı) × (�, ı) → (�, ı) is a computable function in
the sense of §2.4. A computable group is a pair (�, ı) of a group � and an admissible
indexing ı.

Of course, the groups Zd and UTd(Z) possess ‘natural’ admissible indexings. More
precisely, for the group Z we fix the indexing

ı : n 	→ 2|n| + 1n≥0,
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which is admissible. Next, it is clear that for every d > 1 the group Zd possesses an
admissible indexing function such that all coordinate projections onto Z, endowed with the
indexing function ı above, are computable. Similarly, for every d ≥ 2 the group UTd(Z)

possesses an admissible indexing function such that for every pair of indexes 1 ≤ i, j ≤ d

the evaluation function sending a matrix g ∈ UTd(Z) to its (i, j)th entry is a computable
function to Z. We leave the details to the reader. It does not matter which admissible
indexing function of Zd or UTd(Z) we use as long as it satisfies the conditions above, so
from now on we assume that this choice is fixed.

The following lemma from [14] shows that in a computable group taking the inverse is
also a computable operation.

LEMMA 2.1. Let (�, ı) be a computable group. Then the function inv : (�, ı) → (�, ı),
g 	→ g−1 is computable.

(�, ı) is a computable space, and we can talk about computable subsets of (�, ı).
A subgroup of � which is a computable subset will be called a computable subgroup.
A homomorphism between computable groups that is computable as a map between
computable spaces will be called a computable homomorphism. The proof of the following
proposition is straightforward.

PROPOSITION 2.3. Let (�, ı) be a computable group. Then the following assertions hold.
(1) Given a computable set A ⊆ � and a group element g ∈ �, the sets A−1, gA and Ag

are computable.
(2) Given a computable (respectively, canonically computable) sequence (Fn)n≥1 of

subsets of � and a group element g ∈ �, the sequences (gFn)n≥1, (Fng)n≥1 are
computable (respectively, canonically computable).

It is interesting to see that a computable version of the ‘first isomorphism theorem’ also
holds.

THEOREM 2.9. Let (G, ı) be a computable group and let (H , ı|H ) be a computable
normal subgroup, where ı|H is the restriction of the indexing function ı to H . Then there
is a compatible indexing function ı′ on the factor group G/H such that the quotient map
π : (G, ı) → (G/H , ı′) is a computable homomorphism.

For the proof we refer the reader to [14, Theorem 1].

2.6. Computable Følner sequences and computable monotilings. The notions of an
amenable group and a Følner sequence are well known, but, since we are working with
computable groups, we need to develop their ‘computable’ versions.

Let (�, ı) be a computable group. A left Følner monotiling ([Fn, Zn])n≥1 of � is called
computable if the following assertions hold:
(a) (Fn)n≥1 is a canonically computable sequence of finite subsets of �;
(b) (Zn)n≥1 is a computable sequence of subsets of �.

First of all, let us show that the regular symmetric monotiling ([Fn, Zn])n≥1 of Zd from
Example 2.4 is computable.
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Example 2.10. Consider the group Zd for some d ≥ 1. We remind the reader that it is
endowed with an admissible indexing such that all the coordinate projections Zd → Z

are computable. Then the Følner sequence Fn = [0, 1, 2, . . . , n − 1]d is canonically
computable. Furthermore, the corresponding sets of centers equal nZd for every n, hence
([Zn, Fn])n≥1 is a computable regular symmetric Følner monotiling.

Next, we return to Example 2.5.

Example 2.11. Consider the group UT3(Z) and the monotiling ([Fn, Zn])n≥1 from
Example 2.5 given by

Zn = {(a, b, c) ∈ UT3(Z) : a, b ∈ nZ, c ∈ n2Z}
and

Fn = {(a, b, c) ∈ UT3(Z) : 0 ≤ a, b < n, 0 ≤ c < n2}
for every n ≥ 1. We define the projections π1, π2, π3 : UT3(Z) → Z as follows. For every
g = (a, b, c) ∈ UT3(Z) we let

π1(g) := a,

π2(g) := b,

π3(g) := c.

The functions π1, π2, π3 are computable. By definition, for every (n, g) ∈ N × UT3(Z),

1Z·(n, g) = 1 ⇔ (π1(g) ∈ nZ) ∧ (π2(g) ∈ nZ) ∧ (π3(g) ∈ n2Z),

hence the sequence of sets (Zn)n≥1 is computable. It is also trivial to show that the
sequence (Fn)n≥1 is canonically computable.

It follows that ([Fn, Zn])n≥1 is a computable regular symmetric Følner monotiling.

In general, checking the temperedness of a given canonically computable Følner
sequence is not trivial. Lindenstrauss in [10] proved that every Følner sequence has
a tempered Følner subsequence. Furthermore, the construction of a tempered Følner
subsequence from a given Følner sequence is ‘algorithmic’. We provide his proof below,
and we will use this result later in this section when discussing Følner monotilings of
UTd(Z) for d > 3.

PROPOSITION 2.4. Let (Fn)n≥1 be a canonically computable Følner sequence in a
computable group (�, ı). Then there is a computable function i 	→ ni such that the
subsequence (Fni

)i≥1 is a canonically computable tempered Følner subsequence.

Proof. We define ni inductively as follows. Let n1 := 1. If n1, . . . , ni have been
determined, we set F̃i := ⋃

j≤i Fnj
. Take for ni+1 the first integer greater than i + 1 such

that

|Fni+1�F̃−1
i Fni+1 | ≤ 1

|F̃i |
.
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The function i 	→ ni is total computable. It follows that∣∣∣∣ ⋃
j≤i

F−1
nj

Fni+1

∣∣∣∣ ≤ 2|Fni+1 |,

hence the sequence (Fni
)i≥1 is 2-tempered. Since the Følner sequence (Fn)n≥1 is canoni-

cally computable and the function i 	→ ni is computable, the Følner sequence (Fni
)i≥1 is

canonically computable and tempered.

In case of the discrete Heisenberg group UT3(Z) we were able to give simple formulas
for the sequences (Fn)n≥1 and (Zn)n≥1; in particular, checking the computability was
trivial. This is no longer the case when d > 3, and we will need the following lemma to
check the computability of the sequence (Zn)n≥1.

PROPOSITION 2.5. Let (�, ı) be a computable group. Let ([Fn, Zn])n≥1 be a left Følner
monotiling of � such that (Fn)n≥1 is a canonically computable sequence of finite sets and
e ∈ Fn for all n ≥ 1. Then the following assertions are equivalent.
(i) There is a total computable function φ : N2 → � such that

Zn = {φ(n, 1), φ(n, 2), . . .}
for every n ≥ 1.

(ii) The sequence of sets (Zn)n≥1 is computable.

Proof. One implication is clear. For the converse, note that to prove computability of the
function 1Z· we have to devise an algorithm that, given n ∈ N and g ∈ �, decides whether
g ∈ Zn or not. Let φ : N2 → � be the function from assertion (i). Then the following
algorithm answers the question. Set i := 1 and compute the set Fn = {e, h1,n, . . . , hk,n}.
This is possible since (Fn)n≥1 is a canonically computable sequence of finite sets; in
particular, k = k(n) above is a computable function of n.

The main loop begins by computing eφ(n, i), h1,nφ(n, i), . . . , hk,nφ(n, i). If g =
eφ(n, i), then the answer is ‘yes’ and we stop the program. If g = hj ,nφ(n, i) for some
1 ≤ j ≤ k, then the answer is ‘no’ and we stop the program. If neither is true, then we set
i := i + 1 and go to the beginning of the main loop.

Since � = FnZn for every n, the algorithm terminates for every input.

In this last example we will explain, referring to the work [7] for details, why the groups
UTd(Z) for d > 3 have computable regular symmetric Følner monotilings as well.

Example 2.12. Let d be fixed. Let uij be the matrix whose entry with the indexes (i, j) is
1, and where all the other entries are zero. Let Tij := I + uij . Let p be a prime number. For

every m consider the subgroup Zm generated by T
pm(j−i)

ij for all indexes (i, j), i < j . Then
Zm is an enumerable subset. There exists a total computable function φ : N2 → UTd(Z)

such that

Zm = {φ(m, 1), φ(m, 2), φ(m, 3), . . .}
for all m ≥ 1.
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Zm is a finite-index subgroup of UTd(Z) for every m. The fundamental domain ρm for
Zm can be written as

ρm :={T kd−1,d
d−1,d · · · T

k1,d
1,d :

ld−1,d(m) ≤ kd−1,d ≤ Ld−1,d(m), . . . , l1,d(m) ≤ k1,d ≤ L1,d(m)},
where

li,j (m) = −
⌊

pm(j−i)

2

⌋
, Li,j (m) =

⌊
pm(j−i) + 1

2

⌋
.

It is clear that the sequence of sets m 	→ ρm is canonically computable. Furthermore, it is
shown in [7] that (ρm)m≥1 is a two-sided Følner sequence. The computability of the Følner
monotiling ([ρm, Zm])m≥1 follows from Proposition 2.5.

The fact that the Følner monotiling ([ρm, Zm])m≥1 is symmetric is clear since Zm is
a subgroup for every m. The fact that for each m the function 1Zm

is a good weight
along a tempered subsequence of (ρm)m≥1 follows from Example 2.6. It is clear that we
can ensure the growth conditions by picking a subsequence (ni)i≥1 computably such that
([ρni

, Zni
])i≥1 is a computable regular symmetric Følner monotiling.

3. A theorem of Brudno
We are now ready to prove the main theorem of this paper. First, we will explain some
definitions.

By a subshift (X, �) we mean a closed �-invariant subset X of �� , where � is the finite
alphabet of X. The left action of the group � on X is given by

(g · ω)(x) := ω(xg) for all x, g ∈ �, ω ∈ X.

The words consisting of letters from the alphabet � will be often called �-words. Of
course, we can assume without loss of generality that � = {1, 2, . . . , z} for some z. We
denote by M1

�(X) the space of invariant probability measures on X. When a measure μ ∈
M1

�(X) is fixed, we will often denote by X = (X, μ, �) the associated measure-preserving
system.

If the group � is endowed with an admissible indexing function ı, then (�, ı) is a
computable space and we can talk about word presheaves over this space. In particular,
if (X, �) is a subshift, we associate a word presheaf F� to the subshift (X, �) by setting

F�(F ) := {ω|F : ω ∈ X}
for every computable set F ⊆ �. Every word ω ∈ X, viewed as an element of F�(�), is a
section, hence one can define its asymptotic Kolmogorov complexity with respect to some
sequence of finite sets (Fn)n≥1 such that card Fn → ∞ as n → ∞.

We now state the main result of this paper.

THEOREM 3.1. Let (�, ı) be a computable group with a fixed computable regular
symmetric Følner monotiling ([Fn, Zn])n≥1. Let (X, �) be a subshift on �, μ ∈ M1

�(X)

be an ergodic measure and X = (X, μ, �) be the associated measure-preserving system.
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Then

K̂(ω) = h(X)

for μ-a.e. ω ∈ X, where the asymptotic complexity is computed with respect to the sequence
(Fn)n≥1.

The proof is split into two parts, establishing respective inequalities in Theorems 3.3
and 3.4. From now on, we more or less follow the strategy of Brudno’s original paper [3].

Given a subshift X ⊆ �� with an invariant measure μ on the alphabet � = {1, . . . , z},
we define the partition

α� := {A1, . . . , Az}, Ai := {ω ∈ X : ω(e) = i} for all i = 1, . . . , z.

Then α� is clearly a generating partition. We will use the following well-known
proposition.

PROPOSITION 3.1. Let X ⊆ �� be a subshift, μ ∈ M1
�(X) be an invariant probability

measure, X = (X, μ, �) be the associated measure-preserving system and α� be the
partition defined above. Then

hμ(α�, �) = h(X).

Before we proceed to the proofs, we make the following observation. The alphabet � =
{1, 2, . . . , z} is finite, so we fix an encoding of � by binary words of length �log z� + 1.
That is, we have an injective map

c� : � → {0, 1}�log z�+1.

If c� is not surjective, then we agree to assign the remaining elements of {0, 1}�log z�+1 to
the first letter of �. Then, for every N ≥ 1, each binary word of length N(�log z� + 1) is
unambiguously interpreted as a �-word of length N .

3.1. Part A. The first step is proving that the Kolmogorov complexity of a word over � is
shift-invariant. In the proof below it will become apparent why we need the computability
structure on the group and why we require the Følner sequence to be computable. We
follow the convention suggested at the end of §2.4, that is, we view � as a computable
subset of N such that the multiplication is computable.

THEOREM 3.2. (Shift invariance) Let (�, ı) be a computable amenable group with a fixed
canonically computable right Følner sequence (Fn)n≥1 such that |Fn|/log n → ∞ as n →
∞. Let (X, �) be a subshift and ω ∈ X be a word on �. Then for every g ∈ �,

K̂(ω) = K̂(g · ω),

where the asymptotic complexity is computed with respect to the sequence (Fn)n≥1.

Proof. We will prove the following claim: for arbitrary g ∈ �,

K̂(g · ω) = lim sup
n→∞

K0
A∗((g · ω)|Fn ◦ ı−1

Fn
)

|Fn| ≤ K̂(ω).
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It is trivial to see that the statement of the theorem follows from this claim. Speaking
informally, our idea behind the proof of the claim is that the sets Fn and Fng

−1 are
almost identical for large enough n. The word (g · ω)|Fn∩Fng−1 can be encoded using
the knowledge of the word ω|Fn and the computable action by g that ‘permutes’ a part
of the word ω|Fn . To encode the word (g · ω)|Fn we also need to treat the part outside
the intersection. We use the fact that our Følner sequence is computable, that is, there is
an algorithm that, given n, will print the set Fn. But then we also know the remainder
Fn \ Fng

−1, which is endowed with the ambient numbering of � ⊆ N. Hence we can
simply list additionally the |Fn \ Fng

−1| corrections we need to make, which takes little
space compared to |Fn|. Taken together, this implies that the complexity of (g · ω)|Fn

can be asymptotically bounded by the complexity of ω|Fn . Below we make this intuition
formal.

Recall that A∗ is a fixed asymptotically optimal decompressor in the definition of
Kolmogorov complexity K. We now introduce a new decompressor A† on the domain
of ‘proper’ programs of the form

s01w01n01m01p, (13)

where s is a doubling encoding of a non-negative integer s and w is a binary encoding of a
�-word υ of length s, hence l(w) = s(�log z� + 1). Next, n and m are doubling encodings
of some natural numbers n, m. The remainder p is required to be a valid input for A∗. It
will be clear in a moment what we mean by ‘proper’ above. The programs of this form
(equation (13)) are unambiguously interpreted, that is, one can uniquely determine the
integers s, m, n and the binary words w and p.

The decompressor A† is defined as follows. Let g := gm be the element of the
computable group (�, ı) with index m, and let F := Fn be the nth element of the
canonically computable Følner sequence (Fn)n≥1. We compute the set D := F \ Fg−1,
which is seen as a subset of N with induced ordering. Further, we compute the word ω̃1 :=
A∗(p). The increasing bijection ıF : F → {1, 2, . . . , |F |} maps the subsets F ∩ Fg−1

and Fg ∩ F of F to subsets Y1, Y2 of {1, 2, . . . , |F |}. The right multiplication Rg on
� is computable and restricts to a bijection from F ∩ Fg−1 to Fg ∩ F , so let R̃g be the
bijection making the diagram

F ∩ Fg−1 ıF ��

Rg

��

Y1

R̃g

��
Fg ∩ F

ıF �� Y2

commute. The output of A† is produced as follows. If R̃g(x) > l(ω̃1) for some x ∈ Y1

or |F | − card Y1 �= s, then the input is not ‘proper’ and the algorithm terminates without
producing output. Otherwise, for every x ∈ Y1 ⊆ {1, 2, . . . , |F |} we set

ω̃2(x) := ω̃1(R̃g(x)).

It remains to describe ω̃2 on the remainder Y0 := {1, 2, . . . , |F |} \ Y1. We let

ω̃2|Y0 := υ ◦ ıY0 ,
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where ıY0 : Y0 → {1, 2, . . . , card Y0} is an increasing bijection. The word ω̃2 is printed as
the output.

Let n ≥ 1 be arbitrary, and let (g · ω)|Fn ◦ ı−1
Fn

be the word on {1, 2, . . . , |Fn|} that we
want to encode, where g ∈ � has index m. Let pn be an optimal description for ω|Fn ◦ ı−1

Fn

with respect to A∗. Let υ be the word (g · ω)|Fn\Fng−1 ◦ ı−1
Fn\Fng−1 . To encode the word

(g · ω)|Fn ◦ ı−1
Fn

using A†, consider the program

p̃n := s01w01n01m01pn,

where w is the binary encoding of the �-word υ and s = |Fn \ Fng
−1|. It is trivial to see

that A†(̃pn) = (g · ω)|Fn ◦ ı−1
Fn

. The length of the program p̃n can be estimated by

l(̃pn) ≤ |Fn\Fng
−1| · (log z + 1) + 2 log|Fn\Fng

−1| + 8 + 2 log n + 2 log m + l(pn).

By the definition of complexity of sections

K̂(g · ω) = lim sup
n→∞

K0
A∗((g · ω)|Fn ◦ ı−1

Fn
)

|Fn| .

Using that the optimal decompressor A∗ is not worse than A†, we conclude that for every
n ≥ 1,

K0
A∗((g · ω)|Fn ◦ ı−1

Fn
) ≤ K0

A†((g · ω)|Fn ◦ ı−1
Fn

) + c

≤ |Fn \ g−1Fn| · (log z + 1) + 2 log|Fn \ Fng
−1|

+ 2 log n + l(pn) + c′

for some constants c, c′ independent of n and ω. Taking the limits yields

lim sup
n→∞

K0
A∗((g · ω)|Fn ◦ ı−1

Fn
)

|Fn| ≤ lim sup
n→∞

K0
A∗(ω|Fn ◦ ı−1

Fn
)

|Fn| .

This completes the proof of the claim, and therefore the proof of the theorem.

Of course, in the proof above we have not used that X is closed. From now on we will
omit explicit reference to the sequence (Fn)n≥1 when talking about K̂. The proof of the
following proposition is essentially similar to the original one in [3].

PROPOSITION 3.2. Let (�, ı) be a computable amenable group with a fixed canonically
computable right Følner sequence (Fn)n≥1 such that |Fn|/log n → ∞ as n → ∞. Let
(X, �) be a subshift. For every t ∈ R≥0 the sets

Et := {ω ∈ X : K̂(ω) = t},
Lt := {ω ∈ X : K̂(ω) < t},
Gt := {ω ∈ X : K̂(ω) > t}

are Borel measurable and shift-invariant.

Proof. Invariance of the sets above follows from the previous proposition. We will now
prove that the set Lt is measurable; the measurability of the other sets is proved in a similar
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manner. Observe that

Lt := {ω : K̂(ω) < t} =
⋃
N≥1

⋂
n>N

{ω : K0
A∗(ω|Fn ◦ ı−1

Fn
) < t |Fn|},

where, for every n ≥ 1, the set {ω : K0
A∗(ω|Fn ◦ ı−1

Fn
) < t |Fn|} is measurable as a finite

union of cylinder sets. The measurability of Lt follows.

We are now ready to prove the first inequality. The proof below is a slight adaption of
the original one from [3].

THEOREM 3.3. Let (�, ı) be a computable group with a canonically computable tempered
two-sided Følner sequence (Fn)n≥1 such that |Fn|/log n → ∞. Let (X, �) be a subshift
over �, μ ∈ M1

�(X) be an ergodic invariant probability measure and X = (X, μ, �) be
the associated measure-preserving system. Then K̂(ω) ≥ h(X) for μ-a.e. ω.

Proof. Suppose this is false, and let

R := {ω : K̂(ω) < h(X)} ⊆ X

be the measurable set of words whose complexity is strictly smaller than the entropy h(X).
By assumption, μ(R) > 0. The measure μ is ergodic and the set R is invariant, hence
μ(R) = 1. For every i ≥ 1 let

Ri :=
{
ω : K̂(ω) < h(X) − 1

i

}
.

Then R = ⋃
i≥1 Ri and the sets Ri are measurable and invariant for all i. It follows that

there exists an index i0 such that μ(Ri0) = 1. For every l ≥ 1 define the set

Ql :=
{
ω : K0

A∗(ω|Fi
◦ ı−1

Fi
) <

(
h(X) − 1

i0

)
|Fi | for all i ≥ l

}
.

Then Ql is a measurable set for every l ≥ 1 and Ri0 = ⋃
l≥1 Ql . Let 1 > δ > 0 be fixed.

The sequence of sets (Ql)l≥1 is monotone increasing, hence there is l0 such that for all
l ≥ l0 we have μ(Ql) > 1 − δ.

Let ε < min(1/i0, 1 − δ) be positive. Let n0 := n0(ε) ≥ l0 such that for all n ≥ n0 we
have the decomposition X = An � Bn, where μ(Bn) < ε and for all ω ∈ An the inequality

2−|Fn|(h(X)+ε) ≤ μ(α
Fn

� (ω)) ≤ 2−|Fn|(h(X)−ε) (14)

holds. Such n0 exists due to Corollary 2.1. For every l ≥ n0, we partition the sets Ql in the
following way:

QA
l := Ql ∩ Al ,

QB
l := Ql ∩ Bl .

It is clear that for every l ≥ n0,

μ(QB
l ) < ε,

μ(QA
l ) ≥ 1 − δ − ε > 0.
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By the definition of the set QA
l , for all l ≥ n0 and all ω ∈ QA

l we have

K0
A∗(ω|Fl

◦ ı−1
Fl

) ≤ |Fl |
(

h(X) − 1
i0

)
.

This allows us, for every l ≥ n0, to estimate the cardinality of the set of all restrictions of
words in QA

l to Fl as

|{ω|Fl
: ω ∈ QA

l }| ≤ 2|Fl |(h(X)−1/i0)+1,

which can be seen by counting all binary programs of length at most |Fl |(h(X) − 1/i0).
Combining this with equation (14), we deduce that

μ(QA
l ) ≤ 2|Fl |(h(X)−1/i0)+1 · 2−|Fl |(h(X)−ε) ≤ 2|Fl |(ε−1/i0)+1.

This implies that μ(QA
l ) → 0 as l → ∞, since |Fl | → ∞ and ε − 1/i0 < 0. This

contradicts the estimate

μ(QA
l ) ≥ 1 − δ − ε

for all l ≥ n0 above.

3.2. Part B. In this part of the proof we shall derive the other inequality. We begin with
a preliminary lemma.

LEMMA 3.1. Let X = (X, μ, �) be an ergodic measure-preserving system, where the
discrete group � admits a regular symmetric Følner monotiling ([Fn, Zn])n≥1. Let (βk)k≥1

be a sequence of finite partitions of X, where βk = {Bk
1 , Bk

2 , . . . , Bk
Mk

} for all k ≥ 1. For
all k ≥ 1, h ∈ �, m ∈ {1, 2, . . . , Mk} let

πk,h
n,m(ω) := Eg∈Fn∩Zk

1Bk
m
((gh) · ω) (15)

and

π̃ k,h
n,m(ω) := Eg∈intLFk

(Fn)∩intR
F

−1
k

(Fn)∩Zk
1Bk

m
((gh) · ω). (16)

Then the following assertions hold.
(a) For μ-a.e. ω ∈ X the limit

πk,h
m (ω) := lim

n→∞ πk,h
n,m(ω) = lim

n→∞ π̃ k,h
n,m(ω)

exists for all k ≥ 1, m ∈ {1, 2, . . . , Mk} and h ∈ �.
(b) For μ-a.e. ω ∈ X and all k ≥ 1 there exists h := hk(ω) ∈ F−1

k such that

−
Mk∑

m=1

πk,h
m (ω) log πk,h

m (ω) ≤ hμ(βk).

Proof. The first assertion follows from the definition of a regular Følner monotiling,
Theorem 2.7 and countability of �.
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For the second assertion, observe that for μ-a.e. ω, all k ≥ 1 and all m ∈
{1, 2, . . . , Mk},

1
|Fk|

∑
h∈F−1

k

πk,h
m (ω) = lim

n→∞ Eg∈Fn1Bk
m
(g · ω),

since, for every k ≥ 1, [Zk , F−1
k ] is a right monotiling,

(intLFk
(Fn) ∩ intR

F−1
k

(Fn) ∩ Zk)F
−1
k ⊆ Fn

for all n ≥ 1 and

|(intLFk
(Fn) ∩ intR

F−1
k

(Fn) ∩ Zk)F
−1
k |

|Fn| → 1

as n → ∞.
Using the ergodicity of X, we deduce that for μ-a.e. ω, all k ≥ 1 and all m ∈

{1, 2, . . . , Mk},
1

|Fk|
∑

h∈F−1
k

πk,h
m (ω) = lim

n→∞ Eg∈Fn1Bk
m
(g · ω) = μ(Bk

m),

and the second assertion follows by the concavity of the entropy.

We are now ready to prove the converse inequality. The proof is based on essentially the
same idea of ‘frequency encoding’ from [3], but the technical details differ quite a bit.

THEOREM 3.4. Let (�, ı) be a computable group with a fixed computable regular
symmetric Følner monotiling ([Fn, Zn])n≥1. Let (X, �) be a subshift on �, μ ∈ M1

�(X)

be an ergodic measure and X = (X, μ, �) be the associated measure-preserving system.
Then K̂(ω) ≤ h(X) for μ-a.e. ω.

Proof. We describe a decompressor A! that will be used to encode the restrictions of the
words in X. The decompressor A! is defined on the domain of ‘proper’ programs of the
form

p := s01t01f101 · · · fL0110r01w01N. (17)

Here s, t, r are doubling encodings of some natural numbers s, t , r . Words f1, . . . , fL,
where we require that L = z|Fs |, are doubling encodings of non-negative integers
f1, . . . , fL. The word w encodes a �-word υ of length r . The word N encodes a natural
number N via binary encoding. It will become clear what we mean by ‘proper’ in a
moment. The programs of this form (equation (17)) are unambiguously interpreted. Let

{ω̃1, ω̃2, . . . , ω̃L}
be the list of all �-words of length |Fs | ordered lexicographically. It is clear that, given s,
such a list can be computed.

The decompressor A! works as follows. From s and t compute the finite subsets

Fs , Ft , intLFs
(Ft ) ∩ intR

F−1
s

(Ft )
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of N. Compute the finite set

Is,t := intLFs
(Ft ) ∩ intR

F−1
s

(Ft ) ∩ Zs

of centers of the monotiling [Fs , Zs]. Next, for every h ∈ Is,t compute the tile Th := Fsh ⊆
Ft centered at h. We compute the union

�s,t :=
⋃

h∈Is,t

Th ⊆ Ft

of all such tiles.
We will construct a �-word σ on the set Ft , then σ̃ := σ ◦ ı−1

Ft
yields a word on

{1, 2, . . . , |Ft |} which is printed as the output. The word σ is computed as follows. First,
we describe how to compute the restriction σ |�s,t . For every h ∈ Is,t the word σ ◦ ı−1

Th
is a

word on {1, 2, . . . , |Fs |}, hence it coincides with one of the words

ω̃1, ω̃2, . . . , ω̃L

introduced above. We require that the word ω̃i occurs exactly fi times for every i ∈
{1, . . . , L}. This amounts to saying that the word σ |�s,t has the collection of frequencies
f1, f2, . . . , fL. Of course, this does not determine σ |�s,t uniquely, but only up to a certain
permutation. Let F�,p be the set of all �-words on �s,t having collection of frequencies
f1, f2, . . . , fL. If

∑L
j=1 fj �= |Is,t |, then the input is not ‘proper’ and the algorithm

terminates, yielding no output. Otherwise, F�,p is non-empty. The set F�,p is ordered
lexicographically (recall that �s,t is a subset of N). It is clear that

card F�,p = |Is,t |!
f1! f2! · · · fL!

. (18)

Thus to encode σ |�s,t it suffices to give the index NF�,p(σ |�s,t ) of σ |�s,t in the set F�,p.
We require that NF�,p(σ |�s,t ) = N , and this together with the collection of frequencies
f1, f2, . . . , fL determines the word σ |�s,t uniquely. If N > card F�,p, then the input is
not ‘proper’ and the algorithm terminates without producing output.

We now compute the restriction σFt\�s,t . Since Ft \ �s,t is a finite subset of N, we can
simply list the values of σ in the order they appear on Ft \ �s,t . If r �= card(Ft \ �s,t ), then
the input is not ‘proper’ and the algorithm terminates without producing output. Otherwise,
we require that

σ |Ft\�s,t ◦ ı−1
Ft\�s,t

= υ,

which determines the word σ completely.
For all k ≥ 1, let

{ω̃k
1, ω̃k

2, . . . , ω̃k
Mk

}
be the list of all �-words of length |Fk| ordered lexicographically. Here Mk = (card �)|Fk |
for all k. For all k ≥ 1 and i ∈ {1, . . . , Mk} define the cylinder sets

Bk
i := {ω ∈ X : ω|Fk

◦ ı−1
Fk

= ω̃k
i },

and let βk := {Bk
1 , Bk

2 , . . . , Bk
Mk

} be the corresponding partition of X into cylinder sets for
every k. We apply Lemma 3.1 to the system X = (X, μ, �) and the sequence of partitions
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(βk)k≥1. This yields a full-measure subset X0 ⊆ X such that for all ω ∈ X0 and all k ≥ 1
there is an element h′ := hk(ω) ∈ F−1

k such that

−
Mk∑

m=1

πk,h′
m (ω) log πk,h′

m (ω) ≤ hμ(βk). (19)

Let ω ∈ X0, k ≥ 1 be arbitrarily fixed and h′ := hk(ω) ∈ F−1
k be the group element given

by Lemma 3.1. Because of the shift-invariance of Kolmogorov complexity we have K̂(h′ ·
ω) = K̂(ω). We will show that

K̂(ω) = K̂(h′ · ω) ≤ hμ(βk)

|Fk| .

Then, since hμ(βk) = hμ(α
Fk

� ) for all k ≥ 1, taking the limit as k → ∞ completes the
proof of the theorem.

For the moment let n be arbitrary fixed. Observe that for all i ∈ {1, . . . , Mk},

π̃
k,h′
n,i (ω) = 1

|Ik,n|
∑

h∈Ik,n

1Bk
i
(h · (h′ · ω)),

that is, |Ik,n|π̃ k,h′
n,i (ω) equals the number of times the translates of the word ω̃k

i along the
set Ik,n appear in the word (h′ · ω)|�k,n . It follows by the definition of the algorithm A! that
the following program describes the word (h′ · ω)|Fn ◦ ı−1

Fn
:

pn := k01n01f101 · · · fMk
0110r01w01N.

Here fi is the doubling encoding of |Ik,n|π̃ k,h′
n,i (ω) for all i ∈ {1, . . . , Mk}. The binary word

w encodes the word υ = (h′ · ω)|Fn\�k,n ◦ ı−1
Fn\�k,n

of length r and N encodes the index of
(h′ · ω)|�k,n in the set F�,pn .

We will now estimate the length l(pn) of the program pn above. We begin by estimating
the length of the word f101 · · · fMk

. Observe that

fj ≤ |Ik,n| ≤ |Fn|
|Fk| for every j = 1, . . . , Mk ,

hence l(f101 · · · fMk
) = o(|Fn|). Next, we estimate the length of the word w. Since

(Fn)n≥1 is a Følner sequence, we conclude that l(w) = o(|Fn|). It is clear that l(n) ≤
2�log n� + 2 = o(|Fn|), since |Fn|/log n → ∞. Finally, we estimate l(N). Of course,
l(N) ≤ log |Ik,n|!/f1! f2! · · · fMk

! + 1. We use Stirling’s approximation to deduce that

log
|Ik,n|!

f1! f2! · · · fMk
!

≤ −
Mk∑
j=1

fj log
fj

|Ik,n| + o(|Fn|).

Hence we can estimate the length of pn as

l(pn) ≤ o(|Fn|) −
Mk∑
j=1

fj log
fj

|Ik,n| .
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Since fi = |Ik,n|π̃ k,h′
n,i (ω) for every i = 1, . . . , Mk , we deduce that

l(pn) ≤ o(|Fn|) − |Ik,n|
Mk∑
j=1

π̃
k,h′
n,j (ω) log π̃

k,h′
n,j (ω).

Dividing both sides by |Fn| and taking the limit as n → ∞, we use Lemma 3.1 and
Proposition 2.1 to conclude that

lim sup
n→∞

K0
A!((h

′ · ω)|Fn ◦ ı−1
Fn

)

|Fn| ≤ hμ(βk)

|Fk| .

By the optimality of A∗ we deduce that

K̂(h′ · ω) = lim sup
n→∞

K0
A∗((h′ · ω)|Fn ◦ ı−1

Fn
)

|Fn| ≤ hμ(βk)

|Fk|
and the proof is complete.
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[11] D. Lenz, F. Schwarzenberger, and I. Veselić. A Banach space-valued ergodic theorem and the uniform

approximation of the integrated density of states. Geom. Dedicata 150 (2011), 1–34.
[12] N. Moriakov. Computable Følner monotilings and a theorem of Brudno I. Preprint, 2015,

arXiv:1509.07858.
[13] N. Moriakov. Computable Følner monotilings and a theorem of Brudno II. Preprint, 2015,

arXiv:1311.0754v4.
[14] M. O. Rabin. Computable algebra, general theory and theory of computable fields. Trans. Amer. Math. Soc.

95(1960), 341–360.

https://doi.org/10.1017/etds.2020.110 Published online by Cambridge University Press

https://arxiv.org/abs/1809.01634
https://arxiv.org/abs/1509.07858
https://arxiv.org/abs/1311.0754v4
https://doi.org/10.1017/etds.2020.110


3416 N. Moriakov

[15] S. G. Simpson. Symbolic dynamics: entropy = dimension = complexity. Theory Comput. Syst. 56(3)
(2015), 527–543.

[16] B. Weiss. Monotileable amenable groups Topology, Ergodic Theory, Real Algebraic Geometry (American
Mathematical Society Translations Series 2, 202). American Mathematical Society, Providence, RI, 2001,
pp. 257–262.

[17] P. Zorin-Kranich. Return times theorem for amenable groups. Israel J. Math. 204(1) (2014), 85–96.

https://doi.org/10.1017/etds.2020.110 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.110

	1 Introduction
	2 Preliminaries
	2.1 Amenable groups and ergodic theory
	2.2 (Regular) Følner monotilings
	2.3 Computability and Kolmogorov complexity
	2.4 Computable spaces, word presheaves and complexity
	2.5 Computable groups
	2.6 Computable Følner sequences and computable monotilings

	3 A theorem of Brudno
	3.1 Part A
	3.2 Part B

	Acknowledgements
	References

