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The ignition of a self-sustained premixed expanding flame constitutes a crucial problem
in fundamental combustion research. In this work, a transient formulation on the forced
ignition of a premixed expanding spherical flame in a quiescent mixture is proposed under
the framework of the thermal-diffusive model. The present theory considers the unsteady
evolution of the temperature and fuel mass fraction distributions subject to finite duration
central heating. It can determine both critical heating power and minimum ignition
energy for successful ignition. The transient flame initiation process is found to consist of
four stages, including fast establishment of the ignition kernel, ignition-energy-supported
flame kernel propagation, unsteady transition of the flame kernel, and quasi-steady
spherical flame propagation. The unsteady effects lead to the observation of flame kernel
establishing stage and considerably affect the subsequent flame kernel development by
altering the flame propagation speed. Time scale analysis indicates that the transient
formulation completely degenerates to the quasi-steady theory in the limits of both
stationary flame ball and planar flame. Previous quasi-steady theory shows that the critical
heating power for successful ignition is proportional to the cube of the critical flame radius.
However, that scaling relation shall be revised in the transient formulation due to the
unsteady thermal conduction from heating centre to flame front. The memory effect that
persistently supports flame propagation subsequent to switching off the central heating
is examined. It is found that as the heating power grows, the memory effect becomes
increasingly important, and it can greatly reduce the predicted minimum ignition energy.

Key words: combustion, flames

1. Introduction

Flame initiation or forced ignition in a flammable mixture refers to the generation of a
self-sustained propagating flame front from an ignition kernel. Flame initiation plays an
important role in fundamental combustion research. Besides, understanding ignition is
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important for controlling ignition in advanced engines and preventing fire or explosion.
In general, forced ignition is triggered by the deposition of a certain amount of thermal
energy, such as an electric spark or a hot solid body, which raises the local temperature
and induces intensive chemical reaction and thermal runaway (Joulin 1985; Ronney 1990;
He 2000; Chen & Ju 2007).

Successful ignition is achieved only when the heat generation from chemical reaction
overcomes heat loss to the surrounding environment. Adopting large activation energy
asymptotics, Vázquez-Espí and Liñán (2001, 2002) analysed the ignition characteristics of
a gaseous mixture subject to a point energy source. They identified two ignition regimes
through comparing the relevant time scales including the homogeneous ignition time (tch),
the characteristic time for acoustic wave propagation (ta) and the characteristic time for
heat conduction (tc). The ratio ta/tc is equivalent to the Knudsen number and it is typically
quite small, i.e. ta � tc. The first regime is for fast ignition energy deposition with tch ∼=
ta � tc. In this regime, the heat loss due to thermal expansion balances the heat release
from chemical reaction. The second regime is for moderate ignition energy deposition
with the corresponding reaction rate being comparable to the heat conduction rate, i.e.
ta � tch ∼= tc. As the pressure wave passes across the hot spot, the local chemical reaction
proceeds slightly. This regime corresponds to the diffusive ignition occurring under near
isobaric conditions. In reality, the compressibility effects may become discernible at the
initial moment when ignition energy is deposited (Maas & Warnatz 1988; Kurdyumov
et al. 2004). However, during this induction period, the local equilibrium assumption
becomes invalid, and the macroscopic balance equation can no longer be used (Champion,
Deshaies & Joulin 1988). Assuming that the time scale for flame kernel evolution is longer
than that induction period, it is legitimate to employ the constant pressure approximation
and the usual macroscopic governing equations to study the spherical flame ignition.
Therefore, we consider the ignition process in the second regime in this study.

During the ignition process, the reactant consumption becomes relevant and thus
the ignition kernel development is affected by the diffusive properties of the deficient
reactant. Previous studies have widely investigated the diffusion-controlled premixed
stationary spherical flame, which is also known as flame ball and closely related to ignition
(Barenblatt 1985; Ronney 1989). Based on the thermal-diffusion model, Deshaies and
Joulin (1984) conducted linear stability analysis and found that the adiabatic flame ball
is absolutely unstable. This indicates that a negative perturbation of the flame radius
results in inward collapse and subsequent flame extinction, while a positive displacement
perturbation leads to outward propagation. Therefore, the flame ball radius is popularly
considered as the critical radius for successful ignition, beyond which the flame kernel can
spontaneously evolve into a self-sustained flame (Chen & Ju 2007; Kelley, Jomaas & Law
2009). However, in premixtures with high Lewis numbers (Le > 1), the critical radius for
successful ignition is in fact much smaller than the flame ball radius (He 2000; Chen,
Burke & Ju 2011). Consequently, the minimum ignition energy (MIE) could be greatly
over-predicted based on the flame ball radius.

Practically ignition is usually triggered by the energy deposition, which can be
approximately modelled as continuous central heating (Deshaies & Joulin 1984; Jackson,
Kapila & Stewart 1989). When the heating power is sufficiently low, ignition fails and
the self-sustained expanding flame cannot be achieved (Deshaies & Joulin 1984; Chen &
Ju 2007). Successful ignition is achieved only when the heating power is high enough
to induce a continuous transition from flame kernel to self-sustained expanding flame.
Once the flame kernel evolves in a self-sustained manner, the central heating becomes
irrelevant and could be switched off after an appropriate duration of time. This yields a
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finite amount of energy deposition, and thereby we can determine the MIE (Chen et al.
2011; Fernández-Tarrazo et al. 2016). Subject to external heating, the characteristics of the
flame front, e.g. flame temperature, flame propagation speed and flame curvature/stretch,
undergo substantial changes. This implies the necessity of taking account of the unsteady
effects in the ignition process (Kurdyumov et al. 2004; Chen et al. 2011). According to
He (2000), the duration for the flame to reach the critical radius th can be evaluated
by a nonlinear velocity-curvature relation derived based on a quasi-steady assumption.
The product of th with heating power Qs gives an estimation of MIE. Employing the
thermal-diffusion model and comparing with numerical simulations, Chen et al. (2011)
suggested that the MIE tends to be linearly proportional to the cube of the critical flame
radius. However, the quasi-steady assumption implies that the system is fully developed,
and correspondingly the temperature and mass fraction profiles across the reaction front
are given by their final state after the long-term evolution. This quasi-steady assumption
might not be suitable for describing the initial development of the ignition kernel.

Due to the lack of characteristic time scale, the quasi-steady theory cannot rigorously
interpret the dynamic behaviour of the flame kernel subsequent to switching off the
heating source. For instance, the removal of the heating source would not cause immediate
flame quench; instead the flame could propagate for a finite distance due to the memory
effect (Joulin 1985; He 2000; Vázquez-Espí & Liñán 2001). To interpret the unsteady
effects, Joulin (1985) investigated the flame kernel development in the neighbourhood of
a stationary spherical flame and obtained an approximate nonlinear equation interpreting
the time change of the flame front distance. Buckmaster and Joulin (1989) considered the
radially propagating spherical flame in a mixture with Le < 1 and obtained the transient
propagation of the self-extinguishing flame. Both theoretical studies were conducted by
means of large activation energy asymptotics, whose mathematical procedure tends to be
exceedingly complex. Besides, for mixtures with large Lewis number, the flame ball size is
considerably larger than the critical radius and thus tends to be irrelevant to flame initiation
(Chen et al. 2011). Employing asymptotic analysis, Clavin (2017) described the dynamic
quenching of a spherical flame expanding at a large radius beyond flammability limits of
planar flames, which has been observed in microgravity experiments (Ronney 1989, 1990).
However, the unsteady effect was not considered by Clavin (2017).

Sensible evaluation of MIE requires analysing the propagation mechanism of the ignited
flame kernel. The unsteady effect characterizing the time change of temperature and
mass fraction across the flame front is expected to have a direct impact upon the flame
propagation dynamics. However, the unsteady effect has not been clarified in previous
theoretical studies. This work aims to develop a fully transient formulation describing
the flame initiation process. It generalizes the quasi-steady theory by rigorously taking
unsteady effects into account and is valid over the entire spatial domain for flame initiation.
The transient formulation can be used to assess the unsteady effect on ignition kernel
propagation and MIE.

The paper is organized as follows. In § 2, the transient formulation is proposed and
solved analytically. The analytical solutions for the time-dependent temperature and
reactant mass fraction distributions on each side of the flame front are obtained. The
solutions describing the temporal evolution of flame temperature and flame propagation
speed are obtained from matching conditions. In § 3, a thorough comparison between
the transient formulation and the quasi-steady theory is presented with emphasis on the
dynamic behaviour of flame front propagation, the evaluation of critical heating power
and minimum ignition energy, and the assessment of the memory effect. The concluding
remarks are given in § 4.
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2. Formulation

2.1. Governing equations
Energy deposition into a combustible mixture increases the local temperature and
subsequently generates an ignition kernel. For simplicity, we consider the development
of the ignition kernel in a quiescent mixture under microgravity conditions. Providing
that the stoichiometric ratio of the mixture is far away from the flammability limit, the
impacts of radiation heat loss upon the propagation of the flame kernel appears to be
quantitative instead of qualitative (Chen & Ju 2008; Chen 2017). The volumetric radiative
heat loss is proportional to the cube of the flame kernel radius which is comparably small,
i.e. less than the cube of critical radius Rcr. Accordingly, the radiative heat loss tends
to be insubstantial in comparison with the thermal conduction at the flame front. For an
ever-expanding spherical flame, the additional heat loss due to radiation may result in
reduction of the flame propagation speed. For mixtures within their flammability limits,
such quantitative deceleration of flame speed may not lead to flame extinguishment, and
the physical scenario of the ignition system does not show a drastic change. This work
focuses on understanding of the unsteady effect on ignition. Therefore, the effect of
radiative loss is not considered here and it can be explored in future works.

In this study, we aim to investigate the unsteady effect on the general behaviour of flame
ignition by examining the transition of the flame kernel to a self-sustained spherical flame.
In mathematics, the transient formulation differs from the quasi-steady theory by including
the unsteady term in the governing equations for temperature and reactant mass fraction.
To isolate the unsteady effect on flame kernel evolution during ignition process, we
purposely select the condition in which all the remaining parameters are identical to those
in the quasi-steady theory. Then, comparing with results given by quasi-steady theory, the
very difference can be manifested to the unsteady effects during flame initiation, to which,
a parametric study can be conducted. In accordance, we use the classical thermal-diffusive
model, in which the density ρ̃, heat capacity C̃p, thermal conductivity λ̃, mass diffusion
coefficient of the deficient reactant D̃ and heat of reaction q̃ are assumed to be constant.
These assumptions have been widely adopted in theoretical studies (e.g. Joulin 1985; He
2000; Chen & Ju 2007), for understanding many aspects of flame behaviours. In most
situations, the theoretical results are consistent with those obtained from experimental
studies or detailed numerical simulation.

By means of time scale analysis, Champion et al. (1988) obtained an estimation of the

flame Mach number Ma2
f ∝ e−Ẽa/R̃

o
T̃ad , where Ẽa is the activation energy, R̃o the universal

gas constant and T̃ad the adiabatic flame temperature. At the instant when the ignition
energy is deposited, the local temperature might be comparable with the activation energy,
yielding a rapid propagation of flame front. However, such a period is exceedingly swift
and meanwhile the non-equilibrium effect becomes so significant that the system should be
described with equations of the Boltzmann type. Under normal situations, i.e. longer than
the above-mentioned initial period, the adiabatic flame temperature is comparably lower
than the activation temperature, and accordingly the flame Mach number can be considered
small, which provides the requisite for the constant density assumption. Besides, for a
spherically expanding flame, Bechtold and Matalon (1987) demonstrated that for large
activation energy and thin flame thickness, the variation of density in the burnt gas tends
to be negligible.

In general, the transport properties are functions of temperature instead of constants.
For a spherical flame, Matalon, Cui & Bechtold (2003) showed that the flame must travel
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a longer distance before reaching the constant laminar speed when regarding the transport
properties as functions of temperature, e.g. λ̃ ∼ T̃1/2. Nevertheless, in most situations,
there is little evidence, showing that the effects of variable transport properties can lead to
a drastic change of the physical scenario of the system but quantitative improvements to
the theoretical model.

In the thermal-diffusive model, the thermal expansion or convective effect is not
considered. According to Champion et al. (1988), thermal expansion only quantitatively
affects the MIE and the key features of ignition are covered by using the thermal-diffusive
model.

The chemical reactions in combustion processes are exceedingly complicated, involving
a large number of participant species and reactions. Thus, it is commonplace to adopt an
overall one-step kinetic model in theoretical studies. The rate of the global reaction can be
improved by considering two-step with thermally sensitive intermediate kinetics (Zhang
& Chen 2011; Zhang, Guo & Chen 2013) or by adjusting the reaction power (Buckmaster
et al. 2005). However, the quantitative improvement of the theoretical model comes at the
price of additional mathematical complexity. For mathematical convenience, we assume
an overall one-step exothermic reaction in the present study.

The preceding assumptions have been widely adopted in previous theoretical studies (He
2000; Chen & Ju 2007). The governing equations for temperature, T̃ , and mass fraction of
the deficient reactant, Ỹ , are

ρ̃C̃p
∂T̃
∂ t̃

= 1

r̃2
∂

∂ r̃

(
r̃2λ̃

∂T̃
∂ r̃

)
+ q̃ω̃, (2.1)

ρ̃
∂Ỹ
∂ t̃

= 1

r̃2
∂

∂ r̃

(
r̃2ρ̃D̃

∂Ỹ
∂ r̃

)
− ω̃, (2.2)

where t̃ and r̃ are the time and radial coordinate, respectively. The reaction rate follows the
Arrhenius law as

ω̃ = ρ̃ÃỸ exp

(
− Ẽa

R̃
0
T̃

)
, (2.3)

where Ã is the prefactor.
The flame thickness δ̃0

L = λ̃/(ρ̃c̃pS̃0
L) and characteristic flame time t̃0L = δ̃0

L/S̃0
L for the

adiabatic planar flame are used as the reference length and time, respectively. Here S̃0
L is

the laminar flame speed. The non-dimensional quantities are defined as

r = r̃/δ̃0
L, t = t̃/t̃0L. (2.4a,b)

In addition, the normalized temperature and mass fraction are defined by

T = T̃ − T̃∞
T̃ad − T̃∞

, Y = Ỹ

Ỹ∞
, (2.5a,b)

where T̃∞ and Ỹ∞ are, respectively, the temperature and mass fraction of the deficient
reactant of the unburned mixture. The adiabatic flame temperature can be determined in
the form T̃ad = T̃∞ + Ỹ∞q̃/c̃p.

924 A22-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.633


D. Yu and Z. Chen

The non-dimensional form for the governing equations (2.1) and (2.) is

∂T
∂t

= 1
r2

∂

∂r

(
r2 ∂T

∂r

)
+ ω, (2.6)

∂Y
∂t

= 1
Le

1
r2

∂

∂r

(
r2 ∂Y

∂r

)
− ω, (2.7)

where Le = λ̃/(ρ̃c̃pD̃) is the Lewis number. The non-dimensional chemical reaction rate is
ω = δ̃0

Lω̃/(ρ̃S̃0
LỸ∞). The parameters with and without tilde symbol denote the dimensional

and non-dimensional variables, respectively.
In the limit of large activation energy, the reaction zone appears to be infinitely thin, and

the reaction rate can be modelled by a delta function located at the reaction zone (Law
2006; Veeraragavan & Cadou 2011; Wu & Chen 2012), i.e.

ω = [εT + (1 − εT)Tf ]2 exp
{

Z(Tf − 1)

2[εT + (1 − εT)Tf ]

}
δ(r − R), (2.8)

where Tf is the normalized flame temperature, R the flame front position (or flame radius),
Z = Ẽa(1 − εT)/R̃0T̃ad the Zel’dovich number and εT = T̃∞/T̃ad the expansion ratio.

The flame front separates the unburnt and burnt regions. In these two regions, the
reaction term does not appear in the governing equations. Therefore, the governing
equations can be written in the burnt and unburnt regions as
(burnt region)

∂Tb

∂t
= 1

r2
∂

∂r

(
r2 ∂Tb

∂r

)
, (2.9)

∂Yb

∂t
= 1

Le
1
r2

∂

∂r

(
r2 ∂Yb

∂r

)
, (2.10)

(unburnt region)

∂Tu

∂t
= 1

r2
∂

∂r

(
r2 ∂Tu

∂r

)
, (2.11)

∂Yu

∂t
= 1

Le
1
r2

∂

∂r

(
r2 ∂Yu

∂r

)
, (2.12)

where the subscripts u and b represent states in the unburnt and burnt regimes, respectively.
The initial and boundary conditions can be written as

t = 0: Tb = T0
b & Yb = 0 for r ≤ R(t), Tu = 0 & Yu = 1 for r > R(t),

r = 0: r2(∂Tb/∂r) = −Q(t) & Yb = 0, NA,

r = R(t): Tb = Tf (t) & Yb = 0, Tu = Tf (t) & Yu = 0,

r → ∞: NA, Tu = 0 & Yu = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)
where Q is the heating power of the external source at the centre. The flame temperature
can be equivalently regarded as a function of flame location. Accordingly, the time
derivative of Tf can be determined via the chain rule, dTf /dt = U(dTf /dR), where U =
dR/dt is the propagation speed of the flame front, which is non-dimensionalized by the
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laminar flame speed S̃0
L. It can be seen that (2.10) subject to the above initial and boundary

conditions has the unique solution of Yb = 0 in the whole burnt region.
Nevertheless, the preceding formulation is not in closed form since the flame

temperature Tf and flame location R remain to be determined. The contribution of
chemical reaction to the change of Y and T is characterized by the jump relations at the
flame interface. The jump relations across the flame front are derived as the leading-order
solution of the large activation energy asymptotic analysis (Chen & Ju 2007; Wu & Chen
2012), i.e.

(
∂Tb

∂r

)
R−

−
(

∂Tu

∂r

)
R+

= [εT + (1 − εT)Tf ]2 exp
{

Z(Tf − 1)

2[εT + (1 − εT)Tf ]

}
, (2.14)

1
Le

(
∂Yu

∂r

)
R+

=
(

∂Tb

∂r

)
R−

−
(

∂Tu

∂r

)
R+

, (2.15)

where the subscripts R+ and R− denote the corresponding derivatives evaluated at,
respectively, the unburnt and burnt side of the flame front. Substituting the solutions for
T and Y into the jump conditions, the desired flame temperature Tf and flame location R
could be determined, and hence the formulation is in closed form.

2.2. Analytical solutions
The time change of the flame front, R = R(t), causes considerable difficulty in solving
the governing equations analytically. Mathematically, the flame front can be considered
as a moving boundary, which can be removed by introducing a scaled coordinate (Law &
Sirignano 1977; Yu & Chen 2020),

σs = r
R(t)

, ts =
∫ t

0

dt′

R2(t′)
. (2.16a,b)

In terms of σs and ts, the governing equations become
(burnt region)

∂Tb

∂ts
= ∂2Tb

∂σ 2
s

+
(

σsRU + 2
σs

)
∂Tb

∂σs
. (2.17)

(unburnt region)

∂Tu

∂ts
= ∂2Tu

∂σ 2
s

+
(

σsRU + 2
σs

)
∂Tu

∂σs
, (2.18)

∂Yu

∂ts
= 1

Le
∂2Yu

∂σ 2
s

+
(

σsRU + 1
Le

2
σs

)
∂Yu

∂σs
. (2.19)

Because of the differences in boundary conditions, the temperature and mass fraction
distributions in burnt and unburnt regions are solved in different ways.
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First, we consider the unburnt region. To further simplify the governing equations, we
introduce the following pair of F-functions for temperature and mass fraction, respectively:

FuT(σs) = 1
σ 2

s
exp

[
−1

2
RU(σ 2

s − 1)

]
, (2.20)

FuY(σs) = 1
σ 2

s
exp

[
−1

2
LeRU(σ 2

s − 1)

]
. (2.21)

With the help of F-functions, we can define a pair of new coordinates, i.e.

ξuT =

∫ σs

1
FuT(σ ′

s) dσ ′
s∫ ∞

1
FuT(σs) dσs

, (2.22)

ξuY =

∫ σs

1
FuY(σ ′

s) dσ ′
s∫ ∞

1
FuY(σs) dσs

. (2.23)

In terms of ξuT and ξuY , the governing equations for temperature and mass fraction are
simplified to

∂Tu

∂ts
= F2

uT
d2Tu

dξ2
u,T

, (2.24)

∂Yu

∂ts
= F2

uY
Le

d2Yu

dξ2
u,Y

, (2.25)

where the factors FuY and FuT are functions of σs, as follows:

FuT = dξuT

dσs
= FuT(σs)∫ ∞

1
FuT(σs) dσs

, (2.26)

FuY = dξuY

dσs
= FuY(σs)∫ ∞

1
FuY(σs) dσs

. (2.27)

In the ts − ξuT and ts − ξuY coordinate systems, the initial and boundary conditions
become

ts = 0: Tu = 0; ts = 0: Yu = 1
ξuT = 0: Tu = Tf (t); ξuY = 0: Yu = 0
ξuT = 1: Tu = 0; ξuY = 1: Yu = 1

⎫⎪⎬
⎪⎭ (2.28)
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The analytical solutions can be obtained as

Tu(ξuT , ts) = Tf (1 − ξuT)

− 2Tf

∞∑
n=1

sin(nπξuT)

nπ

(
T0

b
Tf

+ R2U
d ln Tf

dR
eF

2
uT n2π2ts − 1
F2

uTn2π2

)
e−F2

uT n2π2ts

≈ Tf (1 − ξuT) − 2T0
b

∞∑
n=1

sin(nπξuT)

nπ
e−F2

uT n2π2ts, (2.29)

Yu(ξuY , ts) = ξuY + 2
∞∑

n=1

sin(nπξuY) e−F2
uY n2π2ts/Le

nπ
, (2.30)

where T0
b refers to the onset flame temperature and will be specified in the subsequent

section. During flame propagation, the heat release from reaction and the heat conduction
towards the preheat zone tends to balance dynamically. We postulate that the flame
temperature Tf does not change rapidly as the flame moves outwardly, i.e.

d ln Tf

dR
� 1. (2.31)

Consequently, the approximation in (2.30) can be made.
Transforming equations (2.29) and (2.30) back to the r − t coordinate system, we obtain

the transient evolution of temperature and mass fraction profiles in the unburnt region. The
unsteady solutions for Tu and Yu, given by (2.29) and (2.30), consist of two components:
one is time-independent and characterizes the asymptotic distributions of temperature
and mass fraction at the final stage, and the other is time-dependent and represents the
change of Tu and Yu due to heat conduction and mass diffusion. It can be verified that
for low to moderate time lapse, the time-dependent component, i.e. the summation of
exponential terms, would have comparable magnitude, indicating that the unsteady effect
is pronounced during flame kernel development. Therefore, the quasi-steady solution
cannot accurately describe the initial development of the flame kernel.

Subsequently, we deal with the burnt region, where we only need obtain the analytical
solution for temperature. Without external heating or radiative loss, the temperature in the
burnt regime should be uniform and equal to the flame temperature, Tf . The heat addition
at the centre leads to an increment of temperature from Tf . We denote T ′

b = Tb − T0
b ,

which satisfies the same governing equation for Tb while the initial condition is replaced
by T ′

b = 0 at ts = 0. To simplify the governing equation, we introduce the radial coordinate
weighted temperature discrepancy, T̄b = rT ′

b, which satisfies

∂T̄b

∂t
= ∂2T̄b

∂r2 . (2.32)

Accordingly, the initial and boundary conditions become

t = 0: T̄b = 0 for r ≤ R(t)

r = 0: T̄b = Q(t)

r = R(t): T̄b = R(Tf − T0
b )

⎫⎪⎬
⎪⎭ (2.33)
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D. Yu and Z. Chen

To remove the moving boundary effect due to the flame front propagation, the governing
equations for T̄b can be written in the scaled coordinate σs and ts as

∂T̄b

∂ts
= ∂2T̄b

∂σ 2
s

+ σsRU
∂T̄b

∂σs
. (2.34)

To simplify the governing equations, we introduce the following F-function:

FbT(σs) = exp(−1
2 RUσ 2

s ). (2.35)

With the help of FbT , we can define the coordinates ξbT in the following form:

ξbT =

∫ σs

0
Fb,T(σ ′

s) dσ ′
s∫ 1

0
FbT(σs) dσs

= erf(σs
√

RU/2)

erf(
√

RU/2)
. (2.36)

In the transformed coordinate ξbT , the governing equation for T̄b can be written as

∂T̄b

∂ts
= F2

bT
d2T̄b

dξ2
bT

, (2.37)

where

FbT = dξbT

dσs
= 2

√
RU/2 e−σ 2

s RU/2
√

π erf(
√

RU/2)
, (2.38)

subject to the following initial and boundary conditions:

ts = 0: T̄b = 0
ξbT = 0: T̄b = Q(t)
ξbT = 1: T̄b = R(Tf − T0

b )

⎫⎬
⎭ (2.39)

The analytical solution for T̄b can be obtained as

T̄b(ξb,T , ts) = Q(ts) + ξbT [R(Tf − T0
b ) − Q(ts)] + 2

∞∑
n=1

sin(nπξbT) e−F2
bT n2π2tsRn(ts),

(2.40)
where

Rn(t) = − 1
nπ

[
Q(0) +

∫ t

0
(dQ/dτ) eF

2
bT n2π2τ dτ

]
. (2.41)

The flame temperature Tf and flame radius R can be solved via the matching conditions
in (2.14) and (2.15), which requires the gradients of temperature and mass fraction at the
flame front in the physical coordinate. From the chain rule, the gradients in the unburnt
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Theoretical analysis on the transient ignition

region can be evaluated as(
∂Tu

∂r

)
R+

= − F̂uT

R
{Tf + T0

b [ϑ3(e−F2
uTπ2t/R2

) − 1]}, (2.42)

(
∂Yu

∂r

)
R+

= F̂uY

R
ϑ3(e−π2F̂2

uY t/R2Le), (2.43)

where F̂uT = FuT(σs = 1) and F̂uY = FuY(σs = 1). The Jacobi theta function ϑ3 denotes
the subsequent sum

ϑ3(x) = 1 + 2
∞∑

n=1

xn2
. (2.44)

Similarly, the gradients in the burnt region can be written in the following form:(
∂Tb

∂r

)
R−

= − F̂bT

R2 {Q(ts) + Q(0)[ϑ4(e−F̂2
bTπ2t/R2

) − 1]

+ 2
∞∑

n=1
(−1)n e−F̂2

bT n2π2t/R2 ∫ t
0 eF̂

2
bT n2π2τ/R2 dQ

dτ
dτ

}

+ 1
R

(F̂bT − 1)(Tf − T0
b ),

(2.45)

where F̂bT = FbT(σs = 1), and ϑ4 is another Jacobi theta function that represents

ϑ4(x) = 1 + 2
∞∑

n=1

(−1)nxn2
. (2.46)

To model the external heating source with a finite duration time of th, we use the
Heaviside function H(t) so that external heating is switched on at t = 0 and switched
off at t = th, i.e.

Q(t) = Qm[H(t) − H(t − th)], (2.47)

where Qm represents the magnitude of the heating power. The derivative of Q(t) is given
in terms of delta function

dQ
dt

= Qm[δ(t) − δ(t − th)]. (2.48)

Therefore, the integral involving (dQ/dτ) shall be evaluated separately for t < th and
t > th as ∫ t

0
(dQ/dτ) eF̂

2
bT n2π2τ/R2

dτ =
{

Qm, t < th
Qm(1 − eF̂

2
bT n2π2th/R2

), t > th
. (2.49)

Substituting equation (2.49) into (2.45) yields(
∂Tb

∂r

)
R−

= F̂bT

R
(Tf − T0

b ) − Qm

R2 F̂bTS(t, U, R), (2.50)

where the function S is defined as

S(t, U, R) =
{

ϑ4(e−F̂2
bTπ2t/R2

), t < th
ϑ4(e−F̂2

bTπ2t/R2
) − ϑ4(e−F̂2

bTπ2(t−th)/R2
), t > th

. (2.51)

924 A22-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.633


D. Yu and Z. Chen

Substituting equations (2.42), (2.43), (2.45) and (∂Yb/∂r)R− = 0 into (2.14) and (2.15), one
obtains the following expression for flame temperature and the condition characterizing the
consumption of reactant by chemical reaction, respectively:

Tf = T0
b + F̂uYϑ3(e−π2F̂2

uY t/R2Le)/Le + QmF̂bTS(t, U, R)/R − F̂uTT0
bϑ3(e−F̂2

uTπ2t/R2
)

F̂bT + F̂uT − 1
,

(2.52)

F̂uY

LeR
ϑ3(e−π2F̂2

uY t/R2Le) = [εT + (1 − εT)Tf ]2 exp
{

Z(Tf − 1)

2[εT + (1 − εT)Tf ]

}
. (2.53)

At the initial instant the Jacobi theta functions in (2.53) is equal to ϑ3(1), which
is infinitely large. It can be understood that the non-dimensional temperature profile is
piecewise constant, i.e. T = T0

b for r < R0 and T = 0 for r > R0, which gives that the
temperature gradient at r = R0 is infinitely large. However, the chemical reaction rate
always has a finite value. Such inconsistency in (2.53) implies that the flame kernel
cannot be established at t = 0. In the course of time, the temperature jump is smoothed
by conduction, which reduces the temperature gradient at r = R0. Therefore, it needs an
induction period, denoted by tig, after which the local heat loss, quantified in terms of
(dT/dr)r=R0 , can be in balance with the heat release from chemical reaction. It gives
birth to the flame structure, which progressively accelerates from U = 0. According to the
definition of T0

b , i.e. T0
b = Tf (t = tig), the onset flame temperature is

T0
b = 1

Le
ϑ3(e−π2tig/R2

0Le)

ϑ3(e−π2tig/R2
0)

+ Qm

R0

S(tig, 0, R0)

ϑ3(e−π2tig/R2
0)

. (2.54)

and (2.53) becomes

F̂uY

LeR
ϑ3(e−π2tig/R2

0Le) = [εT + (1 − εT)T0
b ]2 exp

{
Z(T0

b − 1)

2[εT + (1 − εT)T0
b ]

}
. (2.55)

Given initial flame kernel radius R0, the onset flame temperature T0
b and the ignition

time tig can be determined by simultaneously solving (2.54) and (2.55). The rate of change
of the temperature profile (dT/dr)r=R0 is proportional to 1/R0, and thus the magnitude of
tig increases with R0. Typically, the induction period is considerably short compared with
the total time lapse of the ignition stage. The factors F̂uT , F̂uY and F̂bT are functions of
flame location R and propagating speed U = dR/dt. For U = 0, we have F̂uT = F̂uY =
F̂bT = 1.

Successful ignition refers to the generation of a self-sustained expanding flame. In
the absence of external heating, there is a critical radius, below which the heat loss by
conduction dominates over the heat release from chemical reaction, and thereby successful
ignition cannot occur (Joulin 1985; Chen & Ju 2007). When the mixture’s Lewis number
is not considerably greater than unity, the critical radius is identical to the flame ball radius
(He 2000; Chen et al. 2011). Setting U = 0 in the matching conditions (2.52) and (2.53),
the flame ball radius can be obtained as

RZ = Le

[1 + (Le − 1)εT ]2 exp
{

Z(Le − 1)

2[1 + (Le − 1)εT ]

}
, (2.56)

which is a function of the mixture’s thermophysical properties. The above expression for
flame ball radius agrees with the Zel’dovich theory (Barenblatt 1985). The flame ball
radius becomes larger at higher Lewis number.
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Theoretical analysis on the transient ignition

Substituting (2.52) into (2.53), one obtains an implicit ordinary differential equation
for flame radius R subject to the initial conditions R = R0 at t = tig. When R = R(t) is
obtained, the flame propagation speed is obtained via U(t) = dR/dt. Substituting R(t)
and U(t) into (2.52), the flame temperature is obtained and thereby the flame kernel
development is completely solved. Then, the unsteady evolution of temperature and mass
fraction distributions during the flame ignition process can be obtained from (2.30), (2.31)
and (2.47).

In previous studies considering flame kernel evolution, the quasi-steady approximation
has been widely adopted. In quasi-steady theory, the time derivatives in the conservation
equations are neglected and the following expressions can be obtained from the matching
conditions (He 2000; Chen & Ju 2007):

Tf =

⎛
⎜⎜⎝ e−UR(Le−1)

Le
∫ ∞

R
τ−2 e−UτLe dτ

+ Qm

⎞
⎟⎟⎠
∫ ∞

R
τ−2 e−Uτ dτ , (2.57)

e−UR

R2

⎛
⎜⎜⎝ Tf∫ ∞

R
τ−2 e−Uτ dτ

− Qm

⎞
⎟⎟⎠ = [εT + (1 − εT)Tf ]2 exp

{
Z(Tf − 1)

2[εT + (1 − εT)Tf ]

}
.

(2.58)

Substituting equation (2.57) into (2.58) yields a nonlinear equation which describes the
change of flame propagation speed with flame radius during the flame kernel development,
i.e. U = U(R). In particular, the flame ball radius R′

Z can be determined in quasi-steady
theory by setting U = 0 in (2.57) and (2.58), and it is identical with that derived based on
a transient formulation given by (2.56). When the flame radius becomes infinitely large,
the planar flame solution is reached, and both the non-dimensional flame propagation
speed and flame temperature are unity. At such conditions, the matching conditions for
both quasi-steady theory and transient formulation become identical again. Therefore, in
the limits of both stationary flame ball (U = 0) and planar flame (R → ∞), the present
transient formulation degenerates to the quasi-steady theory.

The transient formulation in this study rigorously takes into account the unsteady
evolution of temperature and mass fraction distributions during the flame ignition process.
The analytical solutions explicitly indicate that the temperature and mass fraction profiles
on each side of the flame front change with time. However, in quasi-steady theory,
the temperature and mass fraction are regarded as functions of spatial coordinate,
characterizing their distributions in the final state, i.e. subsequent to sufficiently long-term
evolution. According to the matching conditions at the flame interface, (2.14) and (2.15),
the transience in temperature and mass fraction gradients implies the time-dependence of
flame temperature, which directly affects the dynamical behaviour of the expanding flame.
Moreover, finite energy deposition can be appropriately considered in the present transient
formulation. The heating duration introduces a definite characteristic time, which is not
considered in the quasi-steady theory.

3. Results and discussion

The transient propagation of the ignition kernel, the critical heating power and MIE for
successful ignition can be described by (2.52) and (2.53). Using these equations, we
shall demonstrate how the unsteady effect influences the flame initiation process and
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Figure 1. Change of flame propagation speed with flame radius for different Lewis numbers. The solid and
dashed lines represent results from transition formulation and quasi-steady theory, respectively. The mixture’s
Lewis number (Le = 0.5, 1.0, 2.0) is indicated by the colour (black/red/blue) of lines. Here RZ and Rc,
respectively, denote the flame ball radius and critical radius for flame initiation.

critical ignition conditions. For typical premixed flames, we choose Z = 10 and εT = 0.15
according to previous studies (Chen et al. 2011; Wu & Chen 2012). In the present
formulation, we have four variables, namely, the initial flame kernel radius R0 (under
forced ignition condition), the mixture’s Lewis number Le, the heating power Qm and the
heating duration th. Given R0, the induction time tig and initial flame kernel temperature
T0

b can be determined simultaneously.

3.1. Flame initiation without central heating
We first consider the case without ignition energy deposition at the centre, i.e. Qm = 0.
The flame kernel development can be described in the U–R diagram as shown in figure 1.
The dynamic behaviour of the flame front propagation based on the quasi-steady theory
agrees qualitatively with that predicted by the transient formulation. Specifically, figure 1
shows that the transient formulation and quasi-steady theory yield identical flame ball radii
at U = 0 and consistently interpret the flame kernel propagation toward a quasi-planar
flame at large distance R → ∞. Moreover, the transient formulation reconciles with the
quasi-steady theory in terms of the Lewis number effect. Specifically, for a mixture
with Lewis number close to or smaller than unity, the flame ball radius is the critical
radius beyond which the flame can propagate outwardly in a self-sustained manner.
When the Lewis number is sufficiently small, e.g. Le = 0.5, the curvature effect creates
a superadiabatic condition, driven by which the flame kernel accelerates rapidly with
propagation speed considerably higher than that of planar flame. This implies that a
flame can be ignited beyond the flammability limit and undergoes self-extinguishing under
certain conditions (Ronney 1989; Ronney & Sivashinsky 1989). The curvature effect tends
to be alleviated when the flame propagates outwardly.

When the Lewis number is higher than some critical value moderately above unity, e.g.
Le = 2.0, the U–R diagram exhibits a C-shaped curve. The turning point of the C-shaped
U–R diagram corresponds to the critical radius of Rc. The flame kernel structure cannot
be established for R < Rc due to severe conductive heat loss in large curvature condition.
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Theoretical analysis on the transient ignition

Figure 1 shows that for Le = 2, the flame ball radius is larger than the critical radius, i.e.
RZ > Rc. Therefore, the stationary flame ball radius is no longer the minimum radius that
controls flame initiation in mixtures with large Lewis number (Chen et al. 2011).

From a quantitative aspect, results in figure 1 indicate that the U–R relation based
on the quasi-steady theory deviates from that predicted by the transient formulation at
intermediate values of U and R. Such a discrepancy could be elucidated by examining the
time scales characterizing the flame propagation and change of temperature gradient. The
reference time scale for flame propagation can be characterized by tfp = 1/U. According
to the unsteady solution of ∂Tu/∂t given by (2.42), the characteristic time for the change
of temperature gradient is tun = R2F2

uT/π2.
For low to moderate values of RU, the factors FuT and FbT can be expanded in series

of the product RU, where the first-order correction must be retained, yielding

FuT ≈ 1 −
√

πRU
2

, FuY ≈ 1 −
√

LeπRU
2

. (3.1a,b)

Substituting the simplified FuT and FuY into the matching conditions, the flame
propagation speed can be estimated by

U ≈ 2(RZ/R − 1)2

πRLe(RZ/R + FR)2 , (3.2)

where the factor FR is

FR = (1 − 1/
√

Le){4(εT − 1)[1 + εT(Le − 1)] − LeZ}
2[1 + (Le − 1)εT ]2 . (3.3)

According to the definition of reference time for flame propagation and (3.2), tfp can be
quantified in the form

tfp ∼ πRLe(RZ/R + FR)2

2(RZ/R − 1)2 . (3.4)

At the onset of flame kernel, the radius is close to that of a flame ball, i.e. RZ/R − 1 � 1,
and thereby tfp � 1. However, the characteristic time for temperature gradient evolution,
according to its definition, appears at most of order unity, i.e. tun ∼ O(1). The exceedingly
slow propagating speed provides sufficient time for the local temperature gradient to
develop into the steady-state distribution. Therefore, for flame radius close to flame ball
size, the unsteady effect is negligible, resulting in the consistency between the quasi-steady
theory and transient formulation in the limit of U → 0.

At moderate values of RU, one has

tfp
tun

∼ πRLe(RZ/R + FR)2

2(RZ/R − 1)2 ∼ O(1). (3.5)

It indicates that the flame propagation speed and the time change rate of local temperature
gradient would be of the same order of magnitude, implying that the unsteady effects may
have consequential impacts on flame propagation.

As the flame continues to propagate outwardly, we have R � 1 and U ≈ 1. The factor
FuT can be expanded by treating 1/(RU) as a small parameter, yielding FuT ≈ 1/R.
The characteristic time for temperature gradient evolution can be estimated by tun =
1/π2. Meanwhile, the flame propagation time is given by tfp = 1/U ≈ 1; therefore,
we have tfp ≈ 10tun. This indicates that when the expanding flame is approaching the
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Figure 2. Profiles of temperature and mass fraction of the deficient reactant determined by transient
formulation (solid lines) and quasi-steady theory (dashed lines) for R = 2, Le = 1 and Qm = 0.

quasi-planar flame, the local temperature gradient has sufficient time to develop into the
steady state distribution. This again leads to the consistency between quasi-steady theory
and transient formulation in the limit of R → ∞.

The above time scale analysis indicates that for low to moderate Lewis numbers,
the unsteady effects become important at some intermediate flame radius, where the
propagating speed is comparable with the time change rate of local temperature gradient.
This is consistent with the work of Joulin (1985).

In comparison with quasi-steady theory, it shows that the unsteady effect tends to lower
the propagation speed (in the range with moderate value of RU). Figure 2 plots the
profiles of the temperature and mass fraction of the deficient reactant for a propagating
flame with Le = 1 at the moment when the flame radius is R = 2. In quasi-steady
theory, the temperature and mass fraction profiles has been fully developed, yielding
lower gradients across the flame front in the unburnt region (r > 2) than those based
only transient formulation, as shown in figure 2. It indicates that the rate of diffusion for
reactant mixture predicted by transient formulation tends to be higher than that based on
quasi-steady theory. As the flame kernel expands, the flame front propagates outwardly.
In the reference of coordinate fixed at the flame front, it is equivalent to an inward flow,
which leads to convective transport of reactant mixture to feed the flame in addition to
diffusion. Nevertheless, the flame temperature predicted by the transient formulation is
almost identical to that obtained by quasi-steady theory according to profiles presented in
figure 2. Since the consumption rate of reactant is determined by the flame temperature,
the higher diffusion rate in the transient formulation shall be associated with a lower
convective transport of reactant to the flame front, i.e. a slower propagating speed as shown
in figure 1.

For mixtures with relatively large Lewis number, the stationary flame ball radius differs
from the critical radius characterizing flame ignition. Figure 1 shows that the critical
radius predicted by quasi-steady theory, Rc ≈ 14, is shorter than that based on transient
formulation, Rc ≈ 19, while the critical speeds at the turning point of the C-shaped U–R
diagram are almost identical. Specifically, the product RcUc for Le = 2 has a moderate
magnitude, which implies that the unsteady effect would become important according
to (3.5). According to (2.42), the temperature gradient ahead of the spherical flame is
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Theoretical analysis on the transient ignition

proportional to the inverse of the flame radius, i.e. (∂Tu/∂r)r=R ∼ 1/R, and gradually
decays as the spherical flame is expanding. The critical radius defines a particular
magnitude of (∂Tu/∂r)r=R beyond which the flame structure cannot be established due to
excessive heat loss in the preheat zone (Deshaies & Joulin 1984; Chen & Ju 2007). Figure 2
shows that the temperature and mass fraction profiles based on transient formulation are
steeper than those given by quasi-steady theory in the unburnt region. Accordingly, the
transient formulation yields a larger critical radius to relax the local temperature and mass
fraction gradients in the preheat zone to ensure the successful establishment of a spherical
flame structure. A detailed calculation of critical radius at various Lewis numbers will be
presented in the next subsection.

3.2. Flame initiation with constant central heating
In the transient ignition model introduced in § 2, central heating via the boundary condition
at r = 0, i.e. r2(∂Tb/∂r) = −Q(t), is used to mimic the ignition energy deposition. We
first consider the simplified case of constant central heating, i.e. th → ∞, which was
considered in previous quasi-steady analysis on ignition (He 2000; Chen et al. 2011). In
practice, the duration of the ignition energy deposition is limited. We shall consider the
case of finite-duration central heating in the next subsection.

The central heating results in a high temperature region and generates an ignition
kernel with small radius. Figure 3 shows the distributions of the temperature and mass
fraction of the deficient reactant for a propagating spherical flame with the radius of
R = 2, which is induced by the constant central heating of Qm = 0.1. It is seen that
central heating leads to a significant increment in temperature close to the centre and
it continuously supplies energy to the flame front. The temperature gradient changes
abruptly across the flame front. A quantitative indication is calculated for the particular
situation presented in figure 3, where the flame front locates at x = 2. On the burnt
side, the temperature gradient predicted by transient formulation ((dT/dr)TR

R− = −0.0013)

is approximately one order of magnitude lower than that given by quasi-steady theory
((dT/dr)QS

R− = −0.0121), implying that the quasi-steady (QS) theory tends to overestimate
the energy supply from the heating centre to the flame front. On the unburnt side, the
calculation gives (dT/dr)TR

R+ = −1.147 and ((dT/dr)QS
R+ = −1.078), which indicates that

the unsteady evolution of temperature profile may lead to additional heat loss at the flame
front. Correspondingly, the flame propagation speed determined by quasi-steady theory is
higher than that based on transient formulation according to the discussion in the preceding
subsection without central heating. In quasi-steady theory, the temperature distribution in
the burnt region is determined by (Chen and Ju (2007)),

Tb(r) = Tf + Qm

∫ R

r

e−Uτ

τ 2 dτ , (3.6)

which tends to be increasingly flat close to the flame front as the propagation speed
becomes higher. Accordingly, the temperature in the burnt region predicted by the
quasi-steady theory appears to be slightly lower than that determined by transient
formulation. Nevertheless, the central heating plays a dominant role in affecting the
temperature profiles in the burnt region, rendering the unsteady effects to be secondary.

Figure 4 shows the U–R diagrams for different heating powers at Le = 1 and Le = 2.
The external heating reduces the critical radius, i.e. R+

Z and Rc for successful flame
initiation. Meanwhile, relatively low heating power leads to the emergence of an inner
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Figure 3. Profiles of temperature and mass fraction of the deficient reactant determined by transient
formulation (solid lines) and quasi-steady theory (dashed lines) for R = 2, Le = 1 and Qm = 0.1.

flame ball solution with radius R−
Z , e.g. situations with Qm = 0.05 at Le = 1 and Qm = 1.0

at Le = 2, as shown in figure 4. The inner flame ball is stable (Champion et al. 1986;
Clavin & Searby 2016). Therefore, for external heating power less than a critical value,
denoted by Qcr, the flame kernel ignited nearby the heating source is trapped within the
inner flame ball instead of continuously propagating outwardly. This means that ignition
fails for Qm < Qcr. For Qm = 0.07 at Le = 1 and Qm = 2.5 at Le = 2 (i.e. the blue solid
lines in figure 4), the U–R diagram becomes a continuous curve originating from point O
at R = R0 and U = 0 (where the flame kernel is ignited due to energy deposition) to point
D with R → ∞ and U = 1 (where planar flame structure is established). The flame kernel
can propagate outwardly along this curve, denoted by OABCD, indicating that successful
ignition is achieved for Qm > Qcr.

Subject to central heating, successful flame initiation comprises four stages: (I), fast
establishment of the ignition kernel (curve OA in figure 4); (II), ignition-energy-supported
flame kernel propagation (curve AB); (III), unsteady transition of the flame kernel (curve
BC); (IV), quasi-steady spherical flame propagation before its transition to a planar
flame (curve CD). In stage I, energy deposition via central heating provides a local high
temperature environment, which leads to the ignition of the reactive premixture and the
appearance of the ignition kernel. The rapid increase of flame temperature may render the
assumption d ln Tf /dR � 1 invalid in the flame kernel establishment stage. Whereas stage
I occurs so swiftly that it appears to have insubstantial influence on the general behaviour
of flame ignition. Since the magnitude of d ln Tf /dR in both stage II and stage III is less
than 0.1 and on average of order O(10−2), we ascertain that the assumption d ln Tf /dR � 1
is suitable for describing the evolution of the flame kernel. Usually, external heating is
highly concentrated, implying that the ignition kernel would be very restricted in the
spatial dimension. According to our calculation, the qualitative behaviour of the U–R
diagram in the flame-kernel-establishing stage is quite insensitive to the change of onset
flame radius R0 as indicated in figure 5. Therefore, we fix R0 = 0.01 in our analysis when
evaluating the impacts of other affecting parameters.

In this study, the U–R curve obtained from transient formulation falls below that based
on quasi-steady theory. An opposite effect of an unsteady term was reported by Chen and
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Figure 4. Change of flame propagation speed with flame radius for different central heating powers. The solid
lines are solutions from the transient formulation, while the dashed lines are results from quasi-steady theory.
The heating powers are indicated by colours of the solid/dashed lines: (a) black for Qm = 0.05, red for Qm =
0.06 and blue for Qm = 0.07; (b) black for Qm = 1.0, red for Qm = 2.0 and blue for Qm = 2.5. Here RZ and
Rc, respectively, denote the flame ball radius and critical radius for flame initiation.

Ju (2007), which can be attributed to the selection of the chemical reaction model. In Chen
and Ju’s work (Chen & Ju 2007), the chemical reaction model was given by

ω′ = exp
{

Z(Tf − 1)

2[εT + (1 − εT)Tf ]

}
δ(r − R), (3.7)

in which the pre-exponential factor [εT + (1 − εT)Tf ]2 becomes absent. According to Wu
and Chen (2012), the reaction rate model ω′ may not be sufficiently accurate to interpret the
chemical process and should be revised to ω given by (2.8), which motivates our selection
in the present formulation.

The temporal evolution of temperature profiles at each stage is shown in figure 6
for Le = 2.0 and Qm = 2.5. Since the onset flame radius R0 is exceedingly small, the
temperature profiles nearby, shown in figure 6(a), are presented in zoomed-in perspective.
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Figure 5. Change of flame propagation speed with flame radius for different initial flame kernel radius of
R0=0.01, 0.1 and 1.0. The solid lines are solutions from the transient formulation, while the dashed lines are
results from quasi-steady theory. The Lewis number is 2.0 and the central heating power is Qm = 2.5.

Large flame curvature characterized by 1/R0 results in high temperature gradients on
both sides, whose difference is attributed to the heat release from chemical reaction. Both
central heating and exothermic chemical reaction give rise to temperature increase inside
of the flame kernel, which further facilitates the temperature-sensitive chemical reaction.
Such positive feedback leads to ignition kernel acceleration until it achieves the maximum
propagation speed (see point A in figure 4), at which the heat generation by chemical
reaction and heat supply from central heating are balanced with the heat loss by conduction
in the preheat zone at the flame front. Consequently, the ignition kernel is fully established.

Figure 4 shows that after achieving the maximum propagation speed at point A, the
flame kernel continuously decelerates along curve AB. Accordingly, figure 6(b) shows
that the flame temperature gradually decays in stage II of the ignition-energy-supported
flame kernel propagation. During this stage, the temperature gradient on the burnt side of
the flame kernel is still negative, indicating that heat from the central energy deposition is
supplied to the flame front and thereby the flame kernel propagation is still supported
by central heating. During the flame kernel propagation in stage II, the flame radius
becomes larger, and the heat supplied to the flame front by central ignition becomes
smaller, and thereby both flame temperature and flame propagation speed become lower.
When the heating power is below the critical value (Qm < Qcr), the flame propagation
speed eventually reduces to zero in stage II, approaching the inner flame ball solution and
resulting ignition failure (see the left branch of U–R curve in figure 4 for Qm = 0.06 at
Le = 1 and Qm = 2.0 at Le = 2).

Under supercritical heating (i.e. Qm > Qcr), the flame kernel is capable of passing the
critical radius with positive propagation speed at the end of developing stage (around point
B in figure 4). Then the flame kernel continuously propagates outwardly along curve BC
in figure 4. The evolution of the temperature profiles during the unsteady transition stage
is shown in figure 6(c). The flame temperature starts to increase again. From an energy
conservation perspective, it can be inferred that the competition between heat generation
via chemical reaction and heat loss via conduction to the preheat zone is responsible for
the flame temperature increasing. The intensified chemical reaction requires more reactant
premixture to be transported towards the flame front, which is revealed by the steepening
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Figure 6. Temporal evolution of the temperature distributions during different ignition stages: (a) stage I for
fast establishment of the ignition kernel, (b) stage II for ignition-energy-supported flame kernel propagation
and (c) stage III for unsteady transition of the flame kernel and stage IV for quasi-steady spherical flame
propagation. The Lewis number is Le = 2.0 and the central heating power is Qm = 2.5. The circles represent
flame temperature and flame radius. The distributions for the mass fraction of the deficient reactant are also
shown in panel (c).
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Z , and the minimum distance between two branches of
U–R diagrams, Λ, with the central heating power for different Lewis numbers of Le = 1, 1.5, and 2.

of mass fraction gradients in the preheat zone. The increasing flux of fresh reactant
mixture comparatively lowers the temperature ahead of the flame front, as indicated in
figure 6(c). When the spherical flame propagates in a quasi-steady manner, a stable balance
between heat release from chemical reaction and heat conduction to warm up the reactant
premixture is achieved, and the flame is affected by a continuously decaying stretch rate.

In the presence of external heating, there exist two branches of U–R curve
describing of the flame kernel development: the inner branch for the formation of the
ignition-energy-supported, stationary flame ball with the radius of R−

Z , and the outer
branch for the continuous expansion of spherical flame originating from the conventional
flame ball with the radius of R+

Z . When the heating power increases, the inner U–R
branch expands while the outer U–R branch moves inwardly as shown in figures 4
and 7. A quantity Δ is defined as the minimum distance between the inner and outer
U–R branches. At the critical heating power, the inner and outer branches merge, i.e.
Δ = 0, which provides a route for the transition of the flame kernel to self-sustained
spherical flame, i.e. successful flame ignition. For low to moderate Lewis number, the
shortest distance of the outer branch of the U–R curve to the axis R = 0 is identical to R+

Z
(the radius of the stationary spherical flame), and accordingly, the requirement Λ = 0 that
determines the critical heating power is equivalent to R+

Z = R−
Z . However, for moderate to

large Lewis number, the outer branch of the U–R curve is C-shaped, whose turning point
defines a critical radius, denoted by Rc. Geometrically, it has Rc < R+

Z . Thus, the condition
of Λ = 0 shall be interpreted as that at the heating power the turning point (Rc, Uc) comes
into contact with the inner branch of the U–R diagram and establishes the bridge for flame
initiation.

To show the effect of Lewis number on the critical ignition conditions, we calculate
the critical heating power and critical ignition radius for different Lewis numbers. The
results are depicted in figure 8, in which the data from the transient formulation and
quasi-steady theory are shown together for comparison. Both the critical heating power
and critical ignition radius are shown to increase monotonically with the Lewis number,
which is consistent with previous results (Chen et al. 2011).

Figure 8 shows that the critical heating power and critical ignition radius predicted by
the transient formulation are higher than those by the quasi-steady theory. The critical
radius for ignition is characterized by the maximum conductive heat loss in the preheat

924 A22-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.633


Theoretical analysis on the transient ignition

8

6

4

2

0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

25

20

15

10

0

5

Le

Rcr

Qcr

Qcr Rcr

Rcr

Qcr

Figure 8. Change of critical heating power and critical ignition radius with the Lewis number. The solid lines
are solutions from the transient formulation, while the dashed lines are results from quasi-steady theory.

zone that can support flame structure. As indicated by results in figures 2 and 3, the
local temperature and mass fraction distributions ahead of the flame front predicted
by the transient formulation are steeper than those predicted by quasi-steady theory,
implying a more intensive conductive heat loss and slower flame propagation speed (as
shown in figure 1) in transient formulation at the same flame radius. Therefore, the
critical radius determined by transient formulation is larger than that based on quasi-stead
theory to ensure the establishment of flame kernel structure. This indicates that when
an unsteady effect is taken into account, more intensive energy deposition is required to
overcome the flame deceleration during the flame kernel propagation in stage II and thus
to ensure successful flame initiation. Consequently, the critical heating power determined
by transient formulation tends to be increasingly greater than that based on quasi-steady
theory.

Figure 9 shows the scaling relation between the critical heating power and the critical
radius. In the quasi-steady theory, the predicted critical heating powers (represented by
the red symbols in figure 9) appear to change linearly with the cube of the critical radius,
which is consistent with previous studies (Chen et al. 2011). However, the critical heating
powers determined by transient formulation (see the black symbols in figure 9), change
more rapidly than the cube of the critical radius and they appear to be described by a
modified scaling relation, Qcr ∼ R3+δ

cr with δ > 0.
The external heating creates a thermal conduction channel from the centre to the flame

kernel. In quasi-steady theory, the presence of central heating can be instantaneously
experienced by all the fluid elements inside the flame kernel. Therefore, the net heat flux
through each element is characterized by Qm/R3. Depending on the geometry of the flame
kernel and the transport properties of the reactant mixture, there exists a maximum heat
conduction rate in the preheat zone, denoted by hcr, beyond which the flame structure
cannot be established. The critical radius for flame initiation can be determined with the
knowledge of hcr as a function of Lewis number. Moreover, the heat release rate due to
chemical reaction at the flame front, q, reveals the exothermicity of the reactant mixture
and thus is independent of critical radius. Therefore, under critical heating situation the
balance of energy flux at the critical radius can be written as follows:

Qcr

R3
cr

+ q ∼ hcr, (3.8)
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Figure 9. Change of critical heating power with the cube of critical ignition radius. The symbols represent
results from quasi-steady theory or transient formulation, and the lines represent the scaling relationship of
Qcr ∼ R3

cr.

which qualitatively explains the linearly relation Qcr ∼ R3
cr. However, such a simply

scaling relation does not hold perfectly for quasi-steady theory, as seen in figure 9. The
deviation can be attributed to that the maximum heat loss hcr may still depend on the
critical radius and thus modifies the cubic scaling relation.

In the transient formulation, the effect of central heating ‘propagates’ outwardly in the
course of time, leading to non-uniform net energy transfer in radial direction. At the
critical radius, which is remote from the heating centre, the local energy transfer rate
shall be lower than that predicted by quasi-steady theory. The critical radii for Le > 1 are
substantially greater than unity. Based on phenomenological consideration, we slightly
modify the power-law scaling relation to

Qcr

R3+δ
cr

+ q ∼ hcr (3.9)

where the factor δ is greater than zero and underlines the reduction of thermal conduction
rate at the flame front in comparison with quasi-steady theory. Arranging (3.9) gives that
Qcr ∼ R3+δ

cr , which coincides with the downward-convex distribution of critical heating
power (black squares) with the cube of critical radius as shown in figure 9. In general,
there is little evidence that the factor δ can be considered as a constant. The evaluation
of the modelling factor δ involves rigorously dealing with the transient temperature
distribution in the burnt region during flame kernel development, which appears to be
an exceedingly complicated task for analytical treatment and is beyond the scope of this
study.

3.3. Flame initiation with finite duration heating
In this subsection, we consider the ignition induced by finite-duration central heating,
which is closer to practical ignition than the constant central heating. For duration time of
th and heating power of Qm, the ignition energy is Eig = Qmth. Figure 10 shows the U–R
diagram for different heating power and duration times.

First, we consider the same heating power of Qm = 3, but different duration time of
th = 33.3, 133.3 and 150. Figure 10 shows that the flame propagation speed abruptly
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Figure 10. Change of flame propagation speed with flame radius for different ignition power and duration
time. The Lewis number is Le = 2. The circles/squares represent the flame radius at the moment of external
heating switching off, i.e. t = th, for successful/failing flame initiation.

reduces toward zero, implying flame extinction, when the external heating is switched
off at th = 33.3 and 133.3. The increase in the heating duration time extends the radial
location where flame extinction occurs. Though heat is still supplied from the kernel centre
towards the flame front for t > th, it gradually reduces as the flame propagates outwardly.
When the heat generation from chemical reaction and heat conduction from the kernel
centre is overbalanced by the heat loss in the preheat zone, the flame structure cannot
be maintained and extinction occurs (Chen & Ju 2008). For the same heating power of
Qm = 3, a slightly longer heating time, e.g. th = 150, leads to successful flame initiation.
Therefore, the MIE is within the range of 400 < Emin < 450 for Qm = 3. However,
when the heating power is doubled to Qm = 6, successful ignition can be achieved
with a much shorter heating time of th = 66.6, implying that Emin < 400 for Qm = 6.
This indicates that the MIE depends on the heating power, which will be discussed
later.

In figure 11(a), the temporal evolution of temperature profile is plotted for Qm = 3
and th = 33.3. Interestingly, the flame can persistently propagate for a while before
extinguishing occurs, indicated by the left-most square in figure 10 with R = 6.96. Such
a phenomenon is identified as the ‘memory effect’ of heating (Joulin 1985; He 2000;
Vázquez-Espí & Liñán 2001), which is attributed to the unsteady evolution of high
temperature at the flame kernel within a finite duration of time. Since the memory effect
tends to drive the flame to propagate farther outwardly, it is expected to affect the ignition
and MIE. Figure 11(b) shows the results for Qm = 3 and th = 150. When the central
heating is switched off at th = 150, indicated by the black circle in figure 10 with R = 14.3,
the flame front can sustain expansion due to the memory effect and arrive at the critical
radius at t = 211 with a positive propagation speed. Passing the critical radius, the flame
can propagate outwardly in a self-sustained manner and thereby successful ignition is
achieved. Further increasing the heating power, i.e. Qm = 6, the memory effect appears
to be more pronounced because the distance between the radius where central heating is
switched off, indicated by red circle, and the critical radius becomes even slightly longer
than that for Qm = 3, as shown in figure 10.

924 A22-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.633


D. Yu and Z. Chen

1.0

0.8

0.6

0.4

0.2

5.0 7.5 10.0 12.5
0

1.0

0.8

0.6

0.4

0.2

0
10 15 20 25 30

T

T

r

Tb

Tb

Tu

Tu

t = th (33.3)

t = th (150)

t = 39.0

t = 41.7

t = 211

t = 220

(a)

(b)

Figure 11. Temporal evolution of the temperature distributions for Qm = 3 and Le = 2. The heating duration
is (a) th = 33.3 and (b) th = 150. The thick lines correspond to t = th, while the thin lines denote the moments
thereafter. The red and blue lines represent temperature in the burnt and unburned regions, respectively.

The change of MIE with heating power is presented in figure 12. It is noted that the
MIE determined via the present theoretical formulation may not be quantitatively accurate
in practical concerns. During the flame ignition process, the spark discharge, plasma
generation and complicated chemical reactions involved in fuel decomposition/pyrolysis
and oxidation cannot be fully described by the present simplified model. In the present
formulation, we calculate the MIE in order to compare with those evaluated based on
quasi-steady theory and demonstrate the necessity of considering the unsteady effect to
appropriately describe the flame ignition process.

For comparison, the MIE predicted without considering the memory effect, denoted as
E′

min, is also plotted in figure 12. In quasi-steady theory, the heating source is maintained
at constant power (Qm) due to the absence of characteristic time. The relation between
flame distance and propagating speed can be determined by algebraically solving the jump
conditions at the flame front. Successful ignition requires the flame kernel to reach beyond
the critical radius, i.e. R > Rcr. According to the definition of U = dR/dt, a characteristic
time tcr interpreting the moment for the flame front arriving at the critical radius Rcr can
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min predicted by
the quasi-steady theory without considering memory effect.

be evaluated as

tcr = t0 +
∫ Rcr

R0

dR
U

, (3.10)

where the integral on the right-hand side can be conducted with the knowledge of a U–R
diagram. Accordingly, the ignition energy can be estimated as the product of Qm and
tcr, i.e. E′

min = tcrQm. In reality, the flame kernel can sustain propagation subsequent to
switching off the heating source, known as the memory effect, which implies that E′

min
gives an overestimation of MIE, which is consistent with the theoretical study conducted
by He (2000), and thus necessities the consideration of unsteady effect in evaluating MIE.

In the transient formulation, the memory effect can be appropriately taken into account.
Figure 12 shows that at relatively low heating power, the E′

min agrees well with Emin,
both of which rise abruptly as Qm approaches the critical value. The difference between
Emin and E′

min becomes apparent as the heating power increases. When heating power
becomes sufficiently high, the heating duration th can be made arbitrarily short in the
transient formulation, and consequently, the external heating could be modelled by a
delta function, whose magnitude is the total energy deposition. Therefore, in the limit
of Qm → ∞, both Qm and th do not appear explicitly in the formulation, which implies
the independence of MIE on Qm, i.e. the existence of an asymptotic value of MIE in
that limit. However, E′

min without considering memory effect changes with the heating
power follows an approximate scaling law, i.e. E′

min ∼ Q0.7
m as indicated by the slope of

the dashed lines in figure 12, which does not satisfy the physical plausibility. The growing
discrepancy between the Emin and E′

min manifests the increasing importance of the memory
effect in determining the MIE. It is noted that figure 5 in (He 2000) also shows that the
quasi-steady theory tends to overestimate the value of MIE, which is consistent with the
results in figure 12 shown above. Nevertheless, the range of the heating power considered
in (He 2000) was restricted to the neighbourhood of Qcr, which is much narrower than
that concerned in the present transient formulation. Therefore, the substantial impact of
the memory effect on the MIE was not observed in (He 2000).

As mentioned before, the memory effect arises from the unsteady evolution of
temperature gradient on the burnt side of the flame front, i.e. (dTb/dr)R− given by (2.50),
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after turning off the heating source. The time change of (dTb/dr)R− is quantified by the S
function, given by (2.51), whose characteristic time can be obtained as

tbR = R2

F̂2
bTπ2

. (3.11)

According to (2.38), the factor F̂bT changes with the flame front radius R and
propagation speed U, i.e.

F̂bT = FbT(σs = 1) = 2 e−RU/2√RU/2√
πerf (

√
RU/2)

. (3.12)

We can quantify the memory effect by defining an extra distance of flame propagation
sustained by the memory effect,

Rme = tbRU = ReRU

2π[erf (
√

RU/2)]2 . (3.13)

Since the flame kernel establishing stage is extremely fast (see curve OA in figure 4),
switching-off of external heating occurs during the stage of ignition-energy-supported
flame kernel propagation. The presence of central heating facilitates chemical reaction,
which results in a large flame propagation speed. Moreover, for mixtures with relatively
large Lewis numbers, the critical radius for flame ignition tends to be considerably greater
than the planar flame thickness. Thereby, we hypothesize that the product of RU at t = th,
i.e. turning-off of central heating, could be regarded as a moderate-to-large quantity.
According to (3.13) the extra distance Rme appears as an increasing function of flame
propagation speed.

With the increase in the heating power, the flame propagation is accelerated, and thereby
the extra distance of flame propagation driven by the memory effect, according to (3.13),
becomes larger. Particularly, for sufficiently large heating power, the extra distance might
be comparable with the critical radius, i.e. Rme ∼ Rcr, implying that the memory effect
could play a dominant role in determining the MIE and thus leads to the exceedingly large
discrepancy between Emin and E′

min, as shown in figure 12. Therefore, it also emphasizes
that the MIE should be evaluated based on the transient formulation including the memory
effect.

4. Concluding remarks

In this work, a fully transient formulation is proposed to analyse the development
of a flame kernel in a quiescent mixture subject to external heating with emphasis
on the unsteady effects on ignition kernel propagation and MIE. Through a series
of coordinate transformations, the conservation equations for energy and mass are
converted into simple forms and solved analytically. Using the matching conditions at
the flame front, we derive a pair of coupled implicit ordinary differential equations,
whose solutions yield the time-dependent flame temperature, flame radius and flame
propagation speed. Time scale analysis demonstrates that the present transient formulation
is consistent with previous quasi-steady theory for stationary flame ball (U = 0) and for
expanding flame approaching planar flame (R → ∞). However, at intermediate radius
with low-to-moderate propagating speed, i.e. RU ∼ O(1), the unsteady evolution time for
temperature/mass fraction tends to comparable with that for flame propagation and thereby
the unsteady effect could have discernible impacts upon the flame kernel development.
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The propagation speed for expanding flames at intermediate radius is found to be reduced
by the unsteady effect.

Four stages involved in the flame initiation process subject to external heating are
identified: the fast establishment of the ignition kernel; the ignition-energy-supported
flame kernel propagation; unsteady transition of the flame kernel; and quasi-steady
spherical flame propagation. The fundamental of each stage is clarified by examining
the temporal and spatial variation of temperature/mass fraction distributions. The critical
heating power predicted by quasi-steady theory appears to be linearly proportional to the
cube of critical radius, i.e. Qcr ∼ R3

cr. However, in transient formulation, the scaling law
shall be phenomenologically revised to Qcr ∼ R3+δ

cr with δ > 0 due to unsteady evolution
of temperature distribution within the flame kernel.

Furthermore, the present transient formulation can also deal with finite-duration central
heating and thereby can predict the MIE. The MIE is found to be dependent on the
heating power. For high heating power, the MIE predicted by the transient formulation
approaches an asymptotic value while the MIE from the quasi-steady theory continuously
increases. The memory effect of external heating sustains the propagation of flame front
after the removal of the heating source and thereby reduces the MIE. With the increase
of heating power, the memory effect becomes stronger and thereby the discrepancy in the
MIE predicted by the transient formulation and quasi-steady theory becomes larger.

It is noted that the present analysis is based on the assumption of one-step global
chemistry and adiabatic flame propagation. In future studies, it would be interesting to
consider simplified thermally sensitive intermediate kinetics (e.g. Zhang & Chen 2011)
and radiative heat loss in the present transient formulation. Besides, here the flammable
mixture is quiescent, and the flow caused by thermal expansion is not considered. It would
be also interesting to take into account the uniform inlet flow and thermal expansion in
future works.
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