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A simple proof of Stirling's formula for the gamma
function

G. J. O. JAMESON

Stirling's formula for integers states that

n! ∼ Cnn + 1
2e−n as n → ∞, (1)

where  and the notation  means that
as .

C = 2π f (n) ∼ g(n) f (n) / g(n) → 1
n → ∞

A great deal has been written about Stirling's formula.  At this point I
will just mention David Fowler's Gazette article [1], which contains an
interesting historical survey.

The continuous extension of factorials is, of course, the gamma
function.  The established notation, for better or worse, is such that
equals  rather than .  Stirling's formula duly extends to the gamma
function, in the form

Γ (n)
(n − 1)! n!

Γ (x) ∼ Cxx − 1
2e−x as x → ∞. (2)

To recapture (1), just state (2) with  and multiply by .x = n n
One might expect the proof of (2) to require a lot more work than the

proof of (1).  However, this is not true!  Here, with only a little more effort
than what is needed for the integer case, we will prove the following more
specific version of (2), incorporating upper and lower bounds.   

Theorem 1:  Let  and .  Then for all ,S(x) = xx − 1
2e−x C = 2π x > 0

CS(x) ≤ Γ (x) ≤ CS(x) e1/(12x). (3)
Proofs can be seen in numerous books, e.g. [2], [3], so a compelling

excuse is needed for presenting yet another one.  Readers can judge whether
the measure of simplification achieved by the method given here is
sufficiently compelling.

We will not need to assume any knowledge of the gamma function
beyond Euler's limit form of its definition and the fundamental identity

.Γ (x + 1) = xΓ (x)
In common with most proofs of Stirling's formula, we concentrate on

showing that (3) holds for some constant .  Having done so, one can then
use the Wallis product to establish that .  See, for example, [1] or
[3, p. 20].  I am not offering any novelty for this part of the argument.

C
C = 2π

Also in common with most proofs, we really work with .  Clearly
(3) is equivalent to:

ln Γ (x)

ln Γ (x) = (x − 1
2) ln x − x + c + q (x) , (4)

where  and .c = 1
2 ln (2π) 0 ≤ q (x) ≤ 1

12x
The distinctive feature of our method is to estimate  byln Γ (x)
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estimating its derivative.  We explain later why this leads to a gain in
simplicity.  Now .  Following the usual custom in
literature on the gamma function, we denote this function by .  Many of
the statements and formulae relating to the gamma function have a simpler
counterpart for , and Stirling's formula is no exception.  The
corresponding statement is:

d
dx ln Γ (x) = Γ′ (x) / Γ (x)

ψ (x)

ψ (x)

Theorem 2:

ln x −
1
2x

−
1

12x2
≤ ψ (x) ≤ ln x −

1
2x

. (5)

Once we know this, Theorem 1 follows in a simple and elegant way, as we
proceed to show.

Deduction of Theorem 1 from Theorem 2:  Let

g(x) = ln Γ (x) − (x − 1
2) ln x + x.

We have to show that  for some constant .  Nowc ≤ g(x) ≤ c + 1
12x c

g′ (x) = ψ (x) − ln x +
1
2x

,

so by Theorem 2, .  Hence  is convergent

(say to ).  So 

−
1

12x2
≤ g′ (x) ≤ 0 ∫

 ∞
1 g′ (t) dt

I

g(x) − g(1) = ∫
 x

1
g′ (t) dt = I − ∫

 ∞

x
g′ (t) dt,

or , where .  The required statement
follows, since

g(x) = c − ∫
 ∞
x g′ (t) dt c = I + g(1)

0 ≤ − ∫
 ∞

x
g′ (t) dt ≤ ∫

 ∞

x

1
12t2

dt =
1

12x
.

Now we have to prove (5).  We start from Euler's limit definition of the
gamma function:  , whereΓ (x) = lim

n → ∞
Gn (x)

Gn (x) =
nx (n − 1)!

x (x + 1) … (x + n − 1)
. (6)

(An alternative version, clearly equivalent in the limit, has a further  at the
top and  at the bottom.)  Note that  for all , so the
definition immediately gives .

n
(x + n) Gn (1) = 1 n

Γ (1) = 1
Of course, it needs to be shown that  exists for general .

This can be seen in any account of the gamma function; a simple method
was presented in [4].  The identity , and hence

, follows at once from

lim
n → ∞

Gn (x) x

Γ (x + 1) = xΓ (x)
Γ (n) = (n − 1)!

Gn (x + 1) =
n

n + x
 xGn (x) .
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Standard accounts also include the equivalence of (6) with Euler's other
definition of the gamma function, the integral , but this is not
needed for our purposes.

∫
∞
0 tx − 1e−tdt

Now

ln Gn (x) = x ln n + ln [(n − 1)!] − ∑
n − 1

r = 0

ln (x + r) , (7)

so , whereψ (x) = lim
n → ∞

ψn (x)

ψn (x) =
d

dx
ln Gn (x) = ln n − ∑

n − 1

r = 0

1
r + x

. (8)

(Here, of course, we are taking it for granted that the derivative of the limit
is the limit of the derivatives; for purists, this is justified by uniform
convergence of  on bounded intervals, which they may care to prove as
an exercise.)

ψn (x)

To put (5) into perspective, we digress briefly to mention some more
elementary facts about , though they are not strictly needed for
Theorem 2.

ψ (x)

Proposition 1:  The function  is increasing.  Further: ψ (x)

ψ (x + 1) = ψ (x) +
1
x

, (9)

ln x −
1
x

≤ ψ (x) ≤ ln x. (10)

Proof:  From (8), it is clear that  increases with , hence so does .
Since , we have .
Differentiation gives (9).  Also, by the mean-value theorem, it follows that

 for some  in .  Since  is increasing, this shows
that .  With (9), this gives (10). 

ψn (x) x ψ (x)
Γ (x + 1) = xΓ (x) ln Γ (x + 1) = ln Γ (x) + ln x

ln x = ψ (ξ) ξ (x, x + 1) ψ (x)
ψ (x) ≤ ln x ≤ ψ (x + 1)

Note:  As the reader may know, a function with increasing derivative is
convex (informally, this means curving upwards).  So  is convex.
The celebrated Bohr-Mollerup theorem states that the gamma function is the
unique function  with the property that  is convex,

 and .  For a proof, see [4].

ln Γ (x)

f (x) ln f (x)
f (x + 1) = xf (x) f (1) = 1

Clearly (5) is a greatly enhanced version of (10).  We now embark on its
proof.  Define

Sn (x) = ∑
n − 1

r = 0

1
r + x

,

so that .  Also, defineψn (x) = ln n − Sn (x)
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S∗
n (x) =

1
2x

+ ∑
n − 1

r = 1

1
r + x

+
1

2 (n + x)
= Sn (x) −

1
2x

+
1

2 (n + x)
.

Clearly , where ψ (x) = lim
n → ∞

ψ∗
n (x)

ψ∗
n (x) = ln n − S∗

n (x) −
1
2x

. (11)

Note that , where  is defined byS∗
n (x) = ∑

n − 1

r = 0
T (r + x) T (x)

T (x) =
1
2x

+
1

2 (x + 1)
.

Now  is the trapezium-rule approximation to
.  The key step is the following result, giving

bounds for the error in this approximation.  Here we present an elementary
method based on the power series for ,  and ,
which can be traced to [2, p. 21].

T (x)
∫
 x+ 1
x t−1dt = ln(x + 1) − lnx

(1 + y)−1 (1 + y)−2 ln (1 + y)

Proposition 2:  For all , we havex > 0

T (x) = ln (x + 1) − ln x + � (x) , (12)
where 

0 ≤ � (x) ≤
1

12x2
−

1
12 (x + 1)2

. (13)

Proof:  We have , andln (x + 1) − ln x = ln (1 + 1/ x)

1 +
1
x

=
1 + y

1 − y
,

where .  Note that .  By the power series for
,

y = 1/ (2x + 1) 0 < y < 1
ln (1 ± y)

ln (1 +
1
x) = ln (1 + y) − ln (1 − y) = 2 (y +

y3

3
+

y5

5
+  … ) .

Also, 

1
2x

=
y

1 − y
,  

1
2 (x + 1)

=
y

1 + y
,

so by the geometric series for 1 / (1 ± y)

T (x) = 2 (y + y3 + y5 +  … ) .
Hence  andln (1 + 1/ x) < T (x)

� (x) = T (x) − ln (1 +
1
x) ≤ 4

3y
3 + 2 (y5 + y7 +  … ) .
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Meanwhile, , so (1 + y)−2 = ∑
∞

n = 0
(n + 1) yn

1
4x2

−
1

4(x + 1)2
=

y2

(1 − y)2
−

y2

(1 + y)2

= 2y2 (2y + 4y3 + 6y5 +  … ) = ∑
∞

n = 1

4ny2n + 1.

Denote this by .  Term-by-term comparison shows that .U (x) �(x) ≤ 1
3U (x)

Note:  A more sophisticated alternative proof of Proposition 2 is by Euler-
Maclaurin summation, which has the advantage of being applicable to other
functions.  A simplified version is described in a companion article [5].

Proof of Theorem 2:  By (12),

S∗
n (x) = ∑

n − 1

r = 0

T (r + x) = ln (n + x) − ln x + pn (x) ,

where .  So by (11),pn (x) = ∑
n − 1

r = 0
� (r + x)

ψ∗
n (x) = ln n − ln (n + x) + ln x −

1
2x

− pn (x) .

By (13),  tends to  (say) as , where pn (x) p(x) n → ∞

p(x) = ∑
∞

r = 0

� (r + x) ≤
1
12 ∑

∞

r = 0
( 1
(x + r)2

−
1

(x + r + 1)2) =
1

12x2
.

also .  Now  as ,
so by taking the limit as , we obtain 

p(x) ≥ 0 ln (n + x) − ln n = ln (1 + x / n) → 0 n → ∞
n → ∞

ψ (x) = ln x −
1
2x

− p(x) ,

where .  This is equivalent to to (5).0 ≤ p(x) ≤ 1/ (12x2)

A further degree of accuracy.  In Proposition 2, with a bit more effort,
one can show by either of the methods mentioned that 

� (x) ≥
1
12 ( 1

x2
−

1
(x + 1)2) −

1
120 ( 1

x4
−

1
(x + 1)4) .

The details can be seen in [5].  Fed into the proof of Theorem 2, this gives 

ψ (x) ≤ ln x −
1
2x

−
1

12x2
+

1
120x4

.

Fed in turn into the proof of Theorem 1, this results in

ln Γ (x) = (x −
1
2) ln x − x + c +

1
12x

− r (x) ,
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where

0 ≤ r (x) ≤
1

360x3
.

The further continuation can be seen in [3, p. 22].  For  itself, this
line of reasoning leads to an asymptotic expansion

Γ (x)

Γ (x) = CS(x) (1 +
1

12x
+

1
288x2

+  … ) .

Some concluding remarks
(1)  Comparison with direct estimation of .  ln Γ (x)

Wouldn't it be more direct to estimate  directly, using (7)?  One
needs the following analogue of Proposition 2, which can be proved in a
similar way, or again by Euler-Maclaurin summation:

ln Γ (x)

1
2 lnx + 1

2 ln(x + 1) = (x + 1) ln(x + 1) − x lnx − 1 − �1(x), (14)
where .  If we only want Stirling's formula

for integers, we have simply  instead of (7), and

this method is indeed highly efficient.  It can be seen, for example, in [6,
p. 52-53], or in a more accurate form in [5].  But, for the gamma function,

(7) contains both  and .  One has to apply (14) to

each of these and combine the results.  In a sense, this doubles the work.
The estimation of  was simpler because of the disappearance of the
term  under differentiation.

0 < �1 (x) ≤ 1/ [12x (x + 1)]
ln [(n − 1)!] = ∑

n − 1

r = 0
ln r

ln [(n − 1)!] ∑
n − 1

r = 0
ln (x + r)

ψ (x)
ln [(n − 1)!]

(2)  The integral definition
Can one prove Stirling's formula starting from the integral definition of

the gamma function?  Patin [7] gives such a proof.  It is indeed short, and
even incorporates the evaluation of , but it does not establish bounds as in
(3), and it uses Lebesgue's dominated convergence theorem, so cannot be
regarded as completely elementary.  Another proof, more elementary but (in
my view) less transparent, is given in [8].

C

(3)  The complex case
Euler's limit definition (6) applies equally for a complex variable .  The

following suitably rephrased version of (4) applies (see for example [9]).
Let , where  for some .  Then there is a
logarithm  of  satisfying

z

z = reiθ |θ| ≤ π − δ δ > 0
L (z) Γ (z)

L (z) = (z − 1
2) ln z − z + c + q (z) ,

where  for some constant  (depending on ).|q (z)| ≤ A/ r A δ
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