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A simple proof of Stirling's formula for the gamma
function

G. J. 0. JAMESON

Stirling's formula for integers states that

n ~ Cn"tfeMasn — oo, (1)
whereC = /27 andthenotationf (n) ~ g(n) meanghatf (n)/g(n) — 1
asn — eo.

A greatdeal hasbeenwritten aboutStirling's formula. At this point |
will just mention David Fowler's Gazettearticle [1], which containsan
interesting historical survey.

The continuous extension of factorials is, of course,the gamma
function. The establishechotation,for betteror worse,is suchthat " (n)
equals(n — 1)! ratherthann!. Stirling'sformuladuly extendgo thegamma
function, in the form

F(X) ~ CX %X asx — oo )

To recapture (1), just state (2) with= n and multiply byn.
One might expectthe proof of (2) to requirea lot morework thanthe
proof of (1). However,thisis nottrue! Here,with only alittle moreeffort

thanwhatis neededor the integercase,we will provethe following more
specific version of (2), incorporating upper and lower bounds.

Theoreml: LetS(x) = X *e*andC = vZr. Then foralx > 0,
CS(X) < T'(x) < CS(x)e"™, 3

Proofs can be seenin numerousbooks, e.g.[2], [3], so a compelling
excusds neededor presenting/et anotherone. Readersanjudgewhether
the measureof simplification achieved by the method given here is
sufficiently compelling.

We will not needto assumeany knowledgeof the gammafunction
beyond Euler's limit form of its definition and the fundamentalidentity
'x+ 1) = xT(X).

In commonwith most proofs of Stirling's formula, we concentrateon
showingthat (3) holdsfor someconstantC. Having doneso, onecanthen
usethe Wallis productto establisithatC = +/27. See,for example[1] or
[3, p. 20]. | am not offering any novelty for this part of the argument.

Also in commonwith mostproofs,we really work with InT" (x). Clearly
(3) is equivalent to:

INT(x) = (x =3 Inx = x+ ¢+ g, (4)

wherec = 1 In(27)and0 < q(x) < X
The distinctive feature of our method is to estimate InI"(x) by
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estimatingits derivative. We explain later why this leadsto a gain in
simplicity. Now & InT(x) = T (x)/T (x). Following the usualcustomin
literatureon the gammafunction, we denotethis function by y (x). Many of
the statementsnd formulaerelatingto the gammafunction havea simpler
counterpart for 1 (x), and Stirling's formula is no exception. The
corresponding statement is:

Theoren?:
1

1 1
- = - — K < ——
Inx = 122 Y (X) < Inx ™ (5

Oncewe know this, Theoreml follows in a simpleandelegantway, aswe
proceed to show.

Deduction of Theorerhfrom Theoren®2: Let
g = InT X - (x = %) Inx + x.
We have to show that < g(x) < ¢ + & for some constart Now

1
’ - _ I el
g™ =X - Inx + "
so by Theorem?2, —& < g < 0. Hencleg’ (t)dt is convergent
(say tal). So
X , oo
g0 -9 = [ gmodt =1 - [ gmat,

org(x) = ¢ — f:g’(t)dt, wherec = | + g(1). The requiredstatement
follows, since
= = 1 1
<-|9q < | —=dt = —.
0<-[ gwd < [ ot - o

Now we haveto prove(5). We startfrom Euler'slimit definition of the
gamma functionT (x) = lim G, (x), where
Nn— oo

n*(n - 1)!
XX+ 1)...x+n-1)
(An alternativeversion,clearly equivalentin the limit, hasa furthern atthe
top and (x + n) at the bottom.) Note that G,(1) = 1 for all n, so the
definition immediately give¥ (1) = 1.
Of course,it needsto be shownthat lim G,(x) existsfor generalx.

Gh(¥) = (6)

n— oo

This can be seenin any accountof the gammafunction; a simple method
was presentedin [4]. The identity T'(x + 1) = XI'(x), and hence
I'(n) = (n — 1), follows at once from

n
+ X

Gi(x+1 = - XG, (X).
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Standardaccountsalso include the equivalenceof (6) with Euler's other

definition of the gammafunction, the integral [, t*~ Yedt, but this is not
needed for our purposes.

Now

ING,(¥) = xInn + In[(n - 1)!] 2In(x+r), (7

soy (X) = lim y,(X), where

X) = iInG(x) Inn—nil 1 (8)
¥n o+ X

(Here,of course we aretakingit for grantedthatthe derivativeof the limit
is the limit of the derivatives;for purists, this is justified by uniform
convergencef y, (X) on boundedntervals,which theymay careto proveas
an exercise.)

To put (5) into perspectivewe digressbriefly to mentionsomemore
elementaryfacts about y (x), though they are not strictly neededfor
Theorem 2.

Proposition1: The functionp (x) is increasing. Further:

1
px+1) =y + X 9)
Inx —)—1( < XX < Inx (10)

Proof. From(8), it is clearthaty, (X) increasesvith x, hencesodoesy (X).
Since T(x+ 1 = x'(x)y, we have InT'(x+ 1) = InT'(X) + Inx.
Differentiationgives(9). Also, by the mean-valugheoremiit follows that
Inx = y (&) for some& in (x, X + 1). Sincey (X) is increasingthis shows
thaty (X) < Inx < » (X + 1). With (9), this gives (10).

Note As the readermay know, a function with increasingderivative is
convex(informally, this meanscurving upwards). So InT"(x) is convex.
The celebratedohr-Molleruptheoremstateghatthe gammafunctionis the
unique function f(x) with the property that Inf(x) is convex,
f(x + 1) = xf(x)andf (1) = 1. For a proof, see [4].

Clearly(5) is agreatlyenhancedersionof (10). We now embarkonits
proof. Define

n-1 1
S =Y

oor + X
so thaty,(X) = Inn — §,(x). Also, define
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(L | 1 1 1
+ = S - o

Si(x)=§ r=lr+x+2(n+x) 2x+2(n+x)'

Clearlyy (x) = lim v} (x), where

‘ 1
=Inn-SX - —. 11
Ya(¥) = Inn - §(x) o (11)

n-1
Note thatS;(x) = Z,OT(r + X), whereT (x) is defined by
1 1

T = — + —.

*) 2X " 2(x + 1)
Now T(X) is the trapezium-rule  approximation to

Ixx+lt‘1dt =In(x+1)-Inx. The key stepis the following result, giving
boundsfor the errorin this approximation. Here we presentan elementary
methodbasedon the power seriesfor (1 + y) ™%, (1 + y)? andIn (1 + y),
which can be traced to [2, p. 21].

Proposition2: For allx > 0, we have
TX) =Inx+ 1 - Inx+ A(X), (12
where

1 1

0 < A(X < - .
*) 12x2 12(x + 1)?

(13)

Proof We havan (x + 1) — Inx = In(1 + 1/x), and
1

1+ 1 1+ y’
X 1-vy
wherey = 1/(2x + 1). NotethatO < y < 1. By the power seriesfor
In(1 =+ y),
1 Y ¥
I(l —)=I1 -Inl-y =2 =+ =+ ..
n +X nl+y n ( y) y+3+5+
Also,
1 _ .y 1 y

22X 1-y  2x+1) 1+y
so by the geometric series fbf(1 + y)

T =20+ Yy +y + ...).
Henceln(1 + 1/x) < T(x) and
1

AX) = T(X) - In(l + ;) <& +200+y + ).
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Meanwhile,(1 + y)? = io(n + Dy, so
e

11y

H2  Ax+ 12 (L-y? 1+ yp?

oo

2y + P+ 6y + .. ) = §l4ny2”+l.

Denote this byJ (x). Term-by-term comparison shows tiagix) < 3U (X).

Note A moresophisticatedhlternativeproof of Proposition2 is by Euler-
Maclaurinsummationwhich hasthe advantagef beingapplicableto other
functions. A simplified version is described in a companion article [5].

Proof of Theoren2: By (12),
n-1
S0 = D TE+x =In(n+x - Inx+ p(X,
r=0
-1
wherep, (X) = ?gOA(r + X). So by (11),

<0 = Inn - _1
Yn(X) = Inn = 1In(n + X) + Inx ™ Pn (X).

By (13),pn, (X) tends tq(x) (say) as1y — oo, where
- - 1 1
P(X) = Z‘OAU tX < g‘((x + 02 X+ + 12 T 12

alsop(x) > 0. NowIn(n + x) — Inn = In(1 + x/n) - 0asn — oo,
so by taking the limit as — <o, we obtain

1
= hx - — —
v = Inx - — - pK,
where0 < p(x) < 1/(12x%). This is equivalent to to (5).

A further degreeof accuracy In Proposition2, with a bit more effort,
one can show by either of the methods mentioned that
1 ( 1 1

AKX > =[S - ——
(X) B

1 /1 1
2 (x + 12 Eo(% (X + 1)4)'
The details can be seen in [5]. Fed into the proof of Theorem 2, this gives
P (X < Inx—i—i 1 .
2x  12¢  120x*
Fed in turn into the proof of Theorem 1, this results in

1 1
InT(x) = (X—E)Inx—x+c+5(—r(x),

https://doi.org/10.1017/mag.2014.9 Published online by Cambridge University Press


https://doi.org/10.1017/mag.2014.9

STIRLING'S FORMULA FOR THE GAMMA FUNCTION 73

where
1
360x3

The further continuationcanbe seenin [3, p. 22]. ForT (x) itself, this
line of reasoning leads to an asymptotic expansion

1 1
T = 1+ — + —
(X) CS(¥) |1 + T + 283 +

0<rx <

Some concluding remarks
(1) Comparison with direct estimation ofT" (x).

Wouldn'tit be moredirectto estimateln I" (x) directly, using(7)? One
needsthe following analogueof Proposition2, which can be provedin a
similar way, or again by Euler-Maclaurin summation:

iinx+3In(x+ 1) =x+1Inx+1)—xInx-1- A(x), 14
where0 < A;(X) < 1/[12x(x + 1)]. If we only want Stirling's formula
for integers we havesimply In[(n — 1)!] = ?2; Inr insteadof (7), and
this methodis indeedhighly efficient. It canbe seen,for example,in [6,
p. 52-53],0r in a more accurateform in [5]. But, for the gammafunction,
(7) containsbothIn [(n — 1)!] andr:;l) In(x + r). Onehasto apply(14)to

eachof theseand combinethe results. In a sensethis doublesthe work.
The estimationof y (x) was simpler becauseof the disappearancef the
termin[(n — 1)!] under differentiation.

(2) The integral definition

Canoneprove Stirling's formula startingfrom the integral definition of
the gammafunction? Patin[7] givessucha proof. It is indeedshort,and
evenincorporateghe evaluationof C, but it doesnot establishboundsasin
(3), and it usesLebesgue'slominatedconvergencaheorem,so cannotbe
regardecascompletelyelementary.Anotherproof, moreelementanput (in
my view) less transparent, is given in [8].

(3) The complex case
Euler'slimit definition (6) appliesequallyfor acomplexvariablez. The
following suitably rephrasedversionof (4) applies(seefor example[9]).
Let z = ré?, where |[6| < = — 6 for somed > 0. Then thereis a
logarithmL (2) of " (2) satisfying
L@ =(z-%YInz-z+c+q@®,
wherelq(2] < A/r for some constark (depending o1).
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