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This paper presents a large-Reynolds-number asymptotic analysis of viscous centre
modes on an arbitrary axisymmetrical vortex with an axial jet. For any azimuthal
wavenumber m and axial wavenumber k, the frequency of these modes is given
at leading order by ω0 =mΩ0 + kW0 where Ω0 and W0 are the angular and axial
velocities of the vortex at its centre. These modes possess a multi-layer structure
localized in an O(Re−1/6) neighbourhood of the vortex. By a multiple-scale matching
analysis, we demonstrate the existence of three different families of viscous centre
modes whose frequency expands as ω(n) ∼ ω0 + Re−1/3ω1 + Re−1/2ω

(n)
2 . One of these

families is shown to have unstable eigenmodes when H0 = 2Ω0k(2kΩ0 − mW2) < 0
where W2 is the second radial derivative of the axial flow in the centre. The growth
rate of these modes is given at leading order by σ ∼ (3/2)(H0/4)1/3Re−1/3. Our results
prove that any vortex with a jet (or jet with swirl) such that Ω0W2 �= 0 is unstable if
the Reynolds number is sufficiently large. The spatial structure of the viscous centre
modes is obtained and simple approximations which capture the main feature of the
eigenmodes are also provided.

The theoretical predictions are compared with numerical results for the q-vortex
model (or Batchelor vortex) for Re � 105. For all modes, a good agreement is
demonstrated for both the frequency and the spatial structure.

1. Introduction
Vortices with or without jets are present in most fluid dynamic applications and

have been the subject of fundamental research for more than a century. Until recent
numerical observations, viscosity was not believed to be a serious possible destabilizing
factor. In this paper, we shall prove that most vortices with an axial jet are actually
unstable with respect to viscous perturbations if the Reynolds number is sufficiently
large. Our goal is to provide the characteristics of such unstable viscous modes for
arbitrary vortex profiles using a large-Reynolds-number asymptotic analysis.

The stability of vortices has been the subject of an enormous amount of work.
Recent reviews are available in Ash & Khorrami (1995) and Rossi (2000). Several
studies have been concerned with aeronautical applications, notably to understand
the so-called vortex breakdown phenomenon (see for instance Leibovich 1978). For
this purpose, the q-vortex model (also called the Batchelor vortex, although it is
actually a simplification of the Batchelor (1964) non-parallel solution) has often
been considered. A quite complete picture of the stability properties of this vortex
is now available for Reynolds numbers up to Re ≈ 106 (see Lessen & Paillet 1974;
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Mayer & Powell 1992; Fabre & Jacquin 2004). Its inviscid stability properties were
also considered. The numerical studies by Lessen, Singh & Paillet (1974) and Mayer
& Powell (1992) first demonstrated that the q-vortex is unstable with respect to
inviscid perturbations of negative azimuthal wavenumbers in a finite interval of swirl
number below qc ≈ 1.5. For a long time, this value has been considered the critical
value for inviscid instability, as it was also in agreement with the general criterion
of Leibovich & Stewartson (1983). However, very recently, Heaton (2007) exhibited
unstable inviscid centre modes for swirl numbers near q ≈ 2. These modes had been
initially predicted by Stewartson & Brown (1985) using asymptotic methods. But their
growth rate is so small that they are not expected to be visible in any experiment.

The role of viscosity is complex. Although it is expected to have a stabilizing effect
on most inviscid modes (Lessen & Paillet 1974; Stewartson 1982; Mayer & Powell
1992), it also leads to the occurrence of unstable modes of a completely different
nature. A first kind of viscous modes was discovered by Khorrami (1991, 1992).
These modes exist for m =0 and m =1 in a limited range of swirl numbers, and
their amplification rates are very weak. The second kind of viscous modes exist for
negative m and are called centre modes because their structure is localized within the
vortex core. These modes are the subject of this paper.

Historically, viscous centre modes were first identified in the case of swirling
Poiseuille flow. The first indication of such a behaviour was found in the numerical
study of Cotton & Salwen (1981). Later, Stewartson, Ng & Brown (1988) (referred
herein as SNB) described these modes using asymptotic methods. First, they
investigated the vicinity of the neutral curves of the swirling Poiseuille flow by
letting both the Reynolds number tend to infinity and the distance to the neutral
curve tend to zero in a distinguished way. This lead them to reduced equations
allowing computation of the frequencies of the modes in terms of a rescaled distance
to the neutral curve. When considering the limiting behaviour of the solutions as the
distance to the neutral curve becomes large, they found that the most amplified mode
does not match to an inviscid mode but acquires a characteristic structure with strong
oscillations. They were able to describe such modes using a multiple-scale analysis
involving four matched regions where different approximations have to be employed.
In their conclusion, they speculated that such modes generally exist in all vortex flows,
such as the q-vortex model. Our paper will provide a confirmation of this.

Despite its interest, the work of SNB has been largely overlooked. However, viscous
centre modes were recently re-discovered in numerical works. At first, Olendraru &
Sellier (2002) found modes with a centre-mode structure while studying the absolute–
convective transition of the q-vortex for Re =104. Then, Fabre & Jacquin (2004) gave
a complete mapping of these modes using temporal stability theory for Reynolds
numbers up to Re ≈ 106. They mapped the unstable region in the (q, k)-plane and
found that it tends to occupy all the region located below the hyperbola of equation
k = − m/q , so that the q-vortex is actually unstable for all values of the swirl number
if the Reynolds number is sufficiently high. They also investigated the structure of the
most unstable modes and showed that they possess the same structure as described
by SNB. However, the analysis conducted by SNB for swirling Poiseuille flow cannot
be used for the general case, because this flow has a uniform angular velocity.

The goal of this paper is to provide an asymptotic description of these viscous
centre modes in the large-Reynolds-number limit which is valid for all vortex flows,
thus generalizing the work of SNB on swirling Poiseuille flow. The viscous modes
will have the same asymptotic structure composed of four different layers around the
vortex centre as obtained in SNB. However, our approach differs from that of SNB

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

66
0X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200700660X
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in several ways. SNB first investigated the vicinity of the neutral curves by letting
both the Reynolds number tend to infinity and the distance to the neutral curve tend
to zero, and then let the rescaled distance to the neutral curves tend to infinity. We
proceed in a more straightforward way by considering directly the Re → ∞ limit
with all the other parameters being O(1). The asymptotic analysis close to the neutral
curves is performed in Fabre & Dizès (2007). Secondly, SNB reduced the perturbation
equations to a system of coupled equations for the radial and azimuthal velocities. In
the present work, we shall be working with the pressure. We show that it is possible
to reduce the perturbation equations to a single equation for the pressure in each
characteristic region of the solution, which makes matching and analysis simpler.
Finally, SNB focused their analysis on the unstable viscous centre modes. We shall
see that there exist two other families of damped viscous centre modes which can be
described in the same framework.

The paper is organized as follows. In § 2, the basic equations are provided.
The asymptotic analysis is performed in § 3, where the perturbation equations are
solved in four different layers and matching is shown to provide relations for the
eigenfrequencies. In § 4, the characteristics of the eigenmodes are provided. The
consequences for the stability properties of the vortex are also discussed. In § 5 an
application of the results to the q-vortex model is considered. The theoretical results
are compared to numerical results and a good agreement is demonstrated. The final
section, § 6, summarizes the main results and provides a short discussion on the
mathematical structure of the viscous centre modes.

2. Basic flow characteristics and perturbation equations
We consider a general axisymmetrical vortex with axial flow whose velocity field is,

in cylindrical coordinates, of the form

U(r) = (0, V (r), W (r)), (2.1)

where both the azimuthal velocity V (r) and the axial velocity W (r) depend on the
radial coordinate r only. The angular velocity Ω(r) and the axial vorticity Ξ (r) of
this flow are defined by:

Ω(r) =
V (r)

r
, Ξ (r) =

1

r

d(rV )

dr
. (2.2a, b)

The flow domain is assumed to contain the symmetry axis, which constitutes the
vortex centre. The flow is also assumed to be unbounded. In some cases, the results
will also apply to flows of finite radial extent. The swirling Poiseuille flow studied in
SNB was of finite radial extend and defined by Ω(r) = r and W (r) = ε(1 − r2).

Time and spatial scales are assumed to be non-dimensionalized by characteristic
scales of the flow. For a flow dominated by rotation, they could be based on the
axial vorticity and its radial variation scale. For a flow dominated by an axial jet,
they could be based on the angular vorticity and its radial variation scale. To keep
the generality of the results presented here, we have chosen not to favour one type of
flow, but to present the results in a general framework. As we shall see, the results will
uniquely depend upon four base-flow parameters: the rotation rate and axial velocity
at the axis, denoted Ω0 and W0, and the second radial derivative of these fields at
the axis, denoted Ω2 and W2. Results will be illustrated for the q-vortex model (or
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Batchelor vortex) defined by

Ω(r) = q
1 − e−r2

r2
, W (r) = e−r2

, (2.3a, ba)

where q is the so-called swirl parameter.
The time-dependence of the basic flow associated with viscous diffusion is neglected

in this work. By contrast, the effect of viscosity on the perturbations is considered.
This is justified a posteriori by the fact that the time scales associated with those
effects, which will be O(Re1/3), remain smaller than the O(Re) viscous diffusion time
scale.

Linear normal-mode perturbations are sought in the form

(U, P ) = (u, v, w, p)eikz+imθ−iωt , (2.4)

where k and m are axial and azimuthal wavenumbers and ω is the frequency. The
velocity and pressure amplitudes (u, v, w, p) then satisfy the linear system:

iΦu − 2Ωv = −∂p

∂r
+

1

Re

(
	u − u

r2
+

2imv

r2

)
, (2.5a)

iΦv + Ξu = − imp

r
+

1

Re

(
	v − v

r2
− 2imu

r2

)
, (2.5b)

iΦw + W ′u = −ikp +
1

Re
	w, (2.5c)

1

r

∂(ru)

∂r
+

imv

r
+ ikw = 0, (2.5d)

where the prime denotes the derivative with respect to r , 	 represents the Laplacian
operator, defined in cylindrical coordinates by

	 =
∂2

∂r2
+

1

r

∂

∂r
− m2

r2
− k2, (2.6)

and

Φ(r) = −ω + mΩ(r) + kW (r). (2.7)

Perturbation amplitudes are also subject to boundary conditions: they must vanish
at infinity and be bounded at the origin.

3. Asymptotic analysis and matching
3.1. Overview of the analysis

In this work, we focus on perturbations which are localized at the vortex centre.
At leading order, the frequency is given by ω ≈ mΩ0 + kW0 such that a critical-
point singularity defined by Φ = 0 will be close to the vortex centre. Because of this
singularity, it can be expected that large amplitudes will be obtained near the vortex
centre, and, therefore, that viscosity will dominate the structure of the modes in this
region.

Our goal is to demonstrate that there exist families of eigenmodes whose frequencies
have in the limit Re → ∞ an expansion of the form

ω ∼ ω0 + Re−1/3ω1 + Re−1/2ω2 + · · · (3.1)

with

ω0 = mΩ0 + kW0. (3.2)
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Figure 1. Asymptotic structure of the viscous centre modes.

To describe these eigenmodes, we consider their structure in four layers, as sketched
in figure 1. These four different regions were also obtained by SNB. We justify the
necessity of this structure and the eigenfrequency expansion (3.2) as follows.

The ‘outer region’ corresponds to r =O(1). In this region, as long as it is far away
from the origin, the solution is regular and inviscid at leading order. This inviscid
solution however possesses an essential singularity at the origin because this location
is in fact a double critical point. Viscous effects are thus felt at a non-classical
distance r = O(Re−1/6) from the origin in an ‘outer viscous region’. The nature of the
singularity will justify the use of WKBJ expansions for the solution in this region.
Such a method is convenient to describe eigenmodes with a strongly oscillating
structure, as observed in the numerics (see Fabre & Jacquin 2004). Physically, the
WKBJ assumption implies that the viscosity is only active through the second radial
derivative term in the Laplacian, while the effect of the other terms is negligible.

The different WKBJ expansions will turn out to possess singularities at turning
points whose locations will be controlled by an O(Re−1/3) correction to the leading-
order frequency. This frequency correction ω1 will be chosen in such a way that there
is a (double) turning point at the origin. This hypothesis will be justified a posteriori.
We shall see that the frequency of the first viscous modes of each family satisfies this
property. The most unstable viscous centre mode will turn out to be one of these first
modes.

The ‘intermediate region’ defined by r =O(Re−1/4) corresponds to the double-
turning-point region where the viscous eigenfrequencies are discretized. Although the
scaling for the radial coordinate and for the frequency correction at O(Re−1/2) can be
obtained by the same arguments as classical double-turning point analysis (Bender
& Orszag 1978), the present analysis is more complicated due to the existence of six
different solutions. Note that in this region, viscosity is active through the two first
terms of the Laplacian (i.e. second radial derivative and curvature term), while the
third term (second azimuthal derivative) is not present.
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Finally, a singularity associated with the use of the cylindrical coordinates will
still be present near the origin in the intermediate region. This will justify the need
of the ‘inner region’. The O(Re−1/3) scaling for this region will be chosen such that
all the terms of the Laplacian (i.e. second radial derivative, curvature term, second
azimuthal derivative) are present. This will lead to a solution in terms of regular
Bessel functions.

3.2. Outer region

In the outer region, the solution is assumed to be non-viscous at leading order. An
approximation is obtained by expanding the solution in powers of 1/Re. At leading
order, we obtain

u(r, Re) ∼ u0(r), v(r, Re) ∼ v0(r), w(r, Re) ∼ w0(r), (3.3a–c)

p(r, Re) ∼ p0(r). (3.3d)

System (2.5) then becomes (at leading order)

iΦ (0)u0 − 2Ωv0 = −dp0

dr
, (3.4a)

iΦ (0)v0 + Ξu0 = − imp0

r
, (3.4b)

iΦ (0)w0 + W ′u0 = −ikp0, (3.4c)

1

r

d(ru0)

dr
+

imv0

r
+ ikw0 = 0, (3.4d)

where Φ (0)(r) = −ω0+mΩ(r)+kW (r). This system can be reduced to a single equation
for the pressure p0:

d2p0

dr2
+

(
1

r
− Λ′

Λ

)
dp0

dr
+

(
2m

rΦ (0)Λ
(Ω ′Λ−ΩΛ′) +

k2Λ

(Φ (0))2
− m2

r2
− 2mkW ′Ω

r(Φ (0))2

)
p0 = 0,

(3.5)

where Λ(r) = 2Ξ (r)Ω(r) − (Φ (0)(r))2.
Because Φ (0)(0) = 0, the origin r =0 is an essential singularity of this equation. Near

r = 0, the two solutions of (3.5) behave as

p
±
0 ∼ r1/2 exp

(
∓β

r

)
, (3.6)

with

β = 2

√
−H0

K0

, (3.7)

where

H0 = 2Ω0k(2Ω0k − mW2), K0 = Φ ′′
0 = mΩ2 + kW2. (3.8a, b)

In (3.7), we define the square root such that −π/2 < arg(β) � π/2. The solution to
(3.5) which vanishes at infinity is therefore the combination

p ∼ A+
∞p+

0 + A−
∞p−

0 , (3.9)

where A±
∞ are O(1) constants. The explicit value of A+

∞/A−
∞ is not necessary for the

following. We shall only need to assume that it is neither infinite nor zero. Note that,
in a domain of finite extent, the same analysis will apply if the outer solution can still
be expressed as (3.9) near the vortex centre.
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Subdominant viscous solutions are also present in the outer region. A WKBJ
approximation of these solutions can be obtained for large Reynolds numbers, as
shown in Le Dizès (2004).

When r reaches a distance O(Re−1/6) from the origin, correction terms in (3.3d)
become of the same order as p0. In addition, viscous solutions which have been
neglected in the outer region become important. At this distance from the origin, we
enter the outer viscous region in which a specific analysis has to be carried out to
obtain the leading-order approximation.

3.3. Outer viscous region r =O(Re−1/6)

In this region, the perturbation varies on the characteristic scale r̄ = Re1/6r . Upon
replacing r by Re−1/6r̄ in the expansion of the outer solutions near r = 0, we can
deduce the form of the expansion at leading order. We find that each independent
solution in the outer viscous region can be sought in the following ‘wave’ (or WKBJ)
form:

ū ∼ Re−1/6ū1(r̄) exp
(
Re1/6φ̄(r̄)

)
, (3.10a)

v̄ ∼ v̄0(r̄) exp
(
Re1/6φ̄(r̄)

)
, w̄ ∼ w̄0(r̄) exp

(
Re1/6φ̄(r̄)

)
, (3.10b, c)

p̄ ∼ Re−1/3p̄2(r̄) exp
(
Re1/6φ̄(r̄)

)
. (3.10d)

At leading order, equations (2.5a–d) provide the following relations:

ū1 = − im

2Ω0r̄
p̄2, v̄0 =

µ

2Ω0

p̄2, w̄0 = i
2kΩ0 − mW2

iω1 − iK0r̄2/2 + µ2
p̄2, (3.11a–c)

where

µ(r̄) = φ̄′(r̄). (3.12)

At the next order, a relation for µ(r̄) is obtained as:

L(µ, ω1, r̄) ≡ µ2

(
µ2 + iω1 − iK0

r̄2

2

)2

− H0 = 0, (3.13)

where H0 and K0 have been defined in (3.8a, b). The equivalent relation in SNB is
their expression (5.19).

Therefore, in this region, the problem has been reduced to an algebraic equation of
order 6 for µ(r̄). Thus, there are six independent ‘wave’ solutions with the form (3.10),
and the general solution can be sought as a linear superposition of them. Four of
them can be identified, from their behaviour for large r̄ , with viscous solutions, and
the two others with non-viscous solutions. We shall denote by µ(1) and µ(2) = −µ(1) the
roots associated with non-viscous solutions, and by µ(3) and µ(4) the roots associated
with subdominant viscous solutions (that is such that Re(µ) < 0 for large r̄). The
other roots are defined by µ(5) = −µ(3) and µ(6) = −µ(4). It will turn out that the
perturbation pressure in the outer viscous region can be written at leading order
as

p̄ ∼ Re−1/3
[
Ā(1)p̄

(1)
2 eRe1/6φ(1)

+ Ā(2)p̄
(2)
2 eRe1/6φ(2)

+ Ā(3)p̄
(3)
2 eRe1/6φ(3)]

. (3.14)

The two dominant viscous solutions associated with µ(5) and µ(6) cannot be part of
the solution because they cannot be matched to the outer solution. The contribution
from the second subdominant viscous root µ(4) could have been present, but it turns
out that this solution is necessarily absent because it cannot be matched correctly
to any solutions in the inner regions. To simplify the analysis, we have chosen to
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perform the matching procedure implicitly and to retain only solutions which will
remain present at the end of the analysis.

The equation which prescribes the pressure amplitude p̄2 of each ‘wave’ solution is
obtained at the third order. The calculation is long but does not present any difficulty,
so we only give the final result, which can be written as

Lµ

dp̄2

dr̄
+

(
1
2
µ′Lµµ + 1

2
Lµr̄ + Lω1

ω2 + H
)
p̄2 = 0, (3.15)

where the functions Lµ, Lµµ, Lµr̄ and Lω1
denote partial derivatives of L with

respect to the indexes and taken at (µ, ω1, r̄), and

H =
Lµ

2r̄
− 2iK0r̄

(
µ2 + iω1 − iK0

r̄2

2

)
µ. (3.16)

Equation (3.15) can be integrated as

p̄2(r̄) =
1√
Lµ

exp

(
−

∫ r̄ ω2Lω1
+ H

Lµ

)
. (3.17)

Naturally, this expression breaks down at the point where Lµ = 0. Those points are
the turning points of the WKBJ approximation.

If we apply the condition that a (double) turning point is present at r̄ = 0, we obtain
from Lµ(r̄ = 0) = 0,

3µ2(0) + iω1 = 0, (3.18)

which gives, using (3.13),

4µ6(0) = H0

and therefore

ω1 = 3i

(
H0

4

)1/3

. (3.19)

Thus, the hypothesis of a turning point at r̄ =0 imposes the second term in the
frequency expansion (3.2). More exactly, (3.19) prescribes three possible values of
ω1. As will be seen below, not all of them will provide eigenmodes. Note also that
Im(ω1) > 0 (the unstable frequency) is satisfied by two values of ω1 if H0 < 0 and by
only one if H0 > 0.

For the remainder of the analysis, we need the form of the functions µ(r̄) and
p̄2(r̄) for the three ‘wave’ solutions present in the expression (3.14). The analysis is
simplified if we use the following rescaling:

µ =
√

3

∣∣∣∣H0

4

∣∣∣∣
1/6

λ, r̄ =

√
6

|K0|

∣∣∣∣H0

4

∣∣∣∣
1/6

s. (3.20a, b)

Equation (3.13) becomes

λ2(λ2 − ε1e
iξ − ε2is

2)2 =
4ε1

27
, (3.21)

where ε1 = sgn(H0), ε2 = sgn(K0) and ξ = {0, 2π/3, −2π/3}. The three values of ξ

correspond to the three possible values of ω1 in (3.19):

ξ = arg(ω1) − ε1

π

2
. (3.22)
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Figure 2. Graphs of λ(s) for real s. Circles indicate values at s = 0, and ∗ values for s → ∞.
The roots λ(2) = − λ(1) and λ(3) are indicated by a thick solid line and a thick dashed line
respectively. We shall see below that cases 2b, 1b and 3a correspond modes A, B and C
respectively.

Equation (3.21) defines 12 possible equations. Only six of them need be studied because
the branches for K0 < 0 can be deduced from those with K0 > 0 by the transformation
(λ, ξ, s) → (λ∗, −ξ, s∗). Moreover, the eigenmodes and the eigenfrequencies for
negative K0 can also be obtained by the transformation (p, ω) → (p∗, −ω∗) from
positive K0. In the following, we therefore assume K0 > 0, i.e. ε2 = 1.

The six different cases will be denoted 1a, 2a, 3a, 1b, 2b, 3b where the number
refers to the parameter ξ : {1, 2, 3} = {ξ = 0, ξ = 2π/3, ξ = − 2π/3} and the letter to
the parameter ε1: {a, b} = {ε1 = 1, ε1 = − 1}. The graphs of the different roots λ(s)
as s is varied along the real axis are provided in figure 2 for each case. Except for
cases 2b and 3a, all the roots are differential functions for all real s > 0. For cases
2b and 3a, two branches cross at the turning point sc = 31/4. In such a case, we
have to be careful to chose the correct way to continue the branches. This can be
checked in two ways. The first is to perform a local analysis of the vicinity of the
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162 S. Le Dizès and D. Fabre

turning point. This was performed by SNB in a case related to our case 2b. The
second way is to verify that the branches are differential functions on a contour in the
complex plane that goes from 0 to +∞ and avoids sc on the ‘inviscid side’ prescribed
by the large-Reynolds-number asymptotic analysis of the viscous critical layer at sc

(Le Dizès 2004). We have checked that it is effectively the case here.
The functions λ(1)(s) and λ(2)(s) = − λ(1)(s) associated with non-viscous ‘waves’ are

those which vanish at s = + ∞. We have denoted by λ(1) the root which satisfies
−π/2 < arg(λ(1)) � π/2 near s = + ∞. In that way, the solution associated with λ(1)

matches with the non-viscous outer solution p+
0 , whereas the solution associated with

λ(2) matches with the non-viscous outer solution p−
0 . Among the two (subdominant)

viscous ‘waves’ λ(3) and λ(4), we shall assume that λ(3) denotes the root which is equal
to one of the non-viscous roots at s = 0. The two roots λ(2) and λ(3), which are given
as thick lines in figure 2, will turn out to be the only relevant roots for the matching
with the inner solution. The configurations which will correspond to centre modes
are also indicated in figure 2.

Finally, the final form of the phase φ and the amplitude p̄2 of each ‘wave’ solution
in (3.14) is given in terms of the function λ and the variable s as

φ(r̄) = ηΛ(s), p̄2(r̄) = A(s)[B(s)]α, (3.23a, b)

with

Λ(s) =

∫ s

0

λ(s)ds, (3.24a)

A(s) = A0

(
2e−iγ1e−3iγ0

3sλ2(3λ2 − ε1eiξ − is2)

)1/2

, (3.24b)

B(s) = B0 exp

(
−

∫ s 2
√

3eiγ1λ

3λ2 − ε1eiξ − is2

)
, (3.24c)

where A0 and B0 are normalization constants, and α and η are given by

η = 3

√
2

|K0|

∣∣∣∣H0

4

∣∣∣∣
1/3

, α = −i
ω2 eiγ1√
6|K0|

. (3.25a, b)

We first consider the behaviour of expression (3.14) for large r̄ and the matching
with the outer solution (3.9). The viscous root φ(3) diverges to −∞ for large r̄ ,
so it becomes negligible, as expected. By contrast, the function φ(1) (and thus also
φ(2) = −φ(1)) converges toward a finite value φ(1)

∞ = ηΛ(1)
∞ with

Λ(1)
∞ =

∫ ∞

0

λ(1)(s) ds. (3.26)

The value of Λ(1)
∞ is reported in table 1. Note that Re(Λ(1)

∞ ) > 0 and therefore that

Re(φ(1)
∞ ) is positive. If the behaviour of p̄

(1)
2 and p̄

(2)
2 for large r̄ is written as

p
(1)
2 (r̄) ∼ C̄(1)

∞ r̄1/2 and p
(1)
2 (r̄) ∼ C̄(2)

∞ r̄1/2, the matching between the outer region and
the outer viscous solution is immediately found to require

A+
∞ = Ā(1)C̄(1)

∞ Re1/12 exp
(
Re1/6φ(1)

∞
)
, (3.27a)

A−
∞ = Ā(2)C̄(2)

∞ Re1/12 exp
(
−Re1/6φ(1)

∞
)
. (3.27b)
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Case 1a Case 2a Case 3a Case 1b Case 2b Case 3b
ε1 = 1 ε1 = 1 ε1 = 1 ε1 = −1 ε1 = −1 ε1 = −1
ξ = 1 ξ = 2π/3 ξ = −2π/3 ξ = 1 ξ = 2π/3 ξ = −2π/3

Λ(1)
∞ 0.466 − i 0.466 0.17 + i 0.636 0.636 + i 0.17 0.466 − i 0.466 0.17 + i 0.636 0.636 + i 0.17

γ
(2)
0 π −2π/3 2π/3 π/2 −π/6 −5π/6

γ
(2)
1 π/4 π/4 −3π/4 −3π/4 −3π/4 π/4

γ
(3)
0 π −2π/3 −π/3 −π/2 5π/6 −5π/6

γ
(3)
1 −3π/4 −3π/4 −3π/4 −3π/4 −3π/4 −3π/4

Table 1. Value of γ0 and γ1 defined by (3.30a, b) for the two roots λ(2) and λ(3) needed for the

matching. The value of Λ
(1)
∞ , defined in (3.26) is also given for λ(1). (ε2 = sgn(K0) = 1).

As the constants A+
∞, A−

∞, C̄(1)
∞ and C̄(2)

∞ are a priori all O(1), the relation between
Ā(1)and Ā(2) can be written as follows:

Ā(1)

Ā(2)
= C0 exp

(
−2Re1/6φ(1)

∞
)
, (3.28)

where C0 is an O(1) constant. The positive sign of Re(φ(1)
∞ ) implies that Ā(1) is

exponentially small compared to Ā(2). Therefore, the contribution from the first
‘wave’ can in practice be removed from the solution (3.14).

Finally, for the matching with the inner viscous region, we need the behaviour
near the origin of the phase φ and the amplitude p̄2 of each of the two remaining
contributions in (3.14). The phase satisfies

φ =

∣∣∣∣H0

4

∣∣∣∣
1/6

eiγ0 r̄ +

√
2|K0|

3
eiγ1

r̄2

4
+ · · · . (3.29)

The angles γ0 and γ1 are obtained from the behaviour of λ near the origin:

γ0 = arg(λ(0)), γ1 = arg

(
dλ

ds
(0)

)
. (3.30a, b)

The values of the constants γ0 and γ1 for the roots λ(2) and λ(3) are reported in
table 1 for the different cases (see also figure 2).

The functions A and B appearing in the amplitude p̄2 expand near s =0 as

A(s) ∼ A0/s, B(s) ∼ B0s. (3.31a, b)

A choice of the constants A0 and B0 can be made such that near r̄ = 0 p̄2 satisfies:

p̄2 ∼ r̄−1+α. (3.32)

Collecting all these results and considering table 1, we see that the behaviour of
the solution at the origin can finally be written in one of the two following forms
depending on the case considered:

(i) for cases 1a, 2a, 3b,

p̄ ∼ Re−1/3r̄−1+α
[
Ā(2) exp

(
Re1/6(−µ0r̄ + G0r̄

2/4)
)

+ Ā(3) exp
(
Re1/6(−µ0r̄ − G0r̄

2/4)
)]

;

(3.33)

(ii) for cases 1b, 2b, 3a:

p̄ ∼ Re−1/3r̄−1+α
[
Ā(2) exp

(
Re1/6(−µ0r̄ − G0r̄

2/4)
)

+ Ā(3) exp
(
Re1/6(+µ0r̄ − G0r̄

2/4)
)]

,

(3.34)
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where

G0 =

[
2|K0|

3

]1/2

eiπ/4. (3.35)

3.4. Inner region r = O(Re−1/3)

Before analysing the intermediate region where the eigenfrequency selection takes
place, we first consider the very close neighbourhood of the origin where the singularity
associated with the use of the cylindrical coordinates must be smoothed. In this region,
the local variable is r̂ = Re1/3r and the perturbation amplitudes should be expanded as

û ∼ û0(r̂), v̂ ∼ v̂0(r̂), ŵ ∼ ŵ0(r̂), (3.36a–c)

p̂ ∼ Re−1/3p̂4(r̂). (3.6d)

Inserting (3.36a–d) in (2.5), one obtains the single equation for p̂4

G(	̂, ω1)p̂4 = 0, (3.37)

where
G(	̂, ω1) ≡ (	̂ + iω1)	̂(	̂ + iω1) − H0, (3.38)

and

	̂ =
∂2

∂r̂2
+

1

r̂

∂

∂r̂
− m2

r̂2
. (3.39)

Solutions of (3.37) can be written as modified Bessel functions Km(µ0r̂) and Im(µ0r̂)
where µ0 is a complex number satisfying

G
(
µ2

0, ω1

)
= 0. (3.40)

This equation is the same as L(µ0, ω1, 0) = 0 obtained in (3.13). The complex number
µ0 is therefore the value of µ(r̄) defined by (3.13) at r̄ = 0. The values associated with
the turning points are double roots. They are given by (3.40), that is

µ0 = ±µ
(1)
0 = ±

√
−iω1/3, (3.41)

where µ
(1)
0 is the value at r̄ =0 of the non-viscous branch µ(1), i.e. arg(µ(1)

0 ) = γ
(1)
0 as

given in table 1. For either of the two values defined by (3.41), two other solutions
are obtained as r̂I ′

m(µ0cr̂) and r̂K ′
m(µ0cr̂). As the solutions containing the functions

Km(r̂) and r̂Km(r̂) are singular at zero, a leading-order expression for the pressure in
the inner region is finally obtained as

p̂(r̂) = ÂIm

(
µ

(1)
0 r̂

)
+ B̂µ

(1)
0 r̂I ′

m

(
µ

(1)
0 r̂

)
, (3.42)

where Â and B̂ are constants. Note that, at this level, a third solution of the form
Im(µ(4)

0 r̂) with µ
(4)
0 = 3iH0/ω1 could a priori be present in expression (3.42). But it can

be shown that the presence of this solution imposes in the outer viscous region both
viscous solutions µ(4) and µ(6), and the latter is dominant and cannot be present. This
justifies, a posteriori, the discarding of the solution µ(4) in § 3.3.

The behaviour of the inner solution for large r̂ , required for the matching with the
outer regions, has the following form:

p̂ ∼ 1√
2πµ

(1)
0 r̄

(
Â − (4m2 + 3)

8
B̂

)(
exp

(
µ

(1)
0 r̄

)
+ i(−1)m exp

(
−µ

(1)
0 r̄

))

+

√
µ

(1)
0 r̄

2π
B̂

(
exp

(
µ

(1)
0 r̄

)
− i(−1)m exp

(
−µ

(1)
0 r̃

))
, (3.43)
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where we have used the behaviour of the Bessel functions Im(z) and zI ′
m(z) for large

|z| with 0 < arg(z) < π:†

Im(z) ∼ ez

√
2πz

+ i(−1)m
e−z

√
2πz

, (3.44a)

zI ′
m(z) ∼ ez

√
2πz

(
z − (4m2 + 3)

8
+ · · ·

)
− i(−1)m

e−z

√
2πz

(
z +

(4m2 + 3)

8
+ · · ·

)
. (3.44b)

3.5. Intermediate region r = O(Re−1/4)

Now, let us compare the expression (3.43) with the behaviour at the origin of the outer
viscous solution given by (3.33) or (3.34). In the first situation, corresponding to cases
1a, 2a, 3b, it is clear that the expression (3.33) contains no term that balance the terms
with the form exp(+µ

(1)
0 r̄) in (3.43). Therefore, we can conclude that these cases do

not lead to eigenmodes. On the other hand, in the second situation, corresponding to
cases 1b, 2b, 3a, the expression (3.34) contains terms with the form both exp(−µ

(1)
0 r̄)

and exp(+µ
(1)
0 r̄). Therefore, a matching of the exponential terms of (3.34) and (3.43) is

possible, and modes with a structure corresponding to these cases can be constructed.
To match precisely the non-exponential terms of (3.34) and (3.43), we need to

introduce an intermediate region, where the behaviour of the perturbation is on the
scale r̃ = Re1/4r = Re1/12r̄ . If we cancel the contributions which match with unbounded
inner solutions or the dominant viscous solution in the outer region, the intermediate
solution is found to be the sum of two independent solutions of the form

ũ ∼ Re−1/12ũ1(r̃) exp
(
Re1/12µ0r̃

)
, (3.45a)

ṽ ∼ ṽ0(r̃) exp
(
Re1/12µ0r̃

)
, (3.45b)

w̃ ∼ w̃0(r̃) exp
(
Re1/12µ0r̃

)
, (3.45c)

p̃ ∼ Re−1/3p̃4(r̃) exp
(
Re1/12µ0r̃

)
, (3.45d)

where µ0 takes the two values defined above µ0 = ±µ
(1)
0 .

As in the previous sections, it is convenient to work with the pressure amplitude.
Inserting (3.45) in (2.5), and after a few manipulations, we obtain to the same type of
equation as above

G(	̃, Φ̃)p̃4 = 0, (3.46)

where the operator G(	̃, Φ̃) is defined in (3.38) and

Φ̃ = ω1 + Re−1/6

(
ω2 − K0

r̃2

2

)
, (3.47a)

	̃ = µ2
0 + Re−1/12

(
2µ0

∂

∂r̃
+

µ0

r̃

)
+ Re−1/6

(
∂2

∂r̃2
+

1

r̃

∂

∂r̃
− m2

r2

)
. (3.47b)

Equation (3.46) with (3.47a, b) contains all the terms up to order Re−1/6.
The equations at the first three orders are then easily obtained. The leading order

gives

G
(
µ2

0, ω1

)
= 0. (3.48)

This is the same as L(µ0, ω1, 0) = 0 obtained in (3.13).

† Here, for simplicity, we have assumed that 0 < arg(µ(1)
0 r̂) < π, which applies for cases 2a, 2b and

3a. For the other cases, slightly different expansions of the Bessel functions with −π < arg(µ(1)
0 r̂) < 0

have to be considered, but similar results are obtained.
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The next order (Re−1/12) leads to

G	̃

(
µ2

0, ω1

)(
2µ0

∂

∂r̃
+

µ0

r̃

)
p̃4 = 0, (3.49)

with

G	̃

(
µ2

0, ω1

)
=

(
µ2

0 + iω1

)(
3µ2

0 + iω1

)
. (3.50)

Expression (3.41) guarantees that G	̃(µ2
0, ω1) = 0, so (3.49) is also automatically

satisfied. The equation for p̃4 is obtained at order Re−1/6. It can be written as[
1

2
G	̃	̃

(
µ2

0, ω1

)(
2µ0

∂

∂r̃
+

µ0

r̃

)2

+ GΦ̃

(
µ2

0, ω1

)(
ω2 − K0

r̃2

2

)]
p̃4 = 0, (3.51)

where

G	̃	̃

(
µ2

0, ω1

)
= 3

(
µ2

0 + iω1

)
= 2iω1, (3.52a)

GΦ̃

(
µ2

0, ω1

)
= 2iµ2

0

(
µ2

0 + iω1

)
= i

4

9
ω2

1. (3.52b)

Equation (3.51) thus reduces to(
∂2

∂r̃2
+

1

r̃

∂

∂r̃
− 1

4r̃2
+

iω2

3
− iK0

r̃2

6

)
p̃4 = 0. (3.53)

This equation can be written in the following more convenient form:(
∂2

∂x2
+ ν +

1

2
− x2

4

)
(
√

xp̃4) = 0, (3.54)

where the following notation has been introduced:

x =

[
2|K0|

3

]1/4

eiπ/8r̃ , ν =
ω2√
6|K0|

e−3iπ/4 − 1

2
. (3.55a, b)

We recognize (3.53) as the parabolic cylinder equation, typical of double-turning-
point problems. Two independent solutions are Dν(x), and D−ν−1(−ix), where Dν is
the parabolic cylinder function (see Bender & Orszag 1978). Therefore, the solution
in the intermediate region can be written as

p̃ ∼
(
Ã(a)Dν(x) + Ã(b)D−ν−1(−ix)

)
x−1/2 exp

(
+Re1/12µ

(1)
0 r̃

)
+

(
Ã(c)Dν(x) + Ã(d )D−ν−1(−ix)

)
x−1/2 exp

(
−Re1/12µ

(1)
0 r̃

)
, (3.56)

where Ã(b), Ã(b), Ã(c), and Ã(d) are constants.

3.6. Matching and frequency selection

We first consider the matching between the intermediate and the outer viscous regions.
For x → ∞, the asymptotic behaviour of the parabolic cylinder functions is as follows:

Dν(x) ∼ xν e−x2/4. (3.57)

This expression is valid for |arg(x)| < 3π/4. Here arg(x) = π/8, and arg(−ix) = −3π/8,
so it can be used to obtain the behaviour of both Dν(x) and D−ν−1(−ix). This allows
us obtain the behaviour of the intermediate solution for r̄ → ∞. When expressed in
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terms of the variable r̄ of the outer viscous region, we obtain

p̃ ∼
(
G1Re1/12r̄

)ν−1/2
exp

(
−Re1/6G4

1

r̄2

4

)[
Ã(a)exp

(
+Re1/6µ

(1)
0 r̄

)
+ Ã(c)exp

(
−Re1/6µ

(1)
0 r̄

)]
+

(
G1Re1/12r̄

)−ν−3/2
(−i)−ν−1exp

(
+Re1/6G4

1

r̄2

4

)
×

[
Ã(b)exp

(
+Re1/6µ

(1)
0 r̄

)
+ Ã(d )exp

(
−Re1/6µ

(1)
0 r̄

)]
, (3.58)

where

G1 =

[
2|K0|

3

]1/8

eiπ/16. (3.59)

This expression needs to be matched with the behaviour of the outer viscous
solution for cases 1b, 2b, 3a given by expression (3.34) (cases 1a, 2a, 3b have been
ruled out and will not be considered). Clearly, the terms of amplitude Ā(2) and Ā(3)

in (3.34) need to be matched, respectively, to the terms of amplitude Ã(c) and Ã(a)

in (3.58). The two other terms in (3.58) have no counterpart in (3.34). Therefore, we
must have Ã(b) = Ã(d) = 0.

The intermediate solution behaves, as r̃ → 0, as follows:

p̃ ∼
√

π2ν

Γ (1/2 − ν/2)
(G1r̃)

−1/2
(
Ã(a) exp

(
+Re1/12µ

(1)
0 r̃

)
+ Ã(c) exp

(
−Re1/12µ

(1)
0 r̃

))
+

√
π2ν+1

Γ (−ν/2)
(G1r̃)

1/2
(
Ã(a) exp

(
+Re1/12µ

(1)
0 r̃

)
+ Ã(c) exp

(
−Re1/12µ

(1)
0 r̃

))
. (3.60)

The behaviour at infinity of the inner solution has been obtained in (3.43). Written
with the intermediate variable r̃ = Re−1/12r̂ , it is

p̂ ∼ Re−1/24√
2πµ

(1)
0 r̃

(
Â − (4m2 + 3)

8
B̂

)(
exp

(
Re1/12µ

(1)
0 r̃

)
+ i(−1)m exp

(
−Re1/12µ

(1)
0 r̃

))

+ Re1/24

√
µ

(1)
0 r̃

2π
B̂

(
exp

(
Re1/12µ

(1)
0 r̃

)
− i(−1)m exp

(
−Re1/12µ

(1)
0 r̃

))
. (3.61)

Comparing these expressions and equating the coefficients of similar terms, we see
that the matching requires the following two conditions:

1

Γ (1/2 − ν/2)

(
Ã(a) − i(−1)mÃ(c)

)
= 0, (3.62a)

1

Γ (−ν/2)

(
Ã(a) + i(−1)mÃ(c)

)
= 0. (3.62b)

Clearly, these two equations cannot be satisfied simultaneously, unless either 1/2−ν/2
or −ν/2 is a singular point of the function Γ . The first condition is satisfied when ν

is an odd and positive integer, whereas the second is satisfied when ν is an even and
positive integer. Therefore, the general solution is ν = n with n=0, 1, 2, . . . .

This prescribes, using (3.55b), the value of the second-order frequency ω2:

ω2 =
√

6|K0|e−3iπ/4
(
n + 1

2

)
with n = 0, 1, 2, 3, . . . . (3.63)

For these values of ω2, cases 2b, 1b and 3a do correspond to eigenmodes. In the
following, these modes will be denoted modes A, B and C respectively. Note that they
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(d )
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Modes A

Figure 3. Typical spectrum of viscous centre modes according to the signs of H0 and K0.
(a) H0 < 0, K0 < 0; (b) H0 < 0, K0 > 0; (c) H0 > 0, K0 < 0; (d) H0 > 0, K0 > 0.

correspond to the configurations in figure 2 where the branches λ(2) and λ(3) are not
connected with each other.

The conditions of matching also lead to relations between the constants Â, B̂ , Ã(a),
Ã(c), Ā(2) and Ā(3) appearing in the expressions for the pressure in the different regions.
These relations have been used to derive the expressions for the eigenmodes which
are provided in the Appendix.

4. Characteristics of the viscous centre modes
If we recollect the results of the previous section and of the Appendix, we obtain

both the frequencies and the spatial structure of the viscous centre modes. Both
essentially depend on two parameters which are

H0 = 2Ω0k(2Ω0k − mW2), K0 = mΩ2 + kW2.

Results were obtained for positive K0. For negative K0, frequency and spatial
structure can be deduced from the case K0 > 0 by applying the transformation
(ω, p) → (−ω∗, p∗).

4.1. Eigenfrequencies

According to the signs of K0 and H0, the spectrum associated with the viscous centre
modes has one of the typical forms shown in figure 3. We have identified three types
of centre modes (modes A, B and C) corresponding to cases 2b, 1b and 3a. For all
these modes, the eigenfrequencies expand as

ω ∼ ω0 + Re−1/3ω1 + Re−1/2ω
(n)
2 + · · · (4.1)

where

ω0 = mΩ0 + kW0, (4.2a)

ω
(n)
2 = −i

√
6|K0|ei sgn(K0)π/4

(
n + 1

2

)
, n = 0, 1, 2, 3, . . . . (4.2b)
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If H0 < 0, ω1 can take two different values:

ω1 = 3i

(
|H0|
4

)1/3

e−i sgn(K0)π/3 (modes A), (4.3)

or

ω1 = −3i

(
|H0|
4

)1/3

(modes B). (4.4)

If H0 > 0, ω1 is given by

ω1 = 3i

(
|H0|
4

)1/3

e−i sgn(K0)2π/3 (modes C). (4.5)

4.2. Spatial structure of the viscous centre modes

The eigenmodes are localized in the neighbourhood of the vortex centre but they
have different approximations according to the distance from the centre as illustrated
in figure 1. Approximations for the eigenmode pressure are provided in the Appendix.
They are given by (A1a, b), (A 3) and (A 4) in the inner region, intermediate region
and outer viscous region respectively. Here we shall further reduce these expressions
and give approximations which capture the main features of each mode.

It is useful first to consider the outer viscous region (r = O(Re1/6)). We shall show
that both modes A and C are localized in this region. In this region, the centre
modes are a sum of two contributions associated with the branches λ(2) and λ(3) (see
expression (A 4)). The main behaviour of each contribution in (A 4) is provided by
the exponential term

papprox = exp
(
Re1/6ηΛ(s)

)
, (4.6)

where we recall that

Λ(s) =

∫ s

0

λ(x) dx,

and

η = 3

√
2

|K0|

∣∣∣∣H0

4

∣∣∣∣
1/3

, s = Re1/6

√
|K0|
6

∣∣∣∣ 4

H0

∣∣∣∣
1/6

r.

It therefore mainly depends on the variation of Re(Λ), i.e. on the sign of Re(λ).
Moreover, as A(2)[B (2)]n+1/2 and A(3)[B (3)]n+1/2 are of same order, the relative weight
of each contribution also depends on the functions λ(2) and λ(3). The functions
Re(λ(2)) and Re(λ(3)) and the functions Re(Λ(2)) and Re(Λ(3)) are plotted versus s in
figure 4(a, b) for each family of centre modes.

For modes A, Re(Λ(3)) <Re(Λ(2)) for all s > 0, which implies that the viscous
contribution associated with λ(3) remains negligible everywhere. Note also that Re(λ(2))
is positive up to s(A)

m ≈ 0.931, and then becomes negative. This implies that |p̄| grows
exponentially up to s(A)

m and then decreases exponentially. This property also means
that modes A are localized in the outer viscous region near the point s(A)

m . An adequate
approximation for modes A is therefore

p̄(A) ∼ A(2)[B (2)]n+1/2 exp
(
Re1/6ηΛ(2)

)
. (4.7)

The functions A(2), B (2) and Λ(2) which describe these modes are plotted in figure 5.
All the quantities have been normalized by their value at s(A)

m . The function Λ(2) is
regular for all s, but A(2) and B (2) exhibit singularities at the origin (for A(2)) and at the
turning point sc = 31/4 (for both A(2) and B (2)). At those points, approximation (4.7) is
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Figure 4. (a) Variation of Re(λ(2)) (solid lines) and Re(λ(3)) (dashed lines) versus s. (b) Varia-
tion of Re(Λ(2)) (solid lines) and Re(Λ(3)) (dashed lines) versus s. Without symbol: modes A;
Circles: modes B; Stars: modes C.
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Figure 5. Spatial variations of modes A. (a) exp(Λ(2)) and Im(Λ(2)); (b) |A(2)| and
arg(A(2)); (c) |B (2)| and arg(B (2)).

therefore not valid. Close to the origin, the approximation in the intermediate region
must be used while close to sc =31/4 a specific turning-point-like approximation must
a priori be constructed. Such an approximation is provided in SNB.

For modes C, Re(Λ(2)) is smaller than Re(Λ(3)) for s < s
(C)
d ≈ 1.92 and then becomes

larger. The main contribution in (A 4) is therefore associated with the viscous branch
λ(3) up to s = s

(C)
d . Moreover, Re(λ(3)) is positive up s(C)

m ≈ 0.565. Thus, as for modes
A, |p̄| grows exponentially up to s(C)

m and then decreases. Modes C are therefore also

localized in the outer viscous region and their approximation is (up to s
(C)
d )

p̄(C) ∼ A(3)
[
B (3)

]n+1/2
exp

(
Re1/6ηΛ(3)

)
. (4.8)

The functions A(3), B (3) and Λ(3), which fully describe modes C, are plotted in figure 6.
Unlike modes A, the functions A(3) and B (3) are regular for all positive s.

For modes B, Re(λ(3)) <Re(λ(2)) < 0 for all s > 0: modes B are therefore dominated
by the non-viscous contribution but they decrease exponentially in the outer viscous
region. Thus, modes B are not localized in the outer viscous region; they reach their
maximum amplitude at a point closer to the centre, in the intermediate or in the
inner region. The main features of modes B are not described by their approximation
in the outer viscous region, but instead by the approximations obtained in the inner
and intermediate regions.
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Figure 6. Spatial variations of modes C. (a) exp(Λ(3)) and Im(Λ(3)); (b) |A(3)| and
arg(A(3)); (c) |B (3)| and arg(B (3)).

A composite approximation valid in both inner and intermediate regions can be
easily obtained from expressions (A 1b) and (A 3) using classical techniques (see, for
instance Van Dyke 1975). We obtain the following expressions in the outer variable:
For n even,

p = CHen

(
βRe1/4r

)
exp

(
−β2Re1/2r2

4

)
Im

(
µ0Re1/3r

)
, (4.9)

for n odd,

p = CHen

(
βRe1/4r

)
exp

(
−β2Re1/2r2

4

)

×
(4m2 + 3)Im

(
µ0Re1/3r

)
+ 8µ0Re1/3rI ′

m

(
µ0Re1/3r

)
r

, (4.10)

where C is a normalization constant, β =
√

2eiπ/8(|K0|/6)1/4, µ0 =
√

−iω1/3, and Hen

is the Hermite polynomial of order n. The above expressions apply for modes A,
B and C if we use the value of ω1 corresponding to each case. However, the above
expressions are useful only for modes B because modes A and C are localized in the
outer viscous region. For modes B, µ0 = i(|H0|/4)1/6.

4.3. Instability characteristics

Only modes A obtained when H0 < 0 are unstable. The frequency of the most unstable
mode is given by (4.1) with (4.3) for ω1 and (4.2b) with n= 0 for ω2. Its growth rate
is given up to O(Re−1/2) by

σ (0) ∼ Re−1/3 3

2

(
|H0|
4

)1/3

− Re−1/2

√
3|K0|
2

. (4.11)

For each m and fixed profile parameters, the characteristics of the most dangerous
mode are obtained by maximizing σ (0) over k. The most dangerous mode is easily
found to have a wavenumber and a growth rate given by

kmax ∼ mW2

4Ω0

− Re−1/6 31/2

28/3

W2|mW2|2/3
Ω2

0

√∣∣∣∣ Ω0

m(4Ω0Ω
′′
0 + (W2)2)

∣∣∣∣, (4.12a)

σ (0)
max ∼ Re−1/3 3

27/9
|mW2|2/3 − Re−1/2

√
3

2

√∣∣∣∣m(4Ω0Ω
′′
0 + (W2)2)

Ω0

∣∣∣∣. (4.12b)

Note that the leading-order maximum growth rate does not depend on Ω0.
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The condition of instability of the centre modes is H0 < 0, that is

Ω0k(2Ω0k − mW2) < 0. (4.13)

The marginal stability curves are provided at leading order by the condition H0 = 0,
which is equivalent to one of the following conditions:

k = 0, Ω0 = 0, 2kΩ0 = mW2. (4.14a–c)

Note however that, for H0 = 0, the present asymptotic analysis breaks down. Therefore,
the first-order correction cannot be obtained from (4.11). As is shown in a companion
paper (Fabre & Le Dizès 2007), specific scaling must be introduced near each stability
curve. The problem becomes degenerate and the three-different regions (outer viscous,
intermediate, inner) merge into a single region in which the problem has in general
to be solved numerically.

Note that condition (4.13) is not very restrictive. Once Ω0 �= 0 and W2 �= 0, there
exist k and m such that (4.13) is satisfied. This means that most non-uniform jets with
swirl are unstable with respect to viscous centre modes. Note also that (4.13) is never
satisfied for a vortex without a jet or a jet without swirl. The combination of swirl
and jet is therefore necessary for instability although the maximum growth rate only
depends (at leading order) on the jet component (see expression (4.12b)).

5. Application to the q-vortex model (Batchelor vortex)
In this section, the results of the previous sections are applied to the q-vortex model

(or Batchelor vortex) (2.3a, b) and compared to numerical results, in particular those
of Fabre & Jacquin (2004). For this vortex, the parameters H0 and K0 are given by

H0 = 4q2k(k + m/q), K0 = −mq − 2k. (5.1a, b)

For positive swirl q and positive wavenumber k, unstable centre modes are obtained
for negative m only. The domain of instability is defined by

0 < k < −m/q, (5.2)

or

0 < q < −m/k. (5.3)

The form of this domain, which is illustrated in figure 7, was suggested by the
numerical results of Fabre & Jacquin (2004). In figure 7, the dash-dotted line
k = −mq/2 corresponds to parameters for which K0 = 0. This line together with
the marginal stability curve k = −m/q delimits four regions in which the centre-mode
spectrum has one of the typical forms shown in figure 3, indicated by a letter which
refers to the label in figure 3.

On the boundary of each region, either H0 or K0 vanishes, and therefore the
estimates obtained for the centre-mode frequency do not apply. In the unstable
region (indicated in grey in figure 7), the frequency of the unstable modes (modes A)
are given for n= 0, 1, 2, . . . by

ω(n) ∼ (mq + k) +
3(i + ε2

√
3)

2

∣∣∣∣k2q2 + kmq

Re

∣∣∣∣
1/3

− (i + ε2)

√
3|mq + 2k|

Re

(
n +

1

2

)
, (5.4)
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0 q

k
k = –mq/2

k = –m/q

(c)

(d)

(b)

(a)

k = –m/(2q)

Figure 7. Domain of instability of the centre modes of negative azimuthal wavenumber
m for the q-vortex (grey region).

with ε2 = sgn(K0) = −sgn(mq +2k). The growth rate of the most unstable centre mode
(n= 0) is

σ (0) ∼ 3

2

∣∣∣∣k2q2 + kmq

Re

∣∣∣∣
1/3

−
√

3

2

√
|mq + 2k|

Re
. (5.5)

The maximum growth rate over all k, for fixed q > 0 and m < 0, is

σ (0)
max ∼ 3

(
m2

32Re

)1/3

−

√
3|m(q2 − 1)|

4|q|Re
, (5.6)

which is reached for

kmax ∼ − m

2q
+ 2−7/3|m|5/6

√
3

|q3(q2 − 1)|Re−1/6. (5.7)

The leading-order expression for kmax is in agreement with the numerical computations
of Fabre & Jacquin (2004). It is also worth mentioning that the leading-order term
in the maximum growth rate expression (5.6) does not depend on the swirl number
q and increases as m2/3. The dependence on q appears at the next order O(Re−1/2)
and is proportional to

√
q (for large q). We therefore expect the critical swirl number

to scale as qcrit ∝ Re1/3. This scaling is confirmed in Fabre & Le Dizès (2007) where
specific analysis close to the neutral curves is performed. The numerical maximum
growth rate for Reynolds numbers ranging from 103 to 2 × 106 has been plotted in
Fabre & Jacquin (2004) for several m, and q =2 and q = 3. Formula (5.6) does not
capture well the smallest Reynolds numbers but it is in good agreement with the
numerics for Re � 106.

In figure 8(a–d), the temporal spectrum of the q-vortex is displayed for four sets
of parameters. Both numerical results and theoretical predictions are plotted in this
figure. Numerical results are obtained with a spectral code similar to the one used in
Fabre & Jacquin (2004). The code has been written with Matlab c© by P. Brancher and
A. Antkowiak. An algebraic mapping and more than 250 Chebyshev polynomials
have been used to reach an adequate resolution for Re = 106. More details concerning
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Figure 8. Temporal spectra of the q-vortex near the centre-mode frequencies. Stars: numerical
results. Circles: theoretical predictions for modes A, B and C. (a) q = 0.4, k = 1.5, m= −1,
Re= 106; (b) q = 4, k = 0.2, m= −1; Re =106; (c) q = 1, k = 2, m= −1; Re =106; (d) q = 2,
k = 0.7, m= −1; Re= 105.

the numerical technique can be found in Fabre & Jacquin (2004). In figures 8(a) and
8(b), the centre modes correspond to modes B and A, while in figures 8(c) and 8(d)
they are modes C. A fairly good agreement is observed between the numerics and the
theory for the frequency of all the modes.

Note that in figures 8(c) and 8(d) other modes, which do not follow the present
predictions, are visible in the same region of the complex ω-plane. These modes
are not viscous centre modes of the kind considered here, but are instead inviscid
centre modes of the kind considered in Fabre & Le Dizès (2007). The first modes
of this family have frequencies located close to the real axis, and follow a regular
development in powers of Re−1. On the other hand, the modes of higher order of
this family follow a different trend, and their frequencies tend to align along a curve
parallel to the curve for the C modes.

The spatial structure of the eigenmodes indicated in figure 8 are compared with
theoretical approximations in figures 9, 10 and 11. All the modes are normalized at
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Figure 9. Spatial structure of modes A. Solid line: |p|; dashed line: Re(p). (a–c) Numerical
results for modes A0, A1, and A4 indicated in figure 8(b). (d) Theoretical spatial structure
(geometrical optics approximation in the outer viscous region).

their maximum. In figure 9(a–c) the numerical results are displayed for the pressure
of three different modes A corresponding to n= 0, n= 1 and n= 4. In figure 9(d)
the theoretical pressure based on the simple geometrical optics approximation (4.6)
is shown for modes A. We can see that the spatial structures of the three different
modes are very close to each other and very well reproduced by the theory. The weak
shift of the maximum amplitude between mode A0 and mode A4 can be captured
by considering the amplitude corrections ABn+1/2. However, the resulting physical
optics approximation is less convenient because it breaks down near the origin and
at a particular location rc, indicated in figure 9(d), corresponding to the turning
point sc.

A similar comparison is shown for three modes C in figure 10. Again, the numerical
modes are seen to be very well reproduced by the geometrical optics approximation
(4.6) of modes C for the same parameters.

We have seen in the previous section that the spatial structure of modes B is of a
different type because it is more localized near the vortex centre. Figure 11(a) displays
the numerical mode B0 indicated in figure 8(a). This mode should be compared
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Figure 10. Spatial structure of modes C. Solid line: |p|; dashed line: Re(p). Plots (a–c):
Numerical results for the modes C0, C1, and C4 indicated in figure 8(c). Plot (d): Theoretical
spatial structure (geometrical optics approximation in the outer viscous region).

with the theoretical prediction shown in figure 11(b), which plots the composite
approximation (4.9) for the first mode B. Here again, good agreement is obtained
between theory and numerical results.

Finally, figure 12 displays the amplification rates of the most unstable modes in the
range of Reynolds numbers 103–108, for the set of parameters m = −2, q = 2, k = 0.5.
The original method of Fabre & Jacquin (2004) was not able to compute accurately
modes above Re ≈ 106. Here, the method has been modified to include a complex
contour deformation procedure, as described in Fabre, Sipp & Jacquin (2006). Interest-
ingly, the higher branches display irregular behaviour as well as branch-crossing
events. Such features are characteristic of the viscous centre modes, and were
systematically observed in the study of the vicinity of the neutral curves by Fabre &
Le Dizès (2007). The theoretical predictions for the three first branches, obtained
from (5.4) with n= 0, 1, 2, are displayed with dashed lines in the figure. As can be
observed, good matching between theory and numerics is only found for very large
Reynolds numbers, above Re ≈ 106.
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Figure 11. Spatial structure of modes B. Solid line: |p|; dashed line: Re(p). (a) Numerical
result for the mode B0 indicated in figure 8(a). (b) Theoretical spatial structure (composite
approximation in the inner and intermediate regions).
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Figure 12. Amplification rates of unstable modes A as function of the Reynolds number,
for the set of parameters m= − 2, q = 2, k = 0.5. Solid lines: numerical results. Dashed lines:
theoretical predictions.

6. Conclusion
In this paper, we have performed a large-Reynolds-number asymptotic analysis of

the viscous centre modes in an arbitrary vortex with axial flow. By a multiple-scale
analysis, general expressions for the frequencies of three families of centre modes
have been derived, from which a general instability criterion has been deduced. We
have shown that any vortex which satisfies

Ω0W2 �= 0, (6.1)

where Ω0 is the angular velocity in the centre and W2 is the second radial-derivative
of the axial velocity in the centre, is unstable for sufficiently large Reynolds numbers.
The axial and azimuthal wavenumbers k and m of the unstable viscous centre modes
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are such that

H0 = 2Ω0k(2kΩ0 − mW2) < 0. (6.2)

Their growth rates are given at leading order (in dimensional form) by

σ (0) ∼ 3

2

∣∣∣∣H0ν

4

∣∣∣∣
1/3

(6.3)

where ν is the kinematic viscosity. The spatial structure of the eigenmodes has also
been provided. The theoretical predictions have been compared to numerical results
obtained for the q-vortex model (or Batchelor vortex). Both the frequencies and the
eigenmodes have been shown to be well-predicted by the theory.

It is important to emphasize the viscous nature of these modes. They cannot
be obtained by an inviscid calculation as near the vortex they exhibit centre radial
oscillations on a viscous length scale. In particular, the inviscid centre modes obtained
by Stewartson & Brown (1985) and Heaton (2007) cannot be described by the present
analysis. Viscous centre modes resemble the Tollmien–Schlichting waves of boundary
layers but the physical mechanism explaining the destabilization of some of the centre
modes is apparently more complex.

However, these modes can be understood as a phenomenon of viscous wave
trapping between two critical points. Critical points, such as turning points of the
WKBJ approximations of the viscous solutions (Le Dizès 2004), play the role of
boundaries for viscous waves. And, for the centre-mode frequencies, two such critical
points are close to each other in the neighbourhood of the vortex centre (in the
intermediate region). The frequency selection corresponds to the condition that these
two critical points form a waveguide for the viscous waves (see also for instance
Morawetz 1952; Chapman 2002). The mathematical structure of the centre modes
is indeed typical of double-turning-point problems. In particular, it is very similar
to the first ‘bounded states’ of a particle in a parabolic potential well in quantum
mechanics, which can also be expressed in terms of Hermite polynomials (see for
instance Landau & Lifchitz 1966; Bender & Orszag 1978).

It is worth mentioning that there is a priori an infinite number of modes in each
family, but that only the first ones satisfying n  Re1/6 can be described by the present
theory. When n becomes of order Re1/6 or larger, the two turning points are far apart
in the outer viscous region and a different analysis should be carried out in order to
describe these modes, as in quantum mechanics for high-energy modes.

In a slightly different asymptotic study, Le Dizès & Fabre (2007) show that vortices
with axial flow can also possess viscous ring modes. These modes are discretized
by the same ‘double-turning-point’ mechanism but the two turning points in that
case are not near the vortex centre but close to a particular radius defined by
mΩ ′

0(rc) + kW ′
0(rc) = 0. For the q-vortex, these other modes are less unstable than

viscous centre modes. However, for other vortex profiles, this is not always the case.
In particular, they may be unstable in vortices without axial flow.

This work has been supported by the European Community under grant AST4-
CT-2005-012238 (FAR-WAKE project) and by the French National Research Agency
(VORTEX project). S. L.D. would also like to thank A. Antkowiak and P. Brancher
for having kindly provided the Matlab spectral code used for numerical results.
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Appendix. General expressions for the eigenmodes
The spatial structure of the eigenmodes is described by expressions (3.14), (3.56) and

(3.42) in the outer viscous region, intermediate region and inner region respectively.
Relations between the constants Â, B̂ , Ã(a), Ã(c), Ā(2) and Ā(3) appearing in these expres-
sions have been derived in § 3.6. With an adequate normalization, they lead, for positive
K0, to the following expressions (written with the outer variable) for the eigenmodes:
In the inner region,

p̂ = α̂eIm

(
µ0Re1/3r

)
, n even, (A 1a)

p̂ = α̂o

(
(4m2 + 3)Im

(
µ0Re1/3r

)
+ 8µ0Re1/3rI ′

m

(
µ0Re1/3r

))
, n odd, (A 1b)

with

µ0 =
√

−iω1/3, (A 2a)

α̂e = −π2(n+1)/2

∣∣ 1
4
H0

∣∣1/12
Re1/6

Γ ((1 − n/2))
eiγ0/2, (A 2b)

α̂o = −
π2(n−3)/2

∣∣ 1
6
K0

∣∣1/4
Re1/12

Γ (−n/2)
∣∣ 1

4
H0

∣∣1/12 eiπ/8−iγ0/2. (A 2c)

In the intermediate region,

p̃ = Hen

(
βRe1/4r

)
exp

(
−β2Re1/2r2

4

)
(−1)nexp

(
µ0Re1/3r

)
+ iε(−1)mexp

(
−µ0Re1/3r

)
√

r
,

(A 3)

with

β =
√

2eiπ/8

(
|K0|
6

)1/4

,

and ε = 1 for modes A and C and ε = − 1 for mode B.
We have used the following relations between the Hermite polynomials Hen and

the parabolic cylinder functions Dn(x) (Abramowitz & Stegun 1965):

Dn(x) = e−x2/4Hen(x).

In the outer viscous region,

p̄ = ᾱ
(
−iε(−1)mA(2)

[
B (2)

]n+1/2
exp

(
Re1/6ηΛ(2)

)
+ (−1)nA(3)

[
B (3)

]n+1/2
exp

(
Re1/6ηΛ(3)

))
,

(A 4)

where

ᾱ = −
∣∣∣∣K0

6

∣∣∣∣
n/4

2n/2Re(4n+1)/24einπ/8, η = 3

√
2

|K0|

∣∣∣∣H0

4

∣∣∣∣
1/3

,

and the different functions A, B and Λ only depend on the rescaled variable

s = Re1/6

√
|K0|
6

∣∣∣∣ 4

H0

∣∣∣∣
1/6

r.
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