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Abstract

In this paper we take on Stuart C. Shapiro’s challenge of solving the Jobs Puzzle automatically

and do this via controlled natural language processing. Instead of encoding the puzzle in

a formal language that might be difficult to use and understand, we employ a controlled

natural language as a high-level specification language that adheres closely to the original

notation of the puzzle and allows us to reconstruct the puzzle in a machine-processable way

and add missing and implicit information to the problem description. We show how the

resulting specification can be translated into an answer set program and be processed by a

state-of-the-art answer set solver to find the solutions to the puzzle.

KEYWORDS: Controlled natural language, knowledge representation, answer set program-

ming

1 Introduction

In a recent paper (Shapiro 2011), the author identified the Jobs Puzzle (Wos et al.

1984) as a challenge for logical expressibility and automated reasoning and presented

three formalisations that require a less difficult and less tedious encoding than the

original formalisation by Wos and his co-authors. The Jobs Puzzle is hard to solve

automatically because the problem description in natural language is not complete

and contains ambiguous information:

1. There are four people: Roberta, Thelma, Steve, and Pete.

2. Among them, they hold eight different jobs.

3. Each holds exactly two jobs.

4. The jobs are: chef, guard, nurse, telephone operator, police officer (gender not

implied), teacher, actor, and boxer.

5. The job of nurse is held by a male.

6. The husband of the chef is the telephone operator.

7. Roberta is not a boxer.

8. Pete has no education past the ninth grade.

9. Roberta, the chef, and the police officer went golfing together.

Question: Who holds which jobs?
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If the missing and implicit information is not uncovered, and the ambiguity is

not cleared, then the puzzle cannot be solved by an automated reasoner (Wos et al.

1984). Shapiro’s challenge to the community is three-fold (Shapiro 2011):

(a) formalise the puzzle in a way that is neither difficult nor tedious,

(b) formalise the puzzle so that it adheres closely to the English statements of the

puzzle, and

(c) have an automated general-purpose commonsense reasoner that solves the

puzzle efficiently.

Shapiro discusses three formalisations of the puzzle: one in TPTP syntax (Sutcliffe

2009) that relies on equality predicates and special-purpose axioms in order to deal

with the unique name assumption; one in SNePSLOG syntax (Shapiro et al. 2010)

that uses general quantifiers and set arguments but requires the translation of

some statements into contrapositives; and one in Lparse syntax (Syrjänen 2000)

that relies on an extended logic programming notation with cardinality expressions

and integrity constraints. None of these formalisations satisfy the requirement (b)

because there is still a considerable conceptual gap between the formal notations

and the English statements of the puzzle.

In this paper we show that it is possible to specify the relevant knowledge

that is necessary to solve the puzzle as a series of statements in a controlled

natural language (White and Schwitter 2009; Schwitter 2010; Schwitter 2012). The

resulting specification is then translated automatically into an Answer Set Program

(ASP) (Gelfond and Lifschitz 1988; Lifschitz 2008; Brewka et al. 2011) and executed

by a state-of-the-art ASP solver (Gebser et al. 2011), similar to the Lparse solution.

Note that there is no need to encode the puzzle in a formal notation; the focus here

is on the linguistic reconstruction of the puzzle rather than on its formal encoding.

Our approach is different to (Baral and Dzifcak 2012) who try to learn suitable

ASP representations for clues of combinatorial logic puzzles from training data. The

authors assume that the domain of a puzzle is given and that the representation

of this domain follows a specific ontological structure that is common to most

puzzles. They manually preprocess and simplify the clues of the puzzles and focus

only on the accurate translation of these clues. They observe that many clues are

very specific and that it is hard to figure them out automatically using additional

background knowledge. Their approach does not meet requirement (b) since their

formal representation is designed to exploit the similarity of clues of other puzzles

and therefore does not adhere closely to the English statements of the puzzles. Other

researchers (Lierler and Görz 2006; Balduccini et al. 2008; Todorova 2009) have

used ASP for reasoning from natural language but not for solving logic puzzles.

Constraint Lingo (Finkel et al. 2004) is another approach that has been used for

solving logic puzzles but it requires the programmer to convert a puzzle into a

tabular representation that abstracts away from the problem description in natural

language.

The rest of this paper is organised as follows: In Section 2, we introduce and

discuss Shaprio’s Lparse/Smodels solution to the puzzle. In Section 3, we show
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how the puzzle can be reconstructed in controlled natural language and provide

the corresponding Lparse translation. In Section 4, we discuss a number of possible

improvements to our solution. In Section 5, we focus on the language processor

that is used to translate the controlled natural language via discourse representation

structures into an ASP program. Finally, in Section 6, we summarise the advantages

of our approach and conclude.

2 Shapiro’s solution via Lparse/Smodels

Let us first have a look at Shapiro’s solution to the Jobs Puzzle that came closest to

meeting the challenge. This solution is based on Lparse syntax and the ASP tools

Lparse (Syrjänen 2000) and Smodels (Niemelä et al. 2000). Lparse is a grounding

tool for the answer set solver Smodels and accepts extended normal logic programs

in Lparse syntax as input.

The formalisation of sentence 1 of the puzzle results in a single atom with

alternative terms pooled together (this notation is equivalent to four individual

atoms):

A.1.0 person(roberta ; thelma ; steve ; pete).

Note that the four names imply the gender of the persons: Roberta and Thelma

are female, and Steve and Pete are male. This implicit knowledge is not directly

available from the problem description and needs to be made explicit in order to

solve the puzzle by a reasoning tool (Wos et al. 1984):

A.1.1 female(roberta ; thelma).

A.1.2 male(steve ; pete).

The problem description also assumes that humans know that no person can be

both male and female; this implicit knowledge can be represented via an integrity

constraint:

A.1.3 :- person(X), male(X), female(X).

Sentence 2 states that the four persons have eight different jobs among them.

Shapiro’s formalisation does not mention the total number of jobs since these jobs

are enumerated in sentence 4. Instead the formalisation states that for every job

there is exactly one person who holds that job, and this is represented via a choice

rule with a cardinality expression:

A.2.0 1 {hasJob(X,Y) : person(X)} 1 :- job(Y).

Sentence 3 specifies that each person holds exactly two jobs; this knowledge is

again formalised via a choice rule with a cardinality expression:

A.3.0 2 {hasJob(X,Y) : job(Y)} 2 :- person(X).

Sentence 4 enumerates the eight job names; this knowledge can be represented by

a single atom where the alternative job names are pooled together:
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A.4.0 job(chef ; guard ; nurse ; operator ; police ; teacher ;

actor ; boxer).

Sentence 5 specifies that if a person has a job as nurse then that person is male;

this is formalised via a basic rule:

A.5.0 male(X) :- person(X), hasJob(X,nurse).

It is further assumed that humans can – due to their linguistic knowledge – make

the inference that actors are male; this knowledge is formalised in a similar way as

A.5.0:

A.5.1 male(X) :- person(X), hasJob(X,actor).

Sentence 6 states that the husband of the chef is the telephone operator; this is

formalised via a basic rule:

A.6.0 hasHusband(Y,X) :- person(X ; Y), hasJob(Y,chef),

hasJob(X,operator).

Since a person X has another person Y as a husband, it is further assumed that

humans can infer that X must be female and that Y must be male. This inference

is made explicit in Shapiro’s solution via the following choice rule:

A.6.1 2 {female(X), male(Y)} 2 :- person(X ; Y), hasHusband(X,Y).

Sentence 7 states that Roberta is not a boxer, this knowledge is formalised via

an integrity constraint that excludes the corresponding atom from any satisfying

model:

A.7.0 :- hasJob(roberta,boxer).

Sentence 8 basically says that Pete is not educated; this is again formalised via an

integrity constraint:

A.8.0 :- educated(pete).

The problem description further assumes that humans know due to their cultural

knowledge that the jobs of nurse, police officer and teacher require more than a

ninth-grade education. In Shapiro’s solution this knowledge is expressed via a basic

rule with a cardinality expression in the body (this is a way of putting a disjunction

in the body of an ASP rule). To count as educated at least one or at most two

common instances of hasJob/2 must occur in a satisfying model:

A.8.1 educated(X) :- 1 {hasJob(X,nurse), hasJob(X,police),

hasJob(X,teacher)} 2, person(X).

Sentence 9 is ambiguous and has to be interpreted as Roberta, [and] the chef,

and the police officer went golfing together so that a human can infer that Roberta

is neither the chef nor the police officer. This knowledge can be formalised with a

choice rule that excludes the two corresponding atoms:

A.9.1 0 {hasJob(roberta,chef), hasJob(roberta,police)} 0.
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Since the chef and the police officer went golfing together, a human can also infer

that the same person cannot be chef and police officer at the same time. In Shapiro’s

solution this is modeled via a choice rule that makes sure that only one instance

of a hasJob/2 atom for a given person and the identified two jobs can occur in a

satisfying model:

A.9.2 0 {hasJob(X,chef), hasJob(X,police)} 1 :- person(X).

Finally, the hide declaration below marks all atoms of a model as hidden, and

the show declaration specifies which atoms of the model should be included in the

output:

#hide.

#show hasJob(X,Y).

After grounding the ASP program with Lparse, the ASP solver Smodels generates

a satisfying model and displays the following instances for hasJob/2 as solutions:

hasJob(pete,operator)

hasJob(pete,actor)

hasJob(steve,nurse)

hasJob(steve,police)

hasJob(thelma,chef)

hasJob(thelma,boxer)

hasJob(roberta,guard)

hasJob(roberta,teacher)

3 Solution via controlled natural language processing

Shapiro’s solution requires an encoding of the puzzle that makes the missing and

implicit knowledge explicit in a formal language. We show in this section that

a controlled natural language can be used as a high-level specification language

instead of a formal language to specify the same kind of knowledge but in a

familiar notation that adheres – as required in the challenge – closely to the English

statements of the puzzle.

We start our reconstruction of the puzzle using the simplest possible subset of the

controlled natural language PENG Light (White and Schwitter 2009). This subset

allows us to express just the relevant facts, rules, and constraints of the puzzle.

We will then extend this subset in the subsequent section and further align it with

the ASP language in order to gain more flexibility and achieve a more compact

representation of the puzzle. Additional linguistic structures that we do not discuss

here but belong to the controlled natural language PENG Light are necessary to

process other puzzles (Schwitter 2012).

In our case the controlled natural language consists of simple sentences, complex

sentences, and questions. The simple sentences can be introduced – for our purpose

– with the help of eight linguistic patterns that are displayed in Table 1 together with

corresponding examples. Note that PNoun stands for a proper noun that represents a
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Table 1. Syntax of simple sentences

Pattern Example

PNoun is a CNoun. Roberta is a person.

PNoun is Adjective. Roberta is female.

There is a CNoun. There is a job.

A CNoun is Adjective. A person is female.

A OrdNumber CNoun is a CNoun of A first person is a husband of

a OrdNumber CNoun. a second person.

A CNoun Verb a CNoun as PNoun. A person holds a job as nurse.

CardRest CNoun Verb a CNoun. Exactly one person holds a job.

A CNoun Verb CardRest CNoun. A person holds exactly two jobs.

unique entity and CNoun stands for a common noun that represents a class of entities.

Note also that only a single cardinality restriction (CardRest) can occur in a simple

sentence. These simple sentences build the starting point for the reconstruction of

the puzzle. Complex sentences are built from simple sentences with the help of

coordination and the following two patterns:

1. If Simple Sentence [and Simple Sentence]* then Simple Sentence.

2. Exclude that Simple Sentence [and that Simple Sentence]*.

Questions are derived from simple sentences using the usual formation rules. Only

specific forms of anaphoric expressions are allowed in our controlled natural

language: definite descriptions can be used to link back to an indefinite noun

phrases (e.g., a person ← the person). Ordinal numbers can be used in these noun

phrases to distinguish between different instances that have the same form and to

support the anaphora resolution process (e.g., a first person ... a second person ... the

first person).

Using our simple controlled natural language, the reconstruction of sentence 1 of

the puzzle results in the following simple sentences in B.1.0. The implicit knowledge

about the gender of these persons is expressed by the simple sentences in B.1.1 and

B.1.2. All these sentences are then translated automatically into individual atoms.

The implicit knowledge that a person cannot be male and female at the same time

is expressed by the complex sentence B.1.3 whose translation results in an integrity

constraint:

B.1.0 Roberta is a person. Thelma is a person. Steve is a person. Pete is a

person.

person(roberta). person(thelma). person(steve). person(pete).

B.1.1 Roberta is female. Thelma is female.

female(roberta). female(thelma).

B.1.2 Steve is male. Pete is male.

male(steve). male(pete).
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B.1.3 Exclude that a person is male and that the person is female.

:- person(X), male(X), female(X).

The reconstruction of sentences 2 and 3 leads to the following two conditional

sentences B.2.0 and B.3.0. These sentences are then translated into choice rules with

cardinality expressions similar to A.2.0 and A.3.0; however, we use the original name

of the verb (hold) as a predicate name:

B.2.0 If there is a job then exactly one person holds the job.

1 {hold(X,Y) : person(X)} 1 :- job(Y).

B.3.0 If there is a person then the person holds exactly two jobs.

2 {hold(X,Y) : job(Y)} 2 :- person(X).

The reconstruction of sentence 4 is similar to that of sentence 1 and gives rise to

a series of simple sentences in B.4.0 that are finally translated into single atoms:

B.4.0 Chef is a job. Guard is a job. Nurse is a job. ...

job(chef). job(guard). job(nurse). ...

The reconstruction of sentence 5 leads to a conditional sentence (B.5.0) as well

as to additional knowledge that identifies an actor as male (B.5.1). Note that in

contrast to A.5.0, the translation of a job as nurse in B.5.0 results in a different

representation since the formalisation closely follows the linguistic surface structure

of the controlled language. The same is the case for the translation of sentence B.5.1

and all the subsequent sentences that contain this structure:

B.5.0 If a person holds a job as nurse then the person is male.

male(X) :- person(X), job(nurse), hold(X,nurse).

B.5.1 If a person holds a job as actor then the person is male.

male(X) :- person(X), job(actor), hold(X,actor).

The reconstruction of sentence 6 leads to the conditional sentence B.6.0 as well as

to the specification of additional knowledge that identifies the subject of a husband

as male in B.6.1 and the object as female in B.6.2. Note that the translation of this

additional knowledge gives – for the time being – rise to two rules (in contrast to

the formalisation in A.6.1):

B.6.0 If a first person holds a job as chef and a second person holds a job as

telephone

operator then the second person is a husband of the first person.

husband(Y,X) :- person(X), job(chef), hold(X,chef), person(Y),

job(operator), hold(Y,operator).

B.6.1 If a first person is a husband of a second person then the first person is

male.

male(X) :- person(X), person(Y), husband(X,Y).
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B.6.2 If a first person is a husband of a second person then the second person

is female.

female(Y) :- person(X), person(Y), husband(X,Y).

The reconstruction of sentence 7 results in the complex sentence B.7.0 that is

translated into an integrity constraint:

B.7.0 Exclude that Roberta holds a job as boxer.

:- job(boxer), hold(roberta,boxer).

Similarly, the reconstruction of sentence 8 results in a complex sentence (B.8.0).

The inferred knowledge about jobs and the required level of education is then

specified via three conditional sentences (B.8.1, B.8.2 and B.8.3). This is different to

A.8.1 where only one rule is used instead of three:

B.8.0 Exclude that Pete is educated.

:- educated(pete).

B.8.1 If a person holds a job as nurse then the person is educated.

educated(X) :- person(X), job(nurse), hold(X,nurse).

B.8.2 If a person holds a job as police officer then the person is educated.

educated(X) :- person(X), job(police), hold(X,police).

B.8.3 If a person holds a job as teacher then the person is educated.

educated(X) :- person(X), job(teacher), hold(X,teacher).

The reconstruction of the inferred knowledge of sentence 9 leads to three complex

sentences that are all translated into integrity constraints. In contrast to A.9.1, the

two sentences B.9.1a and B.9.1b are used to invoke integrity constraints:

B.9.1a Exclude that Roberta holds a job as chef.

:- job(chef), hold(roberta,chef).

B.9.1b Exclude that Roberta holds a job as police officer.

:- job(police), hold(roberta,police).

B.9.2 Exclude that a person holds a job as chef and that the person holds a job

as police officer.

:- person(X), job(chef), hold(X,chef), job(police),

hold(X,police).

In contrast to Shapiro’s solution, we also process questions and translate them

into basic rules with a predefined answer literal (answer/1) as head:

Question: Who holds which jobs?

answer(hold(X,Y)) :- job(Y), hold(X,Y).

We then display these generic answer literals in the ASP program using the show

declaration.
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4 Towards a more compact specification

We now introduce a number of additional linguistic constructions that are part

of the controlled natural language PENG Light and show how these constructions

contribute to a more compact specification of the puzzle on the level of the controlled

language. These constructions consist of the universal quantifier every, relative

clauses and additional forms of coordination. It is important to note that in PENG

Light, conditional sentences and universally quantified sentences are interpreted in

the same way. The textual order of a quantifier defines its scope, and the occurrence

of a quantifier in a sentence opens its scope that extends to the end of the sentence.

As we will see, quantifier raising can then be used to move a designated quantified

noun phrase to a different position in a sentence.

As a first step towards a more compact representation, we first relate job names

in a systematic way to their professional categories (e.g., chef to a chef). We do this

with the help of a universal quantified sentence together with a subject-modifying

relative clause and specify for each professional category the necessary conditions

that must hold for a person to be a member of that category, for example:

C.0.1 Every person who holds a job as chef is a chef.

chef(X) :- person(X), job(chef), hold(X,chef).

As we will see shortly, these categories will allow us to write the specification in a

more compact way, but let’s discuss the suggested improvements in the order of the

given sentences.

The sentences in B.1.0, B.1.1 and B.1.2 are all simple sentences and have a

similar structure. We can reformulate these sentences in a more compact way by

coordinating the names in the subject position. The translation of these sentences

then results in a representation with pooled arguments within a single atom:

C.1.0 Roberta, Thelma, Steve, and Pete are persons.

person(roberta ; thelma ; steve ; pete).

C.1.1 Roberta and Thelma are female.

female(roberta ; thelma).

C.1.2 Steve and Pete are male.

male(steve ; pete).

Sentence B.1.3 coordinates two simple relative sentences and uses an anaphoric

expression in the second one. We can replace this construction by coordinating two

verb phrases instead and end up after the translation with the same representation

as before:

C.1.3 Exclude that a person is male and is female.

:- person(X), male(X), female(X).

Sentence B.2.0 is a conditional sentence that contains an anaphoric expression in

the consequence. We can replace this conditional sentence by a universally quantified

sentence; but this requires quantifier raising using the predefined expressions for every

and there is and a relative clause to get the correct scope of the quantifiers (and this

results after translation in the same representation as B.2.0):
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C.2.0 For every job there is exactly one person who holds the job.

1 {hold(X,Y) : person(X)} 1 :- job(Y).

Sentence B.3.0 is another conditional sentence that can be replaced by a universally

quantified one (and finally results after translation in the same representation as

B.3.0):

C.3.0 Every person holds exactly two jobs.

2 {hold(X,Y) : job(Y)} 2 :- person(X).

The simple sentences in B.4.0 can be replaced by one that coordinates all job

names in subject position:

C.4.0 Chef, guard, nurse, telephone operator, police officer, teacher, actor, and

boxer are jobs.

job(chef ; guard ; nurse ; operator ; police ; teacher ;

actor ; boxer).

The two conditional sentences in B.5.1 and B.5.2 can be expressed as a single

universally quantified sentence with embedded disjunctive relative clauses. Note that

we can now use the common nouns nurse and actor that we introduced in C.0.1.

The translation of this sentence leads to two basic rules because the relative clauses

are coordinated by a disjunction:

C.5.0 Every person who is a nurse or who is an actor is male.

male(X) :- person(X), nurse(X).

male(X) :- person(X), actor(X).

Sentence B.6.0 introduces the relational noun husband but it turns out that only the

information in C.6.1 and C.6.2 that specify the gender of chef and telephone operator

are necessary to solve the puzzle. Sentence C.6.0 provides additional information

about the husband relationship but does not contribute anything to the solution:

C.6.0 If there is a telephone operator and there is a chef then the telephone

operator is the husband of the chef.

husband(X,Y) :- operator(X), chef(Y).

C.6.1 Every person who is a chef is female.

female(X) :- person(X), chef(X).

C.6.2 Every person who is a telephone operator is male.

male(X) :- person(X), operator(X).

Sentence B.7.0 is similar to sentence C.7.0, but we can now use the professional

categories that we introduced in C.0.1 and specify the relevant knowledge in a more

compact way:

C.7.0 Exclude that Roberta is a boxer.

:- boxer(roberta).
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One could argue that Roberta is not a boxer is a more compact notation but

this would not lead to the expected result since our controlled natural language

distinguishes between integrity constraints (exclude that), strong negation (not) and

weak negation (not provably) on the surface level. ASP rules with negation as failure

in the head are strongly equivalent to constraints; therefore we would have to state

Roberta is not provably a boxer instead of Roberta is not a boxer. The same applies

to sentence C.8.0 that is identical to B.8.0:

C.8.0 Exclude that Pete is educated.

:- educated(pete).

The three conditional sentences in B.8.1, B.8.2 and B.8.3 can be expressed as a

single universally quantified sentence that contains three disjunctive relative clauses.

The translation of this disjunction triggers three different rules (and is easier to

generate automatically than the representation in A.8.1):

C.8.1 Every person who is a nurse or who is a police officer or who is a teacher

is educated.

educated(X) :- person(X), nurse(X).

educated(X) :- person(X), police(X).

educated(X) :- person(X), teacher(X).

The two sentences in B.9.1a and B.9.2b can be reformulated and expressed as C.9.1

using sentence coordination. The translation of this complex sentence results in two

integrity constraints (and not in a choice rule as in A.9.1):

C.9.1 Exclude that Roberta is a chef and exclude that Roberta is a police officer.

:- chef(roberta).

:- police(roberta).

Sentence B.9.2 uses two coordinated sentences; we can now express the same

information in a more compact way with the help of two coordinated verb phrases:

C.9.2 Exclude that a person is a chef and is a police officer.

:- person(X), chef(X), police(X).

The question Who holds which jobs? is translated in the same way as before. In

contrast to Shapiro who relies on Lparse/Smodels, we use the answer set tool

clingo (Gebser et al. 2011) that combines the grounder and the solver in a single

program and communicates with the controlled language processor in order to

compute the answers to the question:

answer(holds(thelma,chef))

answer(holds(roberta,guard))

answer(holds(steve,nurse))

answer(holds(pete,operator))

answer(holds(steve,police))

answer(holds(roberta,teacher))

answer(holds(pete,actor))

answer(holds(thelma,boxer))
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We were not able to measure any differences in wall-clock times between Shapiro’s

ASP program, our first ASP program and our second ASP program that is based

on a more compact specification. However, a closer inspection of the internal

representation in clingo reveals that Shapiro’s ASP program results in twice as much

choices as our first ASP program and that our second ASP program results in no

choices at all and can be solved without any search.

5 Controlled natural language processing

The reconstruction of the puzzle in controlled language is supported by a predictive

text editor (Schwitter et al. 2003) that enforces the restrictions of the controlled

language during the writing process. For each word form that the author enters,

the language processor generates look-ahead information that is displayed in the

text editor and informs the author which categories and word forms can follow

the current input. In this way the author can only construct syntactically correct

sentences that are part of the controlled language.

The language processor consists of a chart parser, a unification-based grammar

and a lexicon, and communicates with the predictive editor and the answer set

tool clingo (Gebser et al. 2011). The chart parser processes the controlled language

specification of the Jobs Puzzle incrementally, resolves anaphoric references on the

fly and generates an (extended) discourse representation structure (DRS) in the spirit

of (Kamp and Reyle 1993; van Eijck and Kamp 2011) during the parsing process.

In our case, a DRS is a term of the form drs(U,C). The first argument U is a list

of discourse referents (i.e. quantified variables), and the second argument C is a list

of simple and complex conditions for these discourse referents. Simple conditions

are logical atoms and complex conditions are built from other DRSs with the help

of logical connectors (i.e. negation, disjunction, implication) and a non-standard

operator for constraints. Our DRS uses a reified notation for the logical atoms

together with a small number of predefined predicates. This DRS can be translated

automatically into an ASP program, whenever a new sentence has been added to the

specification. For example, after processing the first two sentences C.0.1 and C.1.0,

the DRS will be as follows:

[A,B,C,D,E,F]

[G,H,I]

object(G,person)

object(H,job)

named(H,chef)

predicate(I,hold,G,H)

==>

[J,K]

object(J,chef)

predicate(K,isa,G,J)

named(A,roberta)

named(B,thelma)
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named(C,steve)

named(D,pete)

object(E,person)

predicate(F,isa,(A;B;C;D),E)

The implicative condition derived from the universally quantified sentence is then

translated into a basic ASP rule (see C.0.1), and the simple conditions derived from

the second sentence are translated into a single atom where the alternative names

are pooled together (see C.1.0).

Also the two universally quantified sentences C.2.0 and C.3.0 result both in an

implicative condition but an additional condition (cardinal/3) is used to represent

the cardinality restriction as the example for C.3.0 illustrates:

[M2]

object(M2,person)

==>

[N2,O2]

cardinal(N2,eq,2)

object(N2,job)

predicate(O2,hold,M2,N2)

The subsequent translation of this implicative condition results in a choice rule

with a cardinality expression. The two universally quantified sentences C.5.0 and

C.8.1 with embedded disjunctive relative clauses lead both to an implicative condition

with disjunctive conditions in the antecedent. This complex structure is then split

up and translated into basic ASP rules as discussed in the last section.

Finally, for the representation of those sentences that introduce a constraint in

ASP, we use a complex condition in the DRS involving a non-standard operator

(CSTR). For example, sentence C.9.1 triggers two constraints via sentence coordina-

tion and translates into the following two complex conditions:

CSTR

[T3,U3]

object(T3,chef)

predicate(U3,isa,A,T3)

CSTR

[V3,W3]

object(V3,police)

predicate(W3,isa,A,V3)

During the translation of these DRSs into integrity constraints, the variable A is

unified with the name roberta that has been introduced as a condition in the top

DRS.

6 Conclusion

In this paper we took on Shapiro’s challenge to formalise the Jobs Puzzle in a

way that the representation to an automated reasoning program is neither difficult
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nor tedious to construct and that the specification adheres closely to the English

statements of the original version of the puzzle. We achieved this by reconstructing

the puzzle in a controlled natural language that consists of a well-defined subset

of English. This reconstruction is necessary for the following four reasons: (a) we

need to bring the problem description of the puzzle into a form that is machine-

processable; (b) we need to add the missing information to the problem description;

(c) we need to make the implicit knowledge explicit, and (d) we need to clear the

ambiguity.

As we have seen, the reconstruction of the puzzle in controlled natural language

can be made more or less compact depending on the approved linguistic con-

structions that we have at hand. The resulting specification can then be translated

automatically into an answer set program in order to generate the answers to the

problem as part of a satisfying model. To make this possible, we have implemented

a new grammar and a utility that translates the Jobs Puzzle (and similar combi-

natorial puzzles that use additional linguistic constructions) first into a discourse

representation structure and then into an executable answer set program. To the

best of our knowledge, this is the first controlled natural language that can serve as

a high-level specification language to answer set programs.

In summary: we addressed Shapiro’s challenge by using a controlled natural

language as a high-level specification language that looks at first glance informal

and is easy to understand but has the same expressive power as the resulting answer

set program.
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