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Abstract
Is the current formulation of multiset theory, which is based on sets and multiplicities of their ele-
ments, adequate? We exhibit both mathematical and metamathematical reasons which should cause one
to rethink the definition. Some problems with multiset theory in its accepted formulation concern even the
basic operations of union, intersection, and complement; others, more deeply rooted, concern Cartesian
products, relations, or morphisms. We compare current definitions and conclude that the problems of
multiset theory need to be resolved at the fundamental level of sets and mappings (or equivalent con-
structs) withmultiplicities introduced only as a secondary concept. As a consequence, we propose to define
multisets as families. A mapping establishes the connection to the familiar theory of multisets. Without
losing anything, our proposal is simple and provides for an elegant mathematical theory.

Keywords: Multiset; generalised multiset; categories

1. An Unforeseen Problem
A multiset is a collection of objects, called elements, in which the elements are allowed to repeat
finitely often (see, e.g., Blizard 1991). Typically, a multiset is specified by its underlying set S and,
for each element s ∈ S, itsmultiplicity μ(s), a nonnegative integer. In a paper which we wrote a few
years ago, we found it convenient to use multisets as a tool. In the given context, we considered the
usual definition of multisets via multiplicities as being too clumsy. Instead, we opted for a seem-
ingly equivalent definition, up to finiteness, that of a family. As usual, a family over a set S consists
of a set I, called index set and a mapping ι : I → S. The multiplicity by which an element s ∈ S
appears in the multiset is the cardinality of ι−1(s). A reviewer of that paper found this definition
rather strange and, as this choice of words was not important in the given context we fixed the
problem with a kind of first-aid bandage. However, while doing so at one spot, we discovered that
the bandage began to seep at another spot: fixing one problem just revealed many more elsewhere
like the profuse heads of the hydra.

This experience was the motivation to scrutinize the notion of multiset. After having done so,
we are even more convinced now that the concept of families is far better suited to express the
intended notion of multiset than the usual definition involving elements with multiplicities. In
this context, it will be important to note that the notions of objects and elementsmentioned above
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140 H Jürgensen

and considered as equivalent in Blizard (1991) must be distinguished. We argue that doing so is
inevitable for an intuitively sound theory.1

Intuitively, the notion of multiset is meant to generalize that of sets. Consequently, there exists
a unique empty multiset and every set has a unique interpretation as a multiset. It seems natural
to require that this connection be afforded by forgetting multiplicities and that it be factorial. We
show that this cannot be achieved without violating some part of the intuition.

The original definition of multisets postulates that the multiplicities are nonnegative integers.
Once a sound theory involving only these as multiplicities has been established, a formal gener-
alization to other multiplicity domains is easy following the approaches used to define fuzzy sets
over various domains like R, the set of real numbers or L, an arbitrary lattice (Peeva and Kyosev
2004). Especially for min–max fuzzy sets and multisets, the connection is formally close; however,
as will be explained below, intuitively these notions are quite different depending on the concept
of distinguishability between elements.

Our initial problem concerned the complement of a multiset; some aspects of a mathematical
theory of multisets are discussed in Jürgensen (2017). Suppose one has one orange in a set. How
many oranges are in its complement? The answer depends on what we mean. In a paper on If no
two oranges are “distinguishable,” then, clearly, none is in the complement – a rather unexpected
answer. But is this correct if we have a box with 25 oranges in it? By their very arrangement in
the box, they are distinguishable. If one of them is in the set, then there are 24 not in the set.
One definitely knows what is not in the complement of a set, but one cannot know what is in its
complement unless one refers to a “universal set,” or rather a “reference set” to which the given set
is compared. The problem is compounded by the fact that there is a notion of indistinguishability –
or sameness as discussed by Marcus (2001) – which needs to be defined in a meaningful way.
However, what is in the complement of a set is rarely a critical issue as the choice of the reference
set is, usually, naturally implied by the context. In contrast, in multiset theory, the complement of
a multiset with one orange in it may contain any number of oranges. The reference set becomes
more arbitrary, and the analogy to negation in logic is lost.

Our original problem was even more complicated than that as it involved potentially
unbounded finite multiplicities. Stripped to the essentials, the problem was as follows. Let S be
a set. Consider countably many multisetsMi over S with i= 1, 2, . . . such that, for each i and each
s ∈ S, the multiplicity of s inMi is unbounded. What is the complement ofMi? What is the com-
plement of

⋃∞
i=0 Mi? In standard multiset theory, one assumes that the multiplicity of an element

is finite, that is, a cardinal number less than ℵ0. To pinpoint the problem, one can focus on a single
multisetMi – that one has to deal with an infinite number of them might just make the argument
more convincing – such that the multiplicity of some s ∈ S inMi is unpredictable. Staying within
standard multiset theory suggests that the complement be taken with respect to some fixed multi-
setM. The multiplicity of s inM would have to be at least that of s inMi. Otherwise, what would
one do? One could introduce negative multiplicities2 or some other kind of unconvincing arith-
metic acrobatics. One could also leave the realm of multisets to include infinite multiplicities. In
the latter case, one has to deal with the subtraction of infinite cardinal numbers. Neither solution
is intuitively acceptable.

The complementation problem has plagued the theory of multisets (Blizard 1986, 1989;
Bogatiryova 2011; Hickman 1980; Ibrahim 2010; Jena et al. 2001; Singh et al. 2002, 2008, 2011,
2016; Syropoulos 2001; Wildberger 2003). Singh et al. (2011) conclude: None of the existing
approaches succeeds if the goal is to augment the theory of multisets endowed with a boolean
algebraic structure without assuming some contrived situations.

However, complementation is not the only and not the most serious trouble in the theory of
multisets which begs for a conceptually convincing solution, albeit beingmost conspicuous. Other
heads of the Hydra appear when one considers multiset theory in the context of the foundations of
set theory. The very basics of multiset theory then requires a re-examination of its mathematical
and conceptual relevance. In essence, we need to clarify the relation between object and element as
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mentioned. In this paper, we propose a clear distinction, possibly relativized to different worlds.
Mathematically, this can be achieved quite elegantly using families rather than multisets.

This paper occasionally relies on discussing notions or assumptions which are not completely
defined, possibly contentious, and even outside the reach of mathematics. To distinguish such
cases from straightforward mathematics, we use the term of “convention” rather than those
of “definition” or “assumption.” Of course, the implicit meaning is that conventions serve as
definitions or assumptions for the respective rest of this paper.

There is no really difficult mathematical result in this paper which would deserve being
called a theorem or the like. Hence, we use the term of “observation.” The only exception is
Proposition 22 in which we propose a solution to a structure problem which has plagued the the-
ory of multisets. This result is important enough because it provides a partial answer to an elusive
question.

The flow of thoughts in this paper is roughly as follows.We introducemultisets as usual, review
some basic results, and discuss ways in which the category of multisets could be defined. We then
turn to exhibiting problems with the notion of “multiset” as apparent from the disjoint union of
sets and even basic operations on multisets. This leads us to fundamental questions in set theory,
first by looking at a rather simple everyday example and then by briefly explaining the philo-
sophical background of those mathematicians who formulated modern set theory about 150 years
ago. Our arguments may be controversial. However, they seem to lead to a formulation of set
theory which Cantor, Dedekind, and many others had in mind – and which was not doubted
until multisets came around.3 The point of contention is, whether there can be two truly dis-
tinguishable objects in the world. We agree with Leibniz’s postulate that this is impossible, but
also suggest a pragmatic approach introducing world views, by which distinguishability is rela-
tivized. Mathematically, this suggests using families instead of multisets. We revisit the problems
of multisets with families instead and find that, as in set theory, the concept of a reference fam-
ily is missing. With this added, all the problems of multiset theory seem to go away. But we now
deal with families, not multisets. However, a very simple mapping carries one from families to
multisets.

There is a huge amount of literature on multisets and their relatives. Among the papers con-
cerning multisets and their relatives which we know of, we cite only those which are directly
relevant to the problem at hand.

We are indebted to the work by Blizard (1986, 1989, 1991, 1993), Singh (1994), Singh and
Isah (2013), Singh and Singh (2008), Singh et al. (2002, 2008, 2011, 2013), and Ibrahim (2010),
and especially the unpublished paper by Singh et al. (2016) who did much of the groundwork.
We hope that the fundamental, but as yet unpublished paper (Singh et al. 2016) gets published
soon because it contains important ideas not found in such a comprehensive coverage anywhere
else.

2. Notation and Some Basic Notions
By N we denote the set of positive integers; N0 =N∪ {0}. For m, n ∈N0, the difference m−. n is
defined asm− n form≥ n and as 0 form< n.

We use standard set-theoretic notation. In particular, the power set of a set S is denoted by
PS. When S is a subset of a set X, the complement of S with respect to X is the set CX(S)= X \ S;
in certain cases, when the superset is not specified, but implied, we may write C(S) instead. The
disjoint union of two sets S and T is denoted by S∪. T. For any objects x and y, 〈x, y〉 denotes
the ordered pair composed of x and y. For a set S, |S| is the cardinality of S. For a set S and an
equivalence relation � on it, X/� is the set of equivalence classes modulo � and, for s ∈ S, s/�
is the equivalence class of s. Consider two sets S and T. Then S× T = {〈s, t〉 | s ∈ S, t ∈ T} is the
direct (or Cartesian) product of S and T. A relation f from S to T is a subset of S× T. For a
relation f and an element s ∈ S, f (s)= {t | t ∈ T, 〈s, t〉 ∈ f }. The inverse of a relation f is the set
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f−1 = {〈t, s〉 | t ∈ T, s ∈ S, 〈s, t〉 ∈ f }. Thus, for t ∈ T, f−1(t)= {s | s ∈ S, 〈s, t〉 ∈ f }. A relation f is a
mapping, if f (s) is a singleton set for all s ∈ S. It is an injective mapping, if also f−1 is a mapping.

Consider a mapping f : S→ T. For a set U and a mapping g : T →U, the composite mapping
g ◦ f is the mapping h : S→U defined by h(s)= g( f (s)) for all s ∈ S.

Here and in the sequel (Jürgensen 2017), whenever it is convenient and not compromising
accuracy, we shall not distinguish notationally between singleton sets and their elements. Thus,
if f as above is not just a relation, but even a mapping, f (s)= {t} would be written as f (s)= t. In
some cases, it would be preferable to write all mappings from the right, that is, sf instead of f (s).
We chose the latter for consistency and readability.

In addition to the usual assumptions for set theory, we postulate that there is a universe.

Definition 1 (Grothendieck and Verdier 1972).A universe is a non-empty set U with the following
properties:

1. if x ∈U and y ∈ x then y ∈U;
2. if x, y ∈U then also {x, y} ∈U;
3. if x ∈U then also Px ∈U;
4. if {xα}α∈I is a family such that I ∈U and xα ∈U for all α ∈ I then

⋃
α∈I xα ∈U.

The elements ofU are called U-sets; the subsets ofU are calledU-classes. Throughout this article,
we assume a fixed universeU withN0 ∈U and with all sets under consideration being elements of
this universe; hence, by “set” we mean “U-set.” Further notation and notions will be introduced
as needed.

3. Multisets and Their Properties
Before we continue, we need a definition of a multiset in the usual sense and a review of opera-
tions on and properties of multisets. Nearly, everything in this section is folklore; we only provide
specific references to help the reader with the not-so-common items.

Definition 2 (Multiset). Let X be a set. Amultiset over X is a mapping μ : X →N0.

Typically, a multiset μ is described by the graph of μ, {〈x,μ(x)〉 | x ∈ X}, where μ(x) is called
the multiplicity4 of x. Let us give this set a name, say Mμ. Intuitively, μ(x) says, how often
x ∈ X appears in Mμ. Occasionally, we write (X,μ) instead of just Mμ when the set X needs to
be specified.

A subset S of X can be viewed as a multiset with the characteristic function

χS : X → {0, 1} : x �→
{
1, if x ∈ S,
0, otherwise,

defining the multiplicities. On the other hand, the carrier of a multiset Mμ over X is the set {x |
x ∈ X,μ(x)> 0}.

To distinguish between the usual relations or operations on sets and those on multisets, we use
“ms” as an indicator. Further such distinctions will be introduced as needed.

The idea of x appearing in the multisetMμ with multiplicity μ(x) is that there are μ(x) occur-
rences of x in Mμ. Sometimes, we need to speak about specific occurrences of x. For lack of a
better term, we call them (identical) copies of x. This is slightly misleading as the copies of an
object x would be distinguishable while, in a multiset, the identical object x occurs μ(x) times.
We discuss the subtleties of the notion of distinguishability and of related notions in Section 10
below.
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Definition 3 (Multiset relations). Let Mμ be a multiset over X.

1. Let x ∈ X. Then x ∈msMμ if and only if μ(x)> 0.
2. Let Mν be a multiset over X. Then Mν ⊆msMμ if and only if ν(x)≤ μ(x) for all x ∈ X.

IfMν ⊆msMμ, thenMν is said to be a submultiset ofMμ. Some subtleties regarding the definition
of ⊆ms, not relevant to the issues addressed in the present paper, are discussed in Singh and Singh
(2008).

Definition 4 (Multiset properties). Let Mμ be a multiset over X.

1. Mμ is said to be empty, Mμ = ∅ms, if and only if μ(x)= 0 for all x ∈ X.

As mentioned, multiplicities of 0 are sometimes confusing. Let (X,μ) and (X′,μ′) be multi-
sets such that X ⊆ X′, and μ′(x)= μ(x) for x ∈ X and μ′(x)= 0 otherwise. These two multisets
are different objects.5 Moreover, not even (X,μ)⊆ms (X′,μ′) holds. On the other hand, the two
multisets seem to be the same. The elements of multiplicity 0 are causing this problem.With some
considerable technical effort, this issue can be resolved in a formally clean way by considering
two multisets as equivalent if and only if they are equal when the elements with multiplicity 0
are ignored. For this paper, we choose to evade this problem by assuming that the set X is large
enough.

Definition 5 (Basic multiset operations). Let Mμ and Mν be multisets over X.

1. Mμ ∩msMν is the multiset Mκ with κ(x)=min {μ(x), ν(x)} for all x ∈ X.
2. Mμ ∪msMν is the multiset Mκ with κ(x)=max {μ(x), ν(x)} for all x ∈ X.
3. Mμ ∪+ Mν is the multiset Mκ with κ(x)= μ(x)+ ν(x)

The operation ∩ms is called multiset intersection. The operations ∪ms and ∪+ are called multiset
union.

Observation 6 (Properties of the basic multiset relations and operations; Knuth 1997, vol. 2,
pp. 694–695). Let x ∈ X and let Mμ and Mν be multisets over X. The following statements hold
true.

1. If x ∈msMμ andMμ ⊆msMν , then x ∈msMν .
2. The relation ⊆ms is a partial order on the set of all multisets over X.
3. Mμ ⊆msMν if and only ifMμ ∩msMν =Mμ.
4. Mμ ⊆msMν if and only ifMμ ∪msMν =Mν .
5. The operations ∩ms, ∪ms, and ∪+ are commutative, associative, and distributive.
6. The operations ∩ms and ∪ms are idempotent.
7. Absorption:

(a) Mμ ∪ms (Mμ ∩msMν)=Mμ;
(b) Mμ ∩ms (Mμ ∪msMν)=Mμ;
(c) Mμ ∩ms (Mμ ∪+ Mν)=Mμ;
(d) Mμ ∪ms (Mμ ∪+ Mν)=Mμ ∪+ Mν .

8. ∅ms ∪+ Mμ = ∅ms ∪msMμ =Mμ.
9. ∅ms ∩msMμ = ∅ms.
10. Mμ ∪+ Mν = (Mμ ∪msMν)∪+ (Mμ ∩msMν).
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Definition 7 (Derived multiset operations). Let Mμ and Mν be multisets over X.

1. The multiset difference Mμ \msMν is the multiset Mκ with κ(x)= μ(x)−. ν(x) for all x ∈ X.
2. The multiset symmetric difference Mμ �msMν is the multiset Mκ with κ(x)= |μ(x)− ν(x)|

for all x ∈ X.

Further operations were introduced as needed for specific applications. The operations of \ms
and �ms are already close to the general concept of complementation, which motivated our
investigation originally.

4. The General Idea of a Multiset and Expectations
Without doubt, the concept of multisets defined by multiplicities is most useful and has many
applications, in particular as a conceptually simplifying tool in many areas (see, e.g., Bogatiryova
2011; Red’ko et al. 2015; Singh et al. 2007, 2016).

The mathematical theory of multisets defined by multiplicities alone is clumsy and has many
formal or intuitive inconsistencies, which we shall demonstrate in the sequel. Blizard’s (1986, 1989)
axiomatization cleaned up much of the elementary mess, but failed to exhibit a manageable alge-
braic structure of the class ofmultisets, for instance in the form of a category. In our opinion, this is
not a failure of Blizard’s axiomatics, but an inherent problem of multisets defined bymultiplicities,
and that it cannot be resolved at that level.

Alternative definitions of multisets exist (see, e.g., Monro 1987) which lead to a cleaner
mathematical theory. The cost is that one loses some of the immediate intuitive applicability,
which makes multisets in their original definition attractive.

With this in mind, we propose to use the concept of families instead of that of multisets. This
does not distract from the applications, where the original definition might fit far better, but also
establishes a mathematical framework in which to deal with multisets uniformly and consistently.

5. The Category of Multisets
Do multisets form a category? The answer should be simple, but is not. It depends on the precise
definition of a multiset. The key is the definition of morphisms between multisets. Morphisms
need to have intuitively justified properties and also meet the formal criteria for a category. Several
types of proposals exist. Some modify the definition of multisets, unsatisfactory to multiset theory
for this very reason. Others stay close to the definition of multisets through multiplicities, but
do not capture the intuitive idea. Others, while intuitively convincing, break down because the
composition of such morphisms is not a morphism in the same sense.

One of the universally accepted assumptions about multiset morphisms6 states

Convention 8 Let Mμ = (X,μ) and Mν = (Y , ν) be multisets and let f be a morphism of Mμ into
Mν . Then, for all x ∈ X, if x′ is a copy of x then f (x′) is a copy of f (x).

The word “copy” is used in a metaphorical sense as explained above. Convention 8 implies
that,7 in the worst case, ν( f (x))≥ μ(x). Suppose there is also an element x̄ ∈ X such that f (x̄) is a
copy of f (x). Then, for each copy x̄′ of x̄, f (x̄′) is also a copy of f (x). Hence, also ν( f (x))≥ μ(x̄)
in the worst case. In general, for all x ∈ X,

ν( f (x))≥
∑
x̄∈X

f (x̄)=f (x)

μ(x̄)

is a tight, but unrealistic, worst-case bound. The bound, if it holds for every x implies a kind
of injectivity of f . However, for morphisms in general, one may encounter more complex cases
where such a simple numerical bound does not suffice. We illustrate the situation by an example.
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Example 9 Consider two multisetsMμ = (X,μ) andMν = (Y , ν) as follows:

1. X = {a, b, c} with multiplicities 2, 2, and 3, respectively.
2. Y = {A, B} with multiplicities 1 and 4.

Let f be the mapping of X into Y such that a �→A, b �→ B, and c �→ B. There is no problem with
a as both its occurrences must map to the single occurrence of A. Suppose the two occurrences of
bmap onto two occurrences of B, and that the three occurrences of cmap onto three occurrences
of B. As there are only four occurrences of B, there must be occurrences of b and c which have the
same image.

The example shows that defining morphisms of multisets just on the basis of multiplicities is a
very difficult task because there is no general connection between the multiplicities in the domain
and those in the codomain. One can take this as another strong argument in favor of our claim
that to define multisets, the family-based approach is preferable to the one based on multiplicities.

As mentioned, there have been many attempts to define morphisms of multisets. Some, includ-
ing three of ours in drafts of the present paper, all convincing, turned out to be wrong after some
careful examination.

Simple and at the first glance convincing is the approach taken by Singh et al. (2008) and
Ibrahim (2010): a multiset morphism (function) is defined to be a mapping between the carri-
ers without any further restrictions on the multiplicities. This definition respects Convention 8
above. There is no problem with the composition of morphisms. However, it is not convincing
intuitively as it makes no reference to multiplicities. Indeed, every such morphism maps every
multiset into every multiset with the appropriate carriers.

Monro (1987) defines a multiset as pair (	, σ ) such that 	 is a set and σ is an equivalence
relation8 on 	. This definition is unorthodox as it does not refer to cardinal numbers. It is more
akin to our proposal in which we use families instead of multisets.9 The multiplicities are, how-
ever, a key ingredient in the theory of multisets, and without them, an important property of
multisets is missed. In Monro’s sense, a morphism of a multiset (	, σ ) to a multiset (T, τ ) is a
mapping f : 	 → T such that (x, x′) ∈ σ implies

(
f (x), f (x′)

) ∈ τ . Monro’s definition is consistent
with Convention 8. Singh et al. (2013) and Singh and Isah (2013) also use Monro’s definition.

Observation 10 (Monro’s (1987) category of multisets). Themultisets in the sense ofMonro form
a category.

Even though Monro’s definition does not rely on multiplicities, we use it as a yardstick against
which to compare other definitions, as it seems to capture the intended intuition precisely.

Another type of definition of the category of multisets is proposed by Syropoulos (2001, 2003).
That approach is rather cryptic at first glance. In essence, it is equivalent to Monro’s approach,
but needs a considerable amount of mathematical machinery to establish the definition. To prove
its equivalence to Monro’s definition requires even more of that. The mathematical machinery
invoked and needed in this case seems to be overkill for “the working mathematician.”

For the purpose of the present paper, we only need to establish that the multisets form
something akin to a category. We do so using Monro’s definition, well knowing that this is unsat-
isfactory. We leave a detailed analysis of the proposed definition of morphisms via Cartesian
products and relations to a successor paper (Jürgensen 2017) in which the necessary groundwork
is laid.

Monro (1987) also introduces the concept ofmultinumber. These are the multisets in the usual
sense. He writes: “The concept of multinumber is related to that of multiset in the same way that
the concept of (cardinal) number is related to the ordinary concept of set. I think that the concept
of multiset is more fundamental than that of multinumber, but the concept of multinumber may
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be the more useful of the two. In any event the concepts should be distinguished” (Monro 1987,
p. 176). He defines the obvious mapping of his multisets to his multinumbers.

Observation 11 (Mapping of multisets in the sense of Monro to usual multisets). The following
mapping �M→ms establishes the natural connection between multisets in the sense of Monro and
multisets in the usual sense.

Let (	, σ ) be a multiset in the sense of Monro. Then �M→ms(	, σ )= (	/σ ,μ) where
μ(x/σ )= |x/σ | for all x ∈ 	.

The mapping �M→ms is just a mapping, not a functor, as we have no acceptable definition of
multiset morphisms. For the purpose of this paper, this is not essential. It just shows that the hydra
grows ever more heads.

6. Disjoint Union of Sets
The disjoint union of two sets seems to result in a multiset. Given sets R and S, subsets of X, to
form the disjoint union R∪. S of R and S one takes two disjoint sets

R̃= {xR | x ∈ R} and S̃= {xS | x ∈ S},
such that there are bijective mappings

ιR : R̃→ R : xR �→ x and ιS : S̃→ S : xS �→ x.

Then R∪. S is defined as R̃∪ S̃. Thus, the disjoint union is not unique, but is defined only up to
the mappings ιR and ιS. Technically, the disjoint union can be considered as the union of disjoint
sets of names of objects. Intuitively, however, one thinks of R∪. S as a union of R and S in which
those elements, which occur in both R and S, appear twice. In this sense, R∪. S is a multiset given
by κ : X →N0 with

κ(x)=

⎧⎪⎨
⎪⎩
0, if x /∈ R∪ S,
1, if x ∈ (R∪ S) \ (R∩ S),
2, if x ∈ R∩ S.

Mathematically, the disjoint union R∪. S and the corresponding multiset Mκ are not the same
objects. Considering the complement of R∪. S reveals one of the key problems.

For the complement of R∪. S, the set with respect to which the complement is taken could
be X ∪. X. To resolve the ambiguities involved, one would proceed as follows. Let XR and XS be
disjoint sets such that R̃⊆ XR, S̃⊆ XS, and |XR| = |XS| = |X|. The typical elements of XR and XS
are called xR and xS, respectively, where x ∈ X. Extend ιR and ιS to bijections

ιR : XR → X : xR �→ x and ιS : XS → X : xS �→ x.

One can then define X ∪. X = XR ∪ XS and thus the complement of R∪. S is (X ∪. X) \ (R∪. S)=
(XR ∪ XS) \ (R̃∪ S̃).

The multiset counterpart of this construction looks as follows. Consider the multiset Mλ over
X with λ(x)= 2 for all x ∈ X. With Mκ being the multiset corresponding to R∪. S, the multiset
Mλ \msMκ corresponds to the complement of R∪. S.

Other definitions of the complement of R∪. S are equally convincing. In some contexts, it could
even make sense to define the complement of R∪. S to be X \ (R∪ S).

We learn from the example of disjoint unions that intuition about even some of the simplest
constructions in set theory can lead to unexpected complications when applied to multisets.
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Table 1. Partial student lists as multisets: “mlt.” means “multiplicity”; the symbols ∩true and ∪true mean the usual
intersection and union, respectively, when the actual students, not just their first names are considered

Form 1 Form 2 operation
Name mlt. Name mlt. ∩ms ∪ms ∪+ ∩true ∪true
Peter 3 Peter 1 1 3 4
s1, s2, s3 s4 0 4
Susan 2 Susan 2 2 2 4
s5, s6 s5, s7 1 3
Jonas 2 Jonas 1 1 2 3
s8, s9 s8 1 2

7. How to Plan a School Trip – More Problems
Mrs. T teaches two forms10 at her school. She refers to the students by first names. In Form 1,
there are three students named Peter, two named Susan, and two named Jonas; in Form 2, there is
one Peter, one Jonas, and there are two students named Susan. She is planning a joint school trip
to a theatre for the two forms and needs to determine how many tickets to reserve. There may be
other students in the forms whom we ignore for the sake of the argument. The list of students and
some further information are shown in Table 1.

If Mrs. T were not such a good teacher, this would be the only information available to her.
Multiset theory would suggest that she buy 11 tickets to be safe – she might hope to sell spare ones
at the entrance? Or should she buy seven tickets as suggested by ∪ms?

Fortunately, Mrs. T not only knows her students well (she also knows mathematics): she can
distinguish them as individuals, and she also has up-to-date lists with names and student num-
bers. The student numbers are shown in the table as sn, and so are the sizes of the resulting
“true” intersections and unions. With their help, the teacher’s problem is solved: she purchases
nine tickets.

Obviously, the true number for the intersection is between 0 and that of ∩ms, and that for the
union is between that of ∪ms and ∪+ .

This, however, is not that important. Mrs. T’s dilemma is rooted in the very foundations of set
theory: Is each of her forms a set or a multiset? In the former case, there are students in her forms
who are distinguishable despite the fact that their first names are the same; hence, intersection and
union are those of sets; this results in correct numbers. Otherwise, the students with the same first
names are completely indistinguishable, and the multiset computations seem useless.11

Mrs. T’s dilemma is far from being new. What is a set? Does she deal with sets or with some
other kind of mathematical entity? Her dilemma can be found in several areas of mathematics,
most prominently combinatorics and probability theory (explained further below), where the
problem is dealt with pragmatically by relying on no-rigorous language. The key issue seems to be
the concept of distinguishability of objects. We discuss this concept in detail and put it into some
historical context below. In the next section, we consider the problems of the orangesmiraculously
changing their identities and of the disappearing balls.

We repeat an earlier quotation:Amultiset is a collection of objects (called elements) in which ele-
ments are allowed to repeat (see, e.g., Blizard 1991). The distinction between objects and elements
may become important. Are objects the same as elements as Blizard implies?

8. How to Distribute Oranges
Can a set contain repeated elements? A naive answer would be yes – even in mathematical
contexts. Doubts arise when mathematical theory spoils the intuition.
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We use an example adapted from Blizard (1986) to show how paradoxes can arise in multiset
theory.

Take a box of 25 oranges to be distributed “fairly” among 5 children. The oranges form a set,
do not they? What we mean by “fairly” is agreed upon by the children. They adopt the following
strategy:

Arrange the oranges in random order along a single line. Arrange the children in random
order in a line. The first child in the line takes the first orange in the line and moves to the
end of the children’s line to wait for his/her next pick. The next child takes the next orange,
and so on.

Whether this strategy is truly fair is irrelevant. Each child i receives a subset Si containing 5 oranges
of the original set S of 25 oranges. Being just sets of oranges, these subsets of five oranges should
be equal by the definition of multisets, but obviously they are disjoint. While no distinction of the
elements in the original set of oranges is made, we distinguish them one by one when they are
distributed. A miracle!

The example of distributing orangesmay look too unmathematical to the reader’s taste. Replace
oranges, apples, and whichever fruit you like by identically shaped balls of various colors in a
probabilistic urn experiment. The problem persists, and another one is added.12

As for the urn experiments, one kind of them requires that one takes balls out of the urn and
then returns them back to the urn.13 Remember that these balls are indistinguishable originally.
Once taken out of the urn, are they suddenly distinguishable from the others? Once returned, did
the balls lose their individualities again? That is, how would returning the balls replenish the urn,
if the set of balls were considered as a multiset. We hope the following example helps to clarify
what the problem is: suppose the urn contains 10 blue balls. When considered in multiset theory,
these balls are indistinguishable (see Blizard 1986). Now remove three of them. There are now
twomultisets of seven and three balls each, all indistinguishable. Now put the three balls back into
the urn. How many blue balls are in the urn? Obviously, max (7, 3)= 7, not 1014. If all the balls
were distinguishable already initially, then set theory would deal with this issue correctly. If they
were not, then they would have become distinguishable and indistinguishable again during the
experiment, a rather unconvincing idea. We discuss this issue further below in the context of the
historical concept of identity.

The urn paradigm and similar ones are predominantly used in combinatorics and probabil-
ity theory. These theories have developed their own terminologies, not resorting to multisets.
Whether they could gain frommultiset theory is a matter of speculation. We should argue “no,” as
the present simple tools of sets and mappings seem to suffice for economical and mathematically
elegant presentations.

Many puzzling situations arise, mainly concerning the distinguishability or indistinguishability
of elements in a set. To resolve these problems, we examine the concepts meant by the terms of
set and multiset, the concept of distinguishability, and the terms of object and element. We argue
that, as a basic concept, that of multisets is redundant and that the standard theory of sets and
functions suffices, and that multisets can be treated elegantly and adequately as images of families
under a very simple mapping.

9. Generalized Multisets
Several generalizations of the concept ofmultiset have been proposed (see Blizard 1986): to allow
for negative multiplicities, to permit real-valued multiplicities similar to fuzzy sets, or to allow for
arbitrary cardinal numbers as multiplicities. The latter is the most interesting case in our context.
Thus, a generalized multiset is a set with multiplicities which can be any cardinal numbers in the
given universe U. In the sequel, we use the following definition.
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Convention 12 (Generalized multiset). A multiset in U is a pair (X,μ) such that X is a set in U
and μ is a mapping of X into the set of cardinal numbers of sets in U.

This definition coincides with the usual one for finite cardinalities. Unless stated otherwise, by
multiset, we mean a generalized multiset in the sequel.

10. History
The history of multisets is described in Blizard’s thesis and subsequent publications of his
papers (Blizard 1986, 1989, 1991, 1993). In our view, the most important contribution of Blizard’s
work is to clarify the focus of multiset theory and establishing an axiomatic framework for mul-
tisets which allows one to assess the comparison with other related theories. Some important
additional historical remarks by Singh are found in Singh (1994). In particular, Singh refers to
publications by Brink (1988) and Hailperin (1986) regarding the general principles of multiset
theory and to Angelelli (1965) regarding Leibniz’s theory (see below). These historical references
are interesting and may serve as motivations. They do not lend exceptional credence to any one
opinion.

When reviewing the history of multisets, we are quite aware of the fact that there have been
many similar ideas over the centuries. We focus on the philosophical ideas which would have
likely influenced the thinking of leading mathematicians of the time when the foundations of set
theory were laid. Leibniz and Kant dominated the discussion and it is unimaginable that leading
mathematicians of the time would not have been familiar with those ideas.

Multisets can be represented in quite a few different ways (e.g., Blizard 1986; Bogatiryova
2011; Eilenberg 1974; Monro 1987; Singh et al. 2016; Tella and Daniel 2011; Wildberger 2003).
The introduction of multisets as a mathematical concept worth studying on its own is usually
attributed to Knuth (1997, vol. 2, p. 483 and pp. 694–695); in his brief notes, originally of 1969, he
mentions, without references, that the idea has been around for some time. He also recalls some of
the discussions he had regarding the name for the concept.15 The origin of the concept of multiset
may never be determined, even the origin of names for this concept is unclear (see, e.g., Jena et al.
2001 and Knuth 1997, vol. 2). The concept, indirectly, had a key role in the foundations of set
theory; the name for it evolved independently in various branches of science. For our purposes,
the detailed history is irrelevant. However, some historical facts could help us with understanding
the intended meaning of set-theoretic terminology.

The choice of the formalism to represent multisets is often accidental, sometimes also based
on convenience. A notable exception is Eilenberg’s representation of multiplicities using formal
power series with coefficients inN0 or, more generally, in some suitable semiring (Eilenberg 1974,
Chapter VI). Eilenberg’s account of 1974 abstracts from techniques already widely in use at the
time in the theories of automata, formal languages, codes, and combinatorics.16

The two types of problems concerning the concept of multiset illustrated so far have different
roots and, thus, need to be addressed differently. The complementation problem is mathematical
in nature and will be addressed at that level. The problem exemplified by students, oranges, or
balls in an urn is philosophical: Are there indistinguishable nonidentical objects? Or, what is a set?

The discussion as to what constitutes an individual object17 has been ongoing for centuries.18
An important principle is expressed in the so-called Leibniz’ law, the principium identitatis indis-
cernibilium,19 as stated in his note starting with primæ veritates20 (Leibniz 1961, pp. 519–520):
Sequitur etiam hinc non dari posse 〈in natura〉 duas res singulares solo numero differentes: utique
enim oportet rationem reddi posse cur [dicantur] 〈sint〉 diversae, quae ex aliqua in ipsis differentia
petenda est.21 Objects are identical if and only if, all their properties are the same, in symbols:

∀x∀y
((∀P(P(x)↔ P(y)

) ↔ x= y
)
,
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where P is a unary predicate symbol. Indistinguishability is absolute, not just what we may
perceive. Leibniz explains “indistinguishability” further: Notio completa seu perfecta substantiæ
singularis involvit omnia eius prædicata præterita, præsentia ac futura. Utique enim prædicatum
futurum esse futurum jam nunc verum est, itaque in rei notione continetur.22 Thus, the oranges
to be distributed are distinct – fortunately, as the children might feel cheated otherwise – for the
simple reason that the oranges can be put in a line or even more simply grabbed. Similarly, 10 blue
balls in an urn are distinct; otherwise, taking three out and returning them would leave us with
seven blue balls in the urn.

Blizard’s (1986) notion of multiset hinges on the definition of distinguishability. If one accepts
Leibniz’s definition, then Blizard’s example of oranges (Blizard 1986, pp. 4–5) is wrong. Evenmuch
of his discussion of particle physics becomes dubious under this assumption. We as humans at
this time may not be able to distinguish particles by measurements. But with better equipment
or better insight, we may. For instance, a single particle may not be at exactly the same spot at
exactly the same time in exactly the same condition. Leibniz postulates absolute distinguishability,
possibly invoking God.Wemay relativize these ideas to accommodate different views of the world
in a well-defined manner.

Of course, Leibniz’s view is not the only one possible, and we shall revisit this point.
Indistinguishability, as Leibniz and the philosophical tradition conceived it, was absolute. One
can safely assume that subsequent philosophers and mathematicians, like Cantor and Dedekind,
while acquainted with also Kant and Hegel grew up in this tradition. On this basis, it seems likely
that much of the foundational work on set theory was influenced by these ideas.

Cantor defines a set (Menge) as follows: Unter einer “Mannigfaltigkeit” oder “Menge” verstehe
ich jedoch allgemein jedes Viele, welches sich als Eines denken läßt, d.h. jeden Inbegriff bestimmter
Elemente, welcher durch ein Gesetz zu einem Ganzen verbunden werden kann, und ich glaube hier-
mit etwas zu definieren, was verwandt ist mit dem Platonischen e>̃idos oder >id’ea, wie auch mit
dem, was Platon in seinem Dialoge “Philebos oder das höchste Gut” mikt’on nennt (Cantor 1883,
Section 1, footnote; Zermelo 1962, p. 204).23 Clearly, Cantor accepts that an object can appear
multiple times in a set, but as distinct elements. This is not in conflict with Leibniz’s law. Objects,
like oranges are distinguishable simply by the way they can be treated. Each “instance” of such an
object then can be an element of the set. Hence, to turn this into a multiset, one would require
some trivial counting which was an issue of no interest at the time.

Also Dedekind, often cited as implicitly proposing something like multisets, ought to be read
within this broader philosophical context (Dedekind 1888, p. 172, Schlußbemerkung). In these
final remarks, he considers the cardinality of a set 	 and that of a set of equivalence classes on
that set. The cardinality of the equivalence class of x ∈ 	 is the Häufigkeitszahl (multiplicity) of
x. This looks like Monro’s definition. Given that this is a speculative afterthought to Dedekind’s
paper and that everywhere else in that paper the elements of a set are assumed to be distinct, we
doubt that this paragraph merits to be treated as an important modern contribution to multiset
theory. In essence, for Dedekind too the 25 oranges would form a set.

Undeniably, there are problems with the idea of distinguishability. Consider the two roots of
the polynomial x2 + 2x+ 1. Do they form a set? If so what distinguishes them? Or do they form a
multiset? In normal mathematical language, we speak about the set of roots of a polynomial and
their respective multiplicities. By splitting hairs, one can probably find a distinction between the
roots, for instance, a certain algorithm finds one before the other one. Knuth (1997) mentions the
roots of a polynomial or the prime factors of a positive integer as examples of true multisets. Many
of the standard textbooks will refer to these as just as sets, and most likely mention multiplicities,
but not take the next step to call them multisets. The existing terminology suffices as no critical
set-theoretic operations are applied to such sets.

The point of this section on the history was to establish that the accepted concept of a set con-
sisting of nonidentical elements in no way contradicts the presence of repetitions. Difficulties
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arise, when distinguishability seems to become unnatural as in the case of the roots of a
polynomial.

Historically, repeated elements were just distinct objects. Hence, the concept of a set sufficed.
Contexts, however, may change the view. In one view of the world, wemay consider certain objects
as distinguishable, in another one as indistinguishable – we cannot be God all the time. A rela-
tivization to world views seems to require more subtle tools than the simple transition from sets
to multisets.

We propose to replace the concept ofmultiset by that of family. The transition from families to
multisets is simple, and families are mathematically far better behaved than multisets. Moreover,
using families, one can easily introduce different world views and, thus, relativize the notion of
indistinguishability.

11. Families and the School Trip Again
Undeniably, as the students in Mrs. T’s two forms are distinguishable, the two forms are sets, this
being obscured by the fact that the names of some students are indistinguishable. Thus, to deal
with the teacher’s dilemma, one has to distinguish, carefully, between objects and their names.
The concept of name can be replaced by something like classification criterion or sort or, simply,
equivalence class. For now, we assume that the elements of a set are distinguishable in the strict
sense of Leibniz. Later, we indicate how this condition can be relativized to restricted world views
so that “God” need not be invoked in every single definition of a set. From here on, we use the
terms set, element, object, and name with the following understanding.

Convention 13 (Objects). Objects are parts of a “world” and, by the criteria valid in that world,
they are distinguishable.

Convention 14 (Sets, objects, elements). Only objects of some fixed “world” can be elements
of a set.

Note that it says “set,” not “multiset” in the convention.
Thus, with respect to the world under consideration, the elements of a set are distinguishable.

A set cannot contain the same element more than once. It may, however, contain several objects
which look the same under another view of the world. This idea is captured in part by the concept
of name and explained in detail further below.

Convention 15 (Names). Let X and N be sets. A naming is a binary relation ν of X into N. Then
ν(x) is the set of names of x ∈ X, and ν−1(n) is the set of x ∈ X having the name n.

These conventions leave open what we mean by world. As a default, we assume Leibniz’s ideal
view. This can be replaced, however, by restricted world views. Thus, the students in Mrs. T’s
two forms are elements of two sets, and so are their first names. In a set, one cannot have repeated
objects as elements. However, a set can be viewed in different ways as determined by the respective
world under consideration.

Using a naming relation ν can have several effects including the following ones:

1. If ν is an injective partial mapping of X into N, then one can identify the names in ν(X)
with the objects in ν−1(ν(X)).

2. If ν is a partial mapping of X into N, then every element of the domain of ν has a name,
and there could be multiple objects with the same name.

The latter case is the more interesting one in the present context. Each24 object in X has a name
attached to it. This is the scenario of Mrs. T’s forms. Therefore, to model Mrs. T’s situation in
which she works with first names, but also relies on student numbers, we explore the idea of using
(mathematical) families.
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Abstractly, we have a set 	, a set X, and a mapping σ : 	 → X. For Mrs. T, the set 	 might be
the set of student numbers she has memorized, X could be the set of all possible first names, and
σ (x) would be the first name of student x ∈ 	. In this way, a form of Mrs. T would be treated as a
family. For example, 	 = {s1, . . . , s9}, {Peter, Susan, Jonas} ⊆ X, and

σ (x)=

⎧⎪⎨
⎪⎩
Peter, for x ∈ {s1, . . . , s4},
Susan, for x ∈ {s5, . . . , s7},
Jonas, for x ∈ {s8, s9}.

This mapping captures both of her forms and is deceivingly simple.
Pursuing this idea, we provide a formal definition of some concepts concerning families25 and

show that Mrs. T could still be out of luck.

Definition 16 (Family). A family (over X) is a triple F = (	, X, σ ) such that 	 and X are sets and
σ : 	 → X is a mapping.

Let FX be the class of families over X for a fixed set X.
Given a family F, the set 	 is usually called the index set, and σ is called the index mapping.

Every family defines a multiset over X such that the multiplicity of x ∈ X is equal to the cardinality
of the pre-image σ−1(x) of x under σ . This is not quite true as that pre-image could be infinite,
while multiplicities of elements of multisets are required to be finite.26

In our context, the importance of the roles of the components of a family are somehow inverted:
the set	 consists of the “real” objects of the world, and the function σ gives “names” in X to them.
Thus, in the school example, 	 might be the set of students in the school district and X might be
the set of their first names. This idea is explained further in our discussion of worlds and world
views below.

We now consider elementary properties of and operations on families. We indicate that we
work with families rather than sets or multisets by the superscript “f.”

Definition 17 Let F = (	, X, σ ) be a family. For x ∈ X, we say that x is an element of F, x ∈f F, if
and only if σ−1(x) �= ∅.

Definition 18 Let X be a set, and let F1 = (	1, X, σ1) and F2 = (	2, X, σ2) be two families over X.
F1 is a subfamily of F2, F1 ⊆f F2, if and only if 	1 ⊆ 	2 and σ1 is the restriction of σ2 to 	1.

Observation 19 Let X be a set, let x ∈ X and F1, F2 ∈ FX .

1. ⊆f is a partial order on FX .
2. x ∈f F1 ⊆f F2 implies x ∈f F2.
Let F1 and F2 be defined as in Definition 18. We now attempt to define the family theoretic

counterparts ∪f and ∩f of set union and set intersection, respectively. Let F = (	, X, σ ) denote
the family meant by F1 ∪f F2. It seems natural to assume that 	 = 	1 ∪ 	2 and to define σ as
follows:

σ (s)=

⎧⎪⎨
⎪⎩

σ1(s), if s ∈ 	1 \ 	2,
σ2(s), if s ∈ 	2 \ 	1,
?, if s ∈ 	1 ∩ 	2,

for s ∈ 	. The undefined case can be removed by assuming that the restrictions of σ1 and σ2
to the intersection 	1 ∩ 	2 are the same. A similar problem arises for the family intersection
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∩f and related operations. But this is unsatisfactory (another head of the hydra!) as union and
intersection now are only partial operations. Moreover, we still do not have a convincing answer
to the complementation problem.

In the case of the example of teacher Mrs. T, the index mappings for the two forms coincide
and her current problem is solved. To solve the problem in general terms, we are still missing a
crucial idea.

12. Reference Families
In everyday language, when we speak about a set S, we do not say what is outside S. For example,
when we speak about the rodents in Ontario, it is not clear what would be included in the comple-
ment: the rodents outside Ontario? the animals other than rodents? the bridges in Ontario? etc.
Context, colloquial conventions and other implicit means usually clarify what the complement is.
Implicitly, the set S is often considered as a subset of a “universal,” better, a “reference” set R for
the current discourse.

Mathematical terminology, while attempting to be precise, is often just as ambiguous. Rarely,
when talking about some set, is the reference set defined, simply because there is no need for it.
Often the reference set is implicit. Certainly, to define complementation of sets, the reference set
must be identified.

For families, this suggests the notion of a reference family in which all family operations are to
be interpreted. In set theory, the introduction of a reference set turns the set of all subsets of it
into a Boolean algebra; similarly, in the theory of families, when a reference family is present, the
subfamilies form a Boolean algebra. In contrast, in multiset theory, every attempt to find a decent
structure of the set of submultisets of a multiset failed.

Convention 20 (Reference family). A family is a reference family if every family under considera-
tion is a subfamily of it.

Let F = (	, X, σ ). Every subfamily Fi = (	i, X, σi) of F has the property that σi is the restriction
of σ to 	i with i= 1, 2. In particular, this means that σ1 and σ2 coincide on 	1 ∩ 	2. Hence we
define the analogues of the set-theoretic operations for families with respect to a given reference
family.

Definition 21 (Family operations). Let F = (	, X, σ ) be a family and, for i= 1, 2, let Fi =
(	i, X, σi) be subfamilies of F. The family operations of intersection, union, and complement are
defined as follows:

1. Union: The family F1 ∪f F2 = F3 = (	3, X, σ3) is given by 	3 = 	1 ∪ 	2 and σ3(s)= σ (s)
for s ∈ 	3.

2. Intersection: The family F1 ∩f F2 = F4 = (	4, X, σ4) is given by 	4 = 	1 ∩ 	2 and σ4(s)=
σ (s) for s ∈ 	4.

3. Complement: The family F5 = (	5, X, σ5)= F \f F1 is given by 	5 = 	 \ 	1 and σ5(s)=
σ (s) for s ∈ 	5.

Formally, it might be more convenient and lead to a more elegant theory if index mappings were
partial. We have not pursued this idea.

Proposition 22 (Boolean algebra of families). Under the operations of ∪f, ∩f, and \f, the set of
subfamilies of a family is a Boolean algebra.

Proof. The proof is an immediate consequence of the definitions. �
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If we were to replace multisets by families, this would be the end of the discussion, albeit quite
unsatisfactory. However, multisets are conceptually different from families. This connection still
needs to be explained.

13. Worlds
We left the terms of world and world view undefined so far. When Adam and Eve saw the animals,
plants, and many other things new to them27 in paradise, Eve started to name them, usually by
species.28 A dodo is called a “dodo” because it looks like a dodo. She even gave names to unique
objects.29

Abstracting from not just this, but many other examples, we suggest to treat worlds and world
views in the following simple way.30

Convention 23 (World). A world is a set.

Convention 24 (World view). Let 	 be a world. A (world) view of 	 is a family (	, X, σ ) where
X is a set and σ is a mapping of 	 into X.

These conventions may be insufficient in other contexts. For the purpose of clarifying the
notion ofmultiset, they seem to provide exactly the right tools.

Of course, according to the definition, a world view is just a family. But often terminology
matters to guide intuition.

We could go a step further by choosing representatives of the equivalence classes. This would
reduce the highly differentiated world of the paradise to the world Old MacDonald: he had a cow,
a pig, a duck, and quite a few other single animals, but not, fortunately, a crocodile. The song does
not say anything about a dodo or Niagara Falls either.

This is the kind of situation Mrs. T finds herself in. Her world is that of all her students
(distinguishable objects). The view available to her is that of students mapped to their first names.

14. The Category of Families and Its Relation to that of Multisets
Observation 25 (Category of Families). The class of families forms a category.

Proof. Consider two families F1 = (	1, X1, σ1) and F2 = (	2, X2, σ2). A morphism from F1 to F2
is a pair (ϕ, χ) of mappings ϕ : 	1 → 	2 and χ : X1 → X2 such that σ2(ϕ(s))= χ(σ1(s)) for all
s ∈ 	1. The rest is obvious. �

To achieve the transition from families to generalized multisets, one could either use the com-
position of the rather trivial functor from families to Monro’s multisets and from there on the
mapping tomultisets or one could go directly. These two approaches lead to superficially different,
but equivalent, results. To spare us the technicalities, we go the direct way.

Observation 26 (Mapping from families to multisets). The following mapping�f→ms establishes
the natural connection between families and multisets in the usual sense

Let (	, X, σ ) be a family.
Then �f→ms(	, X, σ )= (X,μ) where μ(x)= |σ−1(x)| for all x ∈ X.

The mapping �f→ms is just a mapping, not a functor, as we have no acceptable definition of
multiset morphisms.

15. Putting Things Together
Undeniably, the theory of (generalized) multisets provides useful tools for many applications
(see Bogatiryova 2011; Red’ko et al. 2015; Singh et al. 2007, 2016, for example). In many situations,
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however, multiplicities are inadequate for the problem at hand, as demonstrated by the example
of Mrs. T’s school trip. Moreover, there does not seem to exist an intuitively convincing way by
which to define the complement of a multiset. For example, take the multiset S consisting of one
occurrence of the symbols a and b each. How many occurrences of these symbols are in the com-
plement of S? None? Seven occurrences of a and two of b? Or, using generalized multisets, ℵ0
occurrences of a and ℵ1 occurrences of b?

We continue with Mrs. T’s dilemma in order to illustrate how the connection between families
and multisets works. Suppose that the set of distinct names of students at her school is X with
multiplicities μ. Let F = (	, X, σ ) be the corresponding family. Each form under Mrs. T’s care is
modeled by a subfamily of F. The complement of each such subfamily with respect to F determines
the complement of the multiset under consideration in the whole school’s student population.

We propose that families should be used instead of multisets: (1) the problems with the ana-
logues of the set-theoretic operations just go away; (2) one can control the arbitrariness of the
complementation operation in great detail; (3) the subfamilies of a family form a Boolean algebra;
(4) the transition from families to multisets is afforded by a simple mapping which forgets some
of the family structure.

One ought to admit that in some applications using families instead of multisets may make the
presentation unnecessarily complex. Choosing the most adequate tool for a given context should
never be contentious. Our proposal aims at clarifying what we really mean by “a set with repeated
elements.”

Why not use Monro’s multisets instead of families? After all, the two approaches seem to be
equivalent. Our main issue with Monro’s concept is that the elements of his multisets, the equiv-
alence classes, are anonymous, while in families they get names. The difference in the concepts is
evident from the mappings to the class of multisets.

After an examination of Blizard’s (1986) arguments and that of others, wemaintain that the def-
inition of set should remain unchanged. There is no set with repeated elements. We introduced
the notion of world view to deal with the fact, that distinct objects may seem to be indistinguish-
able. This should bridge the gap between an ideal world in the sense of Leibniz and that observable
by our limited capabilities. Again, families are the key concepts in this argument.

While we agree with Singh et al. (2016) completely that multisets are an important subject for
study in science, we suggest that the study of families might be more foundational: (1) it requires
fewer basic concepts in mathematics, only sets and mappings; (2) it does not need to deal with the
arithmetic of cardinal numbers; (3) the transition to multisets is trivial.

There are some examples where multisets seem to be the most adequate tools. Knuth (1997)
mentions the roots of polynomials as an example. They seem to be indistinguishable objects. If
x0 is a multiple root, one might argue that by some algorithm the occurrences are discovered in
some order. Does this make them distinguishable? We doubt it. But the mere fact that we could
put them into a table separately would make them distinguishable in Leibniz’s sense. Clearly, in
this case, the concept of world views helps.

In summary, we claim that there is no need for a notion ofmultisets as a new basic one. Those of
sets and mappings suffice, once combined into that of a family. Of course, this type of argument
is nonmathematical in nature. Our paper should be viewed as a contribution to the discussion
of which formal setting is most adequate mathematically and philosophically for the intuitive
concept of multiset.
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Notes
1 Intuitively, objects are parts of a world. Elements are parts of a set. How these concepts relate to each other is a matter of
an ongoing philosophical discussion into which we do not want to enter any more than absolutely required.
2 A theory of multisets with negative multiplicities is explored in Blizard (1990).
3 When we saw the term of multiset for the first time some 45 years ago, we considered it to be a negligible patch for a singular
situation. We certainly did not imagine that multisets would become the focus of a mathematical theory.
4 Some papers fail to take into account the multiplicity of 0. Consider sets X = {a} and Y = {a, b} and multisets (X,μ) and
(Y , ν) with μ(a)= ν(a)= 2 and ν(b)= 0. Intuitively, these multisets are the same, formally they are not. The literature is not
clear on how to deal with this situation: to work with equivalent classes of multisets or to work with their representatives; or
to handle the case of multiplicity 0 as special. We chose the latter route.
5 Also in the axiomatic theory of Blizard (1989, Axiom II, extensionality), the elements with multiplicity 0 are not ignored.
6 Also called functions or mappings.
7 To avoid a potential misunderstanding, ν( f (x)) is the multiplicity of the element f (x) ∈ Y in Mν , not the number of
elements of Y which are images of copies of x.
8 The equivalence classes are called sorts by Monro.
9 Monro’s equivalence classes are anonymous; in our school example, using Monros’s definition, even the first names of
students would be missing. When families are used instead, each equivalence gets a “name.”
10 We do not call them classes to avoid a conflict with the mathematical term of class.
11 It has been argued that Mrs. T would know how many tickets she needed when she distributes them to the students and
that using multiset operations in this case is inadequate. We agree. But the example assumes that Mrs. T has to order, not
distribute, the tickets and that she can rely only on the multiset information, hence, must use the multiset operations. The
point is that this kind of dilemma inevitably arises when decisions have to rely solely onmultiplicity-basedmultisets and when
there is no formal indicator concerning the applicability of multiset operations. With our proposed definition of multisets,
the dilemma simply vanishes.
12 The fruit we just distribute. Through the distribution process, each single fruit gains its individuality. This permits us to
say that the sets of oranges of the children are mutually disjoint.
13 A reader of an earlier version of this paper asked how the balls could be indistinguishable. This is precisely the point. By
taking them out, they seem to become distinguishable. This is a mathematically unexplained miracle or a flaw in the theory
of multisets. We claim it is the latter.
14 For union, the operation∪+ cannot be used because the balls are indistinguishable. One has to use ∪ms.
15 The contenders included, for example, bag and heap, which actually appear in the literature asmeaningmultiset (Hailperin
1986; Jena et al. 2001; Yager 1986), and many others, which never made it.
16 Eilenbergs technique generalizes that of generating functions, also known as Z-transforms in much of the applied literature.
His presentation, however, clarifies many of the underlying principles and removes much of the unnecessary assumptions of
the theory of functions.
17 Here and in the sequel Jürgensen (2017), we use terms loosely with just enough rigour to explain and compare the
concepts.
18 For the argument made in this paper, historical authority is irrelevant except to illustrate that the discussions about the
basic concepts are far less recent than one might assume. See for instance Angelelli (2001) and a comment on this in Angelelli
(1965).
19 The principle that indistinguishable objects are identical. A concise analysis of how this principle fits into Leibniz’s
philosophy and the thinking of the time is presented by Kauppi (1966). See also Kümmel (2016).
20 Literally first truths, better fundamental truths.
21 The text is transcribed from amanuscript. 〈A〉means thatA has been added by Leibniz. [B]〈A〉means that Leibniz replaced
B by A. Translation: “It follows from here that it is impossible to give, in nature, two separate things which differ only in their
numbers: for, therefore, it is required that a reason can be given why they are diverse, which has to be sought from some
difference in them.”
22 Leibniz (1961, p. 520). Translation: “The complete and perfect notion of a single substance includes all its past, present,
and future properties. For, even as a property may only hold in the future it obtains now and is, therefore, contained in the
object’s notion.”
23 Here, Cantor uses the termsMannigfaltigkeit (manifold) andMenge (set) as synonyms. He refers to Plato’s theory of ideas
and specifically to the dialog Philebos (Plato 1925). For a tentative explanation of this connection, see Menzel’s (1984) paper.
For our purposes, it suffices to register this connection without exploring its details. A proper translation of the German
original is very difficult; we paraphrase the essence of the statement (and even that is not quite correct): “By set I mean any
multitude of objects which can be thought of as a single object, that is, the subsumption of certain elements which, by some
common law, can be bundled together. I believe I define something akin to Plato’s e>̃idos or >id’ea, and also what Plato calls
mikt’on in his dialogue Philebos.
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24 Totality of ν is not important; it just simplifies the statements.
25 Surprisingly, there seems not to be any mathematical study of families per se.
26 Removing this restriction has been discussed (see, e.g., Blizard 1986) and would make even the present theory of multisets
more elegant.
27 How could they not be new to them?
28 Mark Twain, Eve’s Diary.
29 FromMark Twain, Adam’s Diary: it is the finest thing on the estate, I think. The new creature calls it Niagara Falls, why, I
am sure I do not know. Says it looks like Niagara Falls.
30 In other contexts, the detailed mathematical structure of a world would have to be considered.
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