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Abstract
Pedestrian dead reckoning (PDR) is widely used in handheld indoor positioning systems. However, low-cost inertial
sensors built into smartphones provide poor-quality measurements, resulting in cumulative error which consists
of heading estimation error caused by gyroscope and step length estimation error caused by an accelerometer.
Learning more motion features through limited measurements is important to improve positioning accuracy. This
paper proposes an improved PDR system using smartphone sensors. Using gyroscope, two motion patterns, walking
straight or turning, can be recognised based on dynamic time warp (DTW) and thus improve heading estimation
from an extended Kalman filter (EKF). Joint quasi-static field (JQSF) detection is used to avoid bad magnetic
measurements due to magnetic disturbances in an indoor environment. In terms of periodicity of angular rate while
walking, peak–valley angular velocity detection and zero-cross detection is combined to detect steps. A step-length
estimation method based on deep belief network (DBN) is proposed. Experimental results demonstrate that the
proposed PDR system can achieve more accurate indoor positioning.

1. Introduction

Magnetometers, sensors built into portable devices, including the inertial measurement unit (IMU),
are the most significant factor in achieving autonomous and consecutive tracking and navigation (Yin
et al., 2014). In fact, the most common indoor application scenario is based on a handheld smartphone.
With analysis of gait models of pedestrians and statistical features of inertial data during walking,
the pedestrian dead reckoning (PDR)-based algorithm has come under intense study in recent years
(Randell et al., 2003; Beauregard and Haas, 2006; Tao et al., 2018). A PDR system consists of four parts:
(1) heading estimation between each step based on the gyroscope or magnetometer, (2) step detection
based on accelerometer, (3) step length estimation based on acceleration empirical models (Weinberg,
2002) and (4) 2D position estimation. Accurate and robust step detection is the necessary preliminary
to track a pedestrian walking path, such as peak-detection (Brajdic and Harle, 2013; Abadleh et al.,
2017), zero-crossing (Goyal et al., 2011), wavelet transform (Wang et al., 2012) and dynamic time warp
(DTW) (Li and Yang, 2013). Yao et al. (2020) proposed a robust step detection which combines DTW-
based peak detection and zero-crossing to detect different step patterns. Gu et al. (2017) considered
users’ false walking state, resulting in overcounting problems, and suggested ways to improve accuracy
and robustness. For a PDR-based method, the primary factors bringing cumulative error are heading
estimation and step length estimation.
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Figure 1. The proposed PDR system architecture.

The most frequently studied heading estimation scheme is fusing data from magnetometer angular
rate gravity (MARG) sensors (Hu and Sun, 2015), which employs accelerometer and magnetometer
measurements to compensate gyro drift. Wu (2020) reported new advances related to the fusion algo-
rithm based on the gradient descent algorithm combining a linear Kalman filter and gave the least square
solution based on aided vector measurements to improve the accuracy and convergence. Afzal et al.
(2011) developed a novel quasi-static magnetic field-based attitude and angular rate error estimation
technology using magnetic measurements effectively in highly perturbed magnetic environments. To
obtain accurate step length, there are several step-length estimation technologies, some of which require
numerous parameters, such as step frequency, pedestrian leg length or height, and even angle between
legs (Vezočnik and Juric, 2018). Empirical models based on acceleration, and features extracted from
acceleration, are the most frequently exploited. Kang and Han (2014) added another tuneable constant
and new logarithm model employed when steps become larger. Ho et al. (2016) defined the unit con-
version for each step by estimating the step velocity and trained a linear regression model to obtain an
adaptive parameter model. To solve limitations such as prior knowledge of users and real-time param-
eters estimation, Gu et al. (2018) proposed a deep learning-based step length model using stacked
autoencoders which can adapt to characteristic of different users with varying walking speed. Wang
et al. (2020) proposed an active online learning model based on a long short-term memory (LSTM) net-
work and denoising autoencoders. In addition, many recent studies focus on recognising the smartphone
poses, such as handheld, swinging or in the pocket (Tian et al., 2015; Lee and Huang, 2019).

Handheld smartphone is still the most common and concerned scenario because the handheld
smartphone can intuitively and accurately reflect pedestrian walking behaviour from the output of
accelerometer and gyroscope. However, most studies underrated the potential of gyroscope for motion
and gait pattern recognition, and focused only on attitude estimation. This paper presents an improved
PDR system that maximises gyroscope for handheld indoor positioning. This scheme consists of four
parts, like a typical PDR system, but with more use of gyroscope. Figure 1 shows the system architecture.

The main contributions of this paper are as follows:

• Two ways of reducing the heading estimation error. One provides pseudo-gyro measurements to
constrain the heading update of quaternion-based extended Kalman filter (EKF). Another, joint
quasistatic field detection (JQSF), acquires good magnetic measurements for correcting heading
estimation.
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• By analysing the synchronous relation between gyro and accelerometer, the presented method
combining peak–valley detection and zero-crossing detection is able to detect steps more accurately.

• For step length estimation, a deep learning-based method using deep belief network (DBN) is
proposed, which can be applied to different users with varying walking speeds. No specific
parameters are required.

The remainder of this paper is organised as follows. Section 2 introduces the heading estimation
method approach. Section 3 presents the step detection and step length estimation methods. Section 4
presents experiment results and analysis. And Section 5 gives the conclusion.

2. Proposed heading estimation method

The proposed method is based on the typical EKF model which fuses the raw sensors data from
accelerometer, gyroscope and magnetometer. DTW-based straight-walk detection (SWD) and JQSF are
used to improve the accuracy of heading estimation.

2.1. Quaternion-based EKF system

EKF is widely used for nonlinear systems and long-running processes (Poulose et al., 2019). Further,
quaternion is used to describe the attitude information, because of its superiority of no singularity
problem and higher computation efficiency than Euler angles (Yuan et al., 2015).

Using normalised rotation quaternion, the heading estimation as a state vector at time stamp k is
represented by

𝑿𝒌 =
[
𝑞0
𝑘 𝑞

1
𝑘 𝑞

2
𝑘 𝑞

3
𝑘

]T (2.1)

where 𝑞0
𝑘 denotes the scalar part, and

[
𝑞1
𝑘 𝑞

2
𝑘 𝑞

3
𝑘

]T denotes the vector part.
According to the quaternion attitude kinematics equations (Oshman and Carmi, 2006), we can deduce

the discrete time model as

𝑿𝒌 =

(
𝐼 +

𝑇

2
·𝛀𝒃

𝒌−1

)
· 𝑿𝒌−1 (2.2)

where T = sensors sampling interval, I = 4 × 4 identity matrix, and 𝛀𝒃
𝒌

is constructed by

𝛀𝑏
𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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𝑦
𝑘 −𝜔𝑥

𝑘 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.3)

Observations are formed by the pitch angle 𝜃𝑘 , roll angle 𝜙𝑘 , and yaw 𝜓𝑘 , which can be calculated
by accelerations and magnetic field. Thus, the quaternion form of the Euler angles is given as

𝒁𝒌 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞0
𝑞1
𝑞2
𝑞3

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.4)
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Figure 2. Periodicity of gyro measurement while walking straight.

Considering a nonlinear discrete EKF system as{
𝑿𝒌 = 𝚽𝒌 ,𝒌−1(𝑿𝒌−1, 𝑘 − 1) + 𝒘𝒌−1

𝒁𝒌 = ℎ(𝑿𝒌 , 𝑘) + 𝒗𝒌−1
(2.5)

where 𝒁𝒌 = observation of system, and 𝒘𝒌 and 𝒗𝒌 = process noise vector with covariance matrix
Qk = 𝜎2

𝑞 · I and measurement noise vector with covariance matrix Rk = 𝜎2
𝑅 · I.

The state transition matrix is

𝚽𝒌 ,𝒌−1 = 𝐼 +
𝑇

2
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −𝜔𝑥
𝑘 −𝜔𝑦

𝑘 −𝜔𝑧
𝑘

𝜔𝑥
𝑘 0 𝜔𝑧

𝑘 𝜔𝑦
𝑘

𝜔𝑦
𝑘 −𝜔𝑧

𝑘 0 𝜔𝑥
𝑘

𝜔𝑧
𝑘 𝜔𝑦

𝑘 −𝜔𝑥
𝑘 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.6)

The measurement matrix Hk is an 4 × 4 identity matrix for the linear measurement equation.
Finally, the heading estimation �̂� from the EKF model is given by

�̂� = tan−1

[
2(𝑞0𝑞3 + 𝑞1𝑞2)

1 − 2(𝑞2
2 + 𝑞

2
3)

]
(2.7)

2.2. DTW-based straight-walk detection

There are mainly two pedestrian motion patterns in common indoor environments with regular corridors
and corners, such as schools and supermarkets. One pattern is walking straight with a stable heading,
such as along a corridor. Another pattern is turning with an apparent heading change at a short time, such
as at a corner. However, due to the low quality of the sensors in smartphones, the heading estimation of
the EKF system will gradually deviate from the truth, even when the user is walking straight ahead. Given
that indoor moving activities involve mostly straight-line walking and less time in turning (Borenstein
and Ojeda, 2010), we proposed an accurate straight walk to limiting the heading estimation, which
should be unchanged.

While holding a smartphone in front of the body, the z-axis gyro measurements present periodic
feature, and shown as Figure 2.
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(a)

(b) (c)

Figure 3. (a) The state machine. (b) Z-axis component of gyro measurements. (c) Corresponding DTW
results.

We employ the DTW method to calculate the shortest distance of z-axis part of angular velocity,
within the adaptive window size N from the time interval of steps. Let 𝑡𝑟 𝑗𝑘 represents the sample
point of a trajectory z-axis gyro measurements set at time stamp k. The shortest distance 𝐷𝑘 is used as
dissimilarity between current sample point set 𝒔𝒆𝒈1,𝒌 and previous one 𝒔𝒆𝒈0,𝒌 , which are given by⎧⎪⎪⎨⎪⎪⎩

𝒔𝒆𝒈0,𝒌 = [𝑡𝑟 𝑗𝑘−2𝑁+1, 𝑡𝑟 𝑗𝑘−2𝑁+2, · · · , 𝑡𝑟 𝑗𝑘−𝑁 ]
𝒔𝒆𝒈1,𝒌 = [𝑡𝑟 𝑗𝑘−𝑁+1, 𝑡𝑟 𝑗𝑘−𝑁+1, · · · , 𝑡𝑟 𝑗𝑘 ]
𝐷𝑘 = 𝐷𝑇𝑊 (𝒔𝒆𝒈0,𝒌 , 𝒔𝒆𝒈1,𝒌 )

(2.8)

According to the dissimilarity, we build a threshold-based state machine to recognise the motion
patterns. A typical pedestrian trajectory is selected to illustrate the DTW-based straight-walk detection
method. It includes standing still, walking straight for several steps and a ninety-degree turning. Figure 3
shows the state machine, z-axis component of gyro measurements and their corresponding dissimilarity.

The several thresholds are suffixed with ‘_Thr’, and the six states are explained as follows:

1) S1: Static state. 𝐷𝑘 < Static_Thr. The initial state is always S1, and means the pedestrian has no
movement. While 𝐷𝑘 > Static_Thr, the current state becomes S2.

2) S2: Transition state between S1 and S3. 𝐷𝑘 < Turn_Thr. In this state, the pedestrian begins to
move, but may be walking straight or turning. The increment of 𝐷𝑘 is set as

Δ𝐷𝑘 = 𝐷𝑘 − 𝐷𝑘−1 (2.9)

While 𝐷𝑘 < Straight_Thr and Δ𝐷𝑘 < 0, the state becomes S3. And while 𝐷𝑘 > Turn_Thr, the state
becomes S5.

3) S3: Straight state. 𝐷𝑘 < Straight_Thr. This state means the user is walking straight and keeping a
stable heading angle. Thus, during this state, pseudo-gyro measurements 𝒘𝒑

𝒌
and the state transition
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Figure 4. Feedback correction of heading estimation.

matrix 𝚽𝒌 ,𝒌−1 of EKF are provided as

𝒘𝒑
𝒌
= 𝛽 · 𝒘𝒌 = 𝛽 ·

[
𝜔𝑥

𝑘 𝜔
𝑦
𝑘 𝜔

𝑧
𝑘

]
(2.10)

𝚽𝒌 ,𝒌−1 = 𝐼 +
𝛽𝑇

2
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −𝜔𝑥
𝑘 −𝜔𝑦

𝑘 −𝜔𝑧
𝑘

𝜔𝑥
𝑘 0 𝜔𝑧

𝑘 𝜔𝑦
𝑘

𝜔𝑦
𝑘 −𝜔𝑧

𝑘 0 𝜔𝑥
𝑘

𝜔𝑧
𝑘 𝜔𝑦

𝑘 −𝜔𝑥
𝑘 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.11)

where 0 < 𝛽 < 1 is the constraint parameter and 𝑤𝑘 = raw gyro measurements. While
𝐷𝑘 > Straight_Thr, the state becomes S4.

4) S4: Transition state between S3 and S5. 𝐷𝑘 < Turn_Thr. This state means that the pedestrian may
begin turning or is stopped. While 𝐷𝑘 < Straight_Thr again, the state becomes S1. During this
state, while 𝐷𝑘 > Turn_Thr, the state becomes S5 and in the meantime the heading difference 𝛿𝜓
between magnetic-based observation 𝜓𝑘 and EKF-based state estimation �̂�𝑘 is recorded and will be
used for compensating the heading error due to time delay of state transition, as

𝛿𝜓 = 𝜓𝑘 − �̂�𝑘 (2.12)

5) S5: Turning state. As soon as this state is detected, the real gyro measurements must be applied to
track the heading change, and 𝛿𝜓 is used for feedback correction, as shown in Figure 4.

6) S6: Transition state between S5 and S3. It means the end of a turn and while 𝐷𝑘 < Straight_Thr,
the state becomes S3.

By applying straight-walk detection in pedestrian tracking, we not only limit the inherent heading
deviation caused by the built-in sensors in the mobile phones, but also can constrain the irregular heading
fluctuation caused by the swing of pedestrians.

2.3. Joint quasi static field detection

Due to hard iron error and soft iron error, magnetometer should be calibrated first. We use smartphones
to collect magnetic field data in all directions in the same location and, finally, these data point will form
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an ellipsoid in three-dimensional space. Hence, the calibration problem can be solved by calculating the
parameter of the ellipsoid, just as

1 = 𝑎1𝑥
2 + 𝑎2𝑦

2 + 𝑎3𝑧
2 + 𝑎4𝑥𝑦 + 𝑎5𝑥𝑧 + 𝑎6𝑦𝑧 + 𝑎7𝑥 + 𝑎8𝑦 + 𝑎9𝑧 (2.13)

where (𝑥, 𝑦, 𝑧) = collected data point of three-axis magnetometer, and (2.12) can be described by matrix
as ⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑥2

1 𝑦
2
1 𝑧

2
1

𝑥2
2 𝑦

2
2 𝑧

2
2

· · ·
𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2

...
. . .

...
𝑥2
𝑛 𝑦

2
𝑛 𝑧

2
𝑛 · · · 𝑥𝑛 𝑦𝑛 𝑧𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑎1
𝑎2
...
𝑎9

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.14)

that is simplified as

I = HX (2.15)

Thus, the three-axis scale factors and bias factors can be calculated as

𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑎1
𝑎2
...
𝑎9

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (HTH)−1HT𝐼 (2.16)

In addition, indoor magnetic field disturbance can also cause deviation from the true local magnetic
field. Fusing these bad magnetic measurements will certainly bring additional estimation error. Afzal
et al. (2011), proposed a QSF detector to identify the quasi-static magnetic field based on the change
of the total magnetic induction strength. However, there exist several situations in which the heading
observation change sharply with a small change in the total magnetic induction strength.

In this paper, we also consider the change of the heading value computed by magnetic and the
difference of heading value between current state prediction of EKF and magnetic-based method, as the
additional QSF detectors.

At time stamp k, we assume that the heading value computed by magnetic field is 𝜑𝑘 , the difference
between the prediction of EKF and 𝜑𝑘 , is 𝛾𝑘 , and the total magnetic induction strength is | |𝐵𝑘 | |. Then
the observation model of JQSF is constructed by

𝒚𝒌 = 𝒔𝒌 + 𝒗𝒌 (2.17)

where 𝒚𝒌 = observation, 𝒔𝒌 =
[
𝑠𝛾𝑘 𝑠

𝜑
𝑘 𝑠𝐵𝑘

]T, 𝑠𝛾𝑘 = 𝛾𝑘 , 𝑠𝜑𝑘 = 𝜑𝑘 − 𝜑𝑘−1, 𝑠𝐵𝑘 = | |𝐵𝑘 | | − | |𝐵𝑘−1 | | and
𝒗𝒌 =

[
𝑣𝛾𝑘 𝑣

𝜑
𝑘 𝑣𝐵𝑘

]T
= Gaussian white noises with zero means, which are independent and identically

distributed as

𝐸 [𝒗𝒌𝒗
T
𝒌 ] =

⎡⎢⎢⎢⎢⎣
𝜎2
𝛾 0 0

0 𝜎2
𝜑 0

0 0 𝜎2
𝐵

⎤⎥⎥⎥⎥⎦ (2.18)

where 𝜎2
𝛾 , 𝜎2

𝜑 and 𝜎2
𝐵 = corresponding variance of 𝑠𝛾𝑘 , 𝑠𝜑𝑘 and 𝑠𝐵𝑘 . The optimal set of the variance can

be determined by fine-tuning the statistical results from the measured data.
During the straight-walk state, for a window size N, if there exists a quasi-static magnetic field, the

heading value from magnetic field should remain unchanged, as well as the total field strength, that is
𝑠
𝜑
𝑘 = 0 and 𝑠𝐵𝑘 = 0. If one of 𝑠𝜑𝑘 and 𝑠𝐵𝑘 is non-zero, there may exist a nonstatic field. Thus, we assume
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that the hypothesis of a nonstatic field is 𝐻0 and that for a quasi-static field is 𝐻1, which are given as{
𝐻0 : ∃𝑘 ∈ 𝛀𝒏, (𝑠

𝜑
𝑘 ≠ 0) ∨ (𝑠𝐵𝑘 ≠ 0)

𝐻1 : ∀𝑘 ∈ 𝛀𝒏, (𝑠
𝜑
𝑘 = 0) ∧ (𝑠𝐵𝑘 ≠ 0)

(2.19)

where 𝛀𝒏 = { 𝑗 ∈ 𝑁 : 𝑛 ≤ 𝑗 ≤ 𝑛 + 𝑁 − 1} and n = step number.
We use the maximum likelihood estimator (MLE) to estimate the unknown parameter 𝒔𝒌 in the case

of 𝐻0, giving ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑠𝜑𝑘 =

1
𝑁

∑
𝑘∈Ω𝑛

𝑦𝜑𝑘

𝑠𝐵𝑘 =
1
𝑁

∑
𝑘∈Ω𝑛

𝑦𝐵𝑘

(2.20)

where 𝑠𝜑𝑘 and 𝑠𝐵𝑘 = MLE result of 𝑠𝜑𝑘 and 𝑠𝐵𝑘 under 𝐻0.
Then, the probability density functions (PDFs) under two cases can be given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓 (𝒚; [𝑠𝜑𝑘 𝑠
𝐵
𝑘 ], 𝐻0) =

∏
𝑘∈Ω𝑛

𝑓 (𝒚𝒌 ; 𝑠𝜑𝑘 , 𝐻0) · 𝑓 (𝒚𝒌 ; 𝑠𝐵𝑘 , 𝐻0)

𝑓 (𝑦𝜑𝑘 ; 𝑠𝜑𝑘 , 𝐻0) =
1

2𝜋𝜎2
𝜑

exp

(
−

1
2𝜎2

𝜑

(𝑦𝜑𝑘 − 𝑠𝜑𝑘 )
2

)
𝑓 (𝑦𝐵𝑘 ; 𝑠𝐵𝑘 , 𝐻0) =

1
2𝜋𝜎2

𝐵

exp

(
−

1
2𝜎2

𝐵

(𝑦𝐵𝑘 − 𝑠𝐵𝑘 )
2
) (2.21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓 (𝒚; [𝑠𝜑𝑘 𝑠
𝐵
𝑘 ], 𝐻1) =

∏
𝑘∈Ω𝑛

𝑓 (𝒚𝒌 ; 𝑠𝜑𝑘 , 𝐻1) · 𝑓 (𝒚𝒌 ; 𝑠𝐵𝑘 , 𝐻1)

𝑓 (𝑦𝜑𝑘 ; 𝑠𝜑𝑘 , 𝐻1) =
1

2𝜋𝜎2
𝜑

exp

(
−

1
2𝜎2

𝜑

(𝑦𝜑𝑘 )
2

)
𝑓 (𝑦𝐵𝑘 ; 𝑠𝐵𝑘 , 𝐻1) =

1
2𝜋𝜎2

𝐵

exp

(
−

1
2𝜎2

𝐵

(𝑦𝐵𝑘 )
2
) (2.22)

The generalised likelihood ratio test (GLRT) is used for detecting a quasi-static magnetic field during
the straight-walk state, as

𝑓 (𝒚; [𝑠𝜑𝑘 𝑠
𝐵
𝑘 ], 𝐻0)

𝑓 (𝒚; [𝑠𝜑𝑘 𝑠
𝐵
𝑘 ], 𝐻1)

< 𝜆 (2.23)

where 𝜆 = threshold for GLRT, for (2.20) and (2.21) in (2.22), and taking the natural log function on
both sides and simplifying as

1
𝑁

��� 1
𝜎2
𝜑

( ∑
𝑘∈𝛀𝒏

𝑦𝜑𝑘

)2

+
1
𝜎2
𝐵

( ∑
𝑘∈𝛀𝒏

𝑦𝐵𝑘

)2��� > 𝜆𝑆𝑊 (2.24)

where 𝜆𝑆𝑊 = threshold of JQSF for straight walk, and when (2.23) holds, there is a nonstatic magnetic
field, and otherwise the opposite.

During the turn state, we combine 𝛾𝑘 and | |𝐵𝑘 | | to build a new JQSF detector. Similarly, the
corresponding GLRT for turn state is given by

1
𝑁

��� 1
𝜎2
𝛾

( ∑
𝑘∈Ω𝑛

𝑦𝛾𝑘

)2

+
1
𝜎2
𝐵

( ∑
𝑘∈Ω𝑛

𝑦𝐵𝑘

)2��� > 𝜆𝑇 (2.25)
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The optimal value of𝜆𝑆𝑊 and𝜆𝑇 can be obtained from experiments. Finally, using a JQSF detector, we
can detect the nonstatic magnetic field resulting in the heading error and the bad magnetic measurements
can be avoid in the update process of EKF.

3. Proposed step detection and step length estimation method

3.1. Step detection

Zero-crossing detection is often used to measure steps by detecting the number of zero points in the
processed inertial data. However, there exist many false step detections due to the random noise of sen-
sors. Therefore, in our method, we combine the peak–valley detection of the z-axis gyro measurements
with zero-crossing detection of acceleration.

The raw acceleration data is used for zero-crossing detection where every potential zero point can be
detected. The raw angular velocity from gyro still contains much random noises caused by pedestrian
slight body movement and sensors. Thus, we use a fourth-order Butterworth digital low-pass filter, with
a cutoff frequency of f𝑐 = 0 · 1 Hz, to filter the useless information but retain the key peak and valley of
the gyro signal. Certainly, this will cause magnitude attenuation and time delay but these can be ignored
if the gyro signal is used only for period constraint.

The effective acceleration samples set 𝑺0, and the potential starting step points set 𝑺1 built by zero-
crossing detection towards the raw synthetic acceleration �̃�𝒌 without the local gravity component 𝒈, are
shown as

�̃�𝒌 =
√
(𝑎𝑥𝑘 )

2 + (𝑎𝑦𝑘 )
2
+ (𝑎𝑧𝑘 )

2 − 𝑔 (3.1)

𝑺0 = { �̃�𝒌 | | �̃�𝒌 | > acc_thr} (3.2)
𝑺1 = {𝑘 | ( �̃�𝒌−1 < 0) and ( �̃�𝒌 > 0)} (3.3)

where acc_thr is the threshold of effective samples of steps. 𝑺1 certainly contains many false detection
points because of the irregular signal jitter. The periodicity of the z-axis gyro measurements can provide
time constraint of zero-crossing detection.

Therefore, the peak–valley detection of the gyro is employed, then the peak–valley points set 𝑺2 and
the middle points set 𝑺3 are given as

𝑺2 = {𝑘 | (𝑤𝑧
𝑘 − 𝑤

𝑧
𝑘−1) · (𝑤

𝑧
𝑘 − 𝑤

𝑧
𝑘+1) > 0} (3.4)

Assuming that 𝑺2 = {𝑘2,1, 𝑘2,2, 𝑘2,3, · · · , 𝑘2,𝑖 , · · ·}, then

𝑺3 =

{
𝑘 | 𝑘 =

(𝑘2,𝑖 + 𝑘2,𝑖−1)

2
, 𝑖 = 2, 3, · · ·

}
(3.5)

Assuming that 𝑺1 = {𝑘1,1, 𝑘1,2, 𝑘1,3, · · · , 𝑘1,𝑖 , · · ·} and 𝑺3 = {𝑘3,1, 𝑘3,2, 𝑘3,3, · · · , 𝑘3, 𝑗 , · · ·}, towards
each point 𝑘3, 𝑗 in 𝑺3, the true starting step points set 𝑺4 is given by

𝑺4 =

{
𝑘 | 𝑘 = arg min

𝑘1,𝑖 ∈𝑺1 ,𝑘1,𝑖>𝑘3, 𝑗

(|𝑘1,𝑖 − 𝑘3, 𝑗 |)

}
(3.6)

to find the nearest zero point on the right of each middle point in 𝑺3, as shown in Figure 5.
Each starting point of one current step can be regard as the ending point of the previous step, and

thus step detection is achieved and the inertial data samples of each single step are obtained, which will
be used for step length estimation.
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Figure 5. Result of the proposed step detection method.

Figure 6. The architecture of the DBN.

3.2. DBN-based step length estimation

Deep learning has played a significant role in many fields, such as feature-learning and data fitting, for
its effective self-learning and adaption (Hua et al., 2015). The architecture of the proposed step-length
method is based on a DBN, which is constructed with several restricted Boltzmann machines (RBMs) to
learn the features of inertial step data and fit the input data vectors according to probability distribution,
and a back propagation (BP) layer at the end to fine-turning and regress the step length using labelled
sample. Figure 6 illustrates the architecture of the DBN proposed in this paper.
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After step detection, the inertial data can be segmented by the staring points and ending points. Then
each segment represents a training sample for step length estimation (Gu et al., 2018). The three-axis
accelerometer readings and three-axis gyro readings are partitioned into segments as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝒔𝒂𝒙

𝒌𝒊
=

[
𝑎𝑥𝑘𝑖 , 𝑎

𝑥
𝑘𝑖+1, · · · , 𝑎

𝑥
𝑘𝑖+𝑚

]
𝒔
𝒂𝒚

𝒌𝒊
=

[
𝑎
𝑦
𝑘𝑖
, 𝑎

𝑦
𝑘𝑖+1, · · · , 𝑎

𝑦
𝑘𝑖+𝑚

]
𝒔𝒂𝒛

𝒌𝒊
=

[
𝑎𝑧𝑘𝑖 , 𝑎

𝑧
𝑘𝑖+1, · · · , 𝑎

𝑧
𝑘𝑖+𝑚

]
𝒔𝒘𝒙

𝒌𝒊
=

[
𝑤𝑥

𝑘𝑖
, 𝑤𝑥

𝑘𝑖+1, · · · , 𝑤
𝑥
𝑘𝑖+𝑚

]
𝒔
𝒘𝒚

𝒌𝒊
=

[
𝑤𝑦

𝑘𝑖
, 𝑤𝑦

𝑘𝑖+1, · · · , 𝑤
𝑦
𝑘𝑖+𝑚

]
𝒔𝒘𝒛

𝒌𝒊
=

[
𝑤𝑧

𝑘𝑖
, 𝑤𝑧

𝑘𝑖+1, · · · , 𝑤
𝑧
𝑘𝑖+𝑚

]
(3.7)

where 𝑘𝑖 , 𝑘𝑖 + 1, · · · , 𝑘𝑖+𝑚 ∈ 𝑺4 and m = size of each segment. Due to the difference of step frequency
between steps, not each pair of 𝑘𝑖 and 𝑘𝑖+1 are able to generate the same length of segments. Therefore,
the spline interpolation method is used to guarantee the same size m of the input vector for network.
The raw input vector is given as

𝒙𝒊 = [𝒔𝒂𝒙

𝒌𝒊
, 𝒔

𝒂𝒚

𝒌𝒊
, 𝒔𝒂𝒛

𝒌𝒊
, 𝒔𝒘𝒙

𝒌𝒊
, 𝒔

𝒘𝒚

𝒌𝒊
, 𝒔𝒘𝒛

𝒌𝒊
, 𝑓𝑖]

T (3.8)

where 𝑓𝑖 = 1/(𝑘𝑖+1 − 𝑘𝑖) = step frequency of the 𝑖-th step, 𝒙𝒊 = 𝑀 × 1 vector and 𝑀 = 6𝑚 + 1, which
contains the six-axis inertial sensors readings and step frequency.

Since RBMs are probability-based model, each dimension in the input vector 𝒙𝒊 is normalised using
the corresponding max value and min value and, assumed to obey normal distribution, is given as

𝑣 = [𝑣1, 𝑣2, · · · , 𝑣 𝑗 , · · · , 𝑣6𝑚+1]
T (3.9)

𝑣 𝑗 =
𝑥𝑖 ( 𝑗) − min(𝒙( 𝒋))

max(𝒙( 𝒋)) − min(𝒙( 𝒋))
(3.10)

𝑣 𝑗 ∼ 𝑁 (𝜇 𝑗 , 𝜎
2
𝑗 ) (3.11)

where 𝒗 = normalised input vector sent to the RBMs.
We will first use the Gaussian Bernoulli RBM to learn the feature of steps; this is unsupervised

learning (Krizhevsky and Hinton, 2009). Unlike the autoencoder, during the training process, RBM
calculates the largest probability distribution to generate and fit the training samples.

A typical Gaussian Bernoulli RBM is a two-layer stochastic network with visible layer 𝒗 and hidden
layer 𝒉. Each hidden node obeys Bernoulli distribution, and the visible nodes obey Gaussian distribution;
thus, their posterior probability are given as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃(ℎ 𝑗 = 1|𝒗) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑏 𝑗 +

∑
𝑖

𝑣𝑖
𝜎𝑖
𝑊𝑖 𝑗

)
𝑃(𝑣𝑖 |𝒉) = 𝑁 (𝑎𝑖 + 𝜎𝑖ℎ 𝑗𝑊𝑖 𝑗 , 𝜎𝑖

2)

(3.12)

where 𝑎𝑖 and 𝑏𝑖 are the bias of nodes in v and h,𝑊𝑖 𝑗 = weight value linking the visible nodes and hidden
nodes and 𝜎𝑖

2 = variance of visible nodes.
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The training process of RBM is to revise parameter 𝜽 ∈ {W, 𝒂, 𝒃} about the input vector 𝒗 and make
the likelihood function 𝑃(𝒗 |𝜽) larger once we input a new sample. That is,

𝜽∗ = 𝑎𝑟𝑔max
𝜽
𝐿(𝜽) = 𝑎𝑟𝑔max

𝜽

∑
ln 𝑃(𝒗 |𝜽) (3.13)

where the gradient method and contrastive divergence (CD) algorithm are used to achieve greater
learning efficiency.

Based on the greedy layer-wise training method, the DBN is built with multiple trained RBMs, where
the output of previous RBM is used as the inputs of the next RBM. After the feature learning of RBMs
has completed, a supervised BP network is placed on the top layer of the DBN to estimate the step
length. We use gradient descent algorithm to fine-tune the whole weight matrix of the DBN. The global
objective function is to minimise the following cost function with L2 regularisation, which is given as

𝐽 =
∑

(𝒚𝒊 − 𝜽𝒉𝒉𝒊)
2 + 𝜆

∑
𝜽𝒉𝜽𝒉

T (3.14)

where 𝑦𝑖 = true step length of corresponding input segment, 𝜽𝒉 = weight vector connecting the nodes of
the last RBM and the nodes of the BP network, 𝒉𝒊 = output of the last RBM, and 𝜆 = penalty coefficient.
Once the training of DBN is done, the step length estimation can be achieved in real-time pedestrian
navigation.

4. Experiments and results

To demonstrate the proposed method in this paper, a series of experiments were conducted. For our
handheld PDR system, we use a smartphone, Huawei Mate 20, to collect data of the inertial sensors,
gyroscope and accelerometer, and magnetometer, with a sampling frequency of 50 Hz. During the
data collection, the volunteers held the smartphone in front of the body and walked naturally along
predetermined paths.

4.1. Evaluation of step detection and step length estimation

To eliminate the gender and height influence factor, five volunteers, three males and two females of
different heights, were asked to collect the step samples and record steps they walked. To evaluate the
performance of step detection, four scenarios included: (a) walking straight quickly, (b) walking straight
slowly, (c) walking around a rectangular corridor and (d) walking in a circle with radius 15 m. The
relative error of step detection is defined as

𝑆𝐷𝑒 =
|𝑁𝑒 − 𝑁𝑡 |

𝑁𝑡
· 100% (4.1)

where 𝑁𝑒 = step counting by our method and 𝑁𝑡 = truth of step number. In different scenarios,
each volunteer repeated the experiment five times and recorded corresponding 𝑁𝑡 . Table 1 shows the
calculated mean 𝑆𝐷𝑒 of five volunteers and the step counting results. Although in scenario (b) several
steps may be missed more often, the accuracy of step detection is high enough for indoor navigation.

The collected inertial data are also used for training and testing the DBN. After the step detection,
inertial data are segmented by the starting points and ending points, then plenty of samples can be
generated. The true step length of samples is given by computing the average length of steps in each
experiment:

𝐿𝑡 =
𝐿total

𝑁𝑡
(4.2)

where 𝐿total = total length of the path.
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Table 1. Step detection.

Scenario Path Length (m) Mean of 𝑆𝐷𝑒

a) 100 100%
200 99·0%

b) 100 98·3%
200 97·5%

c) 78 99·2%
156 97·8%

d) 94 99·2%
188 98·5%

(a) (b)

Figure 7. The results of different step length estimation method.

The performance of our step length estimation method is compared with two other typical methods,
Weinberg’s empirical model (Weinberg, 2002) and Kang’s improved model (Kang and Han, 2014). To
evaluate how the use of gyro information can help improve the accuracy of step length estimation, a
network using both acceleration and gyro, and another using only acceleration are also compared.

One path with 50 steps and 𝐿𝑡 = 0 · 7 m is used, and the results of different method are shown in
Figure 7(a). For all test samples, the estimation error distributions of different method are also shown
in Figure 7(b).

In conclusion, for common pedestrians walking normally, our method can achieve a high accuracy
of step length estimation than can Weinberg’s or Kang’s models. Because the typical model based
on accelerometer readings usually requires predefined parameters and thresholds, they often have a
poor performance in complex and special situations due to pedestrians’ changeable motion patterns.
In the proposed feature-learning method, a comprehensive training database of gait cycle from various
pedestrians can help to train a more robust and accurate model of step length estimation. If enough
training samples are provided, our method can perform better in wide-ranging situations, even for special
groups of pedestrians, such as people with unsteady gaits. In addition, the network trained by both
acceleration and angular rate is superior to the one using only acceleration, because the gyro readings
can recognise the variety of turning patterns, which have a little less step length than walking straight.

4.2. Evaluation of heading estimation using DTW-based straight-walk detection and JQSF method

When a straight walk is detected, the pseudo measurements would significantly limit the heading change
to a small scale. Therefore, straight-walk detection must be accurate and strict enough. Otherwise, the
wrong detection of straight walk would cause negative effect on heading estimation. In other words,
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Figure 8. Drift caused by time delay of state transition.

Table 2. Evaluation of proposed method.

Indicators Description Path 1 Path 2

𝑊𝑇 Mean percentage of wrong turn detection during straight state 5·6% 5·9%
𝑊𝑆 Mean percentage of wrong straight detection during turn state 1·2% 0·8%
𝐿𝐷 Mean location drift after a single turn 0·13 m 0·07 m

time delay of detecting a real turn, from the straight state into turn state, should be as small as possible.
As shown in Figures 4 and 8, although the heading estimation could be corrected quickly, during the
transition state the short time delay of state transition still caused location drift within several steps.

To evaluate the effectiveness of DTW-based straight-walk detection, three indicators are designed
to evaluate the stability and negative effect of this method. We also set two common indoor paths for
experiments: (1) walking straight and turning slowly, for example passing a corridor corner and (2)
walking straight and taking a sudden turn, for example turning back. Volunteers walked along the two
paths for data collection and recorded the time they began and ended a turn and repeated this pattern
ten times. Table 2 shows the numerical experiment result.

From the results presented, it shows that the DTW-based straight-walk detection can be achieved
with high accuracy and stability in recognising the motion patterns, and little negative effect on indoor
positioning.

In fact, though a single turn brings certain location drift at decimetre level, the next turn with a
different rotation direction would offset the drift error. In addition, the sudden turn with high angular
rate can prompt a short duration of transition state and cause less location drift. Hence, compared with
improvement of heading estimation, the little positioning error of this method could be ignored.

We also took a field experiment in an open outdoor area, where the magnetic field were almost
completely undistorted. Focusing on the improvement of heading estimation by straight-walk detection,
we went there and back along a straight line and set the step length to a constant, 0·7 m. The true
heading value of each step in the straight path could be easily obtained, which were −19·6 degrees and
160·4 degrees, and then the heading estimation error could be calculated. Figure 9 shows localisation
results and heading estimation error. It shows that the heading error and location error of pure PDR
system using only gyroscope will quickly accumulate when walking straight. With the help of magnetic
field observation, EKF method improves the result but still suffers from the heading drift. In our
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(a) (b)

Figure 9. (a) The localisation results of different method. (b) The CDF of heading error of different
method.

Figure 10. Recognition results of quasi-static magnetic field using the QSF and JQSF method.

proposed method, the pseudo measurements ensured that bias drift of sensors cause minor effects
during straight-walk state, and a more stable heading estimation during walking straight was achieved.

To evaluate the improvement of JQSF method than QSF using only the magnetic induction strength,
we also carried out experiments on several straight lines and common corridor corners of indoor building
with distinct magnetic disturbance. The true heading in the straight lines should be a constant value, and
during the turn passing the corner, several observation points were set in the path and the corresponding
true headings were calculated by gyroscope readings in short time. The QSF and JQSF methods were
used to recognise the reliable measurements belong to a quasi-static magnetic field. We assumed the
points with heading drift less than three degrees were quasi-static fields. The result of one path with a
straight line and a corner is given in Figure 10.

It can be concluded that the QSF method was able to recognise part of a non-quasi-static field,
but also missed some observation points with significant heading drift, whose magnetic field may be
distorted in inclined angle while the total magnitude changes a little. Considering the heading difference
between prediction and observation, and the heading change of observation, JQSF performed better in
eliminating the bad measurements of the magnetic field. The receiver operating characteristic (ROC)
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Figure 11. The receiver operating characteristic curve.

curve is shown in Figure 11. It shows that the proposed method is superior to QSF in terms of classifying
the local magnetic field, and achieves a better heading estimation.

4.3. Evaluation of the improved PDR system in indoor positioning

The indoor environment of experiments evaluating the overall performance of our improved PDR system
is set up at a school building.

The user held the smartphone to collect inertial and magnetic data, and walked around the corridor,
which formed a closed loop. Figure 12(a) shows the floor map. The segments of the path belonging
to a quasi-static magnetic field was detected according to the JQSF method. There was apparently
severe magnetic distortion in some area. The tracking paths of different methods and the distribution of
localisation errors are all shown in Figure 12(b)–12(d).

Figure 13 shows that our method did better in heading estimation and, finally, the localisation result
formed almost a closed rectangle. The common PDR system suffered from the heading drift and gradually
deviated from the true position of each step. Due to the serious magnetic disturbance, the EKF method
fusing gyro and magnetic field directly had employed bad observation of magnetic-based heading, and
thus caused a worse heading estimation than did all other methods. For instance, before reaching the
first corner, the EKF method had already deviated from the true trajectory, unlike with other methods.

The JQSF detector could help to avoid the distorted magnetic field. The EKF combining JQSF detec-
tion could achieve a better performance than could the common PDR and EKF methods alone. However,
there was still a key factor which caused heading error: that was the inherent bias drift of gyroscope.
In our proposed method, the DTW-based straight-walk detection provided pseudo measurements to
constrain the heading estimation of EKF when the heading angle should have remained unchanged.
The proposed method could lower the localisation error to maximum 2 m in each step. In addition, the
localisation results using our method was smoother and more stable than other methods.

4.4. Comparison results with other state-of-the-art methods

To highlight the superiority of proposed approach, the other three state-of-the-art PDR system including:
(1) mpPDR (Lee and Huang, 2019), (2) PDRNet (Asraf et al., 2021) and (3) EKPF (Wang et al., 2019)
were performed in a new evaluation environment, as shown in Figure 13(a). For a more reliable evaluation
of the stability and robustness of these methods, the user held the smartphone and walked normally
following the reference path for four circuits, finally returning to the starting point. In terms of PDRNet,
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(a) (b)

(c) (d)

Figure 12. (a) The floor map and QSF segments of the path. (b) Tracking paths. (c) Location error
distribution. (d) CDF of location error.

(a) (b)

Figure 13. (a) The test space and reference path for comparison with other methods. (b) The tracking
results of four different PDR systems.

the prediction deep-learning model had been reproduced with a 97·8% accuracy in training dataset
which was collected by volunteers, and in practical test a new volunteer was employed. A magnetic
fingerprint map was also built in advance for application of EKPF.

The positioning paths of these methods are depicted in Figure 13(b), and the numerical results are
presented in Table 3.

Analysing the results, without any other information source, the main factor prompting positioning
error is the heading deviation caused by the cumulative error of angular rate. mpPDR only performed
well in the first loop and further deviated from the true trajectory after several turns. PDRNet predicted
the change in distance and heading but still suffered the heading error accumulated by turns when the
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Table 3. Evaluation of proposed method.

Methods Average Heading Error (Degree) Average Positioning Error (m)

mpPDR 10·77° 9·04
PDRNet 28·35° 13·83
EKPF 6·30° 3·78
The proposed 3·18° 3·25

trained model was utilised in a practical test. Supported by the magnetic fingerprint map, EKPF fused
PDR and magnetic matching results, which obtained a better and stable performance in an undistorted
magnetic area. However, the perturbed magnetic field of indoor environments would significantly
damage the positioning performance and cause tracking outliers. The proposed approach can alleviate
the negative influence of irregular magnetic field by JQSF and provide a relative stable and accurate
heading estimation which outperforms other methods.

5. Conclusion

In this paper, we proposed an improved PDR system for handheld indoor positioning, include heading
estimation, step detection and step length estimation. Focusing on making good use of the gyro readings,
we presented the DTW-based straight-walk detection to recognise the pedestrian motion patterns and
provided optimal measurements for EKF model. Further, the JQSF detector could help to detect more
potential nonstatic fields and avoid bad measurements of magnetometer, which achieved a better heading
estimation in indoor environments. Combining the readings of gyro and accelerometer, accurate step
detection was obtained, which were suitable for many scenarios. Based on trained DBN, without any
predefined parameter and threshold, we could adaptively and accurately estimate the step length of
different users in different situations.

In the future work, aiming at the different carrying poses, we will us modular thinking and propose
the optimal solutions for the more accurate indoor positioning.
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