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Abstract. We introduce and study the notion of weak product recurrence. Two sufficient
conditions for this type of recurrence are established. We deduce that any point with a dense
orbit in either the full one-sided shift on a finite number of symbols or a mixing subshift
of finite type is weakly product recurrent. This observation implies that distality does
not follow from weak product recurrence. We have therefore answered, in the negative,
a question posed by Auslander and Furstenberg.

1. Introduction
The notion of recurrence is central in the study of dynamical systems and especially
in topological dynamics. Classically, a topological dynamical system consists of a
topological space X with a one-parameter group {T n

| n ∈ Z} of homeomorphisms acting
on X . Poincaré’s original nineteenth-century notion of recurrence, interpreted in the
setting of topological dynamics, is that of a point returning to every neighborhood
of itself. A compact dynamical system always contains recurrent points. This notion
has since been strengthened to various degrees. A point x is said to be uniformly
recurrent (or almost periodic) if for every neighborhood U of x , the return time set
R(x, U ) = {n ∈ Z | T n x ∈ U } of x to U has bounded gaps. In other words, x returns to
U with a bound on the ‘waiting time’. Further strengthening the notion of recurrence, one
may require some form of synchronized recurrence with other recurrent points. A point x
is said to be product recurrent if given any recurrent point y in any dynamical system and
any neighborhoods U of x and V of y, the return time sets R(x, U ) and R(y, V ) intersect
nontrivially.

By associating product recurrence with a combinatorial property of sets of return times
(x is product recurrent if and only if R(x, U ) is IP∗ for each neighborhood U of x),
Furstenberg [3] proves that product recurrence implies uniform recurrence. Furstenberg [3]
also shows that for Z-actions, product recurrence and distality are equivalent (a point x is
said to be distal if whenever y is in the orbit closure of x and a sequence (ni ) in Z exists
with limi T ni x = limi T ni y, then x = y). Using algebraic properties of idempotents in the
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enveloping semigroup, Auslander and Furstenberg [1] extend the equivalence of product
recurrence and distality to more general semigroup actions.

We study a form of synchronized recurrence that generalizes the notion of product
recurrence. A point x is said to be weakly product recurrent if given any uniformly
recurrent point y in any dynamical system and any neighborhoods U of x and V of y, the
return time sets R(x, U ) and R(y, V ) intersect non-trivially. We establish two sufficient
conditions for weak product recurrence. The first sufficient condition is presented in the
non-invertible case. Let 0 be a compact metric space and let τ : 0 → 0 be a continuous
map. The point γ ∈ 0 is weakly product recurrent if γ satisfies the following recurrence
property. For every neighborhood V of γ there exists n = n(V ) ∈ N such that if S ⊂ Z+

=

N ∪ {0} is any finite set satisfying |s − t | > n for all distinct s, t ∈ S, then there exists
` ∈ Z+ such that τ `+s(γ ) ∈ V for all s ∈ S. The proof of this result uses the van der
Waerden theorem [4]. The theorem of van der Waerden states that every subset of N with
bounded gaps contains arithmetic progressions of arbitrary length.

Auslander and Furstenberg [1] ask if weak product recurrence implies distality. The first
sufficient condition for weak product recurrence answers this question in the negative for
actions of N. This first result implies that any point with a dense orbit in a ‘sufficiently
mixing’ system is weakly product recurrent. In particular, any point with a dense orbit in
either the full one-sided shift on a finite number of symbols or a mixing subshift of finite
type is weakly product recurrent. Any point with a dense orbit in the full shift on a finite
number of symbols is proximal to a fixed point in its orbit closure. Such a point is therefore
weakly product recurrent but not distal.

The second sufficient condition for weak product recurrence is based on the observation
that the return time sets of points in arbitrary dynamical systems are related to the return
time sets of special points in the symbolic dynamical system (�, σ ), where � = {0, 1}

Z

and σ denotes the shift map. We prove that for actions of Z, the point x is weakly
product recurrent if (x, ω) is recurrent for all uniformly recurrent ω ∈ �. The shift space
is therefore universal in this context. We believe that this universality may constructively
inform the study of recurrence.

The material is organized as follows. In §2, we present dynamical preliminaries and
we discuss the work of Auslander and Furstenberg. Section 3 contains the statement and
proof of the first sufficient condition for weak product recurrence. The universality of the
shift space in the context of weak product recurrence is established in §4. We conclude
the paper in §5 by stating several open questions and discussing the relationship of weak
product recurrence to other notions of recurrence.

2. Dynamical preliminaries
We present the relevant aspects of the theory of dynamical systems, introduce the notion
of weak product recurrence, and state the Auslander–Furstenberg question.

Definition 2.1. A dynamical system (X, G) consists of a compact metric space X together
with a group or semigroup G acting on X by continuous transformations.

Recurrence is a form of asymptotic behavior related to the action of sequences of
group elements ‘tending to infinity’. Various notions of recurrence may be defined for a
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point x ∈ X either in terms of the elements of the Stone–Čech compactification βG that
fix x or in terms of the ‘size’ of the sets of return times to neighborhoods of x . We adopt
the latter approach, restricting our study to the case G = Z.

Definition 2.2. Let x ∈ X . The orbit of x , denoted O(x), is given by O(x) = {T n(x) |

n ∈ Z}.

Definition 2.3. Let U denote a neighborhood of x ∈ X . The return time set R(x, U ) is
given by R(x, U ) = {n ∈ Z | T n(x) ∈ U }.

Definition 2.4. A point x ∈ X is said to be recurrent if for every neighborhood U of x , we
have (R(x, U ) ∩ Z) \ {0} 6= ∅.

It follows from the definition of recurrence that if x is recurrent, then R(x, U ) is
infinite for every neighborhood U of x . One obtains the notion of uniform recurrence by
demanding that the sets R(x, U ) be syndetic.

Definition 2.5. A subset S of Z is syndetic if there exists a positive integer M such that for
all z ∈ Z,

{y ∈ Z | z 6 y 6 z + M} ∩ S 6= ∅.

Such a set is said to have bounded gaps.

Definition 2.6. A point x ∈ X is said to be uniformly recurrent (or almost periodic) if for
every neighborhood U of x , the return time set R(x, U ) is syndetic.

The notion of recurrence may also be strengthened by requiring that the recurrent
point x recur in a synchronized way with any other recurrent point.

Definition 2.7. A point x ∈ X is said to be product recurrent if given any dynamical system
(Y, S) and any recurrent point y ∈ Y , the point (x, y) is a recurrent point of the product
dynamical system (X × Y, T × S).

Recurrence shares deep connections with the notions of proximality and distality.

Definition 2.8. Two points x and y in X are said to be proximal if there exists a sequence
(nk) ⊂ Z and a point z ∈ X such that nk → ±∞ and

lim
k→∞

T nk (x) = lim
k→∞

T nk (y) = z.

Definition 2.9. A point x ∈ X is said to be distal if x is not proximal to any point in its
orbit closure O(x) other than itself.

In the special case G = Z, product recurrence and distality are equivalent
[3, Theorem 9.11]. This equivalence does not hold in the context of E-semigroup actions.
Distality implies product recurrence, but the converse does not hold in general. Auslander
and Furstenberg [1] formulate conditions under which product recurrence implies distality.
Their algebraic approach is based on the study of idempotents in the E-semigroup.
Innovations in [1] include the illumination of the key role played by maximal idempotents
and the introduction of the cancellation semigroup. For a systematic and thorough study of
the fine structure of recurrence for semigroup actions, see the work of Ellis et al [2].

Inspired by [1], we introduce the notion of weak product recurrence.
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Definition 2.10. Let (X, T ) be a dynamical system. A point x ∈ X is said to be weakly
product recurrent if given any dynamical system (Y, S) and any uniformly recurrent
point y ∈ Y , the point (x, y) is a recurrent point of the product dynamical system
(X × Y, T × S).

With this definition in place, we now state the Auslander–Furstenberg question.

Question 2.11. (Auslander–Furstenberg [1]) Let (X, T ) be a dynamical system. If x ∈ X
is weakly product recurrent, is x necessarily a distal point?

Since distality and product recurrence are equivalent for Z-actions, the Auslander–
Furstenberg question may be restated as follows. Do the notions of product recurrence
and weak product recurrence coincide for Z-actions?

3. A sufficient condition for weak product recurrence
We present a sufficient condition for weak product recurrence. We then describe several
situations in which this condition is satisfied. The recurrence result presented in this section
implies the existence of weakly product recurrent points that are not distal. We have
therefore answered the Auslander–Furstenberg question in the negative. The material in
this section is presented in the context of N-actions.

THEOREM 3.1. Let 0 be a compact metric space and let τ : 0 → 0 be a continuous
map. The point γ ∈ 0 is weakly product recurrent if γ has the following property:
for every neighborhood V of γ there exists n = n(V ) ∈ N such that if S ⊂ Z+ is any
finite set satisfying |s − t | > n for all distinct s, t ∈ S, then there exists ` ∈ Z+ such that
τ `+s(γ ) ∈ V for all s ∈ S.

The proof of Theorem 3.1 is based on the deep fact that syndetic subsets of Z contain
arithmetic progressions of arbitrary length. This fact is known as the van der Waerden
theorem [4].

Proof of Theorem 3.1. Suppose that γ has the property described in Theorem 3.1. Let
3 be a compact metric space and let ρ : 3 → 3 be a continuous map. Suppose λ ∈ 3 is
uniformly recurrent. We must show that (λ, γ ) is recurrent. Let U and V be neighborhoods
of λ and γ , respectively. We prove that

(R(λ, U ) ∩ R(γ, V )) \ {0} 6= ∅.

Choose n = n(V ) such that for any finite set S ⊂ Z+ satisfying |s − t | > n for all distinct
s, t ∈ S, there exists ` ∈ Z+ such that τ `+s(γ ) ∈ V for every s ∈ S.

Let A = {a + jd | 0 6 j 6 n} ⊂ N be an arithmetic progression of length n + 1 such
that the common difference d is a multiple of n, and ρa+ jd(λ) ∈ U for 0 6 j 6 n. We
justify the existence of A as follows. The set R(λ, U ) is syndetic because λ is uniformly
recurrent; the van der Waerden theorem therefore implies that R(λ, U ) contains arithmetic
progressions of arbitrary length. Choose an arithmetic progression B = {b + kq | 0 6 k 6

n(n + 1)} ⊂ R(λ, U ). Now define A = {(b + nq) + j (nq) | 0 6 j 6 n}. Here a = b + nq
and d = nq. Since ρ is continuous, there exists a neighborhood U1 ⊂ U such that if ξ ∈ U1,
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then ρa+ jd(ξ) ∈ U for 0 6 j 6 n. The set R(λ, U1) is syndetic and therefore the set

{k | ρk+ jd(λ) ∈ U for 0 6 j 6 n}

is syndetic. Choose M ∈ N such that for any ` ∈ Z+ there exists k ∈ [`, ` + M − nd]

satisfying ρk+ jd(λ) ∈ U for 0 6 j 6 n.
We now define a configuration S to which the hypothesis on γ applies. Choose r ∈ N

such that r(d + 1) > M . Define

S = {x(d + 1) + yn | 0 6 x 6 r, 0 6 y 6 q − 1}.

We show that |s − t | > n for all distinct s, t ∈ S. Suppose s = x1(d + 1) + y1n and t =

x2(d + 1) + y2n are distinct elements of S with x2 > x1. We consider two cases.
(1) If x2 = x1, then y1 6= y2 and therefore |s − t | > n.
(2) If x2 > x1, then x2(d + 1) + y2n > (x1 + 1)(d + 1) and

x1(d + 1) + y1n 6 x1(d + 1) + (q − 1)n

= x1(d + 1) + qn − n

= x1(d + 1) + d − n

= (x1 + 1)(d + 1) − n − 1

< (x1 + 1)(d + 1) − n,

thus we have |s − t | > n in this case.
Since S is an admissible configuration for γ , there exist k ∈ N and ` ∈ Z+ such that
(1) τ `+s(γ ) ∈ V for all s ∈ S;
(2) ρk+ jd(λ) ∈ U for 0 6 j 6 n; and
(3) k ∈ [`, ` + M − nd].
We find j ∈ {0, . . . , n} such that k + jd ∈ ` + S.

Let h be the largest integer such that h(d + 1) 6 k − `. Since qn = d, there exist unique
integers i ∈ {0, . . . , q − 1} and j ∈ {0, . . . , n} such that

k − ` = h(d + 1) + in + j.

Note that k − (` + h(d + 1)) 6 d . If k − (` + h(d + 1)) = d, then i = q − 1 and j = n. If
k − (` + h(d + 1)) < d , then j < n. Transforming k + jd , we have

k + jd = ` + (k − `) + jd

= ` + h(d + 1) + in + j + jd

= ` + (h + j)(d + 1) + in.

Since k + jd 6 ` + M , we must have h + j 6 r . We also have i ∈ {0, . . . , q − 1}.
Therefore, (h + j)(d + 1) + in ∈ S and k + jd ∈ ` + S. We conclude that

k + jd ∈ (R(λ, U ) ∩ R(γ, V )) \ {0}.

Since U and V were chosen arbitrarily, it follows that (λ, γ ) is recurrent. 2

We now state conditions under which the hypothesis of Theorem 3.1 is satisfied. This
hypothesis will be satisfied if γ is a point with a dense orbit in a ‘sufficiently mixing’
system.
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COROLLARY 3.2. Let 0 be a compact metric space and let τ : 0 → 0 be a continuous
map. The point γ ∈ 0 is weakly product recurrent if the following hold.
(1) The orbit of γ is dense in 0.
(2) For any neighborhood V of γ , there exists N = N (V ) such that for any k ∈ N, if

ni > N for 1 6 i 6 k, then the intersection

V ∩ τ−n1(V ) ∩ · · · ∩ τ−(n1+···+nk )(V )

is non-empty.

Proof of Corollary 3.2. We show that γ satisfies the hypothesis of Theorem 3.1. Let V be
a neighborhood of γ . Using property (2), there exists N = N (V ) such that for any k ∈ N,
if ni > N for 1 6 i 6 k, then the intersection

V ∩ τ−n1(V ) ∩ · · · ∩ τ−(n1+···+nk )(V )

is non-empty. Let S = {si | 1 6 i 6 k} ⊂ Z+ be a finite set such that si+1 − si > N for
1 6 i 6 k − 1. The intersection

W = V ∩ τ−s1(V ) ∩ · · · ∩ τ−sk (V )

is non-empty and open. By property (1), the orbit of γ is dense in 0, hence there exists
` ∈ Z+ such that τ `(γ ) ∈ W . We then have τ `+s(γ ) ∈ V for all s ∈ S. 2

The mixing property (2) of Corollary 3.2 is satisfied by the full one-sided shift on a
finite number of symbols and by any mixing subshift of finite type; therefore Corollary 3.2
implies the following.

COROLLARY 3.3. Let (0, τ ) be either the full one-sided shift on a finite number of
symbols or a mixing subshift of finite type. If γ ∈ 0 has a dense orbit, then γ is weakly
product recurrent.

We now address the question posed by Auslander and Furstenberg. Corollary 3.3
implies the existence of weakly product recurrent points that are not distal, thereby
answering the Auslander–Furstenberg question in the negative. In the full shift on a finite
number of symbols, any point with a dense orbit has a fixed point in its orbit closure and
is therefore weakly product recurrent but not distal. For example, let 6+

= {0, 1}
Z+

, and
let σ denote the shift map. For m ∈ N, let αm denote the binary representation of m. We
define γ ∈ 6+ by

γ = lim
m→∞

α1
∗ α2

∗ · · · ∗ αm,

where ∗ denotes concatenation. Therefore, γ takes the form

γ = 1 10 11 100 · · · .

The point γ is the binary Champernowne sequence. Since γ contains every binary word,
the orbit of γ is dense in 6+ and therefore γ is weakly product recurrent. However, γ is
proximal to the fixed point ρ ∈ 6+ defined by ρi = 1 for all i ∈ Z+ and ρ ∈ O(γ ), so γ is
not distal.

4. Universality of the shift space
Let (X, T ) denote a dynamical system and let x ∈ X . A priori, it may be difficult to
determine if x is weakly product recurrent because we must examine the orbit of the
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pair (x, y) for every uniformly recurrent point y in every dynamical system (Y, S). One
encounters this difficulty whenever one wishes to verify any notion of recurrence that
requires synchronized recurrence with points of a certain type in every dynamical system.
We show that when establishing weak product recurrence or product recurrence, it suffices
to consider uniformly recurrent points or recurrent points, respectively, in the shift space
� = {0, 1}

Z. This universal feature of the shift space follows from a general proposition
relating the return time sets of points in arbitrary dynamical systems to the return time sets
of special points in the shift space.

We begin with notation and definitions. We represent a point ω ∈ � as a bi-infinite
sequence (ωn)n∈Z. The shift map σ : � → � is given by ω 7→ σ(ω), where (σ (ω))n =

ωn+1. For k ∈ Z+ and ω ∈ �, define

Vk(ω) = {β ∈ � | β j = ω j for | j | 6 k}.

The family of neighborhoods {Vk(ω) | k ∈ Z+
} forms a neighborhood basis at ω.

Let (Y, S) be a dynamical system and let y ∈ Y . Let (γm) be a descending sequence in
(0, 1) such that γm → 0 and d(Sn(y), y) 6= γm for all n ∈ Z and m ∈ N. Such a sequence
exists because the set {Sn y | n ∈ Z} is countable. Let Bm = B(y, γm), where B(y, γm) is
the ball of radius γm centered at y. Define ω(y,m)

∈ � by

ω
(y,m)
i =

{
1 if i ∈ R(y, Bm);

0 if i /∈ R(y, Bm).

Think of ω(y,m) as the characteristic function of the set R(y, Bm).

PROPOSITION 4.1. Let (Y, S) be a dynamical system and let y ∈ Y be arbitrary. Fix
m ∈ N and let γm , Bm , and ω(y,m) be as above. For each k ∈ N, there exists mk such that

R(ω(y,m), Vk(ω
(y,m))) ⊃ R(y, Bmk ).

Proof of Proposition 4.1. For each j ∈ {−k, . . . , k}, let ε j > 0 be such that either
B(S j y, ε j ) ⊂ Bm if S j y ∈ Bm or B(S j y, ε j ) ∩ Bm = ∅ if S j y /∈ Bm . This may be done
because S j y /∈ ∂ Bm for each j . Since each mapping S j is uniformly continuous, there
exists δ > 0 such that if d(y, z) < δ, then d(S j y, S j z) < ε j for all | j | 6 k. Choose mk such
that γmk < δ. Let n ∈ R(y, Bmk ). Then d(y, Sn y) < γmk < δ, so d(S j y, Sn+ j y) < ε j for

all | j | 6 k. This implies that ω
(y,m)
j = ω

(y,m)
n+ j for all | j | 6 k. We conclude that σ n(ω(y,m)) ∈

Vk(ω
(y,m)), so n ∈ R(ω(y,m), Vk(ω

(y,m))). 2

COROLLARY 4.2. (Universality of the shift space) Let (X, T ) be a dynamical system and
let x ∈ X. The following statements hold.
(1) The point x is recurrent if and only if ω(x,m) is recurrent for all m ∈ N.
(2) The point x is uniformly recurrent if and only if ω(x,m) is uniformly recurrent for all

m ∈ N.
(3) If (x, ω) is recurrent in (X × �, T × σ) for all uniformly recurrent ω ∈ �, then x is

weakly product recurrent.
(4) If (x, ω) is recurrent in (X × �, T × σ) for all recurrent ω ∈ �, then x is product

recurrent.
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Proof of Corollary 4.2. Statements (1) and (2) follow immediately from Proposition 4.1.
The proofs of statements (3) and (4) are structurally similar. We prove statement (3).
Assume that (x, ω) is recurrent in (X × �, T × σ) for all uniformly recurrent ω ∈ �. Let
(Y, S) be a dynamical system and suppose that y ∈ Y is uniformly recurrent. Let U and V
be neighborhoods of x and y, respectively. Choose m such that Bm ⊂ V . By statement (2)
and the hypothesis on x , we have that (x, ω(y,m)) is recurrent in (X × �, T × σ) and
therefore

(R(x, U ) ∩ R(ω(y,m), V0(ω
(y,m)))) \ {0} 6= ∅.

Since R(y, V ) ⊃ R(y, Bm) = R(ω(y,m), V0(ω
(y,m))), we conclude that

(R(x, U ) ∩ R(y, V )) \ {0} 6= ∅.

Consequently, x is weakly product recurrent. 2

5. Discussion
We have shown that any point with a dense orbit in either the full one-sided shift on a finite
number of symbols or a mixing subshift of finite type is weakly product recurrent. This
result suggests the following questions.

Question 5.1. How ‘large’ is the class of weakly product recurrent points?

Question 5.2. Algebraically, a product recurrent point is characterized by the fact that it is
fixed by all maximal idempotents. Can one establish an algebraic characterization of weak
product recurrence?

We now discuss the relationship of weak product recurrence to other notions of
recurrence. Uniform recurrence does not imply weak product recurrence. We prove this
by constructing uniformly recurrent points α and β in the symbolic dynamical system
�+

= {0, 1}
Z+

such that α0 = 0, β0 = 1, and αi = βi for i > 1. The points α and β

are constructed as follows. For a word ω, let `(ω) denote the length of ω. Writing
ω = ω0 · · · ω`(ω)−1, let ω = ω`(ω)−1 · · · ω0 denote the reflection of ω. Define a(0)

= 0 and
b(0)

= 10. Inductively, define

a(n+1)
= a(n)

∗ b(n) and b(n+1)
= b(n)

∗ a(n+1),

where ∗ denotes concatenation. Define

α = lim
n→∞

a(n) and β = lim
n→∞

b(n).

We show inductively that αi = βi for i > 1. The inductive assumptions are as follows.
(1) We have a(k)

i = b(k)
i for 1 6 i 6 `(a(k)) − 1.

(2) For 0 6 j 6 k, the subwords b( j)
0 · · · b( j)

`(a( j))−1
and b( j)

`(a( j))
· · · b( j)

`(b( j))−1
are

symmetric.
Notice that a(1)

= 001 and b(1)
= 10100. Inductive assumption (1) holds for k = 1

because a(1)
1 = b(1)

1 = 0 and a(1)
2 = b(1)

2 = 1. Inductive assumption (2) holds for k = 1

because the words b(1)
0 · · · b(1)

2 = 101 and b(1)
3 b(1)

4 = 00 are symmetric. We now show
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that inductive assumptions (1) and (2) hold at level k + 1 if they hold at level k. Since
b(k)

`(a(k))
· · · b(k)

`(b(k))−1
is symmetric, we have a(k+1)

i = b(k+1)
i for `(a(k)) 6 i 6 `(b(k)) − 1.

Since b(k)
0 · · · b(k)

`(a(k))−1
is symmetric, we have a(k+1)

i = b(k+1)
i for `(b(k)) 6 i 6

`(a(k+1)) − 1. Therefore, inductive assumption (1) holds at level k + 1. We have

b(k+1)
0 · · · b(k+1)

`(a(k+1))−1
= b(k)

0 · · · b(k)

`(a(k))−1
∗ b(k)

`(a(k))
· · · b(k)

`(b(k))−1
∗ b(k)

0 · · · b(k)

`(a(k))−1
,

b(k+1)

`(a(k+1))
· · · b(k+1)

`(b(k+1))−1
= a(k+1)

0 · · · a(k+1)

`(b(k))−1
,

a(k+1)
0 · · · a(k+1)

`(b(k))−1
= b(k)

`(a(k))
· · · b(k)

`(b(k))−1

∗ b(k−1)
0 · · · b(k−1)

`(a(k−1))−1
∗ b(k)

`(a(k))
· · · b(k)

`(b(k))−1
.

These equalities imply that inductive assumption (2) holds at level k + 1.
We show that α and β are uniformly recurrent. The length of the gap between any two

occurrences of a(n) in α is bounded above by 2`(b(n)). This is so because if we choose
k > 2 and assume that this bound holds for all a(n+ j) with 1 6 j 6 k, then the equality

a(n+k+1)
= a(n+k)

∗ (a(n+k)
∗ a(n+k−1)

∗ · · · ∗ a(n+2)) ∗ a(n)
∗ b(n) ∗ b(n)

implies that the bound holds for a(n+k+1) as well. The length of the gap between any two
occurrences of b(n) in β is bounded above by `(a(n)). This is so because if we choose k > 1
and assume that this bound holds for all b(n+ j) with 1 6 j 6 k, then the equality

b(n+k+1)
= b(n+k)

∗ (b(n+k)
∗ b(n+k−1)

∗ · · · ∗ b(n)) ∗ a(n)

implies that the bound holds for b(n+k+1) as well. Finally, α is not weakly product recurrent
because (α, β) is clearly not recurrent.

Any point with a dense orbit in the full one-sided shift on a finite number of symbols
is weakly product recurrent but not distal. Such a point is not uniformly recurrent. This
observation suggests the following question.

Question 5.3. Do weak product recurrence and uniform recurrence together imply product
recurrence?
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