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ABSTRACT

We show how estimators for the chain ladder prediction error in Mack’s (1993)
distribution-free stochastic model can be derived using the error propagation
formula. Our method allows for the treatment of the general case of the pre-
diction error of the loss development result between two arbitrary future hori-
zons. In the well-known special cases considered previously by Mack (1993)
and Merz and Wüthrich (2008), our estimators coincide with theirs. However,
the algebraic form in which we cast them is new, considerably more compact
and more intuitive to understand. For example, in the classical case treated by
Mack (1993), we show that the mean squared prediction error divided by the
squared estimated ultimate loss can be written as

∑
j û

2
j q̂ j , where û j measures

the (relative) uncertainty around the j th development factor and q̂ j the propor-
tion of the estimated ultimate loss that it affects. The error propagation method
also provides a natural split into process error and parameter error. Our proofs
identify and exploit symmetries of “chain ladder processes” in a novel way. For
the sake of wider practical applicability of the formulae derived, we allow for
incomplete historical data and the exclusion of outliers in the triangles.

KEYWORDS

Chain ladder, mean squared prediction error, Mack error formula, claims
development result, solvency.

1. INTRODUCTION

The idea of this paper is to derive approximations for the chain ladder prediction
error in Mack’s (1993) distribution-free stochastic model using the error prop-
agation formula. This approach seems to have been given little attention in the
literature — in Mack (2008), it is mentioned in passing in the introduction, and
in Matitschka (2010) it is applied in an analysis of the prediction error within
the overdispersed Poisson model. Gisler (2013) analyzed the chain ladder error
using Taylor approximation in 1992, but never published his results. In our view,
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the error propagation approach has advantages in that it is very straightforward
and gives a transparent derivation.

The error propagation principle (see Ku, 1966) linearizes a random variable
which is a function of other random variables around a chosen point using
first-order Taylor approximation, and then reduces the stochastic analysis of
quadratic deviations of the function values to an analysis of the (co-)variances
of the variables occurring in the Taylor series. In our context, the latter variables
are the link ratios from the chain ladder triangle, and the function of the link
ratios is the ultimate loss.

The approximation of themean squared prediction error for the ultimate loss
which we find agrees with Mack’s result (Mack, 1993). However, our method
is different from Mack’s, and we also present the result in a new form. Using
the quantities û j and q̂ j defined in Section 2.7, of which û j measures the (rela-
tive) accuracy of the development factor estimate f̂ j and q̂ j the proportion of
the predicted ultimate loss that f̂ j affects, our estimator for the (relative) mean
squared prediction error for the ultimate loss, i.e. the mean squared prediction
error divided by the squared expected ultimate loss, takes on the very compact
and intuitive form ∑

j

û2j q̂ j ,

where the sum runs over all development periods j . In our Main Result 5.3, we
show that this formula generalizes to

∑
j

û2j

(
1

1 − q̃ j
− 1

1 − q̆ j

)/
1

1 − q̂ j

for the relative mean squared prediction error of the claims development result
between two arbitrary future horizons, the first one represented by the coeffi-
cients q̃ j and the second one by the coefficients q̆ j (all defined in analogy to the
q̂ j ). This new result is a generalization of the case of the one-year development
horizon — which goes back to Merz and Wüthrich, e.g. (Merz and Wüthrich,
2008)— and apparently agrees (as numerical examples show) with recent results
obtained by a different method byMerz andWüthrich (2014). The general case
is of interest in risk margin calculations for solvency purposes.

Result 5.3 also provides a split of the total mean squared error of prediction
into process and parameter error parts.

Applying these formulae in practice, one often encounters situations where
the historical data is incomplete or there are outliers in the data. For example,
the upper left corner of some incurred claims trianglemay not be available due to
a change in claims reserving practice. Practitioners might be tempted to account
for this by adapting the estimators û j in the above formulae. However, more
changes are required, as can be seen from Result 5.3.

The paper is organized as follows. In Section 2, we review the notation and
basic facts about the chain ladder model. Much of this is standard material;
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non-standard items include the definition of a “chain ladder process” and even
a “non-homogeneous” variant of it, the emphasis on underlying symmetries of
such processes, the aforementioned systematic treatment of incomplete histor-
ical triangle data and the possibility of allowing “ragged” triangles. Section 3
explains how to apply the error propagation formula to calculate the prediction
error for the ultimate loss. In Section 4, we recoverMack’s error formula (Mack,
1993), applying our method from Section 3. In Section 5, we extend our analysis
to the claims development result up to an arbitrary loss development horizon
and further between two future development horizons. In Section 6, we provide
a calculated example. In the appendix, we explicitly verify the agreement of our
formulae with previously published formulae for the ultimate development and
the case of the one-year development horizon.

2. THE CHAIN LADDER METHOD

2.1. General notation

Throughout this article, let E[X] and V[X] denote the expectation and variance
of a randomvariable X, respectively. Conditional expectation and variance of X,
given the σ -algebra σ [Y] generated by another random variable Y, are denoted
E[X|Y] and V[X|Y], respectively.

The shorthand 111Q is used as an indicator function with value 1 when the
condition Q is true, and 0 otherwise. For example, 111i< j is 1 if i < j , and 0
otherwise.

Partial differentiation is denoted ∂x f rather than the more customary ∂ f
∂x .

2.2. Chain ladder processes

In this section, we recall the definition and basic properties of Mack’s distri-
bution-free stochastic model (Mack, 1993). All of the material is standard
(Mack, 1993;Wüthrich andMerz, 2008), except that we dwell a little longer than
usual on the stochastic process aspects underlying the model. The discussion of
loss development triangles with their double indices is deferred to Section 2.4;
here, we consider the development of a “single accident year”, for example, for
which we need one development time index j only. A single accident year would
be an example of a “homogeneous chain ladder process”, as we will call it. But
Mack’s axioms allow to accommodate additional terms (“Aj” in the following
definition) which serve to describe processes more general than that. These give
rise to “non-homogeneous” chain ladder processes. We will encounter such a
process in Section 4.1 — it arises from a loss development triangle by aggre-
gating the future development column by column. In this case, development
is relevant only conditionally, given the historical triangle D, which is why we
include the σ -algebra A (think of A = σ [D]) in the definition below.
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Because of this terminology and the slight generalization over standard
treatments, we spell out the adapted, but otherwise well-known proofs.

Definition 2.1. Let {Xj } j≥0 be a discrete time, real-valued stochastic process, and
A a σ -algebra such that σ [X0] ⊆ A. Furthermore, denote by

X j := the σ -algebra generated by A, X0, X1, . . . , Xj .

Then we call {Xj } j≥0 a chain ladder process (given A), if each Xj is positive and
if for each j > 0, there exist positive real numbers f j , φ j and an A-measurable
real random variable Aj such that

E
[
Xj |X j−1

] = f j Xj−1 + Aj ,

V
[
Xj |X j−1

] = φ j Xj−1.

The parameter f j is called the development factor with index j and the quotient

Fj := Xj − Aj

Xj−1

the link ratio with index j . We say that the chain ladder process is homogeneous,
if σ [X0] = A and Aj = 0 for all j > 0. Finally, for notational convenience, we
define an Aj also for j = 0 by setting A0 := X0.

Note that even in the case of a homogeneous process, where A = σ [X0],
conditioning with respect to A makes sense, since X0 represents the starting
point of the recursive formulae for the expectation values and variances of sub-
sequent elements. Without knowing the value of X0, little can be inferred about
the future development. Also, the random variable X0 itself is not required to
have finite moments, whereas for the conditional expectations and variances of
the Xj , j > 0, the finiteness is an assumption implicit in the formulae.

Link ratios are themselves random variables, but the f j and φ j are parame-
ters of the chain ladder process which need to be estimated from data.

The following proposition summarizes the well-known basic properties of
the distribution-free model (see Mack, 1993).

Proposition 2.2. For every integer j > 0, define the map α j by

α j [x] := f j x+ Aj .

Then for any integers j ≥ k > 0,

E
[
Xj |Xk−1

] = f j E[Xj−1|Xk−1] + Aj

= (α j ◦ α j−1 ◦ . . . ◦ αk) [Xk−1]

= (α j ◦ α j−1 ◦ . . . ◦ αk) [0] + f j · . . . · fk · Xk−1

(1)

V
[
Xj |Xk−1

] = φ j E[Xj−1|Xk−1] + f 2j V
[
Xj−1|Xk−1

]
, (2)
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where the circle denotes map composition;

E
[
Fj |Xk−1

] = f j = E[Fj ] (3)

V
[
Fj |Xk−1

] = φ j E[
1

Xj−1
|Xk−1] ≥ φ j

E[Xj−1|Xk−1]
(4)

and for any integers i > j ≥ k > 0,

E
[
Fi Fj |Xk−1

] = fi f j = E[Fi Fj ] (5)

which means that Fi and Fj are uncorrelated. Finally, all statements remain true
if we replace Xk−1 by σ [Xk−1,A].

Proof.We prove the first statement by induction on j , the starting point j = k
being identical to the condition from the definition of a chain ladder process.
Assuming the statement to be true up to index j − 1, we have

E
[
Xj |Xk−1

] = E
[
E
[
Xj |X j−1

] |Xk−1
] = E

[
f j Xj−1 + Aj |Xk−1

]
= f j E

[
Xj−1|Xk−1

]+ Aj

= f j
(
(α j−1 ◦ . . . ◦ αk) [0] + f j−1 · . . . · fk · Xk−1

)+ Aj

= (α j ◦ . . . ◦ αk) [0] + f j · . . . · fk · Xk−1

as claimed. For the second statement, look at

V
[
Xj |Xk−1

] = E
[
V
[
Xj |X j−1

] |Xk−1
]+ V

[
E
[
Xj |X j−1

] |Xk−1
]

= E
[
φ j Xj−1|Xk−1

]+ V
[
f j Xj−1 + Aj |Xk−1

]
= φ j E[Xj−1|Xk−1] + f 2j V

[
Xj−1|Xk−1

]
.

To prove the third claim, consider

E
[
Fj |Xk−1

] = E
[
E
[
Fj |X j−1

] |Xk−1
]

= E
[
E
[
Xj − Aj

Xj−1
|X j−1

]
|Xk−1

]
= E

[
f j |Xk−1

] = f j .

For the fourth statement, we have

V
[
Fj |Xk−1

] = E
[
V
[
Fj |X j−1

] |Xk−1
]+ V

[
E
[
Fj |X j−1

] |Xk−1
]

= E

[
φ j Xj−1

X2
j−1

∣∣∣∣∣Xk−1

]
+ V

[
f j |Xk−1

]

= φ j E
[

1
Xj−1

∣∣∣∣Xk−1

]
≥ φ j

E
[
Xj−1|Xk−1

] ,
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where at the end we have used Jensen’s inequality. As to the fifth claim, we have

E
[
Fi Fj |Xk−1

] = E[E[Fi Fj |Xi−1]|Xk−1] = E[Fj E[Fi |Xi−1]|Xk−1]

= E[Fj fi |Xk−1] = fi E[Fj |Xk−1] = fi f j

as stated. Finally, our last claim follows by replacing allXk−1 by σ [Xk−1,A] (but
keeping the X j−1 and Xi−1) in the above proofs, using again induction and what
we have proved already. �
The inequality in (4) is sharp — in fact, we will use it as an approximation
later on.

2.3. Aggregating chain ladder processes

Loss development triangles contain chain ladder processes which—by assump-
tion — have identical sets of parameters. Before studying such triangles, we will
show that any finite number of such (independent) processes may be combined
into a new chain ladder process by summation. This fact will be used later on.
We only need it for homogeneous chain ladder processes. We also look at what
happens if we aggregate a homogeneous chain ladder process in the develop-
ment direction by combining several steps into one.

Throughout this section, let {Xj } j≥0 be a homogeneous chain ladder process
with parameters f j , φ j .

Proposition 2.3. Let {X′
j } j≥0 be another homogeneous chain ladder process with

parameters f ′
j , φ

′
j . Assume {Xj } j≥0 and {X′

j } j≥0 to be independent, and assume
f j = f ′

j and φ j = φ′
j for all j . Then the sum {Xj + X′

j } j≥0 is a homogeneous
chain ladder process with the same parameters f j , φ j .

Proof. Denoting by X ′
j the σ -algebra generated by X′

0, X
′
1, . . . , X

′
j and by Y j

the σ -algebra generated by the random variables X0+X′
0, . . . , Xj +X′

j , we have

E[Xj + X′
j |Y j−1] = E[E[Xj + X′

j |X j−1,X ′
j−1]|Y j−1]

= E[ f j Xj−1 + f ′
j X

′
j−1|Y j−1]

= E[ f j (Xj−1 + X′
j−1)|Y j−1]

= f j (Xj−1 + X′
j−1)

using the assumption f j = f ′
j and the independence assumption. Furthermore,

V[Xj + X′
j |Y j−1] = E[V[Xj + X′

j |X j−1,X ′
j−1]|Y j−1]

+ V[E[Xj + X′
j |X j−1,X ′

j−1]|Y j−1],
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where the second term on the right-hand side vanishes by what we have just
proved about the expectation value. By the independence assumption,

V[Xj + X′
j |X j−1,X ′

j−1] = V[Xj |X j−1] + V[X′
j |X ′

j−1] = φ j Xj−1 + φ′
j X

′
j−1,

and our claim now follows from the assumption φ j = φ′
j . �

There is a second way to “aggregate” a chain ladder process, namely, by
combining several development steps into one. We will look into this now.

Proposition 2.4. For any 0 < k ≤ j , set

φk, j := φk

f 2k
fk fk+1 · . . . · f j , (6)

such that in particular φ j, j = φ j/ f j . Then for j ≥ k > 0,

V[Xj |Xk−1] = (φ j, j + φ j−1, j + · · · + φk, j )E[Xj |Xk−1]. (7)

Furthermore, if j0 < j1 < j2 < . . . forms a sub-sequence of the non-negative inte-
gers, then the stochastic process {X′

k}k≥0, where X′
k := Xjk, is again a homogeneous

chain ladder process.

Proof. For the first claim, we proceed by induction on j , starting with j = k,
in which case the assertion follows directly from the defining properties of a
chain ladder process. Assuming our claim to hold for j − 1, we get from (2), (1)
and our homogeneity assumption

V[Xj |Xk−1] = φ j E[Xj−1|Xk−1] + f 2j V
[
Xj−1|Xk−1

]
= (φ j + f 2j (φ j−1, j−1 + · · · + φk, j−1)

)
E[Xj−1|Xk−1]

= ( f jφ j, j + f j (φ j−1, j + · · · + φk, j )
)
E[Xj−1|Xk−1]

= (φ j, j + φ j−1, j + · · · + φk, j
)
E[Xj |Xk−1],

which completes the induction step and proves the first claim. From it, we con-
clude that if we jump from Xk−1 directly to Xj , we have

E[Xj |Xk−1] = f j f j−1 · . . . · fkXk−1, (8)

V[Xj |Xk−1] = (φ j, j + φ j−1, j + · · · + φk, j ) f j f j−1 · . . . · fkXk−1, (9)

which are the defining properties of a homogeneous chain ladder process. This
proves our second claim. �

In Section 5.3, we will meet the φk, j again (see Remark 5.7).

Remark 2.5. Note that the model assumption on the variance, V[Xj |X j−1] =
φ j Xj−1, plays a crucial role in this section. Alternative chain ladder models have
been studied which specify V[Xj |X j−1] = φ j or V[Xj |X j−1] = φ j X2

j−1. For
these, the results of this section do not hold.
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2.4. Loss development triangles

Our treatment of loss development triangles differs in two respects from stan-
dard treatments (e.g.Mack, 1993;Wüthrich andMerz, 2008): we allow formiss-
ing data and also for flexibility with respect to the time granularity. Instead of
accident years, we speak of loss portfolios, and instead of development years,
we consider development periods or steps, which do not have to be equidistant.
Given the facts presented in the previous section, Propositions 2.3 and 2.4, this
is a natural thing to do.

Consider a collection of pairwise disjoint claims portfolios identified by an
index i ∈ I, where I is a finite non-empty set. We assume that each portfolio
is subject to a development described by a homogeneous chain ladder process.
Let Ci, j > 0 denote the value of the process of the portfolio with index i at
development index j . This could be claim payments, claim numbers, or incurred
losses, for example. The values could be incremental or cumulative, although in
practice the interesting applications will more likely be of the cumulative type,
and we will make this assumption throughout the paper.

We assume that the portfolios are comparable in that their chain ladder de-
velopment parameters f j , φ j are identical, i.e., do not depend on i . We also
assume the chain ladder processes to be independent, and that for each portfolio
at least one of the development states is known, i.e. has been observed.

Our notation describing the data is summarized in the following:

Definition 2.6. Assuming each set { j |Ci, j is known}, for i ∈ I, to be non-empty,
we define

ji := max
{
j |Ci, j is known

}
, for each i ∈ I;

J := max { ji | i ∈ I} ;
I j :=

{
i ∈ I |Ci, j is known

}
, for each non-negative integer j;

I∗
j := {i ∈ I | ji < j} , for each non-negative integer j;

fi, j := Ci, j/Ci, j−1, for each (i, j) such that i ∈ I j−1 ∩ I j ;
Fi, j := Ci, j/Ci, j−1, for each (i, j) such that i ∈ I∗

j ;
D := {Ci, j | i ∈ I j }.

Thus, ji is the development index of the latest known development state of
portfolio i , and the maximum of all ji is denoted J. The development up to the
index J will be referred to as the ultimate development or development up to the
ultimate horizon, although this does not require that all claims have to be finally
settled at that point.

The states Ci, j with j ≤ ji will be called the historical, the others the fu-
ture development states (the future states residing in the lower right part of
Figure 1 — the column-wise grouping indicated by the dashed lines will be ex-
plained in Section 4.1).We allow for some of the historical states to be unknown
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FIGURE 1: A loss development triangle.

or missing (more on this in Section 2.5). The set I j represents the set of all port-
folios with known development at development index j , whereas I∗

j is the set of
all portfolios for which the state at development index j is a future development
state. In particular, by definition of J, we have I j = ∅ and I∗

j = I for j > J.
The future development state Ci, j is a random variable from today’s point of
view. The set D is the set of those states which have already been observed; its
subset

{Ci, ji |i ∈ I} ⊆ D
which represents the set of “latest” known states for our loss portfolios, will
be referred to as “today’s diagonal” (the elements surrounded by thick lines in
Figure 1).

The link ratios fi, j with j ≤ ji will be called historical link ratios, the link
ratios Fi, j with j > ji future link ratios.

Figure 1 illustrates these definitions. The triangular shape is the general case,
since we may always order the loss portfolios by decreasing ji .

For 0 ≤ j ≤ min{ ji | i ∈ I}, we have I∗
j = ∅ by definition. We make the

additional assumption that, in fact, min{ ji | i ∈ I} = 0, such that

I∗
j = ∅ ⇔ j = 0. (10)

This is no loss of generality, as the values Ci, j with j < min{ ji | i ∈ I} would
play no role in our analysis, and instead of summing over all j = 1 to J, we
would frequently have to sum from j = min{ ji | i ∈ I} + 1 to J instead.

We close this section by introducing a practical summation convention:
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Summation Convention 2.7. For any subsetH ⊆ I, we define
CH, j :=

∑
i∈H

Ci, j ,

where the sum is understood to be 0 if H = ∅ and to take precedence over further
algebraic transformation such as squaring. Dropping indices altogether will mean
summation over all i ∈ I at the ultimate horizon, i.e.

C := CI,J .

We will also apply this convention to the predictors Ĉi, j to be defined later on.

2.5. Non-standard-shaped and incomplete triangles

The notation introduced in the previous section allows for the treatment ofmiss-
ing data, which we explain in more detail in this section.

The triangle in Figure 1 is somewhat “ragged” in comparison to a standard
accident year/development year triangle, because two elements on the (geomet-
ric) diagonal are missing (third and last but one column in Figure 1). We also
allow for missing data to occur “inside” the historical triangle, as we did not
require I j ∪ I∗

j to be equal to I. The states at development step j belonging to
the portfolios enumerated by the set I \ (I j ∪ I∗

j ) are historical, but their value
is not known — hence this data is missing.

Missing data are a fairly common situation. For example, a change in indi-
vidual claims reserving practice may render some old part of the triangle useless
for the analysis of incurred development. Or, while payments may be available
on a granular level for various types of claims payments, case reserves may only
be available at that level from a certain calendar date onward — again a situa-
tion, where for the purpose of the analysis of incurred loss development some
old part of the historical data must be considered unknown. Then there is the
case of an obviously false data recording for a single individual claim that occurs
in one development period and is reversed in the next. If this cannot be rectified
in the data preparation step, the state affected must be declared unknown. Fi-
nally, for paid data analysis, some long tail lines of business have zero payments
during the initial phases of development. Strictly speaking, this would fall out-
side the scope of our models, since we required all random variables to take on
strictly positive values, but a practical way to deal with this situation would be
to treat the zero values as unknown data.

Note, however, that Definition 2.6 does imply IJ ∪ I∗
J = I, because if i ∈ I,

then either J > ji , in which case i ∈ I∗
J , or J = ji , in which case Ci,J is known

and hence i ∈ IJ . In other words, any missing state at index J is considered
a future state, and hence there are no missing historical states at development
index J.

While the values of both Ci, j−1 and Ci, j must be known to calculate the his-
torical link ratio fi, j , it is not unusual in practice to discard some of the available
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link ratios when estimating the development factors. To accommodate the dele-
tion of “outliers” among the link ratios, or the selection of only the “latest 5
diagonals”, we assume that for each j ∈ {1, . . . , J}, a non-empty set

H j ⊆ I j−1 ∩ I j

has been specified that reflects the selection made for the purpose of estimating
f j and φ j by the unbiased estimators (see Mack, 1993)

f̂ j :=
CH j , j

CH j , j−1
=
∑

i∈H j
Ci, j−1 fi, j∑

i∈H j
Ci, j−1

and φ̂ j :=

∑
i∈H j

Ci, j−1
(
fi, j − f̂ j

)2
−1 +∑i∈H j

1
.

While incomplete data are important in practical applications, the theory and
the formulae are somewhat simpler if completeness may be assumed. Therefore,
we make the following definition:

Definition 2.8. If I j ∪ I∗
j = I for all j , and H j = I j−1 ∩ I j for all j > 0,

then we say that the historical triangle is complete. In this case, we also have
I = I0 ⊇ I1 ⊇ . . . ⊇ IJ.

The last statement needs verification: the sets I∗
j always form an ascending

chain, being pre-images of an ascending chain of sets of integers, and starting
with I∗

0 = ∅ by (10). Hence, if I j∪I∗
j = I for all j , then the I j form a descending

chain, starting with I0 = I (note that I j and I∗
j are disjoint by definition).

Our treatment of incompleteness is different from that presented by Dahms
(2008). For example, in the cases mentioned, where we have a cumulative in-
curred value that is classified as valid, it must reflect the complete payment his-
tory plus the current value of case reserves. Dahms, by contrast, allows for part
of the payment history to be missing, too.

Remark 2.9. We explained the “non-standard” shape of the triangle depicted
above by missing data “on the diagonal”. This gave rise to a “non-standard”
or “ragged” shape of the triangle. Note, however, that Definition 2.6 also cov-
ers non-standard shapes that may arise although no data is missing at all. For
example, assume that we observe similar development behavior in two lines of
business and have reasons to believe that they could be modeled using the same
chain ladder parameters. Assume further that for some reason we need to keep
the results for the two lines of business separate. Then instead of just adding
two “standard accident year/development year” triangles, we might, for each
accident year, look at two loss portfolios and their development separately. Ar-
ranged by increasing degree of development, this would result in a non-standard
triangle shape, although no data is missing. Doing so allows to keep the results
of the analysis separate (see Result 5.3), while the joint analysis helps to reduce
the parameter error. Furthermore, it provides a way to estimate φJ , which oth-
erwise can only be estimated by extrapolation.
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Remark 2.10. One should exercise care when discarding link ratios, i.e. when re-
moving elements from the sets H j . Possible reasons for discarding an observed
link ratio include the following: (a) the loss development triangle element form-
ing the numerator of the link ratio is unreliable; (b) the denominator is unre-
liable; or (c) the development step between denominator and the numerator is
considered not to have followed the stochastic laws assumed to be underlying
the overall chain ladder model. Unreliable data in this sense may be caused, for
example, by data entry errors in the claims system that are reversed in the next
development period. In cases (a) and (b), one usually must discard two succes-
sive link ratios, because an unreliable element in the loss development triangle
in general affects two successive link ratios. If a diagonal element is unreliable,
then only one link ratio is affected, but in this case not only the link ratio, but
the whole diagonal element should be discarded, because the predicted future
development would rely on a value that already has been identified as unreliable.

Case (c) is obviously very subjective, but it may arise naturally as follows:
suppose we have a loss portfolio of accident years i = 0, 1, . . . , J with devel-
opment years j = 0, 1, . . . , J, whose development is known for all accounting
years k = i + j = 0, . . . , J. Next, suppose we have a second triangle from the
same line of business that we would like to add to the first triangle. Suppose,
however, that in the second triangle, the cumulative data only starts in a specific
accounting year k ≤ J, i.e. that its entries in accounting years less than k are
missing. Then we may add the two triangles, and all elements of the merged
triangle may be called reliable, but the jump at the accounting year k diagonal
clearly has nothing to do with the stochastic development in the model, but is
predominantly caused by the additional volume of the second triangle. So in
this case, the link ratios arising between diagonal k − 1 and k of the merged
triangle are justifiably discarded.

Certain other schemes of discarding link ratios, on the other hand, for exam-
ple the method of discarding the highest and lowest values at each development
step, will introduce a bias, and are outside the scope of this paper.

2.6. Chain ladder predictors

Given the latest known cumulative values Ci, ji , the chain ladder predictors Ĉi, j
of future values Ci, j are given by

Ĉi, j := Ci, ji · f̂ ji+1 · . . . · f̂ j (11)

(see Mack, 1993). Setting Ĉi, j := Ci, j for historical (i, j) will permit us to apply
our summation convention 2.7 to the Ĉi, j and in particular allow us to abbrevi-
ate the predictor for the total ultimate loss C by Ĉ.
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2.7. Accuracy and influence of development factors

As mentioned in the introduction, we will formulate our results in terms of cer-
tain quantities û j and q̂ j . These are statistics of the historical data, but are usu-
ally not found in standard treatments of the chain ladder method. This section
defines and interprets them.

We start with the conditional coefficient of variation of the link ratio Fj of
a chain ladder process, i.e. the quantity

√
V[Fj |X j−1]

(E[Fj |X j−1])2
=

√√√√√ V[ Xj−Aj

Xj−1
|X j−1]

(E[ Xj−Aj

Xj−1
|X j−1])2

=
√

φ j

f 2j Xj−1
. (12)

If we calculate this quantity for the process of portfolio i from our loss devel-

opment triangle of Section 2.4, we get
√

φ j/( f 2j Ci, j−1); and for the chain ladder

process {CH j ,k}k≥0 obtained by aggregating, in accordance with Proposition 2.3,

the portfolios enumerated by the setH j , we get
√

φ j/( f 2j CH j , j−1). Replacing un-
known quantities by their estimators, we arrive at the following estimators for
the conditional coefficients of variation of these two processes:

ûi, j :=
√

φ̂ j

f̂ j Ĉi, j
for j > ji , and û j :=

√
φ̂ j

f̂ jCH j , j
for j > 0, (13)

where we have used that f̂ j = CH j , j/CH j , j−1 by definition of f̂ j , and f̂ j Ĉi, j−1 =
Ĉi, j by (11).

Being an estimator for the coefficient of variation of f̂ j as a link ratio of the
aggregate chain ladder process, û j is also a measure of the relative accuracy of
f̂ j as an estimator for f j .

The next quantity we introduce measures the influence that any given devel-
opment factor has on the ultimate loss C. For example, one might ask, if we
misestimate f j by a few percent, by how many percent will that change our esti-
mated ultimate loss? The quantity we are about to define measures the quotient
of these percentages.

Lemma 2.11. For j ∈ {0, 1, . . . , J}, let

q j :=
E[CI∗

j ,J |D]

E[C|D]
and q̂ j :=

ĈI∗
j ,J

Ĉ
.

Then q0 = q̂0 = 0, and for j > 0, the quantity q̂ j is obtained from q j by replacing
each f j with its estimator f̂ j , and

q j = ∂log[ f j ] log[E[C|D]].
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Proof. The assertion about q̂ j follows from (11) and (1). By the latter,

∂ f j E[C|D] = ∂ f j

∑
i∈I

⎛
⎝Ci, ji

J∏
k= ji+1

fk

⎞
⎠ =

∑
i∈I

⎛
⎝Ci, ji111 j> ji

f j

J∏
k= ji+1

fk

⎞
⎠ .

Now j > ji is equivalent to i ∈ I∗
j , hence

∂log[ f j ] log[E[C|D]] = f j∂ f j E[C|D]

E[C|D]
= 1

E[C|D]

∑
i∈I∗

j

⎛
⎝Ci, ji

J∏
k= ji+1

fk

⎞
⎠

= E[CI∗
j ,J |D]

E[C|D]

as claimed. Finally, q0 = q̂0 = 0 because I∗
0 = ∅ by (10). �

Thus q̂ j estimates the influence that f j has on the ultimate loss — in one
interpretation as a ratio of log changes, and in another as the proportion of the
ultimate loss that is actually affected by the development factor. In particular,
0 ≤ q̂ j < 1.

3. ERROR PROPAGATION CALCULATION OF THE MSEP

In this section, we recall the usual definition of the mean squared prediction er-
ror and apply the error propagation principle to approximate the mean squared
prediction error for a class of random variables and associated predictors arising
naturally in our chain ladder context.

3.1. Mean squared error of prediction

Let us briefly recall the definition of the mean squared error of prediction (e.g.
Wüthrich and Merz, 2008). The difference between the true (but unknown) ul-
timate loss C and its predictor Ĉ, given D, is called the (conditional) prediction
error, and its squared expectation the (conditional) mean squared error of pre-
diction (“MSEP”):

msepC−Ĉ := E[(C − Ĉ)2|D]

= E[(C − E[C|D] + E[C|D] − Ĉ)2|D]

= E[(C − E[C|D])2|D] + (E[C|D] − Ĉ)2

= V[C|D] + (E[C|D] − Ĉ)2

=: msepproc
C−Ĉ + msepparm

C−Ĉ. (14)
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The first summand in the fourth line is called the mean squared process error
(or process variance) and the second the squared estimation (or parameter) er-
ror. In the following section, we will estimate these error terms using the error
propagation principle.

3.2. Applying the error propagation principle

Formula (14) applies in a context much more general than our chain ladder
context. But within the latter, the quantities occurring have a number of special
properties which allow us to apply the error propagation principle.Wewill inves-
tigate this in the current section. For a general discussion of error propagation
and its applications, see e.g. Ku (1966).

The special thing about C, which by definition equals

C =
∑
i∈I

Ci, ji

J∏
j= ji+1

Fi, j ,

is that it is a function of random variables — the future link ratios Fi, j —whose
first and secondmoments, including their correlations, can be readily estimated,
as wewill show in this section (followingMack, 1993). Therefore, approximating
C by a first-order Taylor series in the Fi, j will allow us to derive estimators for
quantities such as the MSEP. This is the basic idea behind the approach taken
in this section.

This approach can be applied to C, and to other functions of the future link
ratios. Suchmore general functionswill be needed in Section 5. So let us consider
any random variable G which is a rational function, also denoted by G, of the
future link ratios, with coefficients that depend on the known values from the
historical triangle D. We might even consider a more general class than that of
rational functions over the real numbers, but we restrict to this class in order
to fix ideas and because it will serve our purposes. We assume that the first two
moments of G exist, conditionally given D.

The first thing we will do is to substitute the Fi, j in the algebraic expression
for G by a new set of variables related to the two sources of uncertainty, the
process and parameter error. We will proceed in two steps. First, we apply the
substitution

Fi, j =: ξi, j + f j , (15)

introducing the new variables ξi, j (one for each future link ratio). The param-
eters f j are deterministic real numbers; however, their values are unknown to
us, and therefore the f j are indeterminates in the algebraic expression resulting
after the substitution (15) inG. Therefore, the second substitution we will apply,
for 1 ≤ j ≤ J,

f j =: η j + f̂ j , (16)

is well defined, introduces the new variables η j , and together with the first sub-
stitution converts G into a function of the variables ξi, j and η j . Together, (15)
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and (16) amount to the combined substitution

Fi, j = ξi, j + η j + f̂ j (17)

for all future Fi, j , i.e. for all (i, j) such that i ∈ I∗
j .

Evaluating G at the point where Fi, j = f̂ j for all future link ratios provides
a predictor for the random variable G which we denote by Ĝ, in analogy to the
special case of Ĉ defined above:

Ĝ := G | f̂ .

We will systematically use the subscript notations

(. . .)| f̂ , (. . .)| f and (. . .)|0

when we interpret the subscripted expression as a function of the Fi, j and eval-
uate it at the point Fi, j = f̂ j , when we interpret the subscripted expression as a
function of the Fi, j and evaluate it at the point Fi, j = f j , and when we interpret
the subscripted expression as a function of the ξi, j and η j (after the substitution
(17)) and evaluate it at the point ξi, j = η j = 0, respectively. For example, we
have Ĝ = G | f̂ = G |0.

Taking Ĝ as a predictor for G, our goal is to find the prediction error
msepG−Ĝ . Regarding G as a function of the ξi, j and η j , the MSEP is now seen
to come from two kinds of sources: the deviations of the variables ξi, j from 0,
which stem from the deviations of the Fi, j from their expectation values f j , and
the deviations of the η j from 0, which are attributable to the amount by which
we misestimate the true f j by f̂ j . In fact, we may expect these deviations to
be in the vicinity of 0, since E[ξi, j |D] = E[Fi, j |D] − f j = 0 by the assumed
independence of loss portfolios and (3), and since f̂ j is an unbiased estimator
of f j (see Mack, 1993). Therefore, we may expect the first order Taylor series of
G about ξi, j = η j = 0,

L f̂ [G] := Ĝ +
J∑
j=1

∑
i∈I∗

j

(∂ξi, j G)|0 ξi, j +
J∑
j=1

(∂η j G)|0 η j . (18)

to be an approximation of the random variable G (assuming differentiability
at 0).

Result 3.1 (Preliminary Approximations). In this situation, the following state-
ments hold true:
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1. The (conditional) MSEP of the prediction of G by Ĝ is approximated by

msepG−Ĝ ≈ msepL f̂ [G]−Ĝ (19)

≈
J∑
j=1

∑
i∈I∗

j

(∂Fi, j G)2| f̂ V[Fi, j |D] +
J∑
j=1

⎛
⎝∑
i∈I∗

j

(∂Fi, j G)| f̂

⎞
⎠

2

V[ f̂ j |CH j , j−1]. (20)

2. The first summand in the last expression is an approximation for msepproc
G−Ĝ

and the second an approximation for msepparm
G−Ĝ .

3. The variances occurring in these formulae may be estimated as follows:

V
[
Fi, j
∣∣D] ≈ f̂ 2j û

2
i, j , (21)

V[ f̂ j |CH j , j−1] ≈ f̂ 2j û
2
j . (22)

Derivation. Taking L f̂ [G] as an approximation for G given D justifies the ap-
proximation (19). We now claim that

msepL f̂ [G]−Ĝ =
J∑
j=1

∑
i∈I∗

j

(∂ξi, j G)2|0 V[Fi, j |D] +
⎛
⎝ J∑

j=1

(∂η j G)|0 η j

⎞
⎠

2

. (23)

To see this, we square the right-hand side of (18) and take expectations E[.|D];
the rest then boils down to an analysis of cross-terms, which we will now carry
out, following Mack (1993). First, E[ξi, j |D] = 0 by (3), and consequently
E[ξi, jξi ′, j ′ |D] = 0 if either i �= i ′ (by the assumed independence of loss port-
folios) or j �= j ′ (by (5)); and E[ξ 2

i, j |D] = V[ξi, j |D] = V[Fi, j |D]. Next, we note
that conditionally, given D, the η j are not random at all, being the difference
between a fixed (if unknown) parameter f j and a statistic f̂ j that has been cal-
culated from observed data. Therefore E[ξi, jηk|D] = ηkE[ξi, j |D] = 0. Putting
this together, we arrive at (23).

Our next claim is⎛
⎝ J∑

j=1

(∂η j G)|0 η j

⎞
⎠

2

≈
J∑
j=1

(∂η j G)2|0 V[ f̂ j |CH j , j−1], (24)

which again can be justified by an analysis of cross terms, still following Mack
(1993): In order to estimate η jηk — assuming j ≤ k without loss of generality
— we approximate its unknown value by an average value:

η jηk ≈ E[η jηk|{Ci, j−1|i ∈ H j }], (25)

where on the right-hand side we interpret the f̂ j and f̂k occurring in η jηk =
( f j − f̂ j )( fk − f̂k) as random variables, and not as observed statistics. Now if
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j < k, then this becomes

E[η jηk|{Ci, j−1|i ∈ H j }] = E[E[η jηk|{Ci,�−1|i ∈ H�, � ≤ k}]|{Ci, j−1|i ∈ H j }]
= E[η j E[ηk|{Ci,�−1|i ∈ H�, � ≤ k}]|{Ci, j−1|i ∈ H j }]
= 0

since E[ηk|{Ci,�−1|i ∈ H�, � ≤ k}] = 0 by our chain ladder assumptions and
the assumed independence of the loss portfolios. For j = k, the right-hand
side of (25) becomes V[ f̂ j |CH j , j−1], and we arrive at the approximation (24).
Finally, by the chain rule of differentiation, (∂η j G)|0 =∑i∈I∗

j
(∂Fi, j G)| f̂ . Putting

this together, we have justified the approximation (20).
To prove statement 2), we first consider the case where

E[G|D] = G | f . (26)

For example, G = C is such a function, by (1). Under this assumption, we have,
by definition of the process and parameter error (see (14)),

msepproc
G−Ĝ = E[(G − E[G|D])2|D] = E[(G − G | f )2|D]

and
msepparm

G−Ĝ = (E[G|D] − Ĝ)2 = (G | f − G | f̂ )
2

respectively. Like above, we use first-order Taylor expansion. For the process
error, using the same arguments about the cross terms already presented above,
this leads to

msepproc
G−Ĝ ≈

J∑
j=1

∑
i∈I∗

j

(∂Fi, j G)2| f V[Fi, j |D], (27)

but (∂Fi, j G)| f̂ is an estimator for (∂Fi, j G)| f , which proves the first claim in state-
ment 2) for the special type of G fulfilling (26). As for the second claim, re-
garding the parameter error, this is equally straightforward, considering that∑

(∂η j G)|0η j is also the linear term of the Taylor expansion of the function G | f
of the f j at the point η j = 0 for all j .

Besides C, another example of a function satisfying the condition (26) is
L f̂ [G]. Indeed, since E[ξi, j |D] = 0,

E[L f̂ [G]|D] = Ĝ +
J∑
j=1

(∂η j G)|0η j ,

and the same result is obtained by substituting each occurrence of ξi, j = Fi, j− f j
by 0 in (18). Therefore, by what we have proved of statement 2) already, the
two summands of (24) approximate msepproc

L f̂ [G]−Ĝ and msepparm
L f̂ [G]−Ĝ , respectively.
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Hence, to the extent that we accept the random variable L f̂ [G] as an approxi-
mation of G, we may also consider the summands of (24) to represent approxi-
mations of msepproc

G−Ĝ and msepparm
G−Ĝ , respectively. This proves the statement 2).

For statement 3), note first that due to the assumed independence of the loss
portfolios, we have V[Fi, j |D] = V[Fi, j |Ci,0, . . . ,Ci, ji ]. Next, remember that in
Section 2.7 we found that ûi, j and û j estimate the (conditional) coefficient of
variation of the link ratio at development index j of the chain ladder processes
{Ci,k}k≥0 and {CH j ,k}k≥0, respectively. Since the expectation value of the link ratio
is estimated in each case by f̂ j , we get the approximations (21) and (22). �

Remark 3.2. For a discussion of the split into process and parameter error, see
also Merz and Wüthrich (2008) and, in the context of a Bayesian chain ladder
model, Bühlmann et al. (2009), Remarks 4.2 and 4.8.

4. THE MSEP FOR THE ULTIMATE LOSS

In Section 4 and Section 5, we will apply our Preliminary Approximations 3.1
to derive approximations for msepG−Ĝ for various functions G of the future
link ratios. The case considered in the present Section 4 is the case G = C,
i. e. the development to the ultimate horizon. Later on, in Section 5, this will be
generalized to the case of development to any intermediate horizon, and even to
the development between two future horizons. Correspondingly, the results of
Section 5 contain the results obtained in the present Section 4 as a special case.
However, some proofs and insights do not carry over to the more general case
of Section 5 and are therefore presented here in Section 4: first of all, the use
of non-homogeneous chain ladder processes provides straightforward insight
into the fact that the process error of the process(es) underlying the historical
data has the effect of an “additional process error” when considering the future
development (see Remark 4.2). Secondly, the split into process and parameter
error may be accomplished for the case of development to the ultimate horizon
by direct Taylor approximation of the defining terms because condition (26)
holds for the ultimate loss C, while in the more general context of Section 5,
this will no longer be possible. On the other hand, the detailed evaluation of
partial derivatives presented in Section 5.2 is not necessary for the purposes of
Section 4.

4.1. The chain ladder process of future development

The future part of the development of our given loss portfolios can be aggre-
gated to a single, non-homogeneous chain ladder process. At development index
j , we simply sum over all future states Ci, j at this index (in Figure 1, this corre-
sponds to the dashed rectangle in column j ), and as Aj we take the sum of the
elements on today’s diagonal at development step j (the rectangles with thick
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solid lines in Figure 1). More formally, the process

{CI∗
j+1, j } j≥0 (28)

is a (non-homogeneous) chain ladder process (given A := σ [D]) with parame-
ters f j , φ j , Aj = CI∗

j+1\I∗
j , j . To see this, we check the condition on the expecta-

tion value (leaving the rest to the reader):

E[CI∗
j+1, j |CI∗

j , j−1, . . . ,CI∗
1 ,0,D] = E[CI∗

j+1, j − Aj |CI∗
j , j−1, . . . ,CI∗

1 ,0,D] + Aj

= E[CI∗
j , j |CI∗

j , j−1, . . . ,CI∗
1 ,0,D] + Aj

= f jCI∗
j , j−1 + Aj .

In the third equation, we have used our assumption of independence of loss
portfolios, which allows us to ignore the loss portfolios not represented in I∗

j in
the conditioning, as well as Proposition 2.3, which tells us that {CI∗

j ,k}k≥0 is a
homogeneous chain ladder process with parameters fk and φk. Furthermore, at
j = 0, the value of the process (28) is positive by (10). Let

Fj :=
CI∗

j+1, j − CI∗
j+1\I∗

j , j

CI∗
j , j−1

be the link ratio of the process (28), for j ≥ 1. Note that the value of the process
(28) at development index j = J is just the ultimate loss C.

Result 4.1 (preliminary approximations — ultimate horizon). In this situation,
we have

msepC−Ĉ ≈ Ĉ2
J∑
j=1

q̂2j
V[Fj |D] + V[ f̂ j |CH j , j−1]

f̂ 2j
, (29)

msepproc
C−Ĉ ≈ (E[C|D])2

J∑
j=1

q2j
V[Fj |D]

f 2j
, (30)

msepparm
C−Ĉ ≈ Ĉ2

J∑
j=1

q̂2j
V[ f̂ j |CH j , j−1]

f̂ 2j
. (31)

Derivation. This will follow quite straightforwardly from our Preliminary Ap-
proximations 3.1. Note first that Result 3.1 may be adapted easily to the situa-
tion we consider here, where instead of a two-dimensional array of link ratios
Fi, j , we have the one-dimensional array of the Fj . Effectively, statements (1) and
(2) of 3.1 hold with the sums over the index i replaced by a single item (involving
Fj instead of Fi, j ). Instead of the substitution (15), we now use Fj = ξ j + f j ,
with new coordinates ξ j . To derive (29), we therefore refer to (20), and all
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that remains to be shown is that (∂FjC)| f̂ = Ĉq̂ j/ f̂ j . But by (1), Lemma 2.11
and (11)

(∂FjC)| f j = ∂ f j E[C|D] = E[C|D]
f j

∂log[ f j ] log[E[C|D]] = E[C|D]
f j

q j

and hence

(∂FjC)| f̂ j = Ĉ

f̂ j
q̂ j ,

which proves our claim about (∂FjC)| f̂ j . The second statement of Result 3.1 now
implies (30) and (31). �

Remark 4.2. Note here that the parameter error of the future development
stems from the process error of the historical data, as becomes apparent from
(31) (remember f̂ j is a link ratio of the chain ladder process {CH j ,k}k≥0), and that
its influencemay be interpreted as just some “additional process uncertainty” of
the non-homogeneous chain ladder process describing the future development,
as becomes clear from (29) and (30). This insight is the reasonwhywe introduced
the concept of a non-homogeneous chain ladder process.

Remark 4.3. In (30), we might have gone one step further and might have re-
placed E[C|D], q j and f j by Ĉ, q̂ j and f̂ j , respectively, but we need the formula
as it stands to build on it in Remark 4.7.

4.2. Mack’s formula revisited

Equipped with the results of the last section, we now proceed to derive a simple
error formula when the historical triangle is complete, and we will show that it
coincides with Mack’s well-known formula (Mack, 1993).

The following lemma will be crucial for achieving our goal.

Lemma 4.4. Suppose the historical triangle is complete, and consider any j ∈
{1, . . . , J} and any setH such that I j ⊆ H ⊆ I. Then ĈH, j = ĈH, j−1 f̂ j .

Proof. ĈH, j = ĈI j , j + ĈH\I j , j , since H is a superset of I j . By completeness
(see Definition 2.8) and since j > 0, ĈI j , j = ĈI j−1∩I j , j = ĈH j , j . By definition
of f̂ j , we have ĈH j , j = f̂ j ĈH j , j−1. Finally, all summands of CH\I j , j are future
development states, hence ĈH\I j , j = ĈH\I j , j−1 f̂ j . Putting this together proves
our claim. �

We can now proceed to formulate our first main result:

Result 4.5 (Mack’s formula revisited). If the historical triangle is complete, then
the (conditional) mean squared error of prediction msepC−Ĉ of the ultimate loss
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C by the predictor Ĉ can be approximated as

msepC−Ĉ
Ĉ2

≈
J∑
j=1

û2j q̂ j =
J∑
j=1

û2j (1 − q̂ j ) q̂ j +
J∑
j=1

û2j q̂
2
j

and the decomposition at the end gives the split into process and parameter error.
Furthermore, the approximation for msepC−Ĉ given here coincides with that given
by Mack (Mack, 1993, Corollary to Theorem 3).

Derivation. Using (22) in (31), we infer

msepparm
C−Ĉ ≈ Ĉ2

J∑
j=1

q̂2j
f̂ 2j û

2
j

f̂ 2j
= Ĉ2

J∑
j=1

û2j q̂
2
j .

By our completeness assumption, repeated application of Lemma 4.4, and
Lemma 2.11, we see that

CH j , j−1

ĈI∗
j , j−1

= ĈH j ,J

ĈI∗
j ,J

= ĈI j ,J
ĈI∗

j ,J
= 1 − q̂ j

q̂ j
.

Using this, the definitions of f̂ j and û j , and (4), we can approximate and esti-
mate

V[Fj |D] ≈ φ j

E[CI∗
j , j−1|D]

≈ φ̂ j

ĈI∗
j , j−1

= φ̂ j

CH j , j−1

1 − q̂ j
q̂ j

= f̂ 2j û
2
j
1 − q̂ j
q̂ j

.

Plugging this into (30) and replacing E[C|D], q j and f j by their estimators Ĉ,
q̂ j and f̂ j yields

msepproc
C−Ĉ ≈ Ĉ2

J∑
j=1

q̂2j
f̂ 2j û

2
j (1 − q̂ j )/q̂ j

f̂ 2j
= Ĉ2

J∑
j=1

û2j (1 − q̂ j )q̂ j .

Now that we have found approximations for the right-hand sides of (30) and
(31), we see that their sum serves as an approximation for the right-hand side
of (29), and all claims of Result 4.5 are thus proved — except the identity of
our approximation of msepC−Ĉ with Mack’s version, for which we refer to the
appendix. �

Remark 4.6. Loosely speaking, Result 4.5 states that the (relative) mean
squared error is the sum of all products “relative (squared) accuracy” û2j times
“influence” q̂ j of the development factors (cf. Section 2.7). See also Remark 5.7
for yet another way to present these formulae.
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Remark 4.7. We close this section with a remark on the Taylor approximation
error. For the process error part, Taylor approximation gave (30), and Jensen’s
inequality (4) allowed us to approximate V[Fj |D] by φ j/E[CI∗

j , j−1|D] in the
derivation of Result 4.5, which in combination results in the approximation

msepproc
C−Ĉ ≈ (E[C|D])2

J∑
j=1

q2j
φ j

f 2j E[CI∗
j , j−1|D]

which was used in the proof of Result 4.5. The point we would like to
make is that this is actually an exact equation. To see this, we need to recall
Mack’s derivation of the process error from Mack (1993) (adapted to our non-
homogeneous chain ladder process): note first that, by definition,

msepproc
C−Ĉ = V[C|D].

Next, by (1),

E[C|D] = (αJ ◦ . . . ◦ α j ) [0] + fJ · . . . · f j · E[CI∗
j , j−1|D],

where both the first summand and E[CI∗
j , j−1|D], when written as a function of

the Ak and fk, are independent of the particular development factor f j ; hence

q j = ∂log[ f j ] log[E[C|D]] = f j∂ f j E[C|D]

E[C|D]
= fJ · . . . · f j · E[CI∗

j , j−1|D]

E[C|D]
.

Now by (1) and (2),

f 2J · f 2J−1 · . . . · f 2j+1V[CI∗
j+1, j |D] = f 2J · f 2J−1 · . . . · f 2j+1V[CI∗

j , j |D]

= f 2J · . . . · f 2j+1φ j E[CI∗
j , j−1|D]

+ f 2J · . . . · f 2j+1 · f 2j V[CI∗
j , j−1|D]

= (E[C|D])2q2j
φ j

f 2j E[CI∗
j , j−1|D]

+ f 2J · . . . · f 2j V[CI∗
j , j−1|D],

from which our claim follows by (descending) induction on j (starting with j =
J, and interpreting the empty product f 2J · f 2J−1 · . . . · f 2J+1 as 1).

5. THE MSEP UNDER PARTIAL LOSS DEVELOPMENT

While in Section 4 we applied the results of Section 3.2 to the analysis of the
mean squared error of prediction of the ultimate loss, we extend our analysis in
this section to the case of partial development between today and some future

https://doi.org/10.1017/asb.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.9


316 ANCUS RÖHR

development horizon, and also to today’s expectation of the claims development
result between two future horizons.

The key observation in Section 5.1 is that future chain ladder predictors C̃
for the ultimate loss are rational functions of the future link ratios Fi, j ; not
surprisingly, our current predictor Ĉ is recovered in all of these predictors upon
replacing the random variables Fi, j by today’s estimator f̂ j . After a careful anal-
ysis of the partial derivatives in Section 5.2, we may then use the Preliminary
Approximations 3.1 and derive an approximate MSEP for the prediction of C̃
by Ĉ. But using today’s predictor Ĉ as a predictor for any future C̃ is the same
as using 0 as today’s predictor of the claims development result between any two
development horizons, which leads us to formulate our Main Result 5.3 for this
general case.

5.1. Predicting future chain ladder estimates

Our first step will be to analyze how the chain ladder predictor of the ultimate
loss changes once more of the development becomes known. The notation used
to deal with the extended information is the following:

Definition 5.1. Suppose we are given a mapping i �→ j̃i defined for all i ∈ I such
that j̃i is an integer and ji ≤ j̃i ≤ J. We then set, for each non-negative integer j ,

Ĩ j := I j ∪ {i ∈ I | ji < j ≤ j̃i } ,

Ĩ∗
j := I∗

j \ {i ∈ I | ji < j ≤ j̃i } = {i ∈ I | j̃i < j},

in analogy to I j and I∗
j , and for each j ∈ {1, . . . , J},

H̃ j := H j ∪ {i ∈ I | ji < j ≤ j̃i } = H j ∪ I∗
j \ Ĩ∗

j ,

and we call the sets

D̃ := {Ci, j |i ∈ Ĩ j } and {Ci,j̃i |i ∈ I} ⊆ D̃

of random variables a future development horizon and its corresponding future
diagonal, respectively.

For example, development to the ultimate horizonwould be described by setting
j̃i := J, while development over the next period (the “one-period horizon”)
would be described by j̃i := min[J, ji + 1].

After the additional development, the chain ladder predictors will become

C̃i,J := Ci, ji

⎛
⎝ j̃i∏

j= ji+1

Fi, j

⎞
⎠
⎛
⎝ J∏

j=j̃i+1

f̃ j

⎞
⎠
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where

f̃ j :=
CH̃ j , j

CH̃ j , j−1
=
CH j , j +∑i∈I∗

j \Ĩ∗
j
Ci, ji Fi, ji+1 · . . . · Fi, j−1Fi, j

CH j , j−1 +∑i∈I∗
j \Ĩ∗

j
Ci, ji Fi, ji+1 · . . . · Fi, j−1

.

Summing over all loss portfolios represented in I, and using our shorthand sum-
mation notation 2.7 also for the C̃i, j , our future predictor of the ultimate loss
will become

C̃ := C̃I,J .

From today’s point of view, C̃ is a random variable, the randomness stemming
from the future link ratios Fi, j up to the development horizon D̃.

This function C̃ of the future link ratios is another example of the class of
functions G discussed in Section 3.2. We have

C̃| f̂ = Ĉ,

because f̃ j , as can be seen by substituting CH j , j = CH j , j−1 f̂ j in the above frac-
tion, is a weighted average of f̂ j and some future link ratios Fi, j with the same
index j (note, however, that in general C̃| f �= E[C̃|D]). That way, Ĉ serves as
today’s predictor of any such future predictor C̃ of the ultimate loss.

We are now almost ready to apply Result 3.1 to calculate an MSEP for such
future predictors as C̃. The only thing missing is a further evaluation of the
sensitivities ∂Fi, j C̃. We will address this in the next section.

5.2. Calculating the sensitivities

This section is devoted to the calculation of the partial derivatives ∂Fi, j C̃t,J .

Lemma 5.2. For each t ∈ I and each future (i, j) (i.e. i ∈ I∗
j ),

(
∂Fi, j C̃t,J

)
| f̂ = 111i∈I∗

j \Ĩ∗
j

Ĉt,J

f̂ j

(
111t=i + Ĉi, j

ĈH̃ j , j

111t∈Ĩ∗
j

)
. (32)

Proof. For any k ∈ {1, . . . , J}, we have

∂Fi, j Ct,k = ∂Fi, j Ct, jt · Ft, jt+1 · . . . · Ft,k = 111i=t111 ji< j≤k
Ci,k

Fi, j
.
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Using this, let us calculate ∂Fi, j f̃k:

∂Fi, j f̃k = ∂Fi, j
CH̃k,k

CH̃k,k−1

= 111i∈H̃k

Fi, j

111 ji< j≤kCi,kCH̃k,k−1 − CH̃k,k111 ji< j≤k−1Ci,k−1

C2
H̃k,k−1

= 111i∈H̃k

Fi, j

111 ji< j≤kFi,kCi,k−1CH̃k,k−1 − f̃kCH̃k,k−1111 ji< j≤k−1Ci,k−1

C2
H̃k,k−1

= 111i∈H̃k
111 ji< j

Fi, j

(
111 j=k

Ci, j

CH̃ j , j−1
+ 111 j≤k−1

(Fi,k − f̃k)Ci,k−1

CH̃k,k−1

)
.

But replacing future link ratios with their estimators, both Fi,k and f̃k turn into
f̂k, which means that

(
∂Fi, j f̃k

)
| f̂ = 111 j=k111i∈H̃ j

111 ji< j
Ĉi, j

f̂ j ĈH̃ j , j−1

= 111 j=k111i∈I∗
j \Ĩ∗

j

Ĉi, j

ĈH̃ j , j

.

With this we are now ready to prove the lemma:

(
∂Fi, j C̃t,J

)
| f̂ =

⎛
⎝∂Fi, j

⎛
⎝Ct, jt

⎛
⎝ j̃t∏
k= jt+1

Ft,k

⎞
⎠
⎛
⎝ J∏
k=j̃t+1

f̃k

⎞
⎠
⎞
⎠
⎞
⎠

| f̂

= Ĉt,J

⎛
⎝ j̃t∑
k= jt+1

∂Fi, j Ft,k
Ft,k

+
J∑

k=j̃t+1

∂Fi, j f̃k
f̃k

⎞
⎠

| f̂

= Ĉt,J

⎛
⎝ j̃t∑
k= jt+1

111i=t111 j=k
f̂k

+
J∑

k=j̃t+1

111 j=k111i∈I∗
j \Ĩ∗

j
Ĉi, j

f̂kĈH̃ j , j

⎞
⎠

= Ĉt,J

(
111i=t

111 ji< j≤j̃i

f̂ j
+ 1

f̂ j

Ĉi, j

ĈH̃ j , j

111i∈I∗
j \Ĩ∗

j
111 j>j̃t

)
.

To see that the last expression equals the one stated in the lemma, note that
the conditions ji < j ≤ j̃i and i ∈ I∗

j \ Ĩ∗
j are equivalent. Finally, j > j̃t is

equivalent to t ∈ Ĩ∗
j . �
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5.3. Error formulae

Equippedwith our PreliminaryApproximations 3.1 and the formula for ∂Fi, j C̃t,J

evaluated at f̂ derived in the previous section, we are now almost ready to prove
our Main Result 5.3. Our aim is to generalize Result 4.5 so that we can handle
incomplete triangles, the development between two arbitrary horizons and also
calculate prediction errors for subportfolios. To achieve all that, some additional
notation needs to be introduced.

We start with the definition of a quantity that will capture the effect of the
missing data and the discarded outliers: for j ∈ {1, . . . , J}, let

r̂ j :=
ĈH j∪I∗

j , j

Ĉ /( f̂ j+1 · . . . · f̂J)
= ĈH j∪I∗

j , j

Ĉ Ĉi, j/Ĉi,J
= CH j , j

Ĉ Ĉi, j/Ĉi,J
+ q̂ j (for i ∈ I∗

j ).

The second equality holds since for any i ∈ I∗
j , the quotient Ĉi,J/Ĉi, j is just

f̂ j+1 · . . . · f̂J . If the triangle is complete, then H j ∪ I∗
j = I, which together

with Lemma 4.4 implies r̂ j = 1. If the triangle is not complete, the ratios r̂ j may
differ from 1, and they summarize all information we need about the deviation
from completeness, as we will see shortly. Note that in any case, r̂ j > q̂ j .

Our next definition introduces a new set of influence factors,

q̃ j := ĈĨ∗
j ,J

/Ĉ, j ∈ {0, 1, . . . , J},

which are based on Ĩ j rather than I j . Note that while the C̃i, j are random vari-
ables, the q̃ j are statistics of the historical data — we might have chosen a nota-
tion like q̂I∗

j
and q̂Ĩ∗

j
, but chose q̂ j and q̃ j for brevity.

Suppose that besides D̃ we consider a second future horizon, for which we
put the sign ˘ on top to distinguish the respective items — e.g. j̆i or D̆ or C̆i,J
(and we also apply our summation convention 2.7 to the latter). We demand
that D̆ is beyond D̃, i.e. that j̆i ≥ j̃i for all i ∈ I. We then have two future pre-
dictors, C̃ and C̆, which are both random variables from today’s point of view,
and for both of which today’s prediction is just Ĉ. In other words, today’s pre-
diction of the loss development result between the two future horizons is 0. This
number has its prediction error, for which we will provide an approximation in
Result 5.3.

The prediction error for C̆ − C̃ refers to the whole loss portfolio, since C̆
and C̃ do. In the literature, one also generally finds formulae that refer to the
error related to a subportfolio only—usually a single accident year.Wewill also
present such formulae, but take the more general point of view of considering
the subportfolio identified by any given non-empty subset H ⊆ I. Thus, we
will approximate the prediction error that 0 has as a predictor of the loss de-
velopment result C̆H,J − C̃H,J . To deal with subportfolios, we use the following
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notation (for 1 ≤ j ≤ J):

q̂H, j := ĈH∩I∗
j ,J/Ĉ, q̃H, j := ĈH∩Ĩ∗

j ,J
/Ĉ, q̆H, j := ĈH∩Ĭ∗

j ,J
/Ĉ,

ŝH, j := 1 + q̂H, j

r̂ j − q̂ j
, s̃H, j := 1 + q̃H, j

r̂ j − q̃ j
, s̆H, j := 1 + q̆H, j

r̂ j − q̆ j
,

ŝ j := ŝI, j , s̃ j := s̃I, j , s̆ j := s̆I, j .

Note that q̃I, j = q̃ j etc., and that for disjoint setsH, H′, we have

q̃H∪H′, j = q̃H, j + q̃H′, j and s̃H∪H′, j − 1 = (s̃H, j − 1) + (s̃H′, j − 1),

so the notation is compatible with our summation convention 2.7 (strictly so for
the q’s, and “with a twist” for the s’s).

Let us apply our new notation to establish a useful relation between the ûi, j
and û j , namely

û2i, j = û2j
CH j , j

Ĉi, j
= û2j (r̂ j − q̂ j )

Ĉ

Ĉi,J
= û2j r̂ j

ŝ j

Ĉ

Ĉi,J
, (33)

which holds for any i ∈ I∗
j in accordance with the definition of r̂ j .

We are now ready to state our main result:

Main Result 5.3. For j ∈ {1, . . . , J}, let Ûj := û j r̂ j , and let H ⊆ I denote any
non-empty subset of I. Then the (conditional) mean squared prediction error of
the development result 0 between the two horizons D̃ and D̆ for the portfolioH,

msep(C̆H,J−C̃H,J )−0 := E[(C̆H,J − C̃H,J)
2|D],

satisfies the approximate equation

msep(C̆H,J−C̃H,J )−0

Ĉ2
≈

J∑
j=1

Û2
j

⎛
⎝ s̃H, j

s̃ j
(s̃H, j − 1) − s̆H, j

s̆ j
(s̆H, j − 1)

ŝ j

⎞
⎠ (34)

and the parameter error (divided by Ĉ2) can be approximated by

msepparm
(C̆H,J−C̃H,J )−0

Ĉ2
≈

J∑
j=1

Û2
j

(
s̃H, j − s̆H, j

ŝ j

)2

, (35)

while the process error (divided by Ĉ2) is approximated by the difference of the
right-hand sides of (34) and (35). If H = I, setting Q̂ j := (s̃ j − s̆ j )/ŝ j , this
becomes

msep(C̆−C̃)−0

Ĉ2
≈

J∑
j=1

Û2
j Q̂ j =

J∑
j=1

Û2
j (1 − Q̂ j )Q̂ j +

J∑
j=1

Û2
j Q̂

2
j , (36)
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and the first sum in the last term approximates the process error and the second
the parameter error (divided by Ĉ2).

Derivation. We use Lemma 5.2 and the fact that

r̂ j = ĈH j∪I∗
j , j

Ĉ Ĉi, j/Ĉi,J
=
ĈH j∪I∗

j \Ĩ∗
j , j

Ĉ Ĉi, j/Ĉi,J
+ q̃ j

to conclude that for i ∈ I∗
j ,

(
∂Fi, j C̃H,J

)
| f̂ = 111i∈I∗

j \Ĩ∗
j

(
111i∈H

Ĉi,J

f̂ j
+

Ĉi, j ĈH∩Ĩ∗
j ,J

f̂ j ĈH j∪I∗
j \Ĩ∗

j , j

)

= 111i∈I∗
j \Ĩ∗

j

Ĉi,J

f̂ j

(
111i∈H + q̃H, j

r̂ j − q̃ j

)
= 111i∈I∗

j \Ĩ∗
j

Ĉi,J

f̂ j

(
s̃H, j − 111i /∈H

)
,

and we get an analogous expression for (∂Fi, j C̆H,J)| f̂ ..
We now apply Result 3.1 to the random variable G = C̆H,J−C̃H,J , for which

G | f̂ = 0. Together with the partial derivative just calculated, we obtain

msepparm
(C̆H,J−C̃H,J )−0

≈
J∑
j=1

⎛
⎝∑
i∈I∗

j

(
∂Fi, j (C̆H,J − C̃H,J)

)
| f̂

⎞
⎠

2

f̂ 2j û
2
j

=
J∑
j=1

⎛
⎝∑
i∈I∗

j

Ĉi,J

f̂ j

(
111i /∈Ĭ∗

j

(
s̆H, j − 111i /∈H

)− 111i /∈Ĩ∗
j

(
s̃H, j − 111i /∈H

))⎞⎠
2

f̂ 2j û
2
j

= Ĉ2
J∑
j=1

Û2
j

⎛
⎝∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ

(
111i /∈Ĭ∗

j

(
s̆H, j − 111i /∈H

)− 111i /∈Ĩ∗
j

(
s̃H, j − 111i /∈H

))⎞⎠
2

Now

∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ
111i /∈Ĭ∗

j
=
∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ
(1 − 111i∈Ĭ∗

j
) = q̂ j − q̆ j

r̂ j
= 1
s̆ j

− 1
ŝ j

and

∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ
111i /∈Ĭ∗

j
111i /∈H =

∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ
(1 − 111i∈Ĭ∗

j
)(1 − 111i∈H)

= q̂ j − q̆ j
r̂ j

− q̂H, j − q̆H, j

r̂ j
= s̆H, j

s̆ j
− ŝH, j

ŝ j
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and similarly for the terms involving Ĩ j . With these formulae, we can continue
our evaluation of the above approximation of the parameter error:

. . . = Ĉ2
J∑
j=1

Û2
j

(
s̆H, j

s̆ j
− s̆H, j

ŝ j
− s̆H, j

s̆ j
+ ŝH, j

ŝ j
− s̃H, j

s̃ j
+ s̃H, j

ŝ j
+ s̃H, j

s̃ j
− ŝH, j

ŝ j

)2

= Ĉ2
J∑
j=1

Û2
j

(
s̃H, j − s̆H, j

ŝ j

)2

,

which proves (35).
For the process error, we invoke Result 3.1 and (33) to conclude

msepproc
(C̆H,J−C̃H,J )−0

≈
J∑
j=1

∑
i∈I∗

j

(
∂Fi, j (C̆H,J − C̃H,J)

)2
| f̂ f̂ 2j

û2j r̂ j
ŝ j

Ĉ

Ĉi,J

= Ĉ2
J∑
j=1

Û2
j

ŝ j

∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ

(
111i /∈Ĭ∗

j

(
s̆H, j − 111i /∈H

)− 111i /∈Ĩ∗
j

(
s̃H, j − 111i /∈H

))2
.

Let us analyze the sum over i : expanding the squares, we get three sums,

∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ
111i /∈Ĭ∗

j

(
s̆H, j − 111i /∈H

)2 =
(
1
s̆ j

− 1
ŝ j

)
s̆2H, j +

(
s̆H, j

s̆ j
− ŝH, j

ŝ j

)
(1 − 2s̆H, j ),

∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ
111i /∈Ĩ∗

j

(
s̃H, j − 111i /∈H

)2 =
(
1
s̃ j

− 1
ŝ j

)
s̃2H, j +

(
s̃H, j

s̃ j
− ŝH, j

ŝ j

)
(1 − 2s̃H, j )

and

∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ
(−2)111i /∈Ĭ∗

j
111i /∈Ĩ∗

j

(
s̆H, j − 111i /∈H

) (
s̃H, j − 111i /∈H

)

=
∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ
(−2)111i /∈Ĩ∗

j

(
s̆H, j s̃H, j + 111i /∈H

(
1 − s̆H, j − s̃H, j

))

= −2
(
1
s̃ j

− 1
ŝ j

)
s̆H, j s̃H, j − 2

(
s̃H, j

s̃ j
− ŝH, j

ŝ j

)
(1 − s̆H, j − s̃H, j ),

where we used our assumption that the horizon D̆ is beyond D̃ when we
concluded that 111i /∈Ĭ∗

j
111i /∈Ĩ∗

j
= 111i /∈Ĩ∗

j
. We add these three sums by expanding the
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products and regrouping the resulting 20 terms and obtain

∑
i∈I∗

j

Ĉi,J

r̂ j Ĉ

(
111i /∈Ĭ∗

j

(
s̆H, j − 111i /∈H

)− 111i /∈Ĩ∗
j

(
s̃H, j − 111i /∈H

))2

=
(

− 1
ŝ j

− 1
ŝ j

+ 2
ŝ j

)
ŝH, j +

(
1
s̃ j

− 2
s̃ j

)
s̃H, j +

(
1
s̆ j

)
s̆H, j

+
(
1
s̃ j

− 1
ŝ j

− 2
s̃ j

+ 2
s̃ j

)
s̃2H, j +

(
− 2
s̃ j

+ 2
ŝ j

+ 2
s̃ j

)
s̃H, j s̆H, j

+
(
1
s̆ j

− 1
ŝ j

− 2
s̆ j

)
s̆2H, j +

(
2
ŝ j

− 2
ŝ j

)
ŝH, j s̃H, j +

(
2
ŝ j

− 2
ŝ j

)
ŝH, j s̆H, j

= − s̃H, j

s̃ j
+ s̆H, j

s̆ j
+ s̃2H, j

s̃ j
− s̃2H, j

ŝ j
+ 2

s̃H, j s̆H, j

ŝ j
− s̆2H, j

s̆ j
− s̆2H, j

ŝ j

= s̃H, j

s̃ j
(s̃H, j − 1) − s̆H, j

s̆ j
(s̆H, j − 1) − (s̃H, j − s̆H, j )

2

ŝ j
.

Combining this with the formula for the parameter error already established
proves (34). Finally, if H = I, then the terms in brackets in (34) and (35) both
specialize to Q̂ j , and we get (36). �

We discuss the Main Result in a series of remarks:

Remark 5.4. Merz andWüthrich (2014) analyzemsep(C̃−C̆)−0 by embedding the
classical chain ladder model in a Bayesian chain ladder model and deriving
approximations in the non-informative prior case. Numerical examples indi-
cate that their results coincide exactly with our formula (36) above for the total
MSEP.Merz andWüthrich apply their results to address the issue of riskmargin
calculations for solvency purposes. Indeed, since

E[(C̆ − C̃)2|D] = E[E[(C̆ − C̃)2|D̃]|D],

the formula (36) gives an approximation of today’s expectation of the “future
MSEP (at D̃)” for the claims development result between D̃ and D̆. As such,
it is important for the calculation of risk margins and cost-of-capital loadings.
We refer to Salzmann and Wüthrich (2010) and Merz and Wüthrich (2014) for
a detailed discussion.

Remark 5.5. For the development over the one-year horizon, our formula gen-
eralizes the formula given by Merz and Wüthrich (2008) and Bühlmann et al.
(2009) — for a proof, see the appendix. It also specializes to Result 4.5 (case
H = I, q̃ j = q̂ j , q̆ j = 0, r̂ j = 1 for all j ).

Remark 5.6. The right-hand side of (34) depends on the two horizons D̃ and
D̆ only via the difference s̃H, j (s̃H, j − 1)/s̃ j − s̆H, j (s̆H, j − 1)/s̆ j . From this, it is
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clear that our approximation for the total mean squared error of prediction is
additive: dividing the development step between D̃ and D̆ in two parts corre-
sponds to a split of the approximate MSEP into two parts which add up to the
approximate MSEP of the original step.

Note that in the Bayesian chain ladder model in Merz and Wüthrich (2008)
mentioned above (see also Salzmann and Wüthrich, 2010), the predictors of
the ultimate loss form a martingale, and in this case the additivity of the mean
squared prediction error of the claims development result follows directly from
the properties of a martingale. In our case, by contrast, the predictors do not
form a martingale in general, and the additivity property is a non-trivial — and
highly desirable — result.

Remark 5.7. Replacing the f j and φ j in (6) with their estimators, we obtain
estimators φ̂ j,J for the φ j,J . They are linked to the quantities defined in this
section:

ĈÛ2
j

r̂ j ŝ j
= Ĉû2j r̂

2
j

r̂2j /(r̂ j − q̂ j )
= Ĉφ̂ j (r̂ j − q̂ j )

CH j , j f̂ j
= Ĉφ̂ j

CH j , j f̂ j

CH j , j

Ĉ/( f̂ j+1 · . . . · f̂J)
= φ̂ j,J .

Going back to Result 4.5, whereH = I, r̂ j = 1 and hence 1− q̂ j = 1/ŝ j , we see
that we may write Mack’s formula as

msepC−Ĉ ≈
J∑
j=1

φ̂ j,J ŝ j ĈI∗
j ,J =

J∑
j=1

φ̂ j,JĈI∗
j ,J +

J∑
j=1

φ̂ j,J(ŝ j − 1)ĈI∗
j ,J .

Note the analogy between the estimated process error (first sum in last expres-
sion) and the right-hand side of (7). Note also that the parameter error esti-
mator (second sum) is formally equivalent to some “additional process error”,
as already observed in Remark 4.2. Generalizing to the development between
arbitrary future horizons, (34) tells us

msep(C̆−C̃)−0 ≈
J∑
j=1

φ̂ j,J
(
s̃ j − s̆ j

)
Ĉ =

J∑
j=1

φ̂ j,J

(
s̃ j ĈĨ∗

j ,J
− s̆ j ĈĬ∗

j ,J

)
,

because s̃ j − s̆ j = s̃ j −1−(s̆ j −1) = s̃ j q̃ j − s̆ j q̆ j . If we were to retrieve the process
error part from this by replacing s̃ j and s̆ j by 1 in the last sum, inspired by
Mack’s case, we would merely pick up the direct effect that the process volatility
has on the portfolios in Ĩ∗

j \ Ĭ∗
j . But in our approach, the volatility of these

portfolios also affects the remaining ones via an update on the development
factors, and we consider this as part of the process error. Indeed, formula (36)
shows that in our approach, the way to split off the process error is to multiply
s̃ j and s̆ j both by 1 − Q̂ j . In Mack’s case, both methods coincide.

Remark 5.8. The quantities φ̂ j,J have properties similar to a cash flow pattern
and hence may be thought of as some kind of “risk flow pattern”. Indeed, by
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Proposition 2.4, the total process variance V[XJ |X0] is a sum of pattern val-
ues φ j,J all multiplied by the same ultimate value E[XJ |X0]. And if we move
to a coarser granularity in the development direction, the new pattern is ob-
tained by grouping and summing the values of the original pattern, again by
Proposition 2.4.

Hence, the value φ j,J describes, in an invariant way, the “amount of risk”
that stems from period j in the development, and allows to make compar-
isons between different time periods, or between different lines of business.
One should make sure that the development after step J is negligible, because
φk, j = φk, j−1 f j for j > k.

At the other end, at j = 0, the first element and its associated uncertainty is
outside the scope of our analysis. This is usually called the “premium risk”. We
can include it in our analysis by shifting the loss development one step to the
right and choosing the premium as the starting point Ci,0. That way, we obtain
an integrated view of premium and reserving risk.

Remark 5.9. Since q̂ j ≥ q̃ j ≥ q̆ j by our assumptions on the horizons, and since
r̂ j > q̂ j , it follows that ŝ j ≥ s̃ j ≥ s̆ j and 0 ≤ Q̂ j ≤ 1; we also see that if the
development time between D̃ and D̆ is short, then Q̂ j is small, and in this case
the process error term dominates the parameter error term. Hence, over short
development horizons, the process error dominates.

Remark 5.10. In the case of development from today to the ultimate horizon,
Û2
j Q̂ j = û2j q̂ j r̂ j = (φ̂ j q̂ j/ f̂ j ) ·(r̂ j/CH j , j ). Here we see that if we randomly delete

some historical data, the term r̂ j/CH j , j increases, while φ̂ j q̂ j/ f̂ j on average stays
the same. This illustrates the effect that using less data increases the uncertainty
of prediction.

6. EXAMPLE

The example we present in Table 1 is the first example analyzed byMack (1993)
and is based on data taken from Taylor and Ashe (1983). Below the (cumula-
tive) triangle, the table shows the estimators f̂ j , φ̂ j , û j and q̂ j . The parameter
φ9 cannot be estimated, for lack of data in development period 9. We follow
Mack (1993) approach in extrapolating φ̂9 := min[φ̂2

8/φ̂7, φ̂7, φ̂8] from the pre-
ceding values (in our case φ̂9 = φ̂7). Note also that all calculations are made
to machine precision from the original triangle data and then rounded to the
precision shown.

As an example on how to interpret the coefficients û j and q̂ j , consider the
values f̂1 = 3.491 and û1 = 6.29%. From these we infer that

f1 ≈ 3.491 ± 6.29% = 3.491 ± 0.219.

The uncertainty about the true f1 only affects a rather small part of the ultimate
loss predictor, namely just q̂1 = 9.37%, because f̂1 is only used to estimate the
ultimate loss of the least developed accident period i = 9.
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TABLE 1

EXAMPLE

i Ci,0 Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6 Ci,7 Ci,8 Ci,9

0 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463
1 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085
2 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315
3 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268
4 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311
5 396,132 1,333,217 2,180,715 2,985,752 3,691,712
6 440,832 1,288,463 2,419,861 3,483,130
7 359,480 1,421,128 2,864,498
8 376,686 1,363,294
9 344,014

f̂ j 3.491 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018
φ̂ j 160,280 37,737 41,965 15,183 13,731 8,186 447 1,147 447
φ̂ j,9 190,039 51,154 46,796 17,907 15,603 8,701 464 1,085 439
û j 6.29% 3.47% 3.62% 2.44% 2.50% 2.09% 0.56% 1.08% 1.06%
q̂ j 9.37% 20.01% 32.80% 43.47% 53.11% 62.27% 72.26% 82.4% 92.64%

Horizon +1 +2 +3 +4 +5 +6 +7 +8 +9
Process 8.68% 9.80% 10.12% 10.15% 10.11% 10.08% 10.07% 10.06% 10.05%
Parameter 3.92% 5.86% 7.11% 7.78% 8.15% 8.32% 8.36% 8.39% 8.40%
Total 9.52% 11.42% 12.36% 12.79% 12.99% 13.07% 13.09% 13.10% 13.10%
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The lower part of the table exhibits the square roots of the process, parameter
and total mean squared prediction errors as a percentage of the total outstand-
ing development (i.e. the difference between the ultimate values and the latest
known values on today’s diagonal — in our case 18, 680, 856). The values are
calculated for the development horizons “+k”, where k ranges from 1 to 9; by
this we mean j̃i := min[J, ji + k], while J = 9 and ji = J − i , as is evident
from the triangle. The square root of the total mean squared prediction error
for the development up to the ultimate horizon is 2, 447, 095, whereas for the
development up to the 1 year horizon it is 1, 778, 968. These values amount to
13.10% and 9.52% of the total outstanding development, as shown in the table.

The process error shows an interesting behavior. It is dominant for short
development horizons as explained in Remark 5.9. This reflects the fact that
any realization Fi, j with i ∈ I∗

j \ Ĩ∗
j not only affects the ultimate of the

loss portfolio i , but also all ultimates influenced by the future development
factor f̃ j , and these are hit in a fully correlated manner. Another observa-
tion about the process error in our example is that it is not monotonous, but
reaches a maximum at the development horizon “+4”. The totalMSEP, by con-
trast, is always increasing, a consequence of the additivity property derived in
Remark 5.6.
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APPENDIX

A. COMPARISON TO PREVIOUSLY PUBLISHED FORMULAE

We will first show that the formula from Result 4.5 agrees with the original formula
given by Mack (1993). He considered “standard triangles” fulfilling (in our notation) I =
{0, 1, . . . , J}, ji = J − i , and I j = {0, 1, . . . , J − j}. He also assumed the historical triangle
to be complete. We also restrict our attention to the case of all loss portfolios combined, as
in 4.5, and skip the case of a single accident period.

Mack studied the case of development to the ultimate horizon. He uses a different con-
vention of labeling link ratios and development factors. While our link ratio equation is
Ci, j fi, j+1 = Ci, j+1, Mack uses the notation Ci, j fi, j = Ci, j+1. Therefore, converting Mack’s
formulae to our notation, the first step is to replace Mack’s f̂ j by our f̂ j+1. The same applies
to the φ j : Mack’s σ̂ 2

j must be replaced by our φ̂ j+1. Keeping this in mind, Mack’s original
formula (Mack (1993), Corollary to Theorem 3) for the mean squared prediction error in
our notation reads (note that I∗

ji
= {i + 1, . . . , J})

M2 :=
∑
i∈I∗

J

⎛
⎝Ĉ2

i,J

J∑
j= ji+1

φ̂ j

f̂ 2j

(
1

Ĉi, j−1

+ 1
CI j , j−1

)
+ Ĉi,JĈI∗

ji
,J

J∑
j= ji+1

2φ̂ j/ f̂ 2j
CI j , j−1

⎞
⎠ .

Proposition A.1. This formula coincides with our formula in Result 4.5, i.e. M2 =
Ĉ2
∑J

j=1 û
2
j q̂ j .

Proof. Using the definitions of ûi, j and û j , we get

M2 =
∑
i∈I∗

J

⎛
⎝
⎛
⎝Ĉ2

i,J

J∑
j= ji+1

(
û2i, j + û2j

)⎞⎠+ Ĉi,JĈI∗
ji

,J

J∑
j= ji+1

2 û2j

⎞
⎠ .
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Using (33) as well as historical completeness, which allows us to replace û2i, j with û2j (1 −
q̂ j )Ĉ/Ĉi,J , yields

M2 =
∑
i∈I∗

J

⎛
⎝
⎛
⎝Ĉ2

i,J

J∑
j= ji+1

û2j

(
(1 − q̂ j )Ĉ

Ĉi,J

+ 1

)⎞⎠+ Ĉi,JĈI∗
ji

,J

J∑
j= ji+1

2 û2j

⎞
⎠

=
∑
i∈I∗

J

J∑
j= ji+1

(
û2j Ĉi,J(1 − q̂ j ) + û2j Ĉ

2
i,J + 2 û2j Ĉi,JĈI∗

ji
,J

)
.

The double sum runs exactly over all future (i, j). Changing the summation order, we get

M2 =
J∑
j=1

û2j
∑
i∈I∗

j

(
Ĉi,J
(
1 − q̂ j

)
Ĉ + Ĉ2

i,J + 2 Ĉi,JĈI∗
ji

,J

)

=
J∑
j=1

û2j
(
ĈI∗

j ,J
(1 − q̂ j )Ĉ + Ĉ2

I∗
j ,J

)

= Ĉ2
J∑
j=1

û2j (q̂ j (1 − q̂ j ) + q̂2
j ) = Ĉ2

j1∑
j=Ji1+1

û2j q̂ j ,

�
Bühlmann et al. (2009) considered the case of a one-period development and derived

various formulae for the prediction error of the claims development result. We will show that
their “linear approximation” (Bühlmann et al., 2009, Result 4.10, which goes back to Merz
and Wüthrich, 2008), is a special case of our formula (36). The “standard trapezoids” they
considered are given by portfolios i = 0, 1, . . . , J + n for some integer n ≥ 0, with known
development of portfolio i from development index 0 up to ji = min[J, J + n − i ]. Their
Result 4.10 shows that the mean squared prediction error of the claims development result
of all accident periods over a single calendar period can be approximated by

m2 :=
∑
i∈I∗

J

(
Ci, ji 
̃

∗
ji

+ C2
i, ji

�̃∗
ji

+ 2Ci, ji ĈI∗
ji

, ji

(
�̃∗

ji
+ �̃∗

ji

))
,

where for j < J

�̃∗
j :=

φ̂ j+1

CI j , j

Ĉ2

Ĉ2
I, j+1

= û2j+1

CI j+1, j+1

CI j , j+1

Ĉ2

Ĉ2
I, j

= û2j+1

1 − q̂ j+1

1 − q̂ j

Ĉ2

Ĉ2
I, j

,


̃∗
j := �̃∗

jCI j , j

(
1 + CI j \I j+1, j

CI j , j

)
= �̃∗

jCI j , j

(
1 + q̂ j+1 − q̂ j

1 − q̂ j

)
,

�̃∗
j :=

Ĉ2

Ĉ2
I, j

J−1∑
k= j

CIk\Ik+1,k

CIk,k

φ̂k+1/ f̂ 2k+1

CIk+1,k
= Ĉ2

Ĉ2
I, j

J−1∑
k= j

q̂k+1 − q̂k
1 − q̂k

û2k+1.

To justify the transformations applied here to the original definitions, a few comments are in
order. First note that, by the assumptions on the shape of the trapezoid, I ji \ I ji+1 = {i} for
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each ji < J. Next, Bühlmann et al. use products like
∏J

k= j+1 f̂k, which we write as Ĉ/ĈI, j ,
relying on Lemma 4.4 (which requires completeness). This lemma also links quotients of
partial sums at the same development index to the q̂ j , e.g. ĈI j ,k/ĈI,k = 1 − q̂ j for any j ≤
k < J, which we have used repeatedly above.

For the development between today and the one period horizon that we are considering
here, we have q̃ j = q̂ j and q̆ j = q̂ j−1. We may now prove:

Proposition A.2. Result 4.10 in Bühlmann et al. (2009) is a special case of (36):

m2

Ĉ2
=

J∑
j=1

û2j
q̂ j − q̂ j−1

1 − q̂ j−1
=

J∑
j=1

û2j

(
1

1 − q̂ j
− 1

1 − q̂ j−1

)/
1

1 − q̂ j
.

Proof. Since I ji \ I ji+1 = {i}, we have C2
i, ji

+ 2Ci, ji ĈI∗
ji

, ji = Ĉ2
I∗
ji+1, ji

− Ĉ2
I∗
ji

, ji
, and we may

write m2 as a sum over j rather than i :

m2 =
J−1∑
j=0

CI j \I j+1, j (
̃
∗
j + 2 ĈI∗

j , j
�̃∗

j ) + (Ĉ2
I∗
j+1, j

− Ĉ2
I∗
j , j

)�̃∗
j .

Plugging in the above expressions for 
̃∗
j , �̃∗

j and �̃∗
j and using also CI j \I j+1, j = (q̂ j+1 −

q̂ j ) ĈI, j , we get on the one hand

J−1∑
j=0

CI j \I j+1, j (
̃
∗
j + 2 ĈI∗

j , j
�̃∗

j )

=
J−1∑
j=0

CI j \I j+1, j

ĈI, j

(
CI j , j

ĈI, j

(
1 + q̂ j+1 − q̂ j

1 − q̂ j

)
+ 2

CI j , j

ĈI, j

)
�̃∗

j Ĉ
2
I, j

=
J−1∑
j=0

(q̂ j+1 − q̂ j )
(

(1 − q̂ j )
(
1 + q̂ j+1 − q̂ j

1 − q̂ j

)
+ 2 q̂ j

)
û2j+1

1 − q̂ j+1

1 − q̂ j
Ĉ2

= Ĉ2
J−1∑
j=0

(1 − q̂2
j+1) û

2
j+1

q̂ j+1 − q̂ j
1 − q̂ j

,

while on the other hand

J−1∑
j=0

(Ĉ2
I∗
j+1, j

− Ĉ2
I∗
j , j

)�̃∗
j = Ĉ2

J−1∑
j=0

(q̂2
j+1 − q̂2

j )

J−1∑
k= j

û2k+1

q̂k+1 − q̂k
1 − q̂k

= Ĉ2
J−1∑
j=0

q̂2
j+1û

2
j+1

q̂ j+1 − q̂ j
1 − q̂ j

,

as the double sum has many canceling terms (note that q̂0 = 0). Putting this to-
gether proves the first stated equality, while the remaining one follows by simple algebraic
transformations. �
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