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Abstract
The homotopical Squier’s theorem relates rewriting properties of a presentation of a monoid with homo-
topical invariants of this monoid. This theorem has since been extended by Guiraud and Malbos, yielding
a so-called polygraphic resolution of a monoid starting from a presentation with suitable rewriting prop-
erties. In this article, we argue that cubical categories are a more natural setting in which to express and
possibly extend Guiraud and Malbos construction. As a proof-of-concept, we give a new proof of Squier’s
homotopical theorem using cubical categories.
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1. Introduction
The aim of this paper is to introduce methods of 2-cubical categories into rewriting theory related
to Squier’s theorems. A substantial account of rewriting theory using globular methods has been
given in a series of papers by Guiraud and Malbos. In particular, a modern exposition of Squier’s
theorem in terms of globular categories can be found in Guiraud and Malbos (2018).

Convergent rewriting systems originated as tools in the study of the word problem. In par-
ticular, a presentation of a monoid by a finite convergent rewriting system gives an algorithm
to decide the word problem for this monoid. In Squier (1987) and Squier et al. (1994), the
authors proved that there exists a finitely presented monoid whose word problem is decidable
but which did not admit a finite convergent presentation. Squier’s homotopical theorem has since
been extended to higher dimensions in Guiraud and Malbos (2012b), but this result is still ill-
understood. In particular, a similar result is expected for structures more general than monoids,
but this generalization seems so far out of reach.

Independently, cubical categories in dimension 2 were shown to be equivalent to globular
2-categories in Brown and Mosa (1999), using the notions of connections and thin structures.
These results were later extended to all dimensions by Al-Agl, Brown, and Steiner. The cubical
geometry seems better suited for rewriting than the globular one, and we expect this advantage to
increase in higher dimensions. In this paper, however, we stick to low dimensions and present a
new proof of Squier’s theorem using cubical methods. The proof loosely follows that of Guiraud
and Malbos (2018) but is self contained. As a result, this account can be read independently of the
previous work.

Let us first recall Squier’s homotopical theorem in the traditional globular setting. Let (G, R)
be a convergent (i.e., confluent and terminating: see Definition 3.9) presentation of a monoidM.
Squier’s construction yields a set of syzygies S corresponding to relations between the relations.
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For example, let us consider the following presentation of the braid monoid B+
3 is given by:

〈a, s, t|ta= as, sa= a, sas= aa, saa= aat〉
In order to apply rewriting techniques to this presentation, one first needs to choose a name and
an orientation for each of the relations, giving for example:

� := 〈a, s, t|α : ta→ as, β : sa→ a, γ : sas→ aa, δ : saa→ aat〉
Such a presentation � is called a monoidal polygraph (see Definition 3.2 for a formal definition).
The generating relations induce rewriting steps: relations of the form ufv : uxv→ uyv, where u, v ∈
�∗ and f : x→ y is a generating relation. Those rewriting steps form a graph, whose set of vertices
is the set of words on the generators. Taking the free category generated by this graph yields (up to
some equations) a strict monoidal category, that we denote �∗. Finally, �� denotes the free strict
monoidal groupoid generated by �.

Squier’s theorem yields a coherent presentation of B+
3 . This means adding generating 2-cells

to �, such that the monoidal 2-groupoid it generates (still denoted ��) satisfies the following
property: for any couple of parallel 1-cells f and g in ��, there exists a 2-cell A : f ⇒ g in ��.
Squier’s homotopical theorem gives a sufficient condition on� for this property to hold, based on
the notion of critical pair. A pair of distinct rewriting steps (u1f1v1, u2f2v2) of same source u forms
a critical pair if any letter in u is rewritten by f1 or f2, and at least one letter is rewritten by both.
In the presentation of B+

3 previously given, there are exactly four critical pairs: (βa, sα), (γ t, saβ),
(γ as, saγ ), and (γ aa, saδ).

Theorem 1.1. (Squier et al. 1994). Let � be a convergent monoidal 2-polygraph. Suppose that for
every critical pair ( f1, f2) of �, there exist two 1-cells g1 and g2 in �∗ and a 2-cell A in �� of the
following shape:

g1

A

f1

f2 g2

Then � is coherent.

Let us delay the definition of convergence for now (see Definition 3.9). In our case,� is conver-
gent, and Squier’s theorem therefore asserts that the following extension of � into a 2-polygraph
is coherent:

sta aa

sas

βa

sα γ

A sast aat

saa

γ t

saβ δ

B

sasas aaas

saaa aata

γ as

saγ
δa

aaα

C
sasaa aaaa

saaat aatat aaast

γ aa

saδ
δat aaαt

D

aaaβ

In other words, Squier’s theorem reduced the commutativity (up to 2-cells) of all the diagrams
that one can form in ��

1 , to the commutativity of the four aforementioned diagrams.
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Squier’s theorem has recently been expanded in higher dimensions (see Guiraud and Malbos
2012b), where coherence is replaced by acyclicity, and critical pairs are replaced by critical
n-tuples. However, a lot of calculations from Guiraud and Malbos (2012b) are very complicated.
As a result, although Squier’s theorem has been generalised to various structures in addition to
monoids (see, e.g., Guiraud and Malbos 2012a), a generalisation of the full resolution constructed
in Guiraud and Malbos (2012b) seems out of reach.

Cubical categories were introduced in Al-Agl et al. (2002). Although they are equivalent to
globular ω-categories, we identify two key advantages of cubical methods that should streamline
a lot of the constructions of Guiraud and Malbos (2012b):

• First, the authors rely on the construction of a contracting homotopy, which is nothing else
than an ω-natural transformation, that is a natural transformation between functors between
ω-categories. Such an object is more easily described in cubical terms (see, e.g., Lucas 2018).

• Any analogue of Squier’s theorem should describe the shape of the cells filling the critical
n-branchings. The authors solve this problem by mutual induction with the aforementioned
contracting homotopy. However, the confluence diagram associated to an n-branching can
be readily expressed in cubical terms. As a consequence, we expect that in the cubical setting
we should be able to separate the construction of the higher dimensional cells and that of the
contracting homotopy, leading to a simpler, more modular proof.

In this paper, however, we limit ourselves to Squier’s theorem and leave a cubical analogous of
Guiraud and Malbos (2012b) for a future paper. To this end, we define the notion of coherence in
the cubical setting and prove a cubical Squier’s theorem with this definition.

Theorem 4.2. Let � be a convergent cubical 2-polygraph. Suppose that for every critical pair ( f1, f2)
of �, there exists (up to exchange of f1 and f2) a 2-cell in ��

2 of the following shape

f2

f1

Then � is coherent.

In Section 2, we introduce cubical categories in low dimensions. In Section 3, we recall some
standard notions from word rewriting. Finally, in Section 4, we prove our version of Squier’s theo-
rem. Finally, in a last section, we give examples where the cubical geometry would be helpful when
extending Squier’s theorem in higher dimensions.

2. Cubical 2-categories
The equivalence between globular and cubicalω-groupoids was announced in Brown andHiggins
(1977) and proved in Brown and Higgins (1981). The case of ω-categories was covered in (B02).
Finally, the description of cubical (ω, p)-categories and their equivalence with their globular coun-
terparts was done in Lucas (2018). Here, we focus on cubical 2-categories, (2, 1)-categories, and
2-groupoids.

Definition 2.1. A cubical 2-set consists of:

• Sets C0, C1, and C2, whose elements are, respectively, called the 0-, 1-, and 2-cells.
• Functions ∂+, ∂− : C1 → C0.
• Functions ∂+

1 , ∂−
1 , ∂+

2 , ∂−
2 : C2 → C1, called the faces of 2-cells.
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Satisfying the following relations for any α, β ∈ {+,−}:
∂α∂

β
2 = ∂β∂α

1 .

Notation 2.2. We represent a 1-cell f in the following way : ∂−f ∂+f ,
f

and a 2-cell A as:

∂−
2 A A

∂−
1 A

∂+
2 A

∂+
1 A

Cubical 2-categories. Cubical ω-categories were defined in Al-Agl et al. (2002). We here give an
elementary description of the 2-dimensional case. A cubical 2-category consists of a cubical 2-set
C equipped with the following structure:

• An operation 	 sending any two 1-cells x y z
f g

to a 1-cell x z.f 	g

• An operation ε sending any 0-cell x to a 1-cell x x,εx which we usually represent by
x x.

• An operation 	1 (respectively, 	2) associating, to any 2-cells A and B

satisfying ∂+
1 A= ∂−

1 B (respectively, ∂+
2 A= ∂−

2 B), 2-cells

A 	1 B A 	2 B

• Operations ε1, ε2 : C1 → C2 sending any 1-cell f to 2-cells ε1f

f

f

and f ε2f f .

• Operations �−, �+ : C1 → C2 sending any 1-cell f to 2-cells f �−f

f

and

�+f f

f

.

Those operations have to satisfy a number of axioms:

• Both (C0, C1, ∂−, ∂+, 	, ε) and (C1, C2, ∂−
i , ∂+

i , 	i, εi) (for i= 1, 2) are categories.
• For any 2-cells A, B, C,D such that ∂+

1 A= ∂−
1 B, ∂+

2 A= ∂−
2 C, ∂+

1 C = ∂−
1 D and ∂+

2 B= ∂−
2 D,

the equality (A 	1 B) 	2 (C 	1 D)= (A 	2 C) 	1 (B 	2 D) holds. In other words, the following
composite is uniquely defined:
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A C

B D
(1)

• Any two thin 2-cells A and B sharing the same faces are equal, where a 2-cell is said to be thin
if it is a composite of cells of the form εif and �αf for i= 1, 2, α = ± and f ∈ C1.

Remark 2.3. This last property in particular implies that for all α = ± and i= 1, 2, �αε = εiε.
It also gives expressions for cells �α( f 	 g) in terms of �αf and �αg. Finally since thin cells are
completely characterized by their faces, we will omit them when the context is clear in the rest of
this paper.

This definition of cubical categories in terms of thin cells is nonstandard, but Higgins (2005)
shows that it is equivalent to the one used in Al-Agl et al. (2002).

Cubical (2,1)-categories. A cubical (2, 1)-category is given by a cubical 2-category C equipped with

an operation T : C2 → C2 sending any 2-cell ∂−
2 A A

∂−
1 A

∂+
2 A

∂+
1 A

to a 2-cell of shape ∂−
1 A TA

∂−
2 A

∂+
1 A

∂+
2 A

such that T2 = idC2 and:

TA

A
= (2)

A

TA
= (3)

Remark 2.4. The operation A 	→ TA corresponds to the operation A 	→A−1 in a globular setting.
The equation T2 = idC2 corresponds to the equality (A−1)−1 =A, and the axioms (2) and (3),
respectively, correspond to the relations A 	1 A−1 = 1 and A−1 	1 A. See Lucas (2018) for more
details.

Cubical 2-groupoid. A cubical 2-groupoid is a cubical 2-category such that (C0, C1) is a groupoid
(we denote by f the inverse of a cell f ) equipped with operations S1, S2 : C2 → C2, sending

any 2-cell ∂−
2 A A

∂−
1 A

∂+
2 A

∂+
1 A

to 2-cells of shape:
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S1A

∂+
1 A

∂−
2 A

∂−
1 A

∂+
2 A ∂+

2 A S2A

∂−
1 A

∂−
2 A

∂+
1 A

So that (C1, C2, ∂−
i , ∂+

i , 	i, εi, Si) is a groupoid for i= 1, 2.

Though the proof is not as straightforward as in the globular case, we still have the following
expected result (see Lucas 2018):

Proposition 2.5. A cubical 2-groupoid is a cubical (2, 1)-category.

In particular, the operation T of cubical (2, 1)-categories can be defined in any cubical
2-groupoid using the operations S1 and S2.

3. Word Rewriting
In this section, we redefine some of the standard concepts of higher dimensional rewriting in our
cubical setting (see Guiraud and Malbos 2018 for a more detailed exposition).

Definition 3.1. A monoidal cubical (n, k)-category is a monoid object in the category of cubical
(n, k)-categories (with respect to the cartesian product). In other words, it is the data of a cubical
(n, k)-category C together with an associative and unitary functor C × C → C.

Let C be amonoidal cubical (2, 1)-category (respectively, 2-category) and f : u→ u′ and g : v→ v′
be cells in C1. Then, the monoid structure gives a 1-cell fg : uv→ u′v′ in C1. We write simply fv
(respectively, vf ) for the cell f (εv) : uv→ u′v (respectively, (εv)f : vu→ vu′). There is also a product
of 2-cells in a similar fashion. Finally, these products are compatible with the identity maps which
give, for example, the equation εi( fg)= (εif )(εig).

Polygraphs (Burroni 1993) are presentations for higher dimensional globular categories and
were introduced by Street under the name of computads (see Street 1976, 1987). We adapt them
here to present monoidal cubical (n, k)-categories using ideas from Batanin (1998) and Garner
(2010).

Definition 3.2. For any set E, we denote by E∗ the free monoid on E. A monoidal 1-polygraph
� is given by two sets �0, �1, together with maps ∂α : �1 → �∗

0 (for α = ±). We denote by �∗
(respectively, ��) the free monoidal category (respectively, groupoid) generated by �.

Explicitly, the 0-cells are given by �∗
0 (the free monoid on �0), while the 1-cells of �∗ are given

by composable sequences of arrows of the form ufv, with u, v ∈ �∗
0 and f ∈ �1, up to the following

relation, where x, x′, y, y′, u1, u2, u3 are elements of �∗
0 and f , f ′ of �1.

u1fu2x′y3 	 u1yu2f ′u3 = u1xu2f ′y3 	 u1fu2y′u3.

Definition 3.3. Amonoidal cubical 2-polygraph (respectively, (2, 0)-polygraph) is given by three sets
�0, �1 and �2, together with maps ∂α : �1 → �∗

0 and ∂α
i : �2 → �∗

1 (respectively, ∂
α
i : �2 → ��

1 )
for i= 1, 2 and α = ±.

We denote by �∗ (respectively, ��) the free monoidal cubical (2, 1)-category (respectively, 2-
groupoid) generated by �.

Example 3.4. If� is a monoidal cubical 2-polygraph, the cells of� and�∗ together with the face
operations can be visualized as follows (a similar diagram could be drawn for ��):
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�0 �1 �2

�∗
0 �∗

1 �∗
2

In what follows, we will use the following monoidal cubical 2-polygraph as our running
example:

�0 = {s, t, a}
�1 = {α : ta→ as, β : st → a, γ : sas→ aa, δ : saa→ aat}

And finally �2 consists of the following cells:

sta aa

sas aa

βa

sα A

γ

sast aat

saa aat

γ t

saβ B

δ

sasas aaas

saaa aata aaas

γ as

saγ C

δa aaα

sasaa aaaa

saaat aatat aaast aaaa.

γ aa

saδ D

δat aaαt aaaβ

The main point about these generating 2-cells is that the pairs formed of the top and left faces
correspond precisely to the critical pairs of �1.

Remark 3.5. The presentation in this article is slightly different from that of Guiraud and
Malbos (2018). The monoidal cubical (n, p)-categories defined in this article correspond pre-
cisely to one-object (n+ 1, p+ 1)-categories in Guiraud andMalbos (2018). Up to the equivalence
between cubical and globular categories, this is analogous to the fact that monoids are one-object
categories.

In particular, here generators are 0-cells and generating relations are 1-cells, while in Guiraud
and Malbos (2018), generators are 1-cells and generating relations are 2-cells.

Definition 3.6. Let � be a monoidal 1-polygraph. A rewriting step in �∗
1 is a 1-cell of the form ufv,

where f is in �1, and u and v are elements of �∗
0 .

Definition 3.7. Let � be a monoidal 1-polygraph. A branching is a pair of 1-cells f , g ∈ �∗
1 with

the same source. It is said to be local if f and g are rewriting steps.
Up to permutation of f and g, there are three distinct types of local branchings:

• If f = g, ( f , g) is said to be an aspherical branching.
• If there exists f ′, g′ ∈ �∗

1 and u, v ∈ �∗
0 such that f = f ′v and g = ug′ with ∂−f ′ = u and ∂−g′ =

v, ( f , g) is said to be a Peiffer branching.
• Otherwise, ( f , g) is said to be an overlapping branching.

Finally a critical branching is a minimal overlapping branching, where overlapping branchings
are ordered by the (well-founded) relation: ( f , g)� (ufv, ugv) for u, v ∈ �∗

0

Example 3.8. Using our example, saγ : sasas→ saaa and δa : saa→ saaat are rewriting steps, but
not saγ 	 δa (since it is a composite of rewriting steps) or βaβ (since it is a product of rewriting
steps).
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Let us now look at local branchings. Peiffer branchings are local branchings that rewrite disjoint
parts of a word. For example, (βst, stβ) : stst → (ast, sta) is a Peiffer branching. On the other hand,
(aβa, asα), of source asta is an overlapping branching, but not a critical one since it is not mini-
mal: (aβa, asα)> (βa, sα). In this example, one can check that there are four critical branchings:
(βa, sα), (γ t, saβ), (γ as, saγ ), and (γ aa, saγ ).

Definition 3.9. Let � be a monoidal 1-polygraph. A branching ( f , g) is confluent if there exist
1-cells f ′ and g′ in �∗

1 with the same target and such that ∂+f = ∂−f ′ and ∂+g = ∂−g′:

g

f

f ′

g′

We say that � is locally confluent if any local branching is confluent, and � is confluent if any
branching is confluent.

It is terminating if there is no infinite sequence of rewriting steps f1, . . . , fn, . . . satisfying that
∂+fi = ∂−fi+1 for all i.

. . . . . .
f1 f2 fi fi+1

It is convergent if it is both terminating and confluent.

Example 3.10. The faces of the cells of �2 show that all the critical branching of � are confluent.
In addition, aspherical branchings are always confluent (using identities for f ′ and g′), and so are
the Peiffer branchings. Indeed, given a Peiffer branching ( f , g)= ( f ′v, ug′) with f ′ : u→ u′ and
g′ : v→ v′, one can form the following diagram:

ug′

f ′v

u′g′

f ′v′

In the end, we have just shown that � is locally confluent.
Moreover, � is terminating. To show this, we consider the order t > a and s> a on �0. We

extend inductively this order to �∗
0 as follows:

• If u is shorter than v, then u< v.
• If u= xu′ and v= xv′, with x ∈ �0, and u′ < v′, then u< v.
• If u= xu′ and v= yv′, with x, y ∈ �0 and x< y, then u< v.

This is a well-founded ordering of �∗
0 compatible with multiplication, and we can check that for

any cell f of �1, s ( f )> t( f ). As a result, � is terminating.
Finally, by Newman’s Lemma, a terminating locally confluent rewriting system is confluent,

and so � is actually convergent.

4. Squier’s Theorem
Before stating Squier’s theorem, we need to define the cubical analogue to the notions of globe and
of coherence.
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Definition 4.1. Let C be a cubical 2-category. A shell over C1 is a family of cells f αi in C1, (i= 1, 2
and α = +,−) satisfying ∂αf β2 = ∂β f α1 for every α and β.

f−2

f−1

f+2

f+1

A filler in C2 of a shell S= ( f αi ) over C1 is a 2-cell A ∈ C2 satisfying ∂α
i A= f αi for every i and α.

If � is a monoidal cubical (2, 0)-polygraph, we say that � is coherent if any shell over ��
1 admits

a filler in ��
2 .

The main result of this paper is the following:

Theorem 4.2. Cubical Squier’s theorem. Let � be a convergent monoidal cubical 2-polygraph.
Suppose that for every critical pair ( f1, f2) of �, there exists a 2-cell in �∗

2 whose shell is of the form:

f2

f1

Then � is coherent.

The proof of this result occupies the rest of this article and loosely follows the proof of the
globular case from Guiraud and Malbos (2018). Before that though, we show that this result
applies to our example.

Example 4.3. We have already proven that � is convergent. We have also made the list of all
possible critical branchings, and we can check that each of them corresponds to a cell in �2. Thus
by Theorem 4.2, every shell over ��

1 admits a filler in ��
2 .

Lemma 4.4. For every local branching ( f1, f2), there exists a cell A in ��
2 such that ∂−

1 A= f1 and
∂−
2 A= f2. So A is of the following shape:

Af2

f1

Proof. We distinguish cases depending on the form of the branching ( f1, f2). Note first that if A is
a suitable cell for the branching ( f1, f2), then TA satisfies the conditions for the branching ( f2, f1),
and uAv for the branching (uf1v, uf2v). Since by hypothesis on �2 the property holds for critical
branchings, it remains to show that the property holds for aspherical and Peiffer branchings.

If ( f1, f2)= ( f , f ) is an aspherical branching, then the 2-cell f �−f

f

satisfies the condition.

If ( f1, f2)= ( fv, ug) is a Peiffer branching, then the 2-cell (ε1f )(ε2g) satisfies the condition:

u ε1f

f

u′

f

· g ε2g
v

g

v′

= ug (ε1f )(ε2g)

fv

u′g

fv′

https://doi.org/10.1017/S0960129520000018 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000018


168 M Lucas

Lemma 4.5. For every f , g ∈ �∗
1 of same source and whose target is a normal form, the shell

f

g

admits a filler in �∗
2 .

Proof. Define the origin of a shell ( f αi ) as ∂−f−1 ∈ �∗
0 . Let us prove that for any u ∈ �∗

0 , any shell

over �∗
1 of origin u and of the form f

g

admits a filler. We reason by induction on u. If u is

a normal form, then f = g = εu and ε1εu is a filler of the shell.
If u is not a normal form, then we can write f = f1 	 f2 and g = g1 	 g2 in�∗

1 , where f1 and g1 are
rewriting steps. Let A be a 2-cell in �∗

2 such that ∂−
1 A= f1 and ∂−

2 A= g1 (which exists thanks to
the previous lemma). Denote f ′ = ∂+

1 A and g′ = ∂+
2 A. Then, we can apply the induction hypoth-

esis to both ( f ′, g2) and ( f2, g′) defining 2-cells B1 and B2, and we conclude using the following
composite:

f1

g1 A

f2

g′ B2
f ′

g2 B1

Lemma 4.6. For every f ∈ ��
1 , and every g1, g2 ∈ �∗

1 whose target is a normal form, the shell

g1

f

g2 admits a filler in ��
2 .

Proof. To prove that the set E of 1-cells f satisfying the lemma is ��
1 , we show that it contains �∗

1 ,
and that it is closed under composition and inverses.

• It contains �∗
1 . Indeed, let f ∈ �∗

1 and g1 and g2 as in the lemma. We can form the following
composite, where the cell A is obtained by the previous lemma:

f

g2

A
f

g1

g2

• It is stable under composition. Indeed, let f1, f2 ∈ E be two composable 1-cells, and g1, g2 ∈ �∗
1

as in the lemma. Let g3 ∈ �∗
1 be a 1-cell such that ∂−g3 = ∂+f1, and whose target is a normal

form. Then, the following composite shows that f1 	 f2 is in E, where A1 and A2 exist since f1
and f2 are in E:

A1

f1

g1 A2

f2

g3 g2
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• It is stable under inverses. Indeed, let f ∈ E, and let g1, g2 ∈ �∗
1 as in the lemma. We can

construct the following cell, where A comes from the fact that f is in E, applied to the pair

(g2, g1): g1 S2A

f

g2

Proof of Theorem 4.2. Let us fix a shell ( f αi ) over ��
1 . The following cell is a filler of ( f

α
i ). The 1-

cells g1, g2, g3, and g4 are arbitrary 1-cells in �∗
1 , with the appropriate source, and a normal form

as target. Applying the previous lemma to f−1 , f−2 , f+1 , and f+2 (with a suitable choice of cells gi),
we get cells B1, B2, B3, and B4. We can now form the following diagram, which forms a filler

f−1

g1 B1 g2

g1

f−2 TB2 S1TB3

g2

f+2
g3

S1B4

g4

f+1

g3 g4

Remark 4.7. It is possible to give an alternate proof of Theorem 4.2 using Squier’s homotopical
theorem. Let � be a cubical monoidal 2-polygraph. The equivalence between globular and cubi-
cal ω-categories associates to � a globular monoidal 2-polygraph G�. The underlying monoidal
1-polygraph is unchanged, while G� contains a generating 2-cell of the following shape for every
generating 2-cell A ∈ �2:

∂+
2 A

A

∂−
1 A

∂−
2 A ∂+

1 A

Additionally, the 2-cells of G�∗ (respectively, G��) correspond precisely with the 2-cells of

�∗ (respectively, ��) of the form A

f

g

. Suppose now that � satisfies the hypothesis of

Theorem 4.2. Then for any critical pair ( f1, f2), there exists a 2-cell in �∗ of shape
f1 g1

f2 g2

. As a result, the coherence of G� satisfies the hypothesis of Squier’s homo-

topical theorem, and is therefore coherent. This means that any shell in �� of shape A

f

g
admits a filler, which implies the coherence of �.
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This proves that Squier’s homotopical theorem implies Theorem 4.2, and a similar argument
shows the other implication. As a result, those two results are indeed equivalent.

5. Conclusion and Future Work
We end this article by discussing why the cubical setting would be helpful in generalizing Squier’s
homotopical theorem to higher dimensions. The general idea is that we want to be able to specify
the shape of the source and target of some higher dimensional cells.

In globular categories, there is no structure on the source and target of a cell. Therefore, impos-
ing a specific shape requires a lot of book-keeping, and growingly so in higher dimensions. In
cubical categories however, we are able to inscribe relevant cells as faces of cubes, so that the
book-keeping is hidden within the geometry of the cell.

Fillers for critical triples. One hypothesis of Squier’s theorem is that any critical pair ( f1, f2)
admits a filler Af1,f2 . The first advantage of the cubical setting is the ease in how to generalise
this hypothesis to critical triples (and above).

First note that the data of theAf1,f2 ’s for ( f1, f2) a critical branching induces the existence of cells
of similar shape for any local branching ( f1, f2). If ( f1, f2) is an aspherical or a Peiffer branching,
then Af1,f2 is the identity. Otherwise, then we can write ( f1, f2)= (uf ′1v, uf ′2v) for ( f ′1, f ′2) a critical
pair, and define Af1,f2 as uAf ′1,f ′2v.

A critical local branchings admit a similar classification as critical pairs, yielding a notion
of critical triple. The hypothesis on critical triples would then say something like this: for any
critical triple ( f1, f2, f3), there exists a 3-cell Af1,f2,f3 whose source and target are, respectively, of
the following shapes:

g1
h1

C

g1

g2
h1f1

f2

f3

Af 1,f 2

Af 2,f 3

B
g3

g4

f1

f3

Af1,f3 h2

g6 h3 g6

g5 D
h3

Which syntactically amounts to the (unpleasant) formulas:

s(Af1,f2,f3 )= (Af1,f2 	0 h1) 	1 ( f2 	0 B) 	1 (Af2,f3 	0 h3)
t(Af1,f2,f3 )= ( f0 	0 C) 	1 (Af1,f3 	0 h2) 	1 ( f3 	0 D).

This condition is, for example, used in Lucas (2017), Definition 1.4.8.
In the cubical setting, 3-cells have the shape of cubes, and so it is possible to isolate Af1,f2 , Af1,f3

and Af2,f3 on the faces of the cube closest to the origin. The condition could therefore be rephrased
more simply as:

∂−
1 Af1,f2,f3 =Af1,f2 ∂−

2 Af1,f2,f3 =Af1,f3 ∂−
3 Af1,f2,f3 =Af2,f3

More specifically, notice that 1-cells appear when expressing the condition in globular terms, but
not in cubical ones.

An example of monoidal cubical 3-polygraph. As an example, let us consider the (convergent)
presentation � = 〈a, b|f : ba→ b, g : ab→ b〉. Using Squier’s theorem, we can extend � to a
monoidal cubical 2-polygraph, where the 2-cells correspond to the two critical pairs ( fb, bg) and
(ga, af ):
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bab bb

bb bb

bg A

fb
aba ba

ab b

af B

ga

f

g

There are then two critical triples: ( fba, bga, baf ) and (gab, afb, abg). Following the idea detailed
in the previous section, we extend � to a cubical monoidal 3-polygraph using two 3-cells whose
shapes are, respectively, given by the following diagrams.

baba bba

bab bba bba

bb bb

fba

bgabaf Aa

bB

ε2bf

baba bba

bab bb bba

bb bb

fba

baf (ε1f )(ε2f )

ε2bf

A

abab bab

abb abb bb

abb bb

gab

afbabg Bb

aA

ε1gb

abab bab

abb bb bb

abb bb

gab

abg (ε1g)(ε2g)

A

ε1gb

As previously, the faces of those generating 3-cells can be easily described in cubical terms,
while in the globular setting, the geometry of the source and target of the generating 3-cells would
involve complex compositions.
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