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There has been a growing interest, over the past few years, on understanding the
effect on radio frequency waves due to turbulence in the scrape-off layer of tokamak
plasmas. While the far scrape-off layer density width is of the order of centimetres
in contemporary tokamaks, in ITER (International Thermonuclear Experimental
Reactor), and in future fusion reactors, the corresponding width will be of the order
of tens of centimetres. As such, this could impact the spectral properties of the
waves and, consequently, the transport of wave energy and momentum to the core
plasma. The turbulence in the scrape-off layer spans a broad range of spatial scales
and includes blobs and filaments that are elongated along the magnetic field lines.
The propagation of radio frequency waves through this tenuous plasma is given
by Maxwell’s equations. The characteristic properties of the plasma appear as a
permittivity tensor in the expression for the current in Ampere’s equation. This paper
develops a formalism for expressing the permittivity of a turbulent plasma using
the homogenization technique. This technique has been extensively used to express
the dielectric properties of composite materials that are spatially inhomogeneous, for
example, due to the presence of micro-structures. In a similar vein, the turbulent
plasma in the scrape-off layer is spatially inhomogeneous and can be considered
as a composite material in which the micro-structures are filaments and blobs. The
classical homogenization technique is not appropriate for the magnetized plasma in
the scrape-off layer, as the radio frequency waves span a broad range of wavelengths
and frequencies – from tens of megahertz to hundreds of gigahertz. The formalism in
this paper makes use of the Fourier space components of the electric and magnetic
fields of the radio frequency waves for the scattered fields and fields inside the
filaments and blobs. These are the eigenvectors of the dispersion matrix which, using
the Green’s function approach, lead to a homogenized dielectric tensor.

Key words: fusion plasma, plasma waves

† Email address for correspondence: fotisb@mail.ntua.gr

https://doi.org/10.1017/S0022377818000922 Published online by Cambridge University Press

mailto:fotisb@mail.ntua.gr
https://doi.org/10.1017/S0022377818000922


2 F. Bairaktaris and others

1. Introduction
Radio frequency (RF) waves are extensively used for plasma heating, current drive

and suppression of neo-classical tearing modes. RF waves have to propagate through
frequently turbulent plasma edge before they reach their target. The edge is populated
by filamentary and blob-like structures of different shapes and density contrasts
(see Krasheninnikov 2001; Grulke et al. 2006; Myra et al. 2006a; Myra, Russell &
D’Ippolito 2006b; Zweben et al. 2007; Pigarov, Krasheninnikov & Rognlien 2012). As
a result, the plasma permittivity of these structures differs from the permittivity of the
background plasma. This leads to a modification of the propagation characteristics
of the incident RF beam. Thus, an estimate of an effective permittivity that can
successfully characterize the turbulent edge as a whole is necessary. Furthermore,
due to the statistical nature of the turbulent structures (shape, size, contrast), the
estimation method must be such as to be easily amenable to statistical treatment.
Briefly, the overall endeavour consists of the following three steps. The first step is
the subject matter of the present work. In the second step the probability distribution
of the geometrical characteristics, the contrast and the respective filling ratios are
suitably provided (as close to experimental observations as possible) and a statistically
averaged homogenized permittivity is estimated that is as general as possible. In the
last step the latter is used for a turbulent layer populated by blobs. In a scheme
which involves the so-called 4 × 4 matrix technique (Berreman 1972) for a beam,
the beam can easily be constructed as a superposition of as many planar waves as
necessary. An alternative method for the propagation of a beam through a turbulent
environment has also been developed by Snicker et al. (2016).

In the present work we develop a homogenization method capable of encompassing
the geometrical characteristics of an aggregate of identical structures (as far as
their shape, size and contrast are concerned) immersed in the ambient magnetized
plasma of the edge. The blobs are ellipsoidal structures of given size of their three
independent semi-axes and density contrast, aligned along the ambient magnetic
field and immersed in the ambient magnetized plasma that is considered cold. The
filling ratio at this stage is a free parameter. The outline of the present paper will
be as follows. In the first section, the generalized dyadic Maxwell equation will
be presented, along with the explicit laws governing plasma medium, blobs and,
finally, the composite medium. In the second section, reference to the previous
homogenization approaches will take place, showcasing two main methods (one older
and one much more recent). The third section refers to the mathematical formalism of
the proposed method as well as results for electron cyclotron plasma and comparison
with preexisting ones. In the last section we summarize our results and briefly discuss
future extensions.

2. The formalism of homogenization methods
The problem of a plasma medium with embedded blobs can be described as follows.

Considering an electron–proton plasma, the protons propagate at much lower velocities
than the electrons, due to their higher mass. This will lead them to gather forming
filamentary structures. These structures will be elongated toward the external magnetic
field. These inclusions are called blobs and, in general, their shape will be ellipsoidal.

Following chap. 2.3 of Mackay & Lakhtakia (2015), after a temporal Fourier
transform of the Maxwell equations, the correlation of the electric displacement and
magnetic field to the electric field and magnetizing field can be given by:

[N6×6(∂)+ iL] · f = 0. (2.1)
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Where N6×6, L are 6 × 6 tensors, with the former dependent on spatial partial
derivatives and the latter constant, computed by the frequency and external magnetic
field of the plasma medium. Finally, f is a 6-vector dependent on position, comprising
of normalized electric and magnetic field components.

N6×6 ≡

(
0 ∂×

−∂× 0

)
, f ≡

(
e
h

)
, L≡

(
K 0
0 I

)
. (2.2a−c)

Every quantity used in the present notation has been appropriately scaled to be
dimensionless. This 6 × 6 dyadic notation can be further simplified in the case of
a dielectric plasma medium. This is because the magnetic field components remain
unaffected in this equation. Thus, the equation which will be of importance here will
be

[N(∂)+ iK ] · e= 0. (2.3)
Where now N is the part of the 6× 6 tensor that acts on the electric field, and the
plasma dielectric tensor K is given by

K ≡

K⊥ −iKX 0
iKX K⊥ 0
0 0 K‖

 . (2.4)

Definition of another auxiliary set of functions needs to take place to abbreviate
calculations. The medium in question is a dielectric plasma with embedded blobs.
Let KP, KB, KH denote the dielectric tensors of the plasma, blob and composite
medium respectively. The composite medium is the actual medium, which includes
both the plasma and the ellipsoidal blobs. The aim of the present paper is, of course,
the computation of the composite tensor. The volume fraction of the blobs inside the
plasma is denoted by σ . Next, it is proper to define the electric fields [e]P, [e]B as
the solutions of the differential equations

[N(∂)+ iKP] · [e]P = 0
[N(∂)+ iKB] · [e]B = 0.

}
(2.5)

Meaning they are the equivalent electric fields, had the medium been homogeneous,
comprising only of the plasma material in the first case, and blob on the second.
Equation (2.3) is transformed under this notation as follows

[N(∂)+ iKH] · e= 0. (2.6)

Define the Green’s functions for plasma and blob as solutions to the equations

[N(∂)+ iKP] · GP = Iδ(ρ − ρ ′)

[N(∂)+ iKB] · GB = Iδ(ρ − ρ ′),

}
(2.7)

where δ(ρ − ρ ′) is the three-dimensional Dirac delta function, and I is the 3 by
3 identity matrix. The equation that completed the set of equations to be used in
previous homogenization formalisms is:

[N(∂)+ iKP] · e=Qequiv

Qequiv = i(KB − KP)e, ρ ∈ VE

Qequiv = 0, ρ /∈ VE.

 (2.8)

Where VE is the volume of the ellipsoidal inclusion. Using (2.5) and (2.8) is the basis
for previous methods, as will be presented in the next subsection. Note that compared
to the present method, previous ones made no usage of the fact that the tensor KH
satisfies (2.6).
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2.1. Previous formalisms
2.1.1. Depolarization dyadic

Widely used in the context of homogenization formalisms is the notion of the
depolarization dyadic, which makes its introduction a priority before continuing. The
depolarization dyadic is defined by the following relation

D=
∫

V ′
GP(ρ − ρ ′) · Qequiv(ρ

′) d3ρ ′. (2.9)

In general, the Green’s function of the plasma is unknown, but its Fourier transform
is readily extracted by Fourier transforming (2.5). Depolarization dyadics are
only computed via this Fourier transform. The first approximation used is the
Rayleigh approximation: assuming uniform distribution of the charge density Qequiv(ρ)

throughout the blob, equation (2.12) becomes

D=
[∫

V ′
GP(ρ − ρ ′) d3ρ ′

]
· Qequiv(ρ). (2.10)

This approximation leads to the long wavelength approximation: the blob is supposed
to be sufficiently smaller than the incoming beam wavelength in order for the Rayleigh
approximation to be satisfied.

Utilizing Fourier transforms of Green’s function and of the source term in (2.10) the
resulting equation for the depolarization dyadic is (see Mackay & Lakhtakia 2015)

D(ρ)=
ρ

2π2

∫
q

1
q2

[
sin(qρ)

qρ
− cos(qρ)

]
ĜP(U

−1q) d3q. (2.11)

Where q is the wavenumber and U is a dyadic that transforms spherical coordinates
into elliptical ones. The dyadic itself can be approximated, because its numerical
computation is cumbersome. It can be separated into two different dyadics, the one
utilizing the Green’s function limit as the wavenumber q→∞ and the second one
being the full dyadic minus the first approximation. There is a reason for such a
method: the full dyadic may initially produce many errors when computed, due to
same order of q-polynomial in the numerator and denominator of the Green’s function.
However, these two separate dyadics are smoother to extract numerically, because
the first Green’s function is q independent, and the second one has a numerator of
smaller q order than the denominator.

To compute the dyadic more efficiently, these equations are being used:

D0(ρ)=
ρ

2π2

∫
q

1
q2

[
sin(qρ)

qρ
− cos(qρ)

]
Ĝ∞P (U

−1q) d3q

D+(ρ)=
ρ

2π2

∫
q

1
q2

[
sin(qρ)

qρ
− cos(qρ)

]
Ĝ+P (U

−1q) d3q

Ĝ∞P = lim
q→∞

ĜP

Ĝ+P = ĜP − Ĝ∞P .


(2.12)
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2.1.2. A simple mixing formula
A very simple mixing formula for a dielectric material with embedded blobs was

the method described at Sihvola (1996). Using the simplest depolarization dyadic
approximation, the resulting equation is

KH = KP + σ(KB − KP)[KP + (1− σ)D · (KB − KP)]
−1

· KP. (2.13)

This mixing formula can of course be improved by using the full depolarization
dyadic. An important aspect of the above equation is its symmetry: no inversion
of parameter definition needs to take place when the volume fraction exceeds 50 %
because at volume fraction 0 and 1 the results are as expected (plasma tensor and
blob tensor respectively).

2.2. Differential Maxwell–Garnett formalism
Homogenization can also happen incrementally, in the following sense. Homogenizing
a material while only incorporating one blob at a time, finding a new composite
material for each step. It is obvious that the number of steps needed to reach the
final material is too large, enough to be considered N→∞. Thus, it can be replaced
with the differential Maxwell–Garnett formalism (Mackay & Lakhtakia 2015). The
differential equation to be solved is

dKH

dσ
=
[KB − KH(σ )] · [I + iD · [KB − KH(σ )]]

−1

1− σ
. (2.14)

This can be approximated numerically. Results depend on the choice of depolarization
dyadic, as well as wavelength of the incoming beam and volume fraction of the blobs.
In cases where the equation cannot be solved analytically, it is essentially the same
as the incremental method in terms of computational efficiency, while retaining
limitations of previous formalisms.

3. The proposed new method
The limitations of methods illustrated above are the long wavelength approximation

and behaviour of solutions for large filling ratios. The Rayleigh approximation
assumes that the transverse blob dimensions are small compared to the wavelength
of the incoming electromagnetic wave. In the scrape-off layer this approximation is
difficult to satisfy. For example, for electron cyclotron waves, the wavelength is of the
order of millimetres while the blob radius is of the order of a few centimetres. The
Rayleigh approximation stems from the fact that, usually, regarding the depolarization
dyadic, only the first dyadic in (2.12) is used in current formalisms (trading, of
course, physical information for better computational efficiency). However, only the
second one incorporates the size of the blob, as well as its shape. Our own method
makes no usage of the long wavelength approximation. To illustrate the method
that is to be used in the present paper, two new quantities need to be introduced.
For the resulting equation to be dimensionless, define the normalized wavenumber
q= kc/ω, where k, c, ω are normal wavenumber, speed of light and angular frequency
respectively. Next, the dyadic that is to be used when changing coordinate variables
from spherical to ellipsoidal is denoted by E which consists of the ellipsoid semiaxes
a, b, c (their dimensions are length dimensions, however the dyadic is normalized to
be dimension free).
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Fourier transforming equation (2.5) and (2.6) gives

[M + iKP][ê]P = 0
[M + iKB][ê]B = 0
[M + iKH]ê= 0,

 (3.1)

where the matrix M = qq − q2I . Equations (3.1) can be solved to provide the
normalized Fourier transformed electric fields as functions of q and the dielectric
tensor components. However, the homogeneous nature of the above equations leaves
a ‘freedom of choice’. That is, one can multiply the solutions by any scalar function
and maintain validity of the equations. This freedom can be used to ensure that
boundary conditions for the electric fields hold. However, even the simple inverse
square law as distance goes to infinity can be enough to dictate choice for that
function, and that is going to be used in the present work.

3.1. Homogenization equation
The starting point is that an exact analytical solution for (2.8) is needed, at first for
the case of a single blob to provide the basis upon which our method will continue.
The general solution is given in the following form:

e= [e]P +
∫

GP(ρ − ρ ′)Qequiv(ρ
′) d3ρ ′. (3.2)

The proof is straightforward (Mackay & Lakhtakia 2015) and it can be facilitated by
using (2.5) and (2.7).

It must be emphasized that (3.2) does not depend on any approximations so far.
However, if one approximates Qequiv(ρ

′) by Qequiv(ρ) instead, then this is equivalent to
assuming that there is no equivalent charge variation over the wavelength of the wave.
This is, of course, the Rayleigh approximation and is the basis of all previous studies.
We will not be making this approximation and consequently we will not impose any
restrictions on the ratio of the wavelength to the dimension of the blob.

Equation (3.2) is the solution for a single blob of practically zero volume fraction.
The results diverge greatly from the original values of plasma and blob tensors for
blob filling ratios greater than 30 %.

Since the previous descriptions of e, as in (3.2), are inadequate for our purposes, we
seek a more general form of e that is suitable for a collection of blobs in a plasma.
We put forth the following ansatz,

e = (1− σ)
(
[e]P +

∫
GP(ρ − ρ ′)Qequiv,P(ρ

′) d3ρ ′
)

+ σ

(
[e]B +

∫
GB(ρ − ρ ′)Qequiv,B(ρ

′) d3ρ ′
)
. (3.3)

It should be noted that the above form of e, unlike that in (3.2), is not an exact
solution. However, the basis for the construction of our ansatz is directly traceable
to (3.2). We have assumed that the major axis of the blob is aligned along the
externally imposed magnetic field. Subsequently, the electric field is a sum of two
terms: (1 − σ) times the electric field in the background plasma, and σ times the
electric field inside the blob.
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Care must be given in the definition of Qequiv,B: this can be easily obtained by
interchanging definition of plasma and blob in (2.8). This yields:

[N(∂)+ iKB] · e=Qequiv,B

Qequiv,B = i(KP − KB)e, ρ /∈ VE

Qequiv,B = 0, ρ ∈ VE.

 (3.4)

The indices P and B denote, as usual, plasma and blob respectively. Note that the area
where Qequiv,B = 0 is the area where Qequiv,P 6= 0 and vice versa.

Our next step is to transform (3.3) into a more usable form. Utilizing (2.5), (2.6)
and (2.7) yields:

(1− σ)(KH − KP) ·

(
[e]P +

∫
GP(ρ − ρ ′)Qequiv,P(ρ

′) d3ρ ′
)

+ σ(KH − KB) ·

(
[e]B +

∫
GB(ρ − ρ ′)Qequiv,B(ρ

′) d3ρ ′
)

− i[(1− σ)Qequiv,P(ρ)H(ρ ∈ VE)+ σQequiv,B(ρ)H(ρ /∈ VE)] = 0. (3.5)

Where H denotes the Heaviside step function, valued 1 when the condition in its
argument holds, and 0 elsewhere. Fourier transforming the above equation finally
gives

(1− σ)(KH − KP) · ( ˆ[e]P + iĜP(q) · (KP − KB) · F(q))
+ σ(KH − KB) · ( ˆ[e]B + iĜB(q) · (KB − KP) · F(q))
+ [(1− σ)(KP − KB) · F(q)+ σ(KB − KP) · F(q)] = 0, (3.6)

where F≡ 4π
∫
((sin c|E−1 · (q− q′)| − cos |E−1 · (q− q′)|)/|E−1 · (q− q′)|2)ê(q′) d3q′.

Utilizing (3.1) to express the electric fields as functions of wavenumber and
dielectric tensor components, and then integrating (3.6) over the domain of q provides
a system of three equation with 3 unknown variables, which are the components of
the dielectric tensor KH . Solving this system provides the necessary solutions for the
homogenized tensor.

3.2. Results for the EC (Electron Cyclotron) frequency range
To present our method in contrast to the ones discussed previously, three graphs will
take place. This case is for the electron cyclotron plasma frequency ω = 170 GHz.
With the components of the plasma and blob matrices given by

KP,⊥ = 0.9382, KP,X =−0.0458, KP,‖ = 0.9721 (3.7a−c)
KB,⊥ = 0.9073, KB,X =−0.0687, KB,‖ = 0.9582. (3.8a−c)

Ellipsoidal semiaxes ratios are given by ay = 0.5, az = 4, ax = 0.5 and blob radius
ρ = 3 cm. The z axis is along the magnetic field, thus the elongation of the blob
toward its direction.

The methods to be compared to ours is the simple mixing formula by Sihvola and
an elementary mixing rule given by

KH = (1− σ)KP + σKB. (3.9)
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FIGURE 1. The KH,⊥ component.

The results are quite interesting, as it is clear that Sihvola’s method coincides with
this simple, non-formal homogenization mixing rule for all components of the tensor.
The blue line illustrating our method is interpolated by using values of the filling ratio
from 0 to 1. Results from previous methods were not satisfactory in the ‘grey area’
30–70 % for the original methods of (3.2) with the long wavelength approximation
(strong divergence away from the values of the plasma and blob tensors) whereas
our method (2.6) behaves smoothly, and oscillates around the other methods, behaving
in such a way because of fewer approximations (we incorporate more physics). The
oscillation is seen in all six figures 1–6. A dielectric tensor graph of a straight line
relation to the filling ratio seems as though it does not incorporate enough physical
laws and plasma blob interactions. We propose that our method can be more accurate,
and can be improved by using experimental data to verify and interpolate the results
into a complete graph.

4. Conclusion
We have formulated a modified version of the conventional homogenization theory

for describing the permittivity of the turbulent plasma in the scrape-off layer. Using
the assumption that the blobs are aligned with respect to the external magnetic
field, we proposed the ansatz (3.3) to approximate the total electric field inside
the plasma. The formulation is not limited to the long wavelength limit where
the wavelength of the RF wave is longer than the scale length of the turbulence.
Our model can be extended to higher filling ratios since it has the advantage of
incorporating the essential physics of the scrape-off layer and of the RF waves of any
frequency. The results show an oscillatory behaviour with varying filling ratio which
is quantitatively significant for the off-diagonal terms and sizeable for the diagonal
ones. A study on combining the present formalism with the 4 by 4 matrix technique
for beam propagation through a scrape-off layer plasma is presently under way.
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FIGURE 2. The KH,X component.

FIGURE 3. The KH,‖ component.

Preliminary aspects of the combined theory have been reported by Valvis et al.
(2017). We intend to apply statistics so as to include filaments and blobs with
different shapes, sizes and contrasts, and incorporate data from experiments performed
on TORPEX (TORoidal Plasma EXperiment) and TCV (Tokamak à Configuration
Variable) (Chellai et al. 2018).
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FIGURE 4. Sihvola comparison: the KH,⊥ component.

FIGURE 5. Sihvola comparison: the KH,X component.
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