
Math. Struct. in Comp. Science (2015), vol. 25, pp. 566–618. c© Cambridge University Press 2014

doi:10.1017/S0960129512000928 First published online 10 November 2014

cJoin: Join with communicating transactions†

ROBERTO BRUNI‡, HERNÁN MELGRATTI§

and UGO MONTANARI‡

‡Dipartimento di Informatica, Università di Pisa

Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

Email: {bruni; ugo}@di.unipi.it
§Departamento de Computación, FCEyN, Universidad de Buenos Aires - CONICET

Pabellón I, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina

Email: hmelgra@dc.uba.ar

Received 18 January 2011; revised 28 October 2011

This paper proposes a formal approach to the design and programming of long running

transactions (LRTs). We exploit techniques from process calculi to define cJoin, which is an

extension of the Join calculus with few well-disciplined primitives for LRT. Transactions in

cJoin are intended to describe the transactional interaction of several partners, under the

assumption that any partner executing a transaction may communicate only with other

transactional partners. In such case, the transactions run by any party are bound to achieve

the same outcome (i.e., all succeed or all fail). Hence, a distinguishing feature of cJoin,

called dynamic joinability, is that ongoing transactions can be merged to complete their tasks

and when this happens either all succeed or all abort. Additionally, cJoin is based on

compensations i.e., partial executions of transactions are recovered by executing user-defined

programs instead of providing automatic rollback. The expressiveness and generality of

cJoin is demonstrated by many examples addressing common programming patterns. The

mathematical foundation is accompanied by a prototype language implementation, which is

an extension of the JoCaml compiler.

1. Introduction

The ultimate goal of service oriented architecture (SOA) is to make it possible to develop

new components and applications (now services) just by assembling existing ones. Many

recent efforts, strongly pushed by large industrial consortia, have given birth to several

(proposals for) programming/description languages tailored to the specification of web

service integration, generally known as web service composition languages (wscl), like

xlang (Thatte 2001), wsfl (Leymann 2001), ws-bpel (BPEL 2003), ws-cdl (WSCDL

2004), wsci (WSCI 2002) and bpmn (BPMN 2010). wscls address aggregation by following

two complementary approaches:

— Orchestration: a composite service consists essentially of a unique program (usually

known as orchestrator) that coordinates the execution of all components, while involved

† Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project Sensoria, the Italian MIUR

Project IPODS (PRIN 2008), the ANPCyT Project BID-PICT-2008-00319, and the UBACyT Project

20020090300122.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 567

services are neither aware of the fact they are taking part in a larger process nor of

its structure and goal. The application logic of a composite service relies on the

orchestrator, which is responsible for interacting with (i.e., invoking) all involved

components in the right order. For this reason, orchestration is appropriate for

specifying intra-organisation (or private) processes, whose application details may be

completely known and whose execution may be coordinated in a centralised way.

Typical orchestration languages are xlang, wsfl, and (executable processes of) ws-

bpel and bpmn.

— Choreography: choreographies do not rely on a centralised coordinator since they are

intended to facilitate the integration of business processes that spawn over different

organisations. In this context, services are aware of the interaction protocol that

underlies their composition, and thus of the way in which they should interact. For

this reason, choreography languages allow for and focus on the definition of protocols

that parties should follow in order to achieve a common goal. There are two main

approaches to define choreographies: (i) the global model, in which a protocol describes

from a global perspective the messages exchanged by the parties, and (ii) the interaction

model in which each service describes the temporal and logical dependencies among

the messages it exchanges, i.e., a kind of interface definition. ws-cdl adopts the

global model style, while wsci and abstract processes of ws-bpel are instances of the

interaction model.

A common aspect considered by both orchestration and choreography styles is related

to LRTs, i.e., the possibility of executing some parts of a composed service atomically.

Nevertheless, atomicity does not imply here the usual “all-or-nothing” property of

database transactions, because perfect rollback is unlikely in case of a fault. For example,

the sending of a message cannot be undone. Consequently, LRTs often rely on a weaker

notion of atomicity based on compensations. Compensations are ad hoc, user-programmed

activities to be run when recovering from partial executions of LRTs arising after a fault

or interruption because successful completion is no longer possible. For example, if some

information has been sent and it is not longer valid after the fault, then a second message

can be sent to the recipient.

Since, most industrial standards lack rigorous foundations, many efforts have been

spent to provide a formal basis to reason about LRTs in composition languages. As

far as the orchestration of LRT is concerned, the first proposal that appeared in the

literature is (to the best of our knowledge) StAC (Butler and Ferreira 2004; Butler et al.

2002), which enriches an imperative language with primitives for installing, activating and

removing compensations. After StAC, proposals such as (Bruni et al. 2005; Bruni et al.

2012; Butler et al. 2005b) have provided formal semantics for compensation languages,

whose primitives are closer to real orchestration languages (see e.g., (Eisentraut and Spieler

2009)).

A different line of research focuses on the formal definition of LRTs for interaction-

based choreographies (Bocchi et al. 2003; Bruni et al. 2004; Caires et al. 2009; de Vries et al.

2010; Laneve and Zavattaro 2005; Lucchi and Mazzara 2004). Typically, such research

thread consists of extending well-assessed mobile calculi with ad hoc constructs tailored

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 568

to transactions and compensations. The enriched calculi exploit the communication

primitives provided by, e.g., π-calculus (Milner et al. 1992) and Join calculus (Fournet et al.

1996), to model communication among parties. Hence, a composed service is described

by a set of processes, any of them defining a particular partner of the complete system.

In this way, any party declares the interface for proper composition with other partners.

In this respect, transactional processes in those calculi are the formal counterpart of wsci

interfaces or bpel abstract processes. Nevertheless, transactional calculi go beyond the

scope of being just declarative definitions of service interfaces. In fact, they are aimed at

providing an operational characterisation for business processes.

Consider the typical scenario in which a user books a room through a hotel reservation

service. The ideal protocol followed by the two parties can be sketched as follow, by using

an informal π-calculus-like notation:

Client ≡ request!(data).offer?(price).accept!(cc)

Hotel ≡ request?(details).offer!(rate).accept?(card).

We write a!(v) for the sending of the message v on the communication channel a, and

a?(x) for receiving on the variable x some message sent on the channel a. The prefix symbol

“ . ” must not be confused with the usual dot-notation from object-oriented language:

it is used to establish the order in which actions must be executed. The client starts by

sending a booking request to the hotel, which answers it with a rate offer. After receiving

the offer, the client accepts it. This is the ideal protocol both parties should follow in order

to accomplish the common goal. Nevertheless, there are several situations in which parties

may be forced/inclined not to complete the execution of the protocol (e.g., the hotel has

no available rooms for the requested day, or the client does not obtain acceptable rates).

Clearly, just stopping the execution of the protocol may be not acceptable in most of

the cases. Compensable transactions are designed to handle this kind of situations. In

addition to the usual primitives of name passing calculi, transactional calculi provide a

new kind of terms, generally of the form [P : Q], involving: (i) a process P that is required

to be executed until completion and (ii) the corresponding compensation Q to be executed

in case P cannot complete successfully. Moreover, the cancellation of the transaction can

be handled by making P reach a special process, usually denoted by abort . For example,

when the hotel is unable to proceed with the order, it may abort the transaction and use

the compensation to suggest an alternative hotel to the client (e.g., by sending the message

alt!(hotel)). Then, the description of the protocol could be improved as follows:

Client ≡ [request!(data).offer?(price).(accept!(cc) + abort) : alt?(h).Q]

Hotel ≡ [request?(details).(offer!(rate).accept?(card) + abort) : alt!(hotel)].

The above protocol also allows the client to abort the transaction after receiving an

offer (for instance, when the offer does not satisfy her expectations). Alternatively, the

hotel may abort after receiving a request (for instance, when no rooms are available).

Clearly, more sophisticated protocols may be written to allow clients and hotels to abort

at any moment. We illustrate the use of compensations by making the component Hotel

generate the single message alt!(hotel) to provide the client with the information of an

alternative hotel to contact running Q. More concretely, hotel could be a tuple of channel

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 569

names request ′, offer ′, accept ′ to contact another hotel and Q could be just a recursive

instance of Client parametric on such channels.

Proposals in the literature differ mainly in the kinds of interactions allowed across

transaction boundaries and the effects associated with the handshaking. Roughly, on one

side of the design option we have completely permeable transactional scopes (as in πt-

calculus (Bocchi et al. 2003)), where messages may freely cross transactional boundaries.

For instance, a possible computation for the protocol can be described as follows:

Client|Hotel → [offer?(price).(accept!(cc) + abort) : alt?(h).Q]

| [offer!(rate).accept?(card) + abort : alt!(hotel)]

→ [(accept!(cc) + abort) : alt?(h).Q] | [accept?(card) : alt!(hotel)]

→ [0 : alt?(h).Q] | [0 : alt!(hotel)]

→ 0.

Messages in the above computation flows freely from one transaction to the others.

The main drawback of such approach is that transactional scopes does not ensure all

interacting transactions to reach the same result, i.e., some of them may commit even

though others have failed. For instance, consider a client executing the following protocol:

Client′ ≡ [request!(data).offer?(price).(accept!(cc)|abort) : alt?(h).Q].

Analogously to the previous case, there is a computation leading the system to the

following state:

Client′|Hotel →∗ [(accept!(cc)|abort) : alt?(h).Q] | [accept?(card) : alt!(hotel)].

Then, the system may evolve to:

Client′|Hotel →∗ [abort : alt?(h).Q] | [0 : alt!(hotel)].

At this point, one transaction (that one from the client) can only abort by releasing the

compensation Q, while the other (the hotel party) can only commit. Hence, the hotel

has reserved a room that the client is not willing to book. It is true that we can write

a different compensation for the client that contains the code needed for making the

hotel cancel the reservation. For example, graceful termination mechanisms for closing

dyadic sessions have been studied in (Boreale et al. 2008) and can be likely reused for

transactions. Nevertheless, from our point of view, the fact that involved participants have

no guaranties about the final outcome of the remaining transactional participants provides

too weak a transactional mechanism for handling many common situations. Although,

stronger transactional properties may be ensured by programming ad hoc coordination

code through compensations, suitable transactional primitives should relieve programmers

from writing such kind of code.

In this paper, we present Committed Join (cJoin), a calculus designed to ensure that all

participants of the same transaction reach the same agreed outcome. This is achieved by

making interacting transactional processes become part of the same larger transaction. The

cJoin is an extension of the Join calculus (Fournet and Gonthier 1996), which is a process

calculus with asynchronous name-passing communication. We based our approach on the

Join calculus rather than on other more popular process calculi, such as the π-calculus,

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 570

because Join adheres to a locality principle that guarantees that extruded names cannot be

used in input by the process who received them (they can only output values on such ports).

This feature is crucial for deploying distributed implementations and it is not enforced in

the full π-calculus. Moreover, it allows to obtain precise characterisations of transaction

termination and atomic joining of multiple transactions, which are missing from most

alternative proposals in the literature. Another advantage is that the operational semantics

rules are quite simple and compact when compared to other transactional calculi.

The process Client′|Hotel behaves in cJoin as follows: when both transactions com-

municate through the port request for the first time they are merged in a unique larger

transaction, whose transactional process and compensation correspond respectively to

the parallel composition of the residuals of the original transactions and to the parallel

composition of the original compensations, as shown below:

Client′|Hotel → [offer?(price).(accept!(cc) | abort)

| (offer!(rate).accept?(card) + abort) : alt?(h).Q | alt!(hotel)].

From this moment on, the system may evolve as usual. In particular, assuming the hotel

sends an offer (1) and the client sends the confirmation (2), the system moves as follows:

→ [accept!(cc) | abort | accept?(card) : alt?(h).Q | alt!(hotel)] (1)

→ [abort : alt?(h).Q | alt!(hotel)]. (2)

In this case, both original transactions are bound together and none of them has

already committed, therefore, the abort condition reached by the client causes the hotel

transaction to be compensated as well. In this way, transactional scopes of cJoin ensure

that all parties of a transaction commit (resp. abort) only when all other parties commit

(resp. abort), although each party is responsible for defining its own compensation. Note

that the transactional primitive in cJoin relieves programmers from coding protocols

needed to agree on a common result for a distributed transaction, while leaving to the

programmer the responsibility for defining suitable compensations to recover aborted

transactions. Though no automatic rollback mechanism is provided, it is obvious that

restoring the initial process upon the abort can be straightforwardly programmed by

recursive definitions like P ≡ [Q : P], easy to implement in cJoin syntax.

Another important issue addressed in this paper is transaction serializability. Not to be

confused with object serializability, it is a way for ensuring the correctness of reasoning

at different levels of abstractions, in which transactions become atomic reductions when

seen at the abstract level. Let us consider a set of n transactions {Ti | 1 � i � n}, each

consisting of several activities to be carried out. Their concurrent execution T1 || . . . || Tn can

interleave the activities from different transactions and it is said to be serializable if there

exists a sequence Ti1 , Ti2 , . . . , Tin that executes all transactions one at a time (without

interleaving their steps) and produces the same result (Bernstein et al. 1987). More

generally, in the case of nested transactions, each Ti could involve recursively several

sub-transactions Ti,1, . . . , Ti,n1
among the activities to be carried out, whose execution

is possibly interleaved with those of other transactions and of their sub-transactions.

Serializability is important because it allows us to reason about the behaviour of a system

by considering one transaction at a time, at any given level of nesting. Transaction

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 571

serializability is generally difficult to achieve in other proposals where communication is

allowed across transactions. Here we show that, for a large class of cJoin processes, called

shallow processes, serializability is guaranteed by construction because if two separately

initiated transactions interact, then their scopes are merged together as part of the same

transaction, i.e., after merge they cannot commit or abort independently.

For the prototype implementation of cJoin, we rely on available distributed imple-

mentation of Join. In fact, the primitives of Join have been exploited in the design of

JoCaml (Conchon and Le Fessant 1999), an extension of the Objective Caml, a functional

language with support of object-oriented and imperative paradigms, and Polyphonic

C# (Benton et al. 2002) (later Cω) that extends C# with asynchronous methods and

synchronisation patterns, called chords. We take advantage of this fact for extending

JoCaml with transactional primitives. The resulting language, called transactional JoCaml

(t-JoCaml), adds to JoCaml the possibility of writing programs that should execute as

compensable transactions in the style of cJoin transactions.

Paper Outline. After introducing some preliminaries (Section 2), we give the syntax and

semantics of cJoin (Section 3) and describe several examples illustrating the main features

of cJoin (Section 4). By exploiting the strategy used for implementing cJoin transactions

in Join itself, as summarised in Section 5; in Section 6, we describe t-JoCaml as an

extension of JoCaml. We remark that t-JoCaml actually implements a sub-calculus of

cJoin (called flat) in which transactions cannot be nested (see Section 3.2). Section 6.2.2

describes the corresponding extension of the JoCaml compiler we have realised. Section 7

shows how transaction serializability can be achieved in cJoin. To conclude, we compare

our proposal against several approaches appeared in the literature and we present some

final remarks (Section 8).

Preliminary studies on cJoin have been presented at IFIP-TCS 2004–IFIP 18th World

Computer Congress, 3rd International Conference on Theoretical Computer Science, and

COMETA 2003-workshop of the COMETA Project on Computational Metamodels, after

which several other proposals of transactional process calculi emerged in the literature.

Yet the features of cJoin remained quite peculiar and this work integrates previous studies

with new perspectives in the area of service-oriented programming and business processes,

most notably the well-disciplined use of compensations.

2. Preliminaries

In this section, we report on the operational semantics of the Join calculus as a chemical

abstract machine, by following the presentation of (Fournet and Gonthier 1996).

2.1. The chemical abstract machine

The semantics of the Join calculus relies on the reflexive chemical abstract machine (cham).

In a cham (Berry and Boudol 1992) computation states S (called solutions) are finite

multisets of terms m (called molecules), and computations are multiset rewrites. Multisets

are denoted by m1, . . . , mn and abbreviated with ⊕imi. Solutions can be structured in

a hierarchical way by using the operator membrane {[·]} to group a solution S into a

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 572

(reaction law)

m1, . . . , mk → m′
1, . . . , m

′
l ∈ set of cham rules

m1σ, . . . , mkσ → m′
1σ, . . . , m′

lσ

(chemical law)

S → S′

S, S′′ → S′, S′′

(membrane law)

S → S′

{[S]} → {[S′]}

Fig. 1. cham laws.

molecule {[S]}. (In (Berry and Boudol 1992) molecules can be built also with the constructor

airlock, but it is not needed in our presentation.)

Transformations are described by a set of chemical rules, which specify how solutions

react. In a cham, there are two different kinds of chemical rules: heating/cooling rules

S � S ′ representing syntactical rearrangements of molecules in a solution, and reaction

rules S → S ′. Heating/cooling rules are analogous to the axioms for structural congruence

in process calculi, and thus called also structural rules. Structural rules are reversible: a

solution obtained by applying a cooling rule can be heated back to the original state, and

vice versa. Reaction rules, on the other hand, cannot be undone. Rules can carry formal

parameters to be matched against actual parameters in the redex and substituted in the

right-hand side.

The laws governing cham computations are in Figure 1 (we give them for reaction

rules, but they are applicable to heating/cooling rules as well):

— Reaction law: given a rule, an instance of its left-hand side can be replaced by the

corresponding instance of the right-hand side. The substitution σ replaces the formal

parameters with the actual parameters by matching the solution against the left-hand

side of the rule.

— Chemical law: reactions can be applied in every larger solution.

— Membrane law: reactions may occur at any level in the hierarchy of solutions.

Note that cham’s heating/cooling/reaction rules have no premises and are purely local.

They specify only the part of the solution that actually changes. Moreover, since solutions

are multisets, not overlapping rules can be applied concurrently.

2.2. The Join calculus

The Join calculus relies on an infinite set of names x, y, u, v, Name tuples are written

�u. Join processes, definitions and patterns are in Figure 2(a). A process is either the inert

process 0, the asynchronous emission x〈�y〉 of message�y on port x, the process def D in P

equipped with local ports defined by D, or a parallel composition of processes P |Q. A

definition is a conjunction of elementary reactions J �P that associate join-patterns J with

guarded processes P . Names defined by D in def D in P are bound in P and in all the

guarded processes contained in D. The sets of defined names dn , received names rn and

free names fn are in Figure 2(b).

Example 1. Consider the processes Q = def proxy〈y〉 � server〈proxy , y〉 in proxy〈a〉 and

P = server〈proxy , b〉|Q. Roughly, Q defines a local port proxy such that when a message on

proxy arrives with any content y then the name proxy is extruded on (the elsewhere defined,

free port) server together with y. Intuitively, the “local proxy” forwards to the “public

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 573

(proc) P, Q ::= 0 | x y def D in P | P |Q
(def) D, E ::= P | D ∧ E

(pat) J, K ::= x y J |K
(a) Syntax

(Free)

fn(0) = ∅ fn(x y) = {x} ∪ {y}
fn(def D in P) = (fn(P) ∪ fn(D))\dn(D) fn(P |Q) = fn(P) ∪ fn(Q)

fn(P) = dn(J) ∪ (fn(P)\rn(J)) fn(D ∧ E) = fn(D) ∪ fn(E)

(Defined)

dn(P) = dn(J) dn(D ∧ E) = dn(D) ∪ dn(E)

dn(x y) = {x} dn(J |K) = dn(J) ∪ dn(K)

(Received)

rn(x y) = {y} rn(J |K) = rn(J) ∪ rn(K)
(b) Free, Defined and Received names

(str-null) 0

(str-join) P | Q P, Q

(str-and) D ∧ E D, E

(str-def) def D in P Dσdn(D), Pσdn(D) (range(σdn(D)) globally fresh)

(red) P, Jσ → P, Pσ
(c) Semantics

Fig. 2. Join calculus.

server” each message tagged with its “origin” (i.e., the name of the proxy). The initial state

of Q carries a message on proxy whose content is a. The process P places Q in a context

that includes a message to port server with content 〈proxy , b〉. Then, fn(Q) = {server , a}
and fn(P) = {server , a, b, proxy}. Therefore, the name server has common meaning in P

and Q, while the symbol proxy denotes, by accident, different ports in server〈proxy , b〉 and

Q: a free (elsewhere defined) port in the former and a private port in the latter. Moreover,

letting D = proxy〈y〉 � server〈proxy , y〉, we have fn(D) = {proxy , server}, dn(D) = {proxy}
and rn(D) = {y}.

The semantics of the Join calculus relies on the reflexive cham. It is called reflexive

because active reaction rules are represented by molecules present in solutions, which

are activated dynamically. Molecules, generated by m ::= P | D, correspond to terms

of the Join calculus denoting processes or definitions. The chemical rules are shown in

Figure 2(c). Rule str-null states that 0 can be added or removed from any solution. Rules

str-join and str-and implies the associativity and commutativity of | and ∧, because ,

is such. str-def denotes the activation of a local definition, which implements a static

scoping discipline by properly renaming defined ports by globally fresh names. A name x

is fresh w.r.t. a process P (resp. a definition D) if x �∈ fn(P) (resp. x �∈ fn(D)). Moreover, x

is fresh w.r.t. a solution s if it is fresh w.r.t. every term in s. A set of names X is fresh if

every name in X is such. We write the substitution of names x1, . . . , xn by names y1, . . . , yn

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 574

as σ = {y1 ,...,yn/x1 ,...,xn}, with dom(σ) = {x1, . . . , xn} and range(σ) = {y1, . . . , yn}. We indicate

with σN an injective substitution σ such that dom(σ) = N. When we require names to be

globally fresh, we mean that they must be different from all other names appearing in the

enclosing context.

Example 2. Consider the process P in the previous example. A solution s containing only

P , i.e., s = {[P]}, may be heated as follows. First, the two parallel agents are separated by

obtaining {[server〈proxy , b〉, def proxy〈y〉 � server〈proxy , y〉 in proxy〈a〉]}. Now, the second

molecule contains a definition of a local port proxy that is different from the homonymous

free port proxy in the first molecule server〈proxy , b〉. Hence, when using str-def for

separating the local definition from the corresponding process, the local definition of

proxy must be renamed by using a fresh name, say proxy1, obtaining the solution

s′ = {[server〈proxy , b〉, proxy1〈y〉 � server〈proxy1, y〉, proxy1〈a〉]}.

Finally, red describes the use of an active reaction rule (J � P) to consume messages

forming an instance of J (for a suitable substitution σ, with dom(σ) = rn(J)), and produce

a new instance Pσ of its guarded process P .

Example 3. By applying rule (red) to the solution s′ from Example 2 for σ = {a/y}, we

get s′ → {[server〈proxy , b〉, proxy1〈y〉 � server〈proxy1, y〉, server〈proxy1, a〉]}. Note that the

local port proxy1 has been extruded on the free channel server .

Remark 2.1. For π-calculus enthusiasts, the Join calculus can be easily grasped by con-

sidering the main differences enforced by the syntax, namely: (i) like in the asynchronous

π-calculus, only output particles are allowed, not output prefixes; (ii) input prefixes are

encoded as definitions and joint inputs are allowed (i.e., more than one message can be

consumed atomically); (iii) all definitions are persistent, as if they were prefixed by the

replication operator; (iv) the definition construct def D in P is also binding all defined

names in D to ensure the unique receptor property and favour distributed implementation

(names can still be extruded, but the processes that receive them can only output on

them); (v) the programming style is continuation passing, in the sense that output prefixes

can be encoded by including in the message a fresh continuation name k where the

acknowledge of the receipt must be sent to activate the output-prefixed process. For

example, the process P from Example 1 can be understood as the π-calculus process

s〈p, b〉 | (νp)(pa | !p(y).s〈p, y〉), where for brevity initial letters of port names are used.

We shall write P ≡ Q when P �∗ R, for �∗ the reflexive and transitive closure of the

relation �. Moreover, we abuse the notation by allowing one step reductions up to ≡,

i.e., writing P → Q when P �∗→�∗ Q. We write P →n Q for n � 0 if there exist n + 1

processes P0, . . . , Pn such that P ≡ P0 → P1 → . . . → Pn−1 → Pn ≡ Q. Finally, we write

P →∗ Q if P →n Q for some n.

Note that by exploiting heating and cooling rules, it is always possible to move

definitions around, possibly after some renaming of their defined ports. In particular, we

remark that def D in P ≡ P |def D in 0 whenever fn(P) ∩ dn(D) = � and furthermore

that (def D1 in P1)|(def D2 in P2) ≡ def D1 in (P1|def D2 in P2) ≡ def D1 ∧ D2 in (P1|P2)

if dn(D1) ∩ (dn(D2) ∪ fn(P2)) = dn(D2) ∩ (dn(D1) ∪ fn(P1)) = �.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 575

(mess) M, N ::= 0 | x y M |N
(proc) P, Q ::= M | def D in P | P |Q | [P : Q] | abort

(def) D, E ::= P | D ∧ E | J P

(pat) J, K ::= x y J |K

Fig. 3. Syntax of cJoin.

In Sections 3 and 4, where several examples of cJoin processes are given, we shall use

the following syntactic sugar for the case where different decisions can be taken after

receiving a certain message tuple: we write J � P + Q in place of J � P ∧ J � Q.

3. Committed join

In order to handle LRTs we extend the syntax of the Join calculus as shown in Figure 3.

For convenience, we introduce the syntactical category M of processes without definitions,

i.e., a parallel composition of messages. In addition to cJoin processes, we add terms [P :

Q] to denote transactions, where P is the transactional process and Q is its compensation,

i.e., the process to be executed when P aborts. A transactional process is executed in

isolation until reaching either a commit state or an abort condition. If P commits, the

obtained result is delivered to the outside of the transaction. Otherwise, the compensation

Q is activated. The abort decision is caused by the presence of the special basic process

abort .

A new kind of definitions J � P , called merge definitions, is introduced to specify

the possible interactions among transactions (inter-transaction communication). Merge

definitions allow the consumption of messages produced in the scope of different

transactions by joining all participants in a unique larger LRT. Note that all ongoing

transactions that want to merge are treated uniformly: they will issue a request to J � P by

producing an instance of a particle in J and when a full instance Jσ can be formed out of

those particles all the transactions containing those particles are merged. Thus, J � P acts

as some kind of message board where merge advertises are posted by transactions. This

is different w.r.t. an “asymmetric” merge discipline, where one message in a transaction is

received by an input running in a different transaction causing the merge. In fact, this kind

of permeability of transaction scopes is not allowed in cJoin. Moreover, cJoin definitions

can be used to create transactions dynamically. For instance, by firing J � [P : Q] a new

instance of the transaction P with compensation Q is activated. Perfect rollback can thus

be programmed just by writing definitions like J � [P : J]. In fact, if an instance Jσ of

J is consumed to produce [Pσ : Jσ] such that Pσ will abort, then the original messages

Jσ are restored as a compensation. Notably, when two or more of such transactions are

merged into a unique transaction, then the overall compensation becomes just the parallel

composition of their perfect rollbacks.

The sets of defined names dn , received names rn and free names fn are defined

in Figure 4. In particular, we distinguish between defined ordinary names dno(D) and

defined merge names dnm(D) that, as a general well-formedness discipline, are always

assumed to be disjoint sets of names.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 576

(proc)

fn(0) = ∅ fn(x y) = {x} ∪ {y}
fn(P |Q) = fn(P) ∪ fn(Q) fn(abort) = ∅

fn(def D in P) = (fn(P) ∪ fn(D))\dn(D) fn([P : Q]) = fn(P) ∪ fn(Q)

(def)

fn(P) = dn(J) ∪ (fn(P)\rn(J)) fn(D ∧ E) = fn(D) ∪ fn(E)

fn(J P) = dn(J) ∪ (fn(P)\rn(J))

dno(P) = dn(J) dno(D ∧ E) = dno(D) ∪ dno(E)

dno(J P) = ∅

dnm(P) = ∅ dnm(D ∧ E) = dnm(D) ∪ dnm(E)

dnm(J P) = dn(J)

(pat)

rn(x y) = {y} rn(J |K) = rn(J) ∪ rn(K)

dn(x y) = {x} dn(J |K) = dn(J) ∪ dn(K)

Fig. 4. Free, defined and received names.

(str-null) 0

(str-join) P | Q P, Q

(str-and) D ∧ E D, E

(str-def) def D in P Dσdn(D), Pσdn(D)

(range(σdn(D)) globally fresh)

(red) P, Jσ → P, Pσ

(str-trans) [P : Q] {[P, Q]}
(commit) {[M |def D in 0, Q]} → M

(abort) {[abort |P, Q]} → Q

(merge)

(ΠiJi P),⊗i{[Jiσ, Si, Qi]} → (ΠiJi P), {[⊗iSi, Pσ, ΠiQi]}

Fig. 5. Operational semantics of cJoin.

3.1. Operational semantics

The operational semantics of cJoin is given in the reflexive cham style. Molecules m and

solutions S for cJoin are as follows:

m ::= P | D | �P � | {[S]}
S ::= m | m, S.

Processes and definitions are molecules. Terms �Q� denote compensations, i.e., frozen

processes to be activated only when the corresponding transaction aborts. Molecules {[S]}
stands for running transactions.

The chemical rules for cJoin are given in Figure 5. The first five chemical rules are

the ordinary ones for Join. Rule (str-trans) states that a term denoting a transaction

corresponds to a sub-solution consisting of two molecules: the transactional process P

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 577

and its compensation Q, which is frozen (the operator �.� forbids the enclosed process to

compute because there is no rule for applying reductions inside it).

A transaction can commit only when all internal computations have finished. This

situation can be characterised as the special pattern {[M|def D in 0, �Q�]}, comprising

some messages M, the definition D for computing inside the transaction and the so-far

installed compensation Q. Since the scope of D is the nil process, it is evident that at

commit time, private definitions of the transactional process can be discarded, because

neither the messages that are being released contain those names nor they could have

been extruded previously. On the other hand, if defined names of D were present in

some of the messages inside the transaction, then the transactional activity would not

yet be complete and the commit would not take place. When a transaction commit (rule

(commit)), the local resources M produced inside a transaction are released as outcome.

After commit, its compensation procedure �Q� is useless and it is discarded as well.

The abortion of a transaction is handled by the rule (Abort), which releases Q whenever

abort is present in the solution.

Interactions among transactions are dealt with (merge), where we let the notation

ΠiJi and ΠiQi denote, respectively, the parallel composition of messages J1| . . . |Jn and

the parallel composition of processes Q1| . . . |Qn. We also recall that the notation ⊗imi

denotes multisets of molecules and solutions. The rule (merge) consumes messages from

different transactions and creates a larger transaction by combining the definitions and

messages of the original ones with a new instance of the guarded process Pσ, where

dom(σ) = rn(J1| . . . |Jn). Name clashes are avoided because we assume that str-def

generates globally fresh names. The compensation for the joint transaction is the parallel

composition of all the original compensations.

The rule (merge) is quite general, as it can be used to join atomically an unbounded

number of ongoing transactions. To help the understanding, we show a few particular

instances of the rule (merge), which will be used frequently in the rest of this paper.

The first case is that of a trivial merge, where a unique transaction is involved. It is

interesting to show it just to clarify that rule (merge) can be applied without merging

transactions. This kind of merge rules works as global definitions that can be used in any

transaction of the system.

(triv-merge)

(x〈y〉 � P), {[x〈v〉, S , �Q�]} → (x〈y〉 � P), {[S, P {v/y}, �Q�]}.

The second case is that of a two-way merge, which will be very useful in our examples.

(two-merge)

(x1〈y1〉|x2〈y2〉 � P),

{[x1〈v1〉, S1, �Q1�]},
{[x2〈v2〉, S2, �Q2�]}

→ (x1〈y1〉|x2〈y2〉 � P), {[S1, S2, P {v1 ,v2/y1 ,y2
}, �Q1|Q2�]}.

Note that, as a degenerate case of rule (two-merge) we also have:

(two-merge-deg)

(x1〈y1〉|x2〈y2〉 � P),

{[x1〈v1〉, x2〈v2〉, S , �Q�]} → (x1〈y1〉|x2〈y2〉 � P), {[S, P {v1 ,v2/y1 ,y2
}, �Q�]}.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 578

HB ≡ def HotelSrv r HotelReq d , κ r d , κ

in H | C

H ≡ [def request details, κ price, accept + abort

∧ accept cc 0

in HotelSrv request : alt hotel]

C ≡ [def offer rate, κ card + abort

in HotelReq data, offer : Q]

Fig. 6. Hotel booking.

The following proposition states that Join is a sub-calculus of Join.

Proposition 3.1. Join is a sub-calculus of cJoin.

Proof. It is obvious from the syntax that any Join process is also a cJoin process. It

remains to show that: (1) for any Join processes P and Q, if P → Q in Join, then P → Q

in cJoin; and (2) for any Join processes P , if P → Q in cJoin, then Q is a Join process and

P → Q in Join. Both implications follow straightforwardly from the fact that the chemical

rules of cJoin can be partitioned in two sets: one consisting exactly of the chemical rules

of Join, and the other containing structural rules involving non-Join operators on both

sides and reaction rules involving non-Join operators in the left-hand side.

We are now ready to revisit the hotel booking problem described in Section 1 and show

how it can be modelled in cJoin.

Example 4. Process HB in Figure 6, shows a possible modelling for the hotel booking

application, where H describes the behaviour of the hotel service while C models the

protocol followed by the client. There are two main differences with the description given

in Section 1. First, we adhere to the continuation-passing style for enabling communication

among different processes. Note that channels request and offer carry on one extra

parameter (the continuation) that identifies the channel κ where to communicate next.

Second, the system is not just the parallel composition of the two parties, but it also

contains a merge definition that allows the communication among the two transactions.

In fact, the two parties do not start by communicating directly and the first interaction

takes place indirectly. Note that C starts by sending the message HotelReq〈data , offer〉 to a

merge channel. Similarly, H sends HotelSrv〈request〉. While neither C nor H can complete

their transactions in isolation, these two messages together enable the merge definition that

forwards the request from the client to the hotel and joins both transactions, producing

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 579

the following state:

HB ≡ def HotelSrv〈r〉 | HotelReq〈d , κ〉 � r〈d , κ〉
in [def request〈details, κ〉 � κ〈price, accept〉 (1)

+ abort (2)

∧ accept〈cc〉 � 0 (3)

∧ offer〈rate, κ〉 � κ〈card〉 (4)

+ abort (5)

in request〈data , offer〉 : alt〈hotel〉 | Q].

At this moment the hotel receives the request from the client and it can (nondeterminist-

ically) decide whether to make an offer (reaction (1)) or to abort (reaction (2)). We remind

that the notation J � P + Q is syntactic sugar for J � P ∧ J � Q. If the hotel aborts, then

both transactions are aborted and the corresponding compensations (i.e., alt〈hotel〉 | Q)

are activated. Otherwise, the hotel can produce the message offer〈price, accept〉 to send an

offer to the client who, in turn, may decide whether to accept it (reaction (4)) or to abort

the conversation (rule (5)). The abortion from the client is handled analogously to the

previous case. If the client accepts the offer, then it generates the message accept〈card〉,
which enables the reaction rule (3). When reaction (3) is fired all messages inside the

transaction are consumed, and hence the transaction commits (i.e., both parties have

successfully finished).

Another interesting example is the modelling of a mailing-list manager with all-or-

nothing delivery of messages to subscribers.

Example 5 (Mailing list). Consider a data structure that allows to send atomically a

message to a list of subscribers (in the sense that the same message is either sent to all or

to none). Such structure can be defined as ML = MailingList〈k〉 � MLDef, where:

MLDef ≡ def List in k〈add , tell , close〉 | l〈nil〉

List ≡ nil〈v, w〉 � w〈〉
∧ l〈y〉 | add〈x〉 � def z〈v, w〉 � x〈v〉 | y〈v, w〉 in l〈z〉
∧ l〈y〉 | tell〈v〉 � [def z〈〉 � 0 in y〈v, z〉 | l〈y〉 : l〈y〉]
∧ l〈y〉 | close〈〉 � 0.

A new mailing list is created by sending a message to the port MailingList. Since, cJoin

adheres to the “continuation passing” style of programming, the content of the message

sent to MailingList is a continuation port k, which expects information about the newly

created mailing list. The creation of a new list defines five fresh ports nil, l, add, tell and

close: three of them (namely add, tell, and close) will be used to interact with the list from

“outside” and will be sent to the port k as the outcome of the creation. The remaining

two ports will never be extruded. They denote the empty list (nil) and the actual state of

the list (l). Once a list is created, a new subscriber can be added by sending a message

add with the name x of the port where it will be listening to for new messages. In this

case, the list is modified by installing z (on top of it), a forwarder of messages to x.

The port tell is used to send a message v to the list. When tell is received a new

transaction identified by a fresh name z is generated, and the state of the structure is put

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 580

inside the transaction, therefore all other activities, such as adding or closing are blocked

until the transaction ends. Inside the transaction, the message v is sent to the forwarder at

the top of the list y with the identifier of the transaction z. Note that each forwarder sends

the message to the corresponding subscriber and to the following forwarder in the list.

This is repeated until nil is reached, when a message to the identifier of the transaction is

sent. The firing rule z〈〉 � 0 consumes the last local name and the transaction commits by

releasing all the messages addressed to the subscribers and the state of the list. Then the

list is ready to serve new requests. The following process Sys subscribes two users, Alice

and Bob to the mailing list, and sends the message News.

Emp ≡ employees〈a, t, c〉 � a〈Alice〉 | a〈Bob〉 | t〈News〉

Sys ≡ def ML ∧ Emp in MailingList〈employees〉

A possible computation of the process Sys is shown in Figure 7. In this particular com-

putation, both subscriptions take place before the emission of the message, nevertheless

the process does not fix this priority and consequently messages could be consumed in

a different order. For simplicity, we abbreviate chemical solutions by omitting definitions

present in successive solutions, though we usually write only those definitions involved in

the reduction step. Inside solutions, we underline the fired reaction rule and the consumed

messages that matched the corresponding pattern. The phase List creation instantiates

a new mailing list by defining the fresh ports add, tell and close, which are sent to the port

employee. The second phase (Subscriptions) adds the names Alice and Bob to the created

mailing list. Phase Distribution of News generates a new transaction that produces (in

a sequential way) the copies of the name News to be sent to any subscriber of the list.

Nevertheless, those messages are not released until the phase Commit takes place. Only

when the transaction commits, the generated messages are atomically sent to subscribers.

3.2. Flat transactions

Nesting is a useful mechanism for programming transactions, e.g., when a transaction can

succeed even when certain sub-activities fail. In the area of databases, nested transactions

have been studied since (Moss 1981). Contrary to other languages proposed in the

literature that do not support nesting (e.g., Webπ∞ (Lucchi and Mazzara 2004) and

ρπ (Lanese et al. 2010a)), cJoin syntax allows for proper nested transactions, like in

[[P : P ′] : [Q : Q′]]. Nevertheless, many common situations that would involve nested

transactions can be modelled in cJoin without nesting by exploiting dynamic merge and

message-passing communication, as shown in the multi-way transaction example (see

Section 4.2).

This section introduces flat cJoin, which is a sub-calculus of cJoin without nested

transactions. The following sections will show that flat cJoin is expressive enough for

modelling several common programming patterns (Section 4) and, in addition, how it

can be implemented (Sections 5 and 6). In fact, as it will be clear later, the syntactic

restrictions imposed on flat cJoin help us to encode flat cJoin back to Join and to extend

existing distributed implementation of Join to implement flat cJoin. Flat cJoin is defined

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 581

Initial Soup: {[Sys]} {[MailingList k MLDef, Emp, MailingList employees]}
List creation:

{[MailingList k MLDef, Emp, MailingList employees]} →

{[MailingList k MLDef, Emp, MLDef{employees/k}]}

{[MailingList k MLDef, Emp, List{employees/k}, employees add, tell, close , l nil]} →

{[l y add x . . , . . . , l nil , add Alice , add Bob , tell News]}

Subscriptions:

{[l y add x . . , . . . , l nil , add Alice , add Bob , tell News]} →

{[l y add x . . , . . . , zA v, w Alice v nil v, w , l zA , add Bob , tell News]} →

{[l y tell v . ., . . . , zB v, w Bob v zA v, w , l zB , tell News]}

Distribution of News:

{[l y tell v . ., . . . , zB v, w Bob v zA v, w , l zB , tell News]} →

{[zB v, w Bob v zA v, w , . . . , {[z 0, zB News, z , l zB , l zB]}]} →

{[zA v, w Alice v nil v, w , . . . , {[z 0,Bob News , zA News, z , l zB , l zB]}]} →

{[nil v, w w , . . . , {[z 0,Bob News ,Alice News , nil News, z , l zB , l zB]}]} →

{[. . . , {[z 0,Bob News ,Alice News , z , l zB , l zB]}]} →

{[. . . , {[z 0,Bob News ,Alice News , l zB , l zB]}]}

Commit:

{[. . . , {[z 0, Bob News , Alice News , l zB , l zB]}]}

{[. . . , {[Bob News , Alice News , l zB , def z 0 in 0, l zB]}]} →

{[. . . , Bob News , Alice News , l zB]}

Fig. 7. A possible computation of the Mailing list example.

through the following type system involving the set T = {�0,�1,�2} of types and the

following type judgements:
� P : �0 The transaction primitive [:] does not appear in P at all.

� P : �1 Transactions may appear in P , but only inside definitions. P does not

have active transactions but it may create them after some reductions.

� P : �2 P has active flat transactions or may create them after some reductions.

� D : �0 D does not contain transactions.

� D : �1 D may contain flat transactions.

Definition 3.2 (Flat (or well-typed) definitions and processes). A definition D is said flat

or well-typed if � D : �1 in the type system shown in Figure 8. Similarly, a process P is

said flat or well-typed if � P : �2.

We comment on the typing rules in Figure 8. Rules (Sub-P) and (Sub-D) stand for the

sub-type order �0 < �1 < �2. Clearly, the inert process 0, the emission of a message

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 582

(Sub-P)

P : i

P : j

i<j

(Sub-D)

D : 0

D : 1

(Zero)

0 : 0

(Mess)

x y : 0

(Abort)

abort : 0

(Par)

P : i Q : i

P |Q : i

(Trans)

P : 0 Q : 1

[P : Q] : 2

(Def)

D : i P : j

def D in P : max(i,j)

(Conj)

D : i E : i

D ∧ E : i

(Ord-0)

P : 0

P : 0

(Ord)

P : i

P : 1

(Merge)

P : 0

J P : 0

Fig. 8. Flat cJoin typing.

x〈�y〉 and the constant abort do not contain transactions and, hence, they have type

�0 (Rules Zero, Mess, Abort). The parallel composition P |Q has type �i if both P

and Q are typed �i (rule (Par)). Rule (Trans) prevents nesting by stating that [P : Q]

is typed �2 only when P has no transactions (i.e., � P : �0). Note that the process

P ≡ [def a〈〉 � [P1 : Q1] in a〈〉 : Q] is not typable. Although P is not a nested transaction,

P may evolve to a nested transaction as follows P → [def a〈〉 � [P1 : Q1] in [P1 : Q1] : Q].

Contrastingly, a compensation may contain transactions as part of its definition. For

instance, [x〈y〉 | abort : def a〈〉 � [P : Q] in a〈〉] has type �2 when � P : �0 and � Q : �1.

The fact that the compensation includes a transaction as part of its definition does not

compromise flatness because the compensation will run as an ordinary process after the

transaction aborts. In fact, [x〈y〉 | abort : def a〈〉�[P : Q] in a〈〉] → def a〈〉�[P : Q] in a〈〉,
which does not introduce nesting. Rule (Def) combines the types of definitions and

processes. Note that def D in P is typed �0 when neither D nor P contain transactions,

i.e., if they both have type �0. A process def D in P has type �1 when transactions appear

only in definitions (i.e., either in D or in other local definitions occurring in P). Finally,

def D in P has type �2 when P contains an active transaction.

A composed definition (i.e., a conjunction) is typed �i only when both sub-terms have

type �i (By rule (Conj)). An ordinary definition J � P is well-typed when its guarded

processes P is well-typed. Moreover, it has type �0 when P has no transactions, i.e.,

� P : �0. Differently, a merge rule is well-typed only when P has type �0 (rule (Merge)).

This is required in order to avoid nesting, because the instances of P will execute inside

transactions.

Example 6 (Well-typed terms). Consider the mailing list process introduced in Example 5.

Several sub-terms and their types are shown below:

P1 = def z〈〉 � 0 in y〈v, z〉 | l〈y〉 P2 = [P1 : l〈y〉]
D1 = l〈y〉 | tell〈v〉 � P2 D2 = l〈y〉 | close〈〉 � 0

� P1 : �0 � P2 : �2 � D1 : �1 � D2 : �0 � D1 ∧ D2 : �1.

Moreover, � MLDef : �1 (because it does not have active transactions but it can activate

them) and also � ML : �1.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 583

(Mol-Proc)

P : τ

P : τ

(Mol-Def)

D : τ

D : τ

(Mol-Fzn)

P : 1

P : 0

(Membrane)

S : 0

{[S]} : 2

(Soup)

S1 : i S2 : j

S1, S2 : max(i,j)

(Empty-Soup)

∅ : 0

Fig. 9. Flat solution typing.

Example 7 (Counterexample). Process def x〈〉 � [P : 0] in [def D in x〈〉 : 0] is not well-

typed because it has a merge definition whose guarded process is a transaction (rule

(Merge) cannot be applied because �� x〈〉 � [P : 0] : �0). In fact, this process can reduce

in one step to def x〈〉 � [P : 0] in [def D in [P : 0] : 0] when x �∈ dn(D), which has nested

transactions.

3.3. Properties of flat cJoin typing

This section summarises the main properties of our type system, namely, Join processes

have type �0 (Proposition 3.3) and subject reduction holds for �0 (Lemma 3.8) and �2

(Lemma 3.9).

Proposition 3.3 (Join processes have type �0). Let P be a Join process, then � P : �0.

Proof. The proof follows by induction on the structure of P .

— P ≡ 0 and P ≡ x〈�y〉: the proof follows by using either rule (Zero) or (Mess).

— P ≡ def D in P ′ with D = ∧iJi � Pi. By inductive hypothesis, � P ′ : �0 and � Pi : �0

for all i. By using rule (Ord-0), we conclude that � Ji � Pi : �0 for all i. By repeatedly

using rule (Conj) we conclude � D : �0. Proof is completed by applying rule (Def).

— P ≡ P1|P2: the proof follows by inductive hypothesis and rule (par). �

In order to prove subject reduction we need some technical preliminaries. In particular,

we extend the typing from processes to solutions.

Definition 3.4 (Type of a solution). The type τ of a solution S , noted as S : τ, is defined

by rules in Figure 9. Moreover, S is flat iff S : �2.

We start by proving that Definition 3.4 is consistent w.r.t. structural congruence of

solutions, i.e. all types are preserved by α-conversion and heating/cooling; and that the

type of a solution reflects on the type of its molecules.

Proposition 3.5. Let σ be a renaming substitution. If � P : τ then � Pσ : τ.

Proof. Immediate by the fact that typing does not take into account names, but just

the structure of terms, which cannot be changed by renaming substitutions.

Lemma 3.6. Let S : �j . If {[S]} 	 {[S ′]} then S ′ : �j .

Proof. By straightforward case analysis on the applied cooling/heating rule. When the

applied rule is (str-def), then Proposition 3.5 is used.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 584

Corollary 3.7. Let {[S]} 	∗ {[⊗imi]}. Then S : �j iff ∀i.mi : �i and i � j.

We are now ready to prove subject reduction for �0.

Lemma 3.8 (Subject Reduction for �0). Let P : �0. If P →∗ P ′ then P ′ : �0.

Proof. The proof follows by induction on the length of the derivation.

— Base case: P ′ ≡ P (i.e., {[P]} �∗ {[P ′]}). The proof follows by Corollary 3.7.

— Inductive Step: suppose P → P ′′ →n P ′ with n � 0. The proof follows by case

analysis on the first applied rule and inductive hypothesis. Note that P → P ′′ implies

{[P]} 	∗ {[S]} → {[S ′]} 	∗ {[P ′′]}. By cham semantics we know that S ≡ ⊗imi. Since

P : �0, then mi : �0 for all i by Corollary 3.7. Hence, the only possible rule that

can be applied is (red), because any other rule requires at least a molecule composed

by a membrane, which cannot be typed �0. Consequently, S ≡ J � Q, Jσ, S ′′ and

S ′ ≡ J � Q,Qσ, S ′′, where S ′′ : �0. As Q : �0, by Proposition 3.5, Qσ : �0. Hence,

S ′ : �0 and therefore P ′′ : �0 (by Corollary 3.7). The proof follows by applying

inductive hypothesis on P ′′ →n P ′.

The following result ensures that �2 is preserved by reductions.

Theorem 3.9 (Subject reduction for �2). Let P : �2. If P →∗ P ′ then P ′ : �2.

Proof. The proof follows by induction on the length of the derivation.

— Base case: P ′ ≡ P (i.e., {[P]} �∗ {[P ′]}). The proof follows by Corollary 3.7.

— Inductive Step: suppose P → P ′′ →n P ′ with n � 0. The proof follows by case

analysis on the first applied rule and inductive hypothesis. Note that P → P ′′ implies

{[P]} 	∗ {[S]} → {[S ′]} 	∗ {[P ′′]}. By cham semantics we know that S ≡ ⊗imi. Since,

P : �0, mi : �i where i � 2 for all i by Corollary 3.7. Then, there are four cases:

– Rule (red): when the reduction occurs at top-level, i.e., S ≡ J � Q, Jσ, S ′′, S ′ ≡
J �Q,Qσ, S ′′, and S ′′ : �2, the proof is similar to Lemma 3.8. The other possibility is

when the reduction occurs inside a transaction, e.g., S ≡ {[S1]}, S ′′ and S ′ ≡ {[S ′
1]}, S ′′,

where {[S1]} → {[S ′
1]} by rule (red) and S ′′ : �2. Note that {[S1]} : �2, and therefore

S1 : �0. By Lemma 3.8, S ′
1 : �0 and hence S ′ : �2.

(The cases below occur at top-level, because negotiations cannot be nested in P .)

– Rule (commit): S ≡ {[M|def D in 0, �Q�]}, S ′′, and S ′ ≡ M, S ′′, with S ′′ : �2 (by

Corollary 3.7). As M is the parallel composition of messages, it can be typed �0

and therefore S ′ : �2.

– Rule (abort): S ≡ {[abort|P ′, �Q�]}, S ′′ and S ′ ≡ Q, S ′′, with S ′′ : �2 (by Corol-

lary 3.7). As �Q� : �0, it must be Q : �1 and therefore S ′ : �2.

– Rule (merge): S ≡ J1| . . . |Jn � R,⊗i{[Jiσ, Si, �Qi�]}, S ′′ and S ′ ≡ J1| . . . |Jn �
R, {[⊗iSi, Rσ, �Q1| . . . |Qn�]}, S ′′, with S ′′ : �2 (by Corollary 3.7). Since R : �0 and for

all i Si : �0 and Qi : �1, we have S ′ : �2.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 585

Remark 3.10. Subject reduction does not hold for �1. Consider P = def x〈〉 � [Q :

Q′] in x〈〉, where � Q : �0 and � Q′ : �1. Although � P : �1, P reduces to P ′ =

def x〈〉 � [Q : Q′] in [Q : Q′], which can be typed �2 but not �1.

Theorem 3.9 ensures that flat processes form a sub-calculus since reductions do not

generate nesting.

Definition 3.11 (Flat cJoin). Flat cJoin is the sub-calculus of all flat processes.

4. Programming common transactional patterns in cJoin

In order to illustrate the transactional aspects of cJoin, we show how to code some

common interaction patterns. We keep and enrich the hotel booking scenario as a

running example.

4.1. Multi-step transactions: trip booking

Let us assume now that the user is making plans for a trip and wants to make reservations

for both a flight and hotel accommodation. Such scenarios are usually modelled by

splitting the whole activity as a sequence of two independent transactions: the client

executes a transaction for booking a flight first, and when it commits, a new transaction

for making hotel reservation is started. If the last transaction aborts, then the first one

is compensated for by cancelling the already committed flight reservation. This kind of

composition is usually referred to as compensable flow composition, and it is tailored

to model long running transactions in an orchestration context. Several proposals have

appeared in the literature for describing transactional flow compositions (Bruni et al.

2005; Butler and Ferreira 2004; Butler et al. 2005b). Essentially, they describe the trip

booking problem as follows:

TripBooking ≡ {FlightBooking ÷ FlightCancelation; BookHotel ÷ 0}.

The entire activity TripBooking is delimited by the long running transaction scope { }.
A long running transaction is divided by ‘;’ into sequential steps. Process FlightBooking

in the first step allows the client to book a hotel accommodation. If it commits, then

the compensation FlightCancelation is installed and the next step BookHotel ÷ 0 is

executed. The compensation is installed when a step commits and it is used only when

one of the following steps fails. For instance, if BookHotel fails during its execution, then

the previously installed compensation FlightCancelation is executed.

Although cJoin does not offer a built-in mechanism for these kinds of transactions,

they can be coded into cJoin. Let us consider a simple language defined as follows:

L ::= {S}
S ::= P | P ÷ Q; S

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 586

where, P and Q are cJoin processes. A possible encoding � � is given below:

�{S}� ≡ �S�0

�P �c ≡ [P : c]

�P ÷ Q; S�c ≡ def comp〈〉 � [c | Q : 0]

∧ cont〈〉 � �S�comp〈〉
in [cont〈〉 | P : c]

provided {cont, comp} ∩ fn(P |Q|S |c) = �.

The most interesting rule is the last one. A sequence P ÷ Q; S is encoded w.r.t. a context

c that indicates the compensation installed by the previous execution. Then, the sequence

P ÷ Q; S corresponds to a process that activates the transaction [cont〈〉 | P : c], i.e., it

attempts to executes P until completion (i.e., consuming all messages to its local ports). If

P finishes (i.e., there is no pending message in local ports) and the transaction commits,

then the message cont〈〉 is released. This message will activate the execution of the

remaining part of the sequence. If P aborts, then the previously installed compensation c

is activated. The context for encoding the remaining part S of the sequence is the message

comp〈〉, corresponding to the updated compensation [c | Q : 0]. Hence, if activated, such

compensation will first attempt to complete the execution of Q. If this is the case, then the

transaction will commit by releasing c, which will then activate the previously installed

compensations.

Then, the cJoin code for planning a trip as a multi-step transaction is in Figure 10.

We model the hotel booking service H as in Figure 6, while the airline service A is

analogous to H (the only difference is that A starts by publishing on the merge channel

AirlineSrv instead of HotelSrv). It is worth remarking that the homonymous (private)

ports request and accept defined by both A and H are different ports. The renaming

mechanism inherited from the Join calculus ensures that such names are fresh, and hence

there are no clashes when transactions are merged. In addition, we add one merging

rule for allowing the interaction among the client and the airline. For the sake of the

simplicity, we do not include dynamic creation of sessions, but the presentation can be

straightforwardly extended to consider them.

The system starts its execution with the client interacting with the airline component

analogously to hotel conversation described in Example 4. If the interaction aborts, then

the client finishes its execution (note that transaction compensation is set to 0). If it

commits, the message cont〈〉 is released, which enables the second reaction rule of C′.

Firing this rule will dynamically create a new transaction for interacting with the hotel

booking service (the interaction is as in Example 4). If this newly created transaction

finishes successfully, then the whole long running transaction ends by committing. If the

last transaction aborts, then the compensation comp〈〉|P2 is released. Note that comp〈〉
can fire the first reaction of client component, which will execute FlightCancelation,

i.e., the compensation of the previously committed step.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 587

TB ≡ def HotelSrv r HotelReq d , κ r d , κ

∧ AirlineSrv r AirlineReq d , κ r d , κ

in A | H | C

A ≡ [def request details, κ priceF light, accept + abort

∧ accept cc 0

in AirlineSrv request : P1]

H ≡ [def request details, κ priceRoom, accept + abort

∧ accept cc 0

in HotelSrv request : P2]

C ≡ def comp [FlightCancellation : 0]

∧ cont [def offer rate, κ card + abort

in HotelReq data, offer : comp]

in [cont

| def offer rate, κ card + abort

in AirlineReq data, offer : 0]

Fig. 10. Trip booking as a multi-step transaction.

4.2. Multi-way transactions: trip booking revisited

The main drawback of planning a trip as in the previous section is that compensations

are usually not for free. Clearly, cancelling a flight reservation usually requires the client

to pay cancelation fees. By taking advantage of cJoin transactional primitives, we can

model the trip booking example as a multi-way transaction, i.e., a transaction that retains

several entry and exit points, in which parties are not necessarily aware of the remaining

parties in the transaction. Clearly, the hotel and airline booking services should not be

necessarily aware of the combined activity to be carried on by the client, and hence they

remain unchanged. The cJoin process for the whole system is shown in Figure 11.

The client is modelled by a transaction that initially sends two messages to different

merge channels, one allows the merge with the airline service while the other joins it to

the hotel service. Once merged, the parties interact by following the conversation pattern

described in Example 4. The main difference is that the abortion of one of the parties

after both merge actions take place implies the abortion of the interaction, and hence all

three parties abort and run their own compensations. Otherwise, the whole interaction

commits when all three parties successfully finish their transactional processes.

As far as the definition of the choreography is concerned, we note that (i) booking

services are independent of the behaviour of the client, even though this may induce

the transactional scope to be extended to third, unknown parties; (ii) the local de-

scription of transactional interfaces ensures transactional properties to several different

global interactions; (iii) no coordinator is needed for describing transactional, multiparty

choreographies.

There is still one main drawback in the code given above: client description mixes

two independent flows of interaction corresponding to two different roles played by the

component either as a hotel client or as an airline client. The only binding among these

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 588

TB ≡ def HotelSrv r HotelReq d , κ r d , κ

∧ AirlineSrv r AirlineReq d , κ r d , κ

in A | H | C

A ≡ [def request details, κ priceF light, accept + abort

∧ accept cc 0

in AirlineSrv request : P1]

H ≡ [def request details, κ priceRoom, accept + abort

∧ accept cc 0

in HotelSrv request : P2]

C ≡ [def hotelOffer rate, κ card + abort

∧ airOffer rate, κ card + abort

in HotelReq dataRoom, hotelOffer

| AirlineReq dataFlight , airOffer : Q]

Fig. 11. Trip booking.

two flows of execution is the fact that both interactions should finish either successfully

or with abortion. A more appealing modular definition for client behaviour is below:

Cm ≡ def RoomFound〈ω〉 | FlightFound〈ω〉 � 0

in [def hotelOffer〈rate, κ〉 � κ〈card〉 | RoomFound〈hotelOffer〉 + abort

in HotelReq〈dataRoom , hotelOffer〉 : Q1]

| [def airOffer〈rate, κ〉 � κ〈card〉 | FlightFound〈airOffer〉 + abort

in AirlineReq〈dataFlight , airOffer〉 : Q2].

Now, a client initiates two different transactions to interact independently with the

hotel and the airline. The new merge rule allows such transactions to be joined when

both flows of interaction terminate. In fact, the corresponding messages to the merge

names (i.e., RoomFound〈hotelOffer〉 and FlightFound〈airOffer〉) are generated when the

client transactions accept the offers proposed by the corresponding booking services. Let

us consider the monolithic code again (Figure 11). For instance, if the hotel offers a

convenient rate but the airline company does not, then the whole transaction is aborted.

Hence, the client should start from the scratch by booking again a room and trying with

a different airline company. In the modular version, it would be enough to start a new

transaction for finding a flight, while the booked room will be still a valid reservation. This

feature may be interesting when client also may choose one of several available booking

services (as discussed in the next sections). For example, the client can try a new airline

booking (after an abort) while keeping the room booking. Note that this example also

shows how a typical nested transaction pattern is smoothly modelled as a flat cJoin process.

A final remark is that the above decomposition of flows works only when both

interactions eventually finish by proposing the merge, otherwise one transaction may

remain blocked for ever. When this is not ensured, the interaction that fails to find a

suitable reservation should notify the other transaction to abort (this situation can be

handled analogously to abortions of parallel activities explained in Section 4.3).

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 589

4.3. Speculative computation

This section illustrates how to program a cJoin process that commits at most one of

several concurrent transactions. This programming pattern is called speculative execution

or a posteriori choice, and it is studied by several composition languages (Bruni et al.

2005; Laneve and Zavattaro 2005; Butler et al. 2005b). Speculative computation is very

much related to goal-oriented formalisms, like don’t know non-determinism in concurrent

logic programming, where several alternatives must be explored before one can be selected.

For example, when guarded Horn clauses are considered, the selection of the rule to be

applied next for reducing a goal is subordinated to successful evaluation of the guard.

Once a guarded clause is applied, all the other alternatives are pruned out and that

intermediate goal reduction is committed (never to be undone). As guard evaluation can

possibly trigger complex computations on its own and require further clause selections

giving rise to speculative computations, whose abort corresponds to the non-satisfiability

of the clause. One important difference though is that the linguistic abstraction we are

after is not a basic search mechanism, deemed to fail in most cases, but rather a strategy

language to increase the possibility of success and to handle search failures when they

happen.

Although this pattern is not a built-in operator of cJoin, it can be coded by using

merge definitions. For simplicity, we will consider just two concurrent transactions, but

the mechanism can be easily extended to larger sets.

We assume a client trying to book a room from one of two alternative hotels H1 and

H2 (in no particular order), but wishing to make a reservation in only one of them. The

system is described below:

HB ≡ def HotelSrv 1〈r〉 | HotelReq1〈d , κ〉 � r〈d , κ〉 (1)

HotelSrv 2〈r〉 | HotelReq2〈d , κ〉 � r〈d , κ〉 (2)

in H1 | H2 | C (3)

C ≡ def alt〈id〉 | booked 1〈w〉 � cancelling2〈〉 (4)

∧ alt〈id〉 | booked 2〈w〉 � cancelling1〈〉 (5)

∧ cancelling
1
〈〉 � [def w〈〉 � 0 in aborting1〈w〉 : 0] (6)

∧ cancelling
2
〈〉 � [def w〈〉 � 0 in aborting2〈w〉 : 0] (7)

∧ booked1〈i〉 | aborting1〈j〉 � abort (8)

∧ booked2〈i〉 | aborting2〈j〉 � abort (9)

∧ a〈〉 � [def w〈〉 � 0 in alt〈w〉 : a〈〉] (10)

in [def offer〈rate, κ〉 � κ〈card〉 | booked1〈offer〉 (11)

+ abort (12)

in HotelReq1〈data, offer〉 : Q1] (13)

| [def offer〈rate, κ〉 � κ〈card〉 | booked2〈offer〉 (14)

+ abort (15)

in HotelReq2〈data, offer〉 : Q2] (16)

| a〈〉. (17)

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 590

Lines (1)–(3) define the system, which is composed by hotel services H1 and H2 defined

as in previous examples, and a client component C. The client C consists in the concurrent

execution of two transactions (lines (11)–(13) and (14)–(16)) for dealing with each booking

service. They behave as in previous cases, but they finish the conversation by generating

the merge messages booked i〈offer〉 (lines (11) and (12)). Differently from multi-way

transactions (Section 11), those messages are used not for joining both transactions but

for encoding a kind of transactional internal choice. Let us suppose that both client

transactions complete successfully; then the state of the client can be seen as follows:

def . . . (4 − 10)

in [def . . . (11 − 12)

in booked 1〈offer〉 : Q1] (13′)

| [def . . . (14 − 15)

in booked 2〈offer〉 : Q2] (16′)

| [def w〈〉 � 0 in alt〈w〉 : a〈〉] (17′)

where definitions rules have been omitted since they remain unchanged. Line (17′) has

been obtained by firing the reaction rule in line (10) with message a〈〉 (line (17)). No

transaction can commit in this state because messages sent to merge ports carry on local

names (offer and w) – this is the standard way to force a transaction to join before

committing. At this point, the merge rules in lines (4) and (5) are enabled. Assuming the

second one fires, the client state reduces to

def . . . (4 − 10)

in [def . . . (11 − 12)

in booked 1〈offer〉 : Q1] (13′)

| [def . . . (14 − 15)

∧ w〈〉 � 0

in cancelling1〈〉 : a〈〉|Q2]. (16′)

Assuming the hotel component also commits, then the second transaction commits by

releasing the message cancelling1〈〉, which enables the reaction rule in line (6). After firing

this rule, client state can be described as follows:

def . . . (4 − 10)

in [def . . . (11 − 12)

in booked 1〈offer〉 : Q1] (13′)

| [def w〈〉 � 0 in aborting1〈w〉 : 0].

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 591

Above state enables the merge rule in line (8). Client component moves to the following

state when such rule is fired.

def . . . (4 − 10)

in [def . . . (11 − 12)

∧ w〈〉 � 0

in abort : Q1].

Finally, the remaining transaction aborts and the compensation Q1 is released. Hence,

the transaction with H2 has been committed while the conversation with H1 has been

aborted. The cases in which one transaction commits and the other aborts follow

immediately since rules defined in lines (8) and (9) are never used, and therefore, the

auxiliary transaction generated by message cancelling i remains blocked.

We comment on reaction rule in line (10), which generates an auxiliary transaction for

selecting the committing interaction. Note that its compensation is set to a〈〉. Although,

the scenario described so far assumes that the hotel component does not generate abort

after receiving client confirmation, this may not be the case in the most general setting.

Hence, if the selected transaction aborts after being chosen for committing, then the

compensation a〈〉 is released in order to allow the remaining alternative to be eligible

again.

5. Language implementation

This section addresses the problem of implementing the transactional primitives provided

by cJoin. For simplicity, we only consider flat cJoin, i.e., the sub-calculus of transactions

without nesting introduced in Definition 3.11. In particular, we show how flat cJoin can

be encoded into Join. For the sake of the simplicity, we omit many technical details in

this presentation and provide just a sketch of the translation and the main results. The

formal definition of the encoding and its completeness and correctness results can be

found in (Melgratti 2005).

Intuitively, transactional processes are implemented in Join by making explicit a commit

protocol used by several parties to reach an agreement. In particular, we rely on the

distributed two phase commit (d2pc) of (Bruni et al. 2002), because it is appropriate for

handling situations in which parties are not necessary aware of the whole set of participants

involved in the transaction. Nevertheless, the encoding is parametric w.r.t. to the selected

commit protocol, hence, the translation can be adapted to make participants conform to

other proposals such as the standards ws-atomic transaction or ws-business activity.

In what follows we call a coordinator any party performing the selected commit protocol.

We will denote coordinators by Coor. The formal definition for the Join processes Coor

used in our translation can be found in (Melgratti 2005). The code is also reported in the

appendix for the interested reader, but we find unnecessary here to illustrate its code in

detail, because the d2pc is not the focus of this paper. Here, let us just assume that a

coordinator offers (a fresh instance of) the following ports to communicate with:

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 592

Name Parameters Stands for

cmp m to set the compensation m to be delivered on abort

cmt κ to start the protocol by voting commit.

κ is the continuation to be released on commit

abt to start the protocol by voting abort

join coord to join the coordinator coord to the same transaction

The key strategy for encoding a transaction into a Join process is to assign a coordinator

to any execution thread of the transaction, i.e., any message sent to a transactional or

merge port is monitored by one coordinator. This is achieved by making any such message

carry on the ports that allows ones to interact with its coordinator. For instance, consider

the following cJoin transaction:

T ≡ [def x〈〉 � P in x〈〉 : Q].

The corresponding Join term, denoted �T �, is defined as follows:

�T � ≡ def Coor

∧ x〈c, a, j〉 � �P �c,a,j
∧ undo〈〉 � �Q�

in x〈cmt, abt, join〉
| cmp〈undo〉.

The transaction T is encoded as the process �T �, which introduces one fresh coordinator

Coor to monitor the unique execution thread of T (i.e., message x〈〉 in this particular

case). As mentioned before, Coor defines the fresh ports cmt, abt, join and cmp. The

message x〈〉 in T , which is monitored by Coor in the translation, is encoded as the

message x〈cmt, abt, join〉, which carries on the names needed for interacting with Coor

(the usage of these names will be illustrated below). Note that the original definition of x

(rule x〈〉 �P) needs to be amended to take into account the three new parameters, i.e., the

original definition is mapped to x〈c, a, j〉 � �P �c,a,j . We highlight that the original guarded

process P is translated as �P �c,a,j , where �P �c,a,j denotes the encoding of the process P that

is being monitored by a coordinator identified by the ports c, a, j. Finally, we introduce the

new local port undo, which is used as the guard of the (encoded form of the) compensation

Q. Note that this name is used for setting up the compensation of Coor (message

cmp〈undo〉). We assume that Coor will deliver a message to its settled compensation when

the execution of the commit protocol finishes with abort. Consequently, rule undo〈〉 � �Q�

will be enabled only when the commit protocol aborts. When fired, the encoded form of

the original compensation Q is activated.

We now analyse how a monitored processes P is translated into �P �c,a,j . We start by

considering the encoding of the following five different forms of monitored processes.

— P ≡ 0. In this case the monitored process P has finished its execution successfully.

Consequently, this thread can request its coordinator to initiate the commit protocol

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 593

by voting commit. Hence, the encoding of 0 is defined as follows:

�0�c,a,j = c〈〉.

The encoded form of 0 is a message sent to the commit port of the monitor of the

thread. This message causes the coordinator to start the commit protocol by proposing

commit. If all involved parties in the transaction commit, then the transaction finishes

successfully. The coordinator monitoring P will finish silently, since no continuation

is being set when message c〈〉 is sent (i.e., c〈〉 does not carry on any value).

— P = abort . In this case, the thread being monitored reaches the abort condition.

Consequently, it informs its coordinator that the whole transaction must abort by

sending a message to the corresponding abort port. Hence, abort is encoded as

follows:

�abort�c,a,j = a〈〉.
In this case, the commit protocol will finish with abort because there is at least one

coordinator voting for abort. As a consequence, the coordinators in the transaction will

release their settled compensations. In fact, the message cmp〈undo〉 will be consumed

to issue undo〈〉 and therefore trigger �Q�.

— P is a message sent to a transactional or merge port. The encoding of a monitored

message sent to a transactional or a merge port is just obtained by extending the

parameters of the original message with the ports corresponding to the monitor of the

thread (as done for the initial thread of a transaction). Therefore, the encoding of a

transactional message is defined below:

�x〈�v〉�c,a,j = x〈c, a, j,�v〉.

— P is a message sent to a non transactional port. As an example, consider the transaction

T ≡ [def x〈〉 � P in x〈〉 | R : Q] with P = z〈〉. A possible reduction for T is

T →∗ [def x〈〉 � P in z〈〉 | R : Q]. Note that the message z〈〉 produced inside of

the transaction will be delivered to its recipient only when the transaction commits.

Consequently, a rule like x〈〉 � z〈〉 above should be interpreted as a transactional

thread that is finishing its execution and expects to deliver z〈〉 if the transaction finally

commits. Hence, its encoding is defined as follows:

�z〈〉�c,a,j = c〈z〉.

The main difference with the encoding of 0 is that the commit message sent to the

coordinator sets z as the continuation. The coordinator will start the commit protocol

by voting commit after receiving this message. If the commit protocol finally terminates

with commit, then this coordinator will release the message z〈〉.
— P has two execution threads. For instance, P = P1|P2. In this case, the translation needs

to dynamically generate a new coordinator because any thread needs to be monitored

by one coordinator. The encoding is defined as follows:

�P1|P2�c,a,j = def Coor in �P1�cmt,abt,join | �P2�c,a,j | j〈cmt, abt〉 | join〈c, a〉.

Note that we generate a new coordinator Coor that provides the definition for the

fresh ports cmt, abt and join. Then, P1 will be monitored by the newly defined

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 594

coordinator (i.e., �P1�cmt,abt,join) while P2 will be monitored by the coordinator already

assigned to the whole process P1|P2 (i.e., �P2�c,a,j). Messages j〈cmt, abt〉 and join〈c, a〉
make coordinators aware of each other: j〈cmt, abt〉 joins the new coordinator as a

participant of the transaction being monitored by the coordinator identified by c, a, j,

while join〈c, a〉 works in the other way round.

We now focus on the encoding of firing rules. The encoding of reduction rules outside

of a transaction is simply the application of the encoding to the guarded process, i.e.,

�J � P � = J � �P �.

The translation treats similarly transactional and merge rules and we just consider two

different shapes for such kind of rules:

— Single-message join pattern. Such rules are either like x〈�v〉�P or x〈�v〉 � P . As mentioned

before, rule x〈�v〉 � P is encoded by adding to the port x three new parameters for

identifying the coordinator associated with the thread. Moreover, that coordinator will

monitor also the execution of the guarded process P . The translation is defined as

follows:

�x〈�v〉 � P � = x〈c, a, j,�v〉 � �P �c,a,j.

Analogously, the encoding of a merge rule is as follows:

�x〈�v〉 � P � = x〈c, a, j,�v〉 � �P �c,a,j.

— Two-message join pattern. Reactions contain synchronisations, e.g., x〈〉|y〈〉 � P . This

rule is encoded as follows:

x〈c1, a1, j1〉 | y〈c2, a2, j2〉 � �P �c1 ,a1 ,j1 | j1〈c2, a2〉 | j2〈c1, a1〉 | c2〈〉.

The translation selects one thread (in this case the first one) to continue. In fact, the

original guarded process P is assigned to the first coordinator because it is encoded as

�P �c1 ,a1 ,j1 . The messages j1 and j2 makes coordinators part of the same transaction, as

described previously. The last message c2〈〉 indicates that the second thread is finished

by notifying its coordinator to start the commit protocol with vote commit.

In the previous description of the encoding we just focused on a few forms of processes

(for instance, we have discarded all processes containing join patterns with more than two

messages). Nevertheless, it can be shown that this syntactical restriction, called the class

of canonical processes, does not change the expressiveness of cJoin (formal details can be

found in (Melgratti 2005)). For the sake of clarity, we report below the formal statement

of the results ensuring the correctness and completeness of our encoding. We will use →J

and →cJ to distinguish reductions in Join from those in cJoin. Moreover, the notion of

process equivalence we use relies on barbs defined as follows:

Definition 5.1 (Barb). The observation predicate ↓x, also known as the strong barb, detects

whether a process emits on some free name x:

P ↓x iff ∃P ′,�u : P ≡ def D in P ′|x〈�u〉 and x �∈ dn(D).

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 595

Note, the processes abort and [:] have no strong barbs. Moreover, merge names are

part of the defined names of a process, and hence not observable.

Lemma 5.2. For any canonical flat process P s.t. � P : �1 we have ∀x.P ↓x⇔ �P � ↓x.

Correspondence results assume the following property about the commit protocol:

compensations corresponding to every coordinator in a transaction are released when at

least one coordinator is required to abort while all continuations are released when every

coordinator in the transaction is required to commit. Otherwise, none coordinator finishes,

and none compensations nor continuations are released. It has been shown in (Melgratti

2005) that the d2pc used in our encoding satisfies above condition.

Theorem 5.3 (Correctness, part 1). Let P be a canonical flat process and � P : �1. If

P →∗
cJ P ′ either P ′ ≡ P or the following two conditions hold:

1. P ′ ≡ def D′ in M ′ | Πi∈1..n′Ni, where Ni are cJoin transactions,

2. ∃Q s.t. �P � →∗
J Q and Q ≡ (def �D′� in �M ′�|Πi∈1..n′Ri)|def Dg in 0, where each Ri is

the standard Join negotiation† associated to Ni and Dg collects garbage definitions

corresponding to instances of the commit protocol that have terminated.

Proof sketch. The proof follows by case analysis on P . Note that P cannot be of the form

[P ′ : Q′] because �� [P ′ : Q′] : �1. If P has no local definitions (i.e., P �≡ def D in M), then

P is either abort , the inert process 0, or the parallel composition of messages (containing

only free names because there are no local definitions). In all three cases, P ′ = P . Last

case is when P contains local definitions, i.e., P ≡ def D in M. For this case, we show by

induction on the length of the derivation of P →∗
cJ P ′ that the conditions 1 and 2 of the

thesis hold (see appendix).

Theorem 5.4 (Correctness, part 2). Let P be a canonical flat process and � P : �1. If

P →∗
cJ P ′ and � P ′ : �1, then ∃Q s.t. �P � →∗

J Q and ∀x.P ′ ↓x⇒ Q ↓x.

Proof sketch. By Theorem 5.3, we know that either P ′ ≡ P or the following two

conditions hold:

1. P ′ ≡ def D′ in M ′ | Πi∈1..h′Ni, where Ni are cJoin transactions,

2. ∃Q s.t. �P � →∗
J Q and Q ≡ (def �D′� in �M ′�|Πi∈1..h′Ri)|def Dg in 0.

If P ′ ≡ P , then the thesis trivially follows by taking Q = �P � and applying Lemma 5.2.

Otherwise, P ≡ def D in M for some D and M, and by � P ′ : �1, it must be the case

that P ′ ≡ def D′ in M ′ for some D′ and M ′.

By property above, ∃Q s.t. �P � →∗
J Q = def �D′� in �M ′� | def Dg in 0. It is easy to

notice that ∀x : P ′ ↓x⇒ Q ↓x because the encoding ensures that fn(M ′) = fn(�M ′�) and

dn(�D′�) ∩ fn(M) = �.

Theorem 5.5 (Completeness). Let P be a canonical flat process and � P : �1. If �P � →∗
J Q,

then P →∗
cJ P ′ and ∀x : norm(Q) ↓x⇒ P ′ ↓x, where norm(Q) denotes the process obtained

† A standard Join negotiation is the Join counterpart of a cJoin transaction. It basically consists of the set

of transaction coordinators belonging to the same transaction and of all the execution threads associated to

those coordinators. Its formal definition can be found in (Melgratti 2005).

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 596

from Q by finishing the execution of all instances of the commit protocol that can reach

an agreement.

Proof. We proceed by case analysis on the structure of P . Since � P : �1, then

P �≡ [P ′ : Q′]. When P has no local definitions, then it is the parallel composition of

messages on free ports, the inert process 0 and abort . For any of these cases, it holds that

�P � does not have any definition, and therefore �P � cannot reduce. The only possibility is

Q = norm(Q) = �P �, which trivially satisfies ∀x : Q ↓x⇒ �P � ↓x. If P ≡ def D in M, then

we show that the following three conditions hold:

1. Q ≡ def �D′� in �M ′
1� | Πi∈1..uR

′
i | Πk∈1..fT

′
k | def Dg in 0, where R′

i are unfinished

Join negotiations (i.e., some transactional thread has not finished), while T ′
k are

finished negotiations, with norm(Πk∈1..fT
′
k) ≡ �M2�|def Dc in 0.

2. P →∗
cJ P ′ ≡ def D′ in M ′

1 | M2 | Πi∈1..uNi, where Ni is a standard cJoin transaction

corresponding to R′
i .

3. norm(Q) ≡ def �D′� in �M ′
1|M2� | norm(Πi∈1..uR

′
i) | def D′

g in 0.

Above conditions are proved by induction on the length of the derivation �P � →∗
J Q

(see appendix).

Finally, condition ∀x : norm(Q) ↓x⇒ P ′ ↓x immediately follows from conditions (2) and

(3).

We chose not to report here the full details about the encoding since the formal definition

gets quite complex because of the several alternatives to be considered in the most general

case. These alternatives came from the fact that the encoding of a guarded process (in

addition to what was explained before) may depend on the type of the received names,

in particular whether they are transactional or not. However, the increased complexity of

the notation makes it heavy with no evident conceptual benefit. The interested reader can

found the full details spelled out in (Bruni et al. 2003; Melgratti 2005).

6. t-JoCaml

We take advantage of the transactional mechanism of cJoin to extend a programming

language with transaction primitives. We have chosen JoCaml (Conchon and Le Fessant

1999), one of the available implementations of Join. We start this section by giving an

overview of JoCaml. Then, we describe the transactional extension we propose, called

transactional JoCaml (t-JoCaml), and finally, we sketch the main aspects of t-JoCaml

implementation.

6.1. JoCaml

JoCaml adds Join primitives to Objective Caml (Ocaml), which is a functional language

with support for object-oriented and imperative paradigms. JoCaml provides three main

abstractions: process, channels and join-patterns. Processes represent communication and

synchronisation tasks. Basic processes are asynchronous messages, while complex processes

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 597

are obtained by composing expressions and concurrent processes. Channels are JoCaml

abstractions corresponding to Join names. There are two different kind of channels:

synchronous and asynchronous. Channels are defined as follows:

let def name[!](args) = P (args); ;

The above definition creates a channel (named name) and a receiver for it, which

will execute the guarded process P every time it receives a message. Any channel may

be defined either as asynchronous, when its name is suffixed with the symbol !, or as

synchronous, otherwise. Synchronous names must return a value, i.e., P must explicitly

define the return value v by using the sentence reply v. Finally, join-patterns define several

channels at the same time and state a synchronisation among them: the guarded process

may be activated only when all channels have pending messages. The following is a

possible join pattern definition:

let def a!(x) | b!(y) = P (x, y)

or a!(x) | c!(z) = Q(x, z)

; ;

The process above introduces three new asynchronous ports, namely a, b and c. Like

join processes, the guarded process P (depending on variables x and y) can be activated

only when both a and b have pending messages. Similarly, Q(x, z) can be activated when

both a and c have pending messages. Moreover, when both rules are enabled, the selection

is unspecified.

Processes can also create fresh ports dynamically. Consider the following program:

let def new process() =

let def a!() | b!() = P

or a!() | c!() = Q

in reply a, b, c

; ;

It declares a synchronous port new process (i.e., an ordinary function) that, when called,

creates a new process defining three fresh ports a, b and c. The caller is given back the

names of the created ports (by clause in reply a, b, c).

6.2. Transactions for JoCaml

In order to add transactions to JoCaml, we extend its syntax by allowing the definition

of a compensable transaction, abort decision, and merge definitions.

6.2.1. t-JoCaml syntax: as already mentioned, we added two new forms of processes

to JoCaml: transactional processes and abort. A transactional process is written as

let trans P cmp Q, where P is an ordinary JoCaml program and Q may be either an

ordinary JoCaml process or a transactional one. For instance, the client component in

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 598

Figure 6, can be written as:

let trans def offer!(rate, k) = k(card)

or offer!(rate, k) = abort

in HotelReq(data , offer)

cmp Q

; ;

Note the straightforward correspondence with the cJoin definition in Figure 6. Similarly

to cJoin, transactional processes in t-JoCaml may decide to abort the execution of a

transaction by using the new primitive abort.

Merge patterns are defined by writing the keyword board in front of the corresponding

join patterns. Then, merge definition for the booking trip system in Figure 6, can be

written as below:

let board HotelSrv!(r) | HotelReq!(d, k) = r(d, k) in . . .

As the corresponding Join definition, the above sentence introduces two merge ports

HotelSrv and HotelReq , with the guarded process r(d, k), which is required to be an

ordinary JoCaml process (i.e., without transaction primitives).

6.2.2. Extending JoCaml compiler: as far as the compiler implementation is concerned,

we translate syntactically JoCaml programs with transactions into ordinary JoCaml code.

We do this by reusing the parsing phase of the JoCaml distribution by slightly modifying

the lexer and the parser in order to recognise processes built with the primitives trans,

comp, abort and board. After the construction of the parse tree, we generate a new file con-

taining the corresponding JoCaml source code that uses the encoding presented in Sec-

tion 5. The implementation is available at http://www.di.unipi.it/∼melgratt/cjoin.

The main limitation of the current prototype version is that it cannot handle the

compilation of separate units. This restriction relies on the fact that the translation is

parametric on the types of free names (i.e., whether they are ordinary or merge channels).

Current translation of a program assumes that the typing environment is initially empty

and it is updated when new port definitions are introduced by the program. Consequently,

our prototype is unable to handle merge definitions introduced by different files. This

constraint could be overcome by adding a new primitive for importing declarations of

merge ports explicitly.

7. Big-step semantics and serializability

In this section, we introduce an alternative definition for the semantics of cJoin that

allows us to reason about transactional computations at different levels of abstraction.

The big-step semantics is intended to single out those computations of a system that are

not transient or, in other words, to describe the evolution of a system through states that

do not contain active transactions.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 599

Example 8. Consider the cJoin process P ≡ def D in c〈a〉|c〈b〉 with D defined as follows:

D ≡ a〈x〉|b〈y〉 � ok〈〉
∧ a〈x〉|b〈y〉 � abort

∧ c〈x〉 � [def z � 0 in x〈z〉 : Q].

The process P may evolve as follows:

P → P1 ≡ def D in [def z � 0 in a〈z〉 : Q{a/x}] | c〈b〉
→ P2 ≡ def D in [def z � 0 in a〈z〉 : Q{a/x}] | [def z � 0 in b〈z〉 : Q{b/x}]
→ P3 ≡ def D in [def z � 0 ∧ z′ � 0 in ok〈〉 : Q{a/x}|Q{b/x}]
→ P4 ≡ def D in ok〈〉.

(1)

Analogously,

P →∗ P2 → P5 ≡ def D in [def z � 0 ∧ z′ � 0 in abort : Q{a/x}|Q{b/x}]
→ P6 ≡ def D in Q{a/x}|Q{b/x}.

Assuming Q does not have any active transaction, the computations above are the only

two possible evolutions of P to non-transient states, i.e., states that do not contain running

transactions. We are aimed at defining a reduction relation
 in which any multi-party

transaction is described as a single computation step that fetches the messages needed

to initiate all cooperating transactions and produces the processes released at commit or

abort. In this example, we expect two big-step reductions for P , each of them describing

one of the possible executions of the multi-party transaction, namely: P
 P4 and

P
 P6.

We define the big-step reduction relation for a particular class of processes, called

shallow. Shallow processes are given in terms of a syntactic restriction that imposes

a particular discipline for activating transactions. We start by introducing the class of

shallow processes.

Definition 7.1 (Nesting level). The nesting level (or just nesting) of P , written nest(P), is

defined by:
nest(0) = nest(abort) = nest(x〈y〉) = 0 nest([P : Q]) = nest(P) + 1

nest(def D in P) = nest(P) nest(P | Q) = max{nest(P), nest(Q)}.

We remark that nest(P) counts only the nesting level of the active processes inde-

pendently from the nested transactions that may appear in definitions or compensations.

Consider P ≡ [x〈y〉 : 0] and Q ≡ [P : 0], then nest(P) = 1 and nest(Q) = nest(P)+1 =

2. Contrastingly, nest([0 : Q]) = 1 because [0 : Q] is a transaction that has no active

sub-transactions (note that the compensation Q is frozen, i.e., inactive).

Definition 7.2 (Shallow and stable processes). A basic definition D is a shallow definition

if it has one of the following forms:
1. D = J � P , where nest(P) = 0 or P = [R : Q] ∧ nest(R|Q) = 0.

2. D = J � P and nest(P) = 0.
A process P is shallow if any basic definition in P is shallow. Moreover, we call a

shallow process P stable iff nest(P) = 0.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 600

With P and Q as defined above, the process R ≡ def x〈y〉 � Q in x〈a〉 is stable (i.e.,

nest(R) = 0) because it does not have any active transaction (independently from the fact

that it may start a transaction in the future).

Shallowness is a constraint for the syntax of basic definitions contained by a process.

Condition 1 in Definition 7.2 ensures that the firing of a basic definition increases the

height of the nesting structure by at most one level, i.e., a basic definition produces either

a stable process or an activate transaction without any active sub-transaction. Condition

2 forbids the creation of sub-transactions while merging. We remark that shallowness

does not impose any constraint on the nesting level of active transactions. For instance,

let us consider Q ≡ [[x〈y〉 : 0] : 0] and R ≡ def x〈y〉 � Q in x〈a〉. The process Q

trivially satisfies shallowness condition because it does not have any definition. On the

contrary, the process R is not shallow because its unique definition x〈y〉 � Q does not

satisfy condition 1. In fact, nest([x〈y〉 : 0]|0) = 1 �= 0.

We highlight that any flat process is also shallow. It can be easily seen that shallowness

is preserved by reductions, while in general this is neither the case for the nesting of a

process nor for stability (i.e., any shallow process always reduces to shallow processes,

while some stable processes may reduce to non-stable processes).

Moreover, it can be shown that any non-shallow definition can be encoded into a

shallow definition. Shallowness forbids definitions like D0 ≡ x〈y〉 � [[y〈x〉 : 0] : 0] and,

more generally, D1 ≡ J1 � P | [P1 :Q] and D2 ≡ J2 � [[P1 :Q1] : Q], they however can be

encoded as shallow definitions by using new local ports. The cases above can be rewritten

as D′
0 ≡ x〈y〉 � [def z〈〉 � [y〈x〉 : 0] in z〈〉 : 0], D′

1 ≡ J1 � z〈〉|P ∧ z〈〉 � [P1 : Q] and

D′
2 ≡ J2 � [def z〈〉 � [P1 : Q1] in z〈〉 : Q] with z fresh. Note that the three new definitions

are shallow when P , P1, Q, Q1 are stable. Then, def D′
1 in x〈a〉 is a shallow process and

reduces in two steps to def D′
1 in [def z〈〉 � [a〈x〉 : 0] in [a〈x〉 : 0] : 0], which is shallow

and contains nested transactions.

In the following, P and Q will denote shallow processes, D a shallow definition, S
a stable process, and B a shallow definition containing just merge rules. We abbreviate

def D in P as D � P, and � P as P. Terms are considered up-to structural equivalence

generated by closure w.r.t. the equations for the associativity and commutativity of | and

∧, 0 the unit for |, and

D � (P | def D′ in Q) = D ∧ D′σdn � P | Qσdn

range(σdn) ∩ (fn(D) ∪ fn(P) ∪ fn(def D′ in Q)) = �.

The big-step reduction relation
 is given by the inference rules in Figure 12, over

stable processes. The relation
 is defined in terms of the auxiliary relation �

over shallow processes. Rule serializable singles out as big steps those computation

from stable states to stable states. Note that computation steps can be composed in

parallel (par) and sequentially (seq), even with idle transitions (idle). Rule global

firing, abbreviated gf, corresponds to the firing of an ordinary definition in a top-level

process. Instead local firing states possible internal transitions of a running transaction.

local firing represents suitable sub-transactions as ordinary transitions at an abstract

level. In fact, the computations occurring at a lower level in the nesting hierarchy (premise

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 601

(par)

P P Q Q
P | Q P | Q

(seq)

P P P P
P P

(global firing)

D ∧ Jσ D ∧ Pσ

(local firing)

S S
D ∧ [S : Q] D ∧ [S : Q]

(merge)

D ∧ ΠiJi Πi[Di Jiσ | Si :Qi] D ∧ ΠiJi [iDi (ΠiSi)|Sσ : ΠiQi]

(local commit)

[M | D 0 : S] M

(abort)

[abort |P : S] S
(idle)

P P
(serializable)

S S
S S

Fig. 12. Big-step semantics of cJoin.

of local firing) that are relevant to its containing transaction are those relating stable

processes, i.e., S and S ′. A transaction has available, in addition to its own definitions,

the merge definitions introduced by its parent. In fact, a merge definition applied to a

single transaction behaves as an ordinary rule but defined in a global scope. The operator

˜ transforms merge definitions in ordinary ones: ˜J � P = J � P and ˜B ∧ B′ = ˜B ∧ ˜B′.

Rules local commit (abbreviated lc) and abort handle the termination of a trans-

action, whereas merge describes the interaction among sibling transactions. This time,

transactions can be joined only if they do not contain running transactions.

Example 9. Consider the process P introduced in Example 8. Processes P , P4 and P6 are

stable and it can be easily checked that P
 P4 and P
 P6 as expected. A proof for

the big-step reduction corresponding to the small-step reduction shown in Equation (1)

of Example 8 can be built as follows: first, the small step P → P1 corresponds to the

following proof:

D � c〈a〉 � D � [def z � 0 in a〈z〉 : Q{a/x}] gf D � c〈b〉 � D � c〈b〉 idle

P = D � c〈a〉|c〈b〉 � P1 = D � [def z � 0 in a〈z〉 : Q{a/x}]|c〈b〉
par.

The proof for P1 � P2 is built analogously. Then, the proof for P
 P4 can be
completed as follows:

...

P � P1

...

P1 � P2

P � P2

seq P2 � P3 merge

P � P3

seq P3 � P4 global commit

P � P4

seq

P
 P4

serializable

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 602

P |P4 P4|P4

P |P P4|P6

P |P6 P6|P6

Fig. 13. Big-step reductions for the Example 8.

Consider now the process P |P . Figure 13 shows the possible evolutions of P |P . The

graph illustrates how the result of a computation involving the (possible interleaved)

execution of several multi-party transactions, e.g., P |P
 P4|P6, can be also obtained

by executing one transaction at a time. For P |P
 P4|P6 we can sequentially compute

either P |P
 P |P4
 P4|P6 or P |P
 P |P6
 P4|P6.

It is in this sense that the big-step reduction relation enforces serializability and allows

us to analyse the behaviour of a set of interacting transactions independently from the rest

of the system. Moreover, when considering nested transactions, the transactions completed

at a particular level of nesting can be treated as ordinary transitions at the upper level.

The remaining of this section is devoted to show the correspondence between both

semantics for shallow processes, which ensures that small-step reductions are serializable

for shallow processes.

The next auxiliary result shows that any derivation in cJoin starting from a shallow

process without nested transactions has an equivalent cJoin reduction that only merges

transactions without ongoing sub-transactions.

Proposition 7.3. If D,S,⊗k[S′
k : S′′

k] →∗ D′,⊗i[Pi : Si] → D′, [P : ||iSi], then there exists a

derivation D,S,⊗k[S′
k : S′′

k] →∗ D′,⊗i[S′′′
i : Si] → D′, [S′ : ||iSi] →∗ D′, [P : ||iSi].

Proof. By induction on the length of the derivation D,S,⊗k[S′
k : S′′

k] →n D′,⊗i[Pi : Si].

The base case follows immediately by taking S = � and k = i. The inductive step follows

by noting first that any reduction D,Q → D′, x〈�v〉,Q′ implies either (i) Q = x〈�v〉|Q′′ or

(ii) Q = [S1 : S2]|Q′′ and [S1 : S2] → D′′, x〈�v〉|S0 (this can be shown by case analysis

on the applied rule). This property tell us that the generation of a message does not

imply the generation of a new transaction. Then, note that the only possibility for the

last reduction D′,⊗i[Pi : Si] → D′, [P : ||iSi] is due to the application of a merge reaction

involving all transactions. Therefore, any [Pi : Si] is such that Pi = Mi|P′
i. If all Pi

are stable we are done. Otherwise, we proceed by noting that any [Pi : Si] has been

generated from the elements of the original solution D,S,⊗k[S′
k : S′′

k]. The interesting case

is when the whole reduction cannot be divided into sequences like D,S,⊗k[S′
k : S′′

k] →∗

D′′, S ′′,⊗h[Ph : Ph] →∗ D′,⊗i[Pi : Si] (these cases can be handled by using inductive

hypothesis). Therefore, we note that there exists a partition of S,⊗k[S′
k : S′′

k] s.t. for

each i there exists some I in the partition and D, I →∗ D′′, [Pi : Si]. By using inductive

hypothesis we can build D, I →∗ D′′,⊗ki [Rki : R′
ki
] → D′′, [R : R′] →∗ D′′, [Pi : Si]. Since

Pi = Mi|P′
i, we can show (by repeatedly using the property that ensures that transactions

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 603

... global firing,idle,par

Sk B ∧ D [S : P] | Sk

B ∧ D [S : P] | Sk Sk ind. hyp.

Sk Sk

seq

D ∧ B [Sk : Pk] D ∧ B [Sk : Pk]

local firing

Fig. 14. Proof sketch for Lemma 7.4.

are not generated together with messages) that Rki = Mi|Rki . Consequently, we can build

a reduction that merges first all [Rki : R′
ki
], and then reduces to the final configuration.

In particular, serializable transactions can postpone the activation of each sub-

transaction until all other cooperating sub-transactions needed to commit can be activated.

Next results state the correspondences between both semantics.

Lemma 7.4. D,⊗i[Si : Pi],S →∗ D,⊗j[S′
j : P′

j],S′ if and only if D � ||i[Si : Pi] | S � D �
||j[S′

j : P′
j] | S′.

Proof. (⇒) By induction on the length of the derivation. The base case corresponds to

the idle axiom. The inductive step follows by case analysis of the first applied reduction.

The interesting case is the application of red, which presents two cases: (i) when it is

applied at top level, i.e., producing a new transaction or a new stable process, and (ii) when

it generates a sub-transaction in one of the existing transactions. First case is immediate

by inductive hypothesis and seq. In the second case, there is a transaction k, i.e., [Sk : Pk],

that reduces to [[S′′ : P′],S′
k : Pk]. At this point, there are two possibilities. First, consider

that [[S′′ : P′],S′
k : Pk] reduces to [S′′

k : Pk], then it is possible to build the proof shown

in Figure 14, and then the proof follows by using idle for the non-modified processes

and inductive hypothesis and seq. The remaining possibility is when sub-transaction

[S′′ : P′] can finish only after the parent transaction is merged. Then by Proposition 7.3

an equivalent derivation D,⊗i[Si : Pi], S →∗ D, [S ′′ : ||iPi], S
′′′ →∗ D, [P : ||iPi], S

′′′ →∗

D,⊗j[S′
j : P′

j],S′ that merges only transactions not containing sub-transactions can be

found. Then, proof follows by applying inductive hypothesis for both parts D,⊗i[Si :

Pi], S →∗ D, [S ′′ : ||iPi], S
′′′ and D, [S ′′ : ||iPi], S

′′′ →∗ D, [P : ||iPi], S
′′′ →∗ D,⊗j[S′

j : P′
j],S′.

(⇐) By induction on the structure of the proof.

Theorem 7.5. Let S,S′ be stable processes. Then S →∗ S′ iff � S
 � S′.

Proof. Immediate by Lemma 7.4.

An informal explanation of the serializability result can be given by colouring transac-

tion scopes and reductions as explained below. Let S,S′ be stable processes such that there

exists P0, P1, . . . , Pk with S ≡ P0 → P1 → . . . → Pk ≡ S′. We traverse the computation

backward, one reduction Pi → Pi+1 at the time. If the reduction is originated from a

commit or abort, then we assign it a fresh colour and use the same colour to paint

the brackets of the corresponding transaction scope in Pi. If the reduction is originated

from the merge of several transactions, then we paint the reduction and all the involved

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 604

transaction scopes in Pi with the same colour as the merged transaction scope in Pi+1.

If the reduction is an ordinary one, then we paint it with the same colour as the one of

the immediately enclosing brackets of its target term in Pi+1 and we use the same colour

to paint the immediately enclosing brackets of its source term in Pi, if any. At each step,

we paint with the same colours as in Pi+1 all the transaction scopes that are not directly

involved in the step. Then each colour can be viewed as representing activities of a distinct

transaction, and we say that c1 is a sub-colour of c2 if the transaction associated with

c1 is a sub-transaction of the one associated with c2. The serializability result essentially

guarantees that another sequence of reductions S ≡ Q0 → Q1 → . . . → Qk ≡ S′ can be

found, such that all steps of different colours are either contiguous or separated by steps

of some sub-colour.

8. Related work and concluding remarks

We have proposed cJoin as a formal framework for designing and programming multi-

party LRTs. Our calculus features name mobility, asynchronous communication and

has a prototype implementation called t-JoCaml. We have included several examples

that witness the flexibility of the calculus, together with a serializability result that hold

for a wide range of processes, called shallow. The encodability of full cJoin in Join

is an open issue, for which we have found no solution yet, because it would require

the implementation of a scoping discipline for restricting communication over distributed

processes. Nevertheless, in Sections 3 and 4 we have shown that the implemented fragment

is valuable enough to model a large variety of frequently used patterns. Section 8.1 also

witnesses that our proposal is quite original w.r.t. other ones found in the literature.

Transactions have been largely studied by the database community as the main

mechanism for ensuring data consistency when executing concurrent sequences of opera-

tions (Eswaran et al. 1976). Many different models were proposed to meet the so-called

acid properties (i.e., all or nothing transactions) such as the flat model (Eswaran et al.

1976), flat transactions with save-points and chained transactions (Gray and Reuter 1993),

nested transactions (Moss 1981) and the multi-level model (Lomet 1992; Schek and Weikum

1992; Weikum 1991) among others. These models are based on locking mechanisms that

prevent concurrent transactions from accessing shared objects simultaneously (Bernstein

et al. 1987; Fekete et al. 1994; Gray and Reuter 1993; Kohler 1981). Hence, the execution

of a transaction may suffer considerable delays while waiting for others transactions to

commit. Therefore, acid transactions are regarded suitable only for handling transactions

with short duration. Alternative models for long running transactions leave out acid

properties by relying on weaker notions of atomicity. The seminal proposal in this

direction is Sagas (Garcia-Molina and Salem 1987), which introduces the model of multi-

step transactions with programmed compensations described in Section 4.1. This model

has been generalised by Open Nested transactions (Schek and Weikum 1992), in which

compensable steps can be organised hierarchically. Several other models have appeared in

the literature for allowing a flexible description of steps dependencies, such in (Elmagarmid

et al. 1990; Hutchinson et al. 1988; Kaiser and Pu 1992).

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 605

As previously mentioned, the main goal of the above research line is to ensure consistent

database updates. Differently, transactions in composition languages are aimed at coordin-

ating atomic executions of independent activities. In this sense, composition languages

are directly related to workflow management systems (wms) (see (Georgakopoulos et al.

1995; Rusinkiewicz and Sheth 1995) for a detailed description of wms). Transactional

execution of workflows has been an active research topic for wms community, as

testified by several existing transactional wms, like Contracts (Reuter and Wächter 1992),

meteor (Krishnakumar and Sheth 1995) or meteor2 (Kochut et al. 1996)). Recently, the

works in (Bruni et al. 2005; Butler et al. 2002; Butler et al. 2005a; Butler et al. 2005b),

further improved in (Bruni et al. 2012; Ripon 2008), have formally studied the semantics

of orchestration languages with transactions. Differently from workflow community, this

new research line is concerned about workflow systems as programming languages, and

thus the focus is on giving precise, formal syntax, semantics and reasoning techniques for

transaction primitives in orchestration.

Like previous approaches, cJoin is aimed at using programming language approach to

study transactional composition. Nevertheless, it is targeted to the study of transactions

for choreographies by adding transactions to a calculus for communicating processes. We

devote the remaining part of this section to compare cJoin with other proposals from the

literature that have similar aims.

8.1. Language comparison

In order to systematically analyse the proposals appeared in the literature, we first

identify a set of aspects or choices for extending communicating processes calculi with

transactions. Then, we present a comparison of the different approaches in terms of those

selected features.

8.1.1. Undoability. A transactional mechanism provides a way for repairing the effects of

the partial executions of aborted transactions. There are three main design options:

1. Automatic rollback: if a transaction [P] aborts, then the scope [] ensures that all the

effects of the partial execution of P are automatically removed from the state.

2. Static programmable rollback: a transactional process P is associated statically with

another process Q such that Q is activated whenever P aborts. Programmers are

responsible for writing Q in such a way that the effects of the partial executions of P

are compensated for.

3. Dynamic programmable rollback: differently from static programmable rollback, com-

pensations are built during execution. Programmers are responsible for describing how

compensations change when transactions execute.

4. Pre-committed compensation: a LRT is divided into several steps. The successful

execution of a step (i.e., it commits) may install ad hoc programs to be run only

when the whole LRT aborts.

8.1.2. Permeability. Permeability refers to the degree of isolation provided by transac-

tional scopes, i.e., whether messages can cross transactional scopes or not.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 606

1. Impermeable: messages cannot flow across transactional boundaries, e.g., in P ≡
x!z.0 | y?v.0 | [x?w.P | y!z.Q] no communication is possible on x and y.

2. Permeable in input: messages generated outside transactions can be received by

transactional processes, e.g., process P above can reduce by communicating over

x but not over y.

3. Permeable in output: transactional processes may send messages to receivers outside

the transaction. In the previous example, P can communicate on y but not on x.

4. Permeable: messages freely flow across transactional boundaries. The previous process

P may communicate on both x and y.

5. Selective permeability: messages may flow across transactional boundaries only when

sent over channels that are in some particular class.

8.1.3. Dynamicity. Dynamicity characterizes the way in which the execution of a trans-

actional scope may relate with the execution of other scopes.

1. Static: a static scope has no relation with other scopes, i.e., after being created it can

neither affect nor be affected by the behaviour of other scopes.

2. Joinable: a scope is joinable if its abortion or commitment may condition or may be

conditioned by the abortion or commitment of other scopes.

3. Splittable: a scope [P] is splittable if it is possible to take a part of P and run it as

an independent scope.

4. Dynamic: a dynamic scope is both joinable and splittable.

8.1.4. Naming. The naming policy indicates the way in which transactional scopes are

identified. In particular, they can be:

1. Anonymous: scopes have no explicit identification. This mean that transactional

processes do not refer scopes explicitly.

2. Named: scopes have a name and processes refer to them explicitly. Usually a

transaction is aborted by sending a message to its scope name. In addition, scope

names may be unique, i.e., a name unequivocally identify a transactional scope; or

multiple, i.e., a name may refer to several transactional scopes.

8.1.5. Interaction model. Transactional process calculi differ on the underlying interaction

model. We use here a coarse-grain distinction in two main categories:

1. Shared dataspaces: processes communicate by writing to and reading from a shared

blackboard.

2. Message passing: processes communicate by sending and receiving messages on

specific ports or channels.

8.1.6. Nesting. Nesting relates to the capability of decomposing the execution of a

transaction into a hierarchy of sub-transactions. In this scheme, any sub-transaction

executes atomically and concurrently with respect to its parent and siblings, deciding

freely to commit or abort. Nevertheless, if the parent aborts all its sub-transactions are

also undone.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 607

Undoability Permeability Dynamicity Naming Interaction Nesting Preemption

PLinda Automatic; Input Static Anonym. DataSpaces No May

Static

TSpaces − Input Static Unique DataSpaces No −

TraLinda Automatic Impermeable Joinable Anonym. DataSpaces No May

πt Static; Permeable Static Anonym. Msg Passing Y es May

Precomm.

webπ∞ Static Permeable Splittable Multiple Msg Passing No May

RCCS Automatic Permeable Joinable Anonym. Msg Passing No −

ρπ Automatic Permeable Joinable Anonym. Msg Passing No −

dcπ Dynamic Permeable Static Unique Msg Passing Y es Must/

May

TransCCS Automatic Permeable Joinable Unique Msg Passing Y es −
Static

cJoin Static Selective Joinable Anonym. Msg Passing Y es May

Fig. 15. Comparison of transactional process calculi.

8.1.7. Preemption. Following the classification in (Berry 1993), the abortion of an

execution may take two different styles of preemption. Abortion may be (i) may-

preemptive, i.e., a transaction may take an arbitrary number of internal computation

steps before handling the abort condition, or (ii) must-preemptive, i.e., no further internal

computation steps are allowed when a transaction reaches the abort (abortion is honoured

immediately).

8.1.8. Comparison. We will use the previous seven categories to compare cJoin against

the closest process calculi appeared in the literature: PLinda (Anderson and Shasha

1992), TSpaces (Busi and Zavattaro 2002), TraLinda (Bruni and Montanari 2004),

πt (Bocchi et al. 2003), Webπ∞ (Lucchi and Mazzara 2004), RCCS (Danos and Krivine

2004), ρπ (Lanese et al. 2010a), dcπ (Vaz et al. 2008) and TransCCS (de Vries et al.

2010). Figure 15 summarises the features of all selected approaches. We remark that all

considerations made for Webπ∞ are still valid for its timed version (Laneve and Zavattaro

2005).

Languages PLinda and TSpaces are aimed at providing a model for traditional

serializable (i.e., acid) transactions, hence they provide input permeability by allowing a

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 608

transaction to read or to consume data from a shared dataspace (i.e., the communication

models represents a shared database). Differently, when the transaction produces a new

datum, it is locked until the transaction commits and hence there is no output permeability.

In both cases, transaction scopes are defined statically and cannot change dynamically.

Transactions have no name in PLinda, while they are named in TSpaces. Names in

TSpaces are included as a handy way for defining the semantics of the language,

nevertheless, programmers do not need to be aware of them. Although, the syntax of

TSpaces allows transaction names to be duplicated, its operational semantics ensures

that each transactional name is treated as unique. None of those languages allows nesting

(the syntax of TSpaces allows it but its semantics does not). Transactions in PLinda have

an automatic, perfect rollback. Moreover, programmers have the possibility of specifying

ad hoc programs to be run after rollback when a transaction aborts. Abortion is not

considered in TSpaces.

TraLinda adds joinable transactions to a shared dataspace coordination language.

Multi-way transactions of cJoin are analogous to TraLinda. Nevertheless, cJoin consider

programmable compensations instead of perfect rollback, nested transactions instead of

flat ones, and message passing communication instead of shared dataspace.

Both πt and Webπ∞ are similar in spirit to cJoin. The main differences rely on the

policies adopted for transactional scopes. While πt and Webπ∞ allows transactional

processes to freely interact with other processes, cJoin imposes a more strict policy:

transactional processes may interact over selected channels only with transactional process

but, in this case, they should reach the same decision (i.e., commit or abort). These

differences come from the fact that scopes in πt and Webπ∞ are permeable, while they

are selective permeable and joinable in cJoin. All three languages provide a mechanism for

programmable compensation (it is called fault handler in πt). In addition, πt provides a

mechanism for undoing precommitted sub-transactions. Both πt and cJoin have nesting,

while Webπ∞ has not. Word nesting is used in Webπ∞ to refer to splittable scopes.

RCCS and ρπ provide transactions relying on a built-in distributed backtracking

mechanism, which can achieve perfect rollback. Transactions are joinable in the sense

that processes that have communicated are required to backtrack together. RCCS is an

extension of CCS (Milner 1980), therefore, the underlying communication is just process

synchronisation. On the contrary, ρπ supports higher order communication (in fact, ρπ

extends RCCS to higher-order π). Differently from cJoin, RCCS and ρπ do not support

nesting, scopes are permeable, and transactions are automatically rolled-back. Abortion

can be fired spontaneously (the execution of a transaction can be aborted at any time).

Compensations in cJoin are statically defined while they are dynamically built in dcπ.

The main idea behind dcπ is that any input prefix is associated with a compensation.

Then, any time a process executes an input action, it also installs a compensation that will

be activated if the corresponding transaction aborts. As shown in (Lanese et al. 2010b),

dynamic compensations are more expressive than static compensations. Transactions in

dcπ are completely permeable and static, like in πt and Webπ∞. Hence, the commitment

or abortion of one transaction does not affect the behaviour of the others. As for

Webπ∞, transactional scopes are named and their names are used for signalling abortion.

Consequently, transaction in dcπ can be aborted internally or externally, while in cJoin

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 609

the abort condition can be reached only internally. Moreover, dcπ adopts may-preemption

for handling abortion generated externally and must-preemption for internal abort. On

the contrary, aborts are only internal and may-preemptive in cJoin. The main reason for

this choice is that a transaction in cJoin can be the consequence of merging several inde-

pendent, possible distributed transactions. Thus, the implementation of a must-preemptive

abortion would be problematic in a distributed setting without central coordination.

The only joinable mechanism for transactions that we are aware of is the one

proposed in TransCCS. As in cJoin, a transaction in TransCCS can be merged with

other transactions during execution. Merging is completely symmetric in cJoin, i.e., the

abort of a merged transaction releases the compensations corresponding to all original

transactions. Differently, the merging of transactions in TransCCS generates a nested

transaction (i.e., one transaction is included as sub-transaction of the other). Then, the

abortion of one transaction in this hierarchy releases the compensation of the original

transaction and automatically rolls back the original state of the transactions that has

been included as a sub-transaction. Finally, abort is spontaneous in TransCCS.

We remark that other interesting approaches such as Pike (Chothia and Duggan 2004)

and Transactional Linda (Jagannathan and Vitek 2004) have been left out from our

discussion, since they are parametric frameworks in which the behaviour of a transaction

does not rely on language primitives. Roughly, transactional processes in those calculi

are associated with particular structures that record all process activities. Then, before

granting a process the possibility of executing an action, the requested action is checked

against the execution history to determine whether it will preserve consistency or not.

Hence, different log definitions (in particular, the inference rules that check consistency)

can provide different flavours of transactions.

Similarly, we leave out of the comparison the interesting work in (Bocchi and Tuosto

2010), where the basis are set for a theory of testing equivalence for distributed transactions

in the presence of transactional attribute (inspired by the Java Transaction API).

Transaction attributes discipline how services are executed with respect to the transactional

scope of the invoking party. However, the calculus proposed in (Bocchi and Tuosto 2010)

does define a notion of commit, but mostly focuses on compensation handling.

Acknoweledgements

We want to thank Nick Benton, Luca Cardelli, Cédric Fournet and Cosimo Laneve

with whom we discussed preliminary versions of cJoin. We are very much indebted to

the anonymous reviewers of this special issue for their careful revisions and detailed

comments that helped us to improve the presentation and eliminate some technical

inaccuracies. Finally, we thank Ivan Lanese and Davide Sangiorgi, the editors of this

special issue, for inviting us to submit this contribution.

Appendix A. Correctness and completeness of the implementation

Regarding the proofs of the theorems stating the correctness and completeness of the

encoding of flat cJoin in Join, we report here the details omitted from the proof sketches

in Section 5.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 610

A.1. Correctness, part 1

Proof of Theorem 5.3. The proof follows by case analysis on P . Note that P cannot

be of the form [P ′ : Q′] because �� [P ′ : Q′] : �1. If P has no local definitions (i.e.,

P �≡ def D in M), then P is either abort , the inert process 0, or the parallel composition

of messages (containing only free names because there are no local definitions). In all

three cases, P ′ = P . Last case is when P contains local definitions, i.e., P ≡ def D in M.

We show that for any derivation P →∗
cJ P1 the following two conditions hold:

— P1 ≡ def D′ in M ′ | Πi∈1..nNi, where Ni are cJoin transactions,

— ∃Q1 s.t. �P � →∗
J Q1 and Q1 ≡ (def �D′� in �M ′�|Πi∈1..nRi)|def Dg in 0, where each Ri

is the standard Join negotiation associated to Ni. Besides, Dg are garbage definitions

corresponding to instances of the commit protocol that have terminated.

The proof follows by induction on the length of the derivation P →∗
cJ P1. Base case

(m = 0) follows immediately (since P1 = P , it is enough to take Q1 = �P �). For the

inductive step (m = k + 1), we consider reductions P →k
cJ P ′

1 →cJ P1. By inductive

hypothesis on P →k
cJ P ′

1 we know that:

1. P ′
1 ≡ def D′′ in M ′′ | Πi∈1..n′′N′′

i ,

2. ∃Q′
1 s.t. �P � →∗

J Q′
1 and Q′

1 ≡ (def �D′′� in �M ′′�|Πi∈1..n′′R′′
i)|def D′′

g in 0, where each

R′′
i is the standard Join negotiation associated to N′′

i .

We proceed by case analysis on the applied rule for P ′
1 →cJ P1. Interesting cases are

those that terminate a cJoin transaction, i.e., when rule (commit) or (abort) are used.

Rule (commit) can be only applied when P ′
1 has a transaction N1 that does not contain

abort , messages to local ports nor messages with local names as parameters. In this

case, there exists M ′′
1 such that N′′

1 →cJ M ′′
1 and P1 ≡ def D′′ in M ′′ | M ′′

1 | Πi∈2..n′′N′′
i .

By definition of a standard Join negotiation, R′′
1 is such that all coordinators have been

asked to commit and the set of continuations of such coordinators is �M ′′
1 �. We rely on

a commit protocol that is ensured to terminate by releasing all continuations when all

coordinators are asked to commit, then R′′
1 →∗ �M ′′

1 � | def Dg1 in 0. Therefore, Q′
1 →∗

Q1 ≡ (def �D′′� in �M ′′�|�M ′′
1 �|Πi∈2..n′′R′′

i)|def D′′
g in 0|def Dg1 in 0. Then, it is enough to

take D′ = D′′, M ′ = M ′′|M ′′
1 , n = n′′ −1 with N′

i = N′′
i+1 and R′

i = R′′
i+1, and Dg = D′′

g ∧Dg1.

The case for (abort) follows analogously.

A.2. Completeness

Proof of Theorem 5.5. We proceed by case analysis on the structure of P . Since � P : �1,

then P �≡ [P ′ : Q′]. When P has no local definitions, then it is the parallel composition of

messages on free ports, the inert process 0 and abort . For any of these cases it holds that

�P � does not have any definition, and therefore, �P � cannot reduce. The only possibility

is Q = norm(Q) = �P �, which trivially satisfies ∀x : Q ↓x⇒ �P � ↓x. If P ≡ def D in M,

then we show that the following three conditions hold:

1. Q ≡ def �D′� in �M ′
1� | Πi∈1..uR

′
i | Πk∈1..fT

′
k | def Dg in 0, where R′

i are unfinished

Join negotiations (i.e., some transactional thread has not finished), while T ′
k are

finished negotiations, with norm(Πk∈1..fT
′
k) ≡ �M2�|def Dc in 0.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 611

2. P →∗
cJ P ′ ≡ def D′ in M ′

1 | M2 | Πi∈1..uNi where Ni is a standard cJoin transaction

corresponding to R′
i .

3. norm(Q) ≡ def �D′� in �M ′
1|M2� | norm(Πi∈1..uR

′
i) | def D′

g in 0.

Above conditions can be shown by induction on the length of the derivation �P � →n
J Q.

— Base case Q = �P �. It is enough to take P ′ = P . Clearly, P →∗
cJ P ′ = P . Since

� P : �1, then Q = �P � has no coordinators (i.e., n = 0 and f = 0).

— Inductive step �P � →k
J Q′′ →J Q. By inductive hypothesis on �P � →k

J Q′′

1. Q′′ ≡; def �D′′� in �M ′′
1 � | Πi∈1..uR

′′
i | Πk∈1..F T

′′
k | def D′′

g in 0, where R′′
i are

unfinished Join negotiations, T ′′
k are finished negotiations and norm(Πk∈1..f T

′′
k) ≡

�M ′′
2 �|def D′′

c in 0.

2. P →∗
cJ P ′′ ≡ def D′′ in M ′′

1 | M ′′
2 | Πi∈1..uN′′

i where N′′
i is the standard cJoin

transaction corresponding to R′′
i .

Then, the proof proceeds by case analysis of applied rule for reducing Q′′ →J Q.

– for some h ∈ 1..u′′, R′′
h →J R′

h. There are two different cases:

1. The applied rule corresponds to the commit protocol. Since, the protocol is

confluent, then norm(R′
h) = norm(R′′

h). Then, it is enough to take P ′ = P ′′,

which satisfies all conditions.

2. The applied rule is not part of the commit protocol. Consequently, the applied

rule is the encoding of some rule in P , and has the following shape �x〈�u〉�P3� or

�x〈�u〉|x1〈�u1〉 � P3�. We consider here the last case, which is the most interesting

one. Hence, there exists a definition:

x〈c1, a1, j1〉 | y〈c2, a2, j2〉 � �P �c1 ,a1 ,j1 | j1〈c2, a2〉 | j2〈c1, a1〉 | c2〈〉.

Moreover, R′′
h contains the messages for activating the rule. The application of

the rule removes the consumed messages and activates the guarded process.

The application of the rule will cause the two coordinators j1 and j2 to be

joined to the same transaction. The effect of normalisation will depend on the

structure of P3:

a. P3 = y〈�v〉, s.t. y is a message to a local port, then R′
h contains y〈c1, a1, j1〉

and the obtained transaction is unfinished. Clearly, this reduction corres-

ponds to a reduction that merges two cJoin transactions.

b. If P3 consists of a message to a merge port, then the proof is analogous

to the previous case.

c. �P3�c1, a1, j1 produces a commit vote, there are two cases: (i) if the vote

is the last one, then, by normalising, Ri commits. It is easy to notice

that this case corresponds to the case in which all local names have been

consumed, then there exist P ′ s.t. P ′′ →cJ P ′ by using commit; (ii) if some

coordinators still wait the vote, then it is enough to take P ′ = P ′′.

d. P3 = abort, then the encoding �P3�c1, a1, j1 produces a commit vote to on

the port a1. The normalisation makes all coordinators in R′′
h to abort and

to release the compensations. It is easy to notice that this corresponds

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 612

to P ′′ →∗
cJ P ′ by producing first the abort in the negotiation h and then

applying rule (abort), which releases all compensations.

1. If the reduction is Πk∈1..f T
′′
k →J R. Since, all T ′′

k are finished negotiations and

that normalisation procedure is confluent, then norm(Πk∈1..f T
′′
k) = norm(R).

Therefore, it is enough to take P ′ = P ′′.

2. The applied rule is a definition in �D′′�:

a. the applied rule is part of the encoding of an ordinary definition:

• messages are in �M ′′
1 �, then immediate by reducing P ′′ by consuming

messages in M ′′
1 .

• if a message is in some T ′′
k . This is possible only if some coordinator

has finished and released the continuation or the compensation, by

correctness of the commit protocol, the message is in �M ′′
2 �, hence, it

is possible to fire the corresponding rule in P ′′.

Note that messages cannot be part of some Rh because those transactions

have not reached a decision, so global messages are kept by coordinators.

b. the applied rule is part of the encoding of a merge definition. This case is

similar to the reduction internal to a negotiation and follows by analysing

the pattern of the applied rule.

Finally, condition ∀x : norm(Q) ↓x⇒ P ′ ↓x immediately follows from conditions (2) and

(3).

Appendix B. Formal definition of Coor

Before giving the full Join code for coordinators, we describe intuitively their behaviour

with the transition state diagram in Figure 16. The initial state is called state. While in the

initial state, a coordinator may accept requests for being joined (event join) with another

participants. Any request is confirmed either with okjoin or nojoin. In both cases, the

coordinator returns to the initial state. In the initial state, the coordinator can also receive

the message to start the execution of the protocol, either with cmt (i.e., commit) or abt

(i.e., abort). After receiving cmt the coordinator goes to the state commit. While in state

commit, a coordinator behaves like in the original protocol, i.e., by notifying all known

parties and by receiving commit confirmation until all parties commit. In such case, the

coordinator reaches the state finished. Instead, if the coordinator receives the message abt

when being in state or commit, it goes to state abort. While in abort, coordinators notify

all known parties and discover the whole set of participants (analogously to commit).

When all abort confirmations are received, the coordinator reaches the final state finished.

The Join code defining coordinators Coor is presented in Figure 17. Rule (0) fixes the

initial state of the coordinator and is the only initially enabled rule of our encoding. This

rule consumes the message cmp〈x〉 and sets x as the compensation to be activated on

abort. The current state of the coordinator is represented with the message state〈α, β〉,
where α is the compensation to be released on abort and β is the list containing the

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 613

okjoin|nojoin

waitjoin

join

cmt abt

state

abt
commit abort

finished

Fig. 16. States of coordinators.

channels corresponding to the coordinators of other parties in the same transaction

(note that β is initially empty). The following three rules (i.e., (1)–(3)) handle the joining

of new parties in the transaction. When the coordinator is in the state state〈α, β〉 and

receives a request join〈t , f 〉 for updating the state, it may accept the request (rule (1))

by passing to the state waitjoin and sends on t the private ports on which it expects the

update confirmation (i.e., message okjoin) or the cancellation (i.e., message nojoin). Rule

(2) handles the reception of a join confirmation, which updates the set of known parties,

while rule (3) deals with the cancellation. In both cases, the coordinator transits to the

initial state (possibly updating it).

Remark B.1. For simplicity, we abstract away from this two-step communication in

the presentation of Section 5 and we simply described join as a one-way message

communication on port join.

Rule (4) starts the protocol with the commit vote, while rules (5)–(7) handle committing

phase, and are analogous to the d2pc of (Bruni et al. 2002). There are two subtle

differences: (i) channels state and commit have the extra parameter β, which is a list of

the ports abti of known participants to be used only if the state abort is reached; and (ii)

coordinators goes to state finished after commit (rule (7)). Nevertheless, the behaviour for

committing coordinators are as in the original proposal in (Bruni et al. 2002).

The behaviour for the aborting phase is given by rules (8)–(13). Rules (8) and (9) start

the aborting phase when the coordinator receives a message on channel abt and it is

either in the initial state (rule (8)) or in the commit phase (rule (9)). In both cases, the

coordinator triggers a message abort〈β, β′, β′′, α〉, which carries the following values:

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 614

(0) Coor ≡ cmt x state x},

(1) ∧ state α, β join t , f t okjoin, nojoin waitjoin α, β

(2) ∧ waitjoin α, β okjoin β state α, β ∪ β

(3) ∧ waitjoin α, β nojoin state α, β

(4) ∧ state α, β cmt κ commit \ {lock} , {lock}, α, κ, β

(5) ∧ commit l} ∪ , α, κ, β commit , α, κ, β l , lock , abt

(6) ∧commit , α, κ, β lock , l , a

commit ∪ (\) ∪ ∪ {l}, α, κ, β ∪ {a

(7) ∧ commit , α, κ, β release κ finished

(8) ∧ state α, β abt β , a abort (β ∪ β)\{abt}, β ∪ β , {abt , a}, α

(9) ∧ commit , α, κ, β abt β , a

abort (β ∪ β)\{abt}, β ∪ β , {abt , a}, α a β, abt

(10) ∧ abort a} ∪ β, β , β , α abort β, β , β , α a β , abt

(11) ∧ abort β, β , β , α lock , l , a abort β ∪ ({a}\β), β ∪ {a}, β , α

(12) ∧ abort β, β , β , α abt β , a

abort β ∪ (β \(β ∪ {a})), β ∪ β , β ∪ {a}, α

(13) ∧ abort , β, β, α |finished

(14) ∧ finished | cmt cnt finished

(15) ∧ finished | lock l , a finished

(16) ∧ finished | abt β, a finished

(17) ∧ finished | join t , f f |finished

(18) ∧ commit , α, κ, β join t , f f | commit , α, κ, β

(19) ∧ abort β, β , β , α join t , f f | abort β, β , β , α

Fig. 17. Join code of coordinators.

— β records the set of abt ports of known participants that must still be contacted

(analogous to);
— β′ stores the list of ports abti of known participants involved in the same transaction,

which is typically augmented during the d2pc with the sets sent by other participants

(analogous to ′);

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 615

— β′′ records the parties who have already sent their consensus for abort (analogous to

′′);

— α store the messages to be released when aborting, i.e., the activation of the compens-

ation.

Note that the behaviour for the aborting phase (rules (10)–(13)) is analogous to the

committing phase, and it can be described as follows:

1. First phase. The participant sends the abort vote to every known thread in β (rule

(10)). The message contains the list β′ of all known participants, and the sender

identification abt.

2. Second phase. The participant collects the messages sent by other parties and updates

its own synchronisation set (rule (11) and (12)). A request will be also sent to the new

items in the synchronisation set (by repeating the first phase for them).

3. When the set of aborting parties is transitively closed, the protocol terminates locally

and the coordinator transits to the state finished and releases the compensation α (rule

(13)).

Rules (14)–(16) are for collecting garbage, and state that messages received when the

protocol has finished are ignored. Moreover, rules (17)–(19) state that the state of a

coordinator cannot be updated when the protocol has begun.

References

Anderson, B. and Shasha, D. (1992) Persistent linda: Linda + transactions + query processing. In:

Research Directions in High-Level Parallel Programming Languages, Springer Verlag 93–109.

Benton, N., Cardelli, L. and Fournet, C. (2002) Modern concurrency abstractions for C�. In:

Proceedings of ECOOP 2002. Springer Verlag Lecture Notes in Computer Science 2374 415–440.

Bernstein, P., Hadzilacos, V. and Goodman, N. (1987) Concurrency, Control and Recovery in Database

Systems, Addison-Wesley Longman.

Berry, G. (1993) Preemption in concurrent systems. In: Proceedings of FSTTCS’93. Springer Verlag

Lecture Notes in Computer Science 761 72–93.

Berry, G. and Boudol, G. (1992) The chemical abstract machine. Theoretical Computer Science 96

(1) 217–248.

Bocchi, L., Laneve, C. and Zavattaro, G. (2003) A calculus for long-running transactions. In:

Proceedings of FMOODS’03. Springer Verlag Lecture Notes in Computer Science 2884 124–138.

Bocchi, L. and Tuosto, E. (2010) Testing attribute-based transactions in SOC. In: Proceedings of

FMOODS/FORTE 2010. Springer Verlag Lecture Notes in Computer Science 6117 87–94.

Boreale, M., Bruni, R., De Nicola, R. and Loreti, M. (2008) Sessions and pipelines for structured

service programming. In: Barthe, G. and de Boer, F. S. (eds.) Proceedings of FMOODS’08.

Springer Verlag Lecture Notes in Computer Science 5051 19–38.

BPEL (2003) bpel Specification. version 1.1. Available at http://www.ibm.com/developerworks/

library/ws-bpel.

BPMN (2010) Business process modelling notation (bpmn). Available at http://www.bpmi.org.

Bruni, R., Kersten, A., Lanese, I. and Spagnolo, G. (2012) A new strategy for distributed

compensations with interruption in long-running transactions. In: Proceedings of WADT 2010.

Springer Verlag Lecture Notes in Computer Science 7137 42–60.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 616

Bruni, R., Laneve, C. and Montanari, U. (2002) Orchestrating transactions in join calculus. In:

Proceedings of CONCUR 2002. Springer Verlag Lecture Notes in Computer Science 2421 321–

336.

Bruni, R., Melgratti, H. and Montanari, U. (2003) Flat committed join in join. In: Proceedings of

CoMeta 2003. Elsevier Science Electronic Notes in Theoretical Computer Science 104 39–59.

Bruni, R., Melgratti, H. and Montanari, U. (2004) Nested commits for mobile calculi: Extending

Join. In: Proceedings of the 3rd IFIP-TCS 2004 , Kluwer Academic Publishers 569–582.

Bruni, R., Melgratti, H. and Montanari, U. (2005) Theoretical foundations for compensations in

flow composition languages. In: Proceedings of POPL 2005 , ACM Press 209–220.

Bruni, R. and Montanari, U. (2004) Concurrent models for Linda with transactions. Mathematical

Structures in Computer Science 14 (3) 421–468.

Busi, N. and Zavattaro, G. (2002) On the serializability of transactions in shared dataspaces with

temporary data. In: Proceedings of SAC 2002, ACM Press 359–366.

Butler, M., Bruni, R., Ferreira, C., Hoare, T., Melgratti, H. and Montanari, U. (2005a) Comparing

two approaches to compensable flow composition. In: Proceedings of CONCUR 2005. Springer

Verlag Lecture Notes in Computer Science 3653 383–397.

Butler, M., Chessell, M., Ferreira, C., Griffin, C., Henderson, P. and Vines, D. (2002) Extending the

concept of transaction compensation. IBM Systems Journal 41 (4) 743–758.

Butler, M. and Ferreira, C. (2004) An operational semantics for StAC, a language for modelling

long-running business transactions. In: Proceedings of Coordination 2004. Springer Verlag Lecture

Notes in Computer Science 2949 87–104.

Butler, M., Hoare, T. and Ferreira, C. (2005b). A trace semantics for long-running transactions.

In: Proceedings of 25 Years of CSP. Springer Verlag Lecture Notes in Computer Science 3525

133–150.

Caires, L., Ferreira, C. and Vieira, H.T. (2009) A process calculus analysis of compensations. In:

Kaklamanis, C. and Nielson, F. (eds.) Proceedings of TGC’08. Springer Verlag Lecture Notes in

Computer Science 5474 87–103.

Chothia, T. and Duggan, D. (2004) Abstractions for fault-tolerant global computing. Theoretical

Computer Science 322 (3) 567–613.

Conchon, S. and Le Fessant, F. (1999) Jocaml: Mobile agents for Objective-Caml. In: Proceedings

of ASA/ MA’99 . IEEE Computer Society 22–29.

Danos, V. and Krivine, J. (2004) Reversible communicating systems. In: Proceedings of CONCUR

2004. Springer Verlag Lecture Notes in Computer Science 3170 293–307.

de Vries, E., Koutavas, V. and Hennessy, M. (2010) Communicating transactions - (extended

abstract). In: Gastin, P. and Laroussinie, F, (eds.) Proceedings of CONCUR’10. Springer Verlag

Lecture Notes in Computer Science 6269 569–583.

Eisentraut, C. and Spieler, D. (2009) Fault, compensation and termination in ws-bpel 2.0 - a

comparative analysis. In: Bruni, R. and Wolf, K. (eds.) Proceedings of WS-FM’08. Springer

Verlag Lecture Notes in Computer Science 5387 107–126.

Elmagarmid, A., Leu, Y., Litwin, W. and Rusinkiewicz, M. (1990) A multidatabase transaction

model for interbase. In: Proceedings of VLDB’90 . Morgan Kaufmann 507–518.

Eswaran, K., Gray, J., Lorie, R. and Traiger, I. (1976) The notions of consistency and predicate

locks in a database system. Communications of the ACM 19 (11) 624–633.

Fekete, A., Lynch, N., Merritt, M. and Weihl, W. (1994) Atomic Transactions, Morgan Kaufmann

Publishers.

Fournet, C. and Gonthier, G. (1996) The reflexive chemical abstract machine and the Join calculus.

In: Proceedings of POPL’96 . ACM Press 372–385.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

cJoin: Join with communicating transactions 617

Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L. and Rémy, D. (1996) A calculus of mobile

agents. In: Proceedings of CONCUR’96. Springer Verlag Lecture Notes in Computer Science 1119

406–421.

Garcia-Molina, H. and Salem, K. (1987) Sagas. In: Proceedings of the ACM Special Interest Group

on Management of Data Annual Conference. ACM Press 249–259.

Georgakopoulos, D., Hornick, M. and Sheth, A. (1995) An overview of workflow management:

From process modeling to workflow automation infrastructure. Distributed and Parallel Databases

3 (2) 119–153.

Gray, J. and Reuter, A. (1993) Transaction Processing: Concepts and Techniques, Morgan Kaufmann.

Hutchinson, N., Kaiser, G. and Pu, C. (1988) Split-transactions for open-ended activities. In:

Proceedings of VLDB’88, Morgan Kaufmann 26–37.

Jagannathan, S. and Vitek, J. (2004) Optimistic concurrency semantics for transactions in

coordination languages. In: Proceedings of COORDINATION 2004, Springer Verlag Lecture

Notes in Computer Science 2949 183–198.

Kaiser, G. and Pu, C. (1992) Dynamic restructuring of transactions. In: Database Transaction Models

for Advanced Applications, Morgan Kaufmann 265–295.

Kochut, K., Miller, J., Sheth, A. and Wang, X. (1996) Corba-based run-time architectures for

workflow management systems. Journal of Database Management, Special Issue on Multidatabases

7 (1) 16–27.

Kohler, W. (1981) A survey of techniques for synchronization and recovery in decentralized computer

systems. ACM Computing Surveys 13 (2) 149–183.

Krishnakumar, N. and Sheth, A. (1995) Managing heterogeneous multi-system tasks to support

enterprise-wide operations. Distributed and Parallel Databases 3 (2) 155–186.

Lanese, I., Mezzina, C. and Stefani, S. (2010a) Reversing higher-order pi. In: Proceedings of

CONCUR’10. Springer Verlag Lecture Notes in Computer Science 6269 478–493.

Lanese, I., Vaz, C. and Ferreira, C. (2010b) On the expressive power of primitives for compensation

handling. In: Proceedings of ESOP’10. Springer Verlag Lecture Notes in Computer Science 6012

366–386.

Laneve, C. and Zavattaro, G. (2005) Foundations of web transactions. In: Proceedings of FOSSACS

2005. Springer Verlag Lecture Notes in Computer Science 3441 282–298.

Leymann, F. (2001) wsfl Specification. version 1.0. Available at

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

Lomet, D. (1992) MLR: A recovery method for multi-level systems. In:

Proceedings of the 1992 ACM SIGMOD International Conference on Management of Data .

ACM Press 185–194.

Lucchi, R. and Mazzara, M. (2004) A framework for generic error handling in business processes.

In: Proceedings of WS-FM 2004. Electronic Notes in Theoretical Computer Science 105 133–145.

(Elsevier Science.)

Melgratti, H. (2005) Models and Languages for Global Computing Transactions, Ph.D. thesis,

Computer Science Department, University of Pisa.

Milner, R. (1980) A Calculus of Communicating Systems Springer Verlag Lecture Notes in Computer

Science 92.

Milner, R., Parrow, J. and Walker, J. (1992) A calculus of mobile processes, I and II. Information

and Computation 100 (1) 1–77.

Moss, J. (1981) Nested Transactions: An Approach to Reliable Distributed Computing, Ph.D. thesis,

Dept. of Electrical Engineering and Computer Science, MIT.

Reuter, A. and Wächter, H. (1992) The contract model. Transaction Models for Advanced

Applications, Morgan Kaufmann 219–263.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

R. Bruni, H. Melgratti and U. Montanari 618

Ripon, S. (2008) Extending and Relating Semantic Models of Compensating CSP, Ph.D. thesis, School

of Electonics and Computer Science, University of Southampton.

Rusinkiewicz, M. and Sheth, A. (1995) Specification and execution of transactional workflows.

In: Modern Database Systems: The Object Model, Interoperability, and Beyond. ACM Press and

Addison-Wesley 592–620.

Schek, H.-J. and Weikum, G. (1992) Concepts and applications of multilevel transactions and

open nested transactions. In: Database Transaction Models for Advanced Applications. Morgan

Kaufmann 515–553.

Thatte, S. (2001) xlang: Web Services for Business Process Design. Available at

http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

Vaz, C., Ferreira, C. and Ravara, A. (2008) Dynamic recovering of long running transactions. In:

Proceedings of TGC 2008. Springer Verlag Lecture Notes in Computer Science 5474 201–215.

Weikum, G. (1991) Principles and realization strategies of multilevel transaction management. ACM

Transactions on Database Systems 16 (1) 132–180.

WSCDL (2004) Web Services Choreography Description Language. Version 1.0. Available at

http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

WSCI (2002) wsci Specification. version 1.0. Available at http://www.w3.org/TR/wsci/.

https://doi.org/10.1017/S0960129512000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000928

