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Abstract

We investigate intermediate unstable modes between two stream and filamentation instabilities. We detail the problem
of the angle between the wave vector and its electric field and use an electromagnetic formalism allowing for any value
for this angle. We display analytical results for 3 different models: cold beam-cold plasma, cold beam-hot plasma and
cold relativistic beam-hot plasma. We demonstrate that plasma temperature prompts a critical angle for which waves are
unstable at any k and show that for a relativistic beam, the most unstable waves are obtained for wave vectors which are
neither normal nor perpendicular to the beam.
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1. INTRODUCTION

Beam plasma interaction plays a crucial role in various
fields of physics ~Umstadter, 2003!. The fast ignition sce-
nario ~Mulser and Bauer, 2004; Deutsch et al., 2005! for
inertial confinement fusion brought a new interest to the
topic. In this scheme, a short impulsion laser produces a
relativistic electron beam ~Tabak et al., 1994; Koch et al.,
1998! which makes its way to the pellet core ~Deutsch,
2003; Deutsch et al., 1997! and ignites the Deuterium
Tritium fuel. As the beam goes through the plasma, it
generates a return current, creating a configuration which is
known to undergo both two-stream and Weibel, or filamen-
tation, instabilities. In particular, the later is known to create
strong magnetic fields ~Okada et al., 1999!within the plasma
and filament beam, spreading its energy deposition. Many
theoretical, numerical, and experimental works were devoted
to the phenomenon and some authors ~Tatarakis et al., 2003;
Silva et al., 2002! pointed out the need to analyze the
coupling between two-stream and filamentation instabili-
ties. Two-stream instability consists in the exponential growth
of “longitudinal” modes with wave vector aligned with two
counter beams passing through a plasma. On the other hand,
Weibel and filamentation instabilities consist in “trans-

verse” unstable modes with wave vector aligned ~Weibel,
1959! or normal ~Silva et al., 2002! to the beam. Terminol-
ogy regarding “Weibel” and “filamentation” instabilities is
not always accurate as far as the orientation of the wave
vector is concerned. In this paper, we shall consider two
counter streams passing through a plasma. We shall denote
“filamentation” modes unstable transverse waves with wave
vector normal to the beam ~k � beam, k � Ek!, and
“Weibel” modes unstable transverse modes with wave vec-
tor parallel to the beam ~k 7 beam, k � Ek!.

It then appears that studying the coupling between fila-
mentation and two-stream means studying the coupling be-
tween longitudinal and transverse modes. Since two-stream
and filamentation unstable modes pertains to the same branch
~Godfrey et al., 1975!, one sees that some longitudinal
unstable modes must evolve continuously to transverse
unstable modes when the wave vector orientation gradually
changes. This shows that a rigorous investigation of the
problem implies dealing with an electromagnetic formalism
instead of the longitudinal electrostatic approximation.

These unstable modes with arbitrarily oriented wave vec-
tors usually were investigated using the longitudinal approx-
imation, two-dimensional ~2D! fluid models or some mainly
numerical approaches ~Faı̌nberg et al., 1970; Califano et al.,
1998!. Here we implement a three-dimensional ~3D! analyt-
ical kinetic approach and focus on these modes. This lets us
derive some valid results for any distribution function and
analytical ones for specifics functions.
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In section 2, we introduce the electromagnetic formalism
leading to an expression of the dielectric tensor as well as a
general dispersion equation which displays two branches.
We then present the three models we shall investigate in the
sequel: cold beam-cold plasma interaction, cold beam-hot
plasma interaction and finally, cold relativistic beam-hot
plasma interaction. We analyze branches 1 and 2 of the
dispersion equation in Sections 3 and 4, respectively, before
we reach our conclusions.

2. GENERAL ANALYSIS

2.1. Dielectric tensor and dispersion relation

We start from the relativistic Vlasov equation for the elec-
tronic distribution function f ~r, p, t !

]f

]t
� v{

]f

]r
� q�E �

v

c
� B�{ ]f

]p
� 0, ~1!

with v � p0~gm! and

g � M1 � p20~m2c2 ! �
1

M1 � v 20c2
. ~2!

The mass m will always be the electron mass in the sequel
since we shall consider the ions form a fixed background. In
the same way, q is the electron charge. One adds Maxwell’s
equations to the system and the following expression of the
dielectric tensor elements is derived ~Ichimaru, 1973!

«ab � dab�
vp

2

nev
2 � pa

g

]f0

]pb
d 3p

�
vp

2

nev
2 � pa pb

g

k{]f0 0]p

mgv� k{p
d 3p, ~3!

where the integrals must be evaluated using the standard
Landau contour for a proper kinetic treatment. The plasma
frequency reads vp

2 � 4pnp q20m.
The basic form of the dispersion relation is

v2

c2 «~k,v!Ek � k � ~k � Ek ! � 0, ~4!

where «~k,v! is given by ~3!. If one makes the electrostatic
approximation k � Ek � 0, the dielectric tensor takes the
much simpler form

«~k,v! � 1 �
4pq2

k 2 � k{]f0 0]p

v� k{v
d 3p. ~5!

Without any assumption upon the nature of the waves, we
have k � ~k � Ek!� ~k{Ek!k � k 2Ek in Eq. ~4! and get

�v2

c2 «~k,v!� k � k � k 2I�E � 0. ~6!

Setting

T �
v2

c2 «~k,v!� k � k � k 2I, ~7!

non-trivial ~E � 0! solutions are obtained provided that
det~T!� 0, that is,

det� v
2

c2 «ij � ki kj � k 2dij� � 0. ~8!

This forms the most general expression of the dispersion
relation. We can now start to detail the geometry of our
problem. The velocity distribution anisotropy is set along
the z-axis ~see Fig. 1 for clarity!. Without any restriction of
generality, the cylindrical symmetry of the problem allows
us to set k � ~kx ,0, kz!. As far as the equilibrium function is
concerned, we will use in the sequel electronic distribution
functions f0 such as

f0~p! � f0~ px
2 � py

2, pz !� f0x ~ px
2! f0y~ py

2! f0z~ pz !, ~9!

with * f0~p! d 3p � ne. These distribution functions are iso-
tropic in the ~x, y! plane. We can notice that Eq. ~9! implies
a vanishing average momentum in the ~x, y! plane. Under
these assumptions, tensors elements Ta, y and Ty,a vanish
for a� x, z and Eq. ~8! reduces to ~with h[v0c!

~h2«yy � k 2 !@~h2«xx � kz
2!~h2«zz � kx

2!� ~h2«xz � kz kx !
2 # � 0,

~10!

which displays two branches

h2«yy � k 2 � 0? v� v1~k! ~11!

Fig. 1. Geometry of the problem. The angle w between the electric field E
and the wave vector k may take all values between 0 and p02.
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and

~h2«xx � kz
2!~h2«zz � kx

2!� ~h2«xz � kz kx !
2 � 0? v� v2~k!.

~12!

These equations are valid for any orientation of the wave
vector and any orientation of the electromagnetic field with
respect to the wave vector. The first one is a typical disper-
sion equation for transverse waves. As for the second one, it
can be checked, it reduces to an equation for transverse or
longitudinal waves when kx or kz vanishes. For an arbitrarily
oriented wave vector, the angle ~ Zk, E! equals the angle
between k and the eigenvector of tensor T corresponding to
the mode investigated.

2.2. Presentation of the three models investigated

In order to detail plasma temperature and relativistic effects
on oblique instabilities, we shall now focus on the following
three models:

Model 1. The fluid, or cold, approximation, with distri-
bution functions for the beam and plasma given by

f0 � npd~ px !d~ py !d~ pz � Pp !� nbd~ px !d~ py !d~ pz � Pb !.

~13!

This is the simplest approximation which displays the most
basic trend of the phenomenon.

Model 2. The beam is still taken as cold whereas the
plasma has a temperature in the direction normal to the
beam with distribution function

f0
p �

np

4Pth
2 @Q~ px � Pth !�Q~ px � Pth !#

� @Q~ py � Pth !�Q~ py � Pth !#d~ pz � Pp !. ~14!

This kind of waterbag distributions was used to derive
analytical results in similar situations ~Silva et al., 2002;
Yoon & Davidson, 1987!.

Model 3. Unlike the first two models where we restrict to
the non-relativistic regime, here we shall consider relativis-
tic effects together with the distributions functions used in
model 2.

As one can see from the functions, we consider no finite
size effects. Every model includes a return current which
neutralizes the total current ~charge neutralization comes
from the fixed ions background!. One therefore has in every
cases npVp �nbVb with Pp, b �gp, b mVp, b ~gp, b �1 for models
1 and 2!. We shall make use in the sequel of the dimension-
less variables

x �
v

vp

, Z �
kVb

vp

, a�
nb

np

, at �
Vth

Vb

, b�
Vb

c
, ~15!

and gp, b �!1 � Pp, b
2 0~m2c2 ! � ~1 � b2!�102.

Although lengthy, calculations for models 1 and 2 are
straightforward. As far as model 3 is concerned, we set
g � 1 in the integrals involving the plasma distribution
function because the two main velocities at stake regarding
it are non-relativistic. The first one, the thermal velocity, is
about 10 keV in a fusion plasma and remains much smaller
than the 0.5 MeV required to tilt relativistic effects. The
second velocity, Vp, is the one of the return current induced
by the relativistic electron beam with Vp0c � nb0np � a. It
turns out that within the limits of the fast ignition scenario,
a varies from 10�1 ~plasma edge! to 10�3 ~plasma core!
~Tabak et al., 1994!. This shows that the return current
velocity is non-relativistic so it is perfectly relevant to
restrict relativistic effects to the beam.

3. FIRST BRANCH OF DISPERSION EQUATION

Equation «yy � k 2c20v2 � 0 yields no unstable modes in the
first model. On the other hand, the dispersion relation obtained
in the third one is ~result for model 2 is retrieved through
gb � 1!

F~x! � P~x!�
1

3

at
2

~x0Z � a cos uk !2 � ~at sin uk !2
, ~16!

with

P~x! � x 2 � 1 �
a

gb

�
Z 2

b2 . ~17!

A remarkable feature of this equation is that it still yields
unstable modes if one suppresses the beam. Indeed these
purely transverse modes were the one investigated in the
original Weibel’s paper where the system considered was
just a plasma characterized by a drifting Maxwellian. Know-
ing the zeroth order contribution in a to the growth rate will
be finite, we just set a� 0 in the equation above. Looking
for the growth rate under the form id with d �� 1, one finds
the following expression at any uk

d1, k ;
at b

M3

Z

MZ 2 � b2 �1 � � sin uk
sin uc

�2

, ~18!

with sin uc � 10!3. Figure 2 shows a numerical evalua-
tion of the growth rate in terms of the reduced wave vector
Z � kVb0vp. The relative error using Eq. ~18! never exceeds
3% so that this formula can be considered as a very good
approximation to the growth rate all over the k space. In
terms of the variables k, vp, c and Vth, the growth rate ~18!
reads at uk � 0 as

d1,0 �
Vth

M3

kvp

Mvp
2 � k 2c2

, ~19!

which, dropping the 10!3 factor, is exactly the result
already found by Weibel at low k. This is a tribute to the
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interest of the water-bag distribution which is eventually in
good agreement with Maxwellian derived results.

4. SECOND BRANCH OF DISPERSION
EQUATION: FROM TWO STREAM
TO FILAMENTATION

Before we turn to intermediate orientations, we start review-
ing known results on both ends of the k orientation range. To
do so, it is convenient to present results for model 3 since
models 1 and 2 are obtained through the at � 0 and gb � 1
limits, respectively.

4.1. Basic results in the normal and
parallel directions

For wave vectors normal to the beam ~uk �p02, filamenta-
tion configuration!, one finds a dispersion equation yielding
unstable modes for ~a,at �� 1!

Z � gb

b

at

. ~20!

This is just the non-relativistic result times a factor gb so that
relativistic effects are destabilizing the system at higher Z’s.
One also finds an infinite threshold for zero temperature
~at � 0!. This is consistent with the known fact that in the
fluid model, the growth rate just saturates at high Z. The
maximum growth rate in this direction

dmp02 � b� agb

, ~21!

is found for Z ; b0!at . Since dmp02 @ b~1 � b2!104,
the filamentation growth rate reaches a absolute maximum

dMp02 for b�! 2
3
_ ; 0.8 with

dMp02 �
M2

3304Ma. ~22!

For wave vectors parallel to the beam ~uk � 0, two stream
configuration!, one finds a dispersion equation yielding
unstable modes for ~Godfrey et al., 1975!

Z � 1 �
3

2

a 103

gb

~23!

in the limit a �� 1. The maximum growth rate

dm0 �
M3

2403

a 103

gb

, ~24!

is found at Z;1. It worth noticing that the same dispersion
Eq. ~12! yields these results for wave vectors normal as well
as parallel to the beam, describing waves which are trans-
verse on one side and longitudinal on the other ~Fig. 3!.

4.2. Arbitrary orientation for second branch

We now consider the dispersion Eq. ~12! at any uk

Q~x,uk ! � ~h2«xx � kz
2!~h2«zz � kx

2!� ~h2«xz � kz kx !
2

� 0. ~25!

Full expression of dispersion Eq. ~25! after inserting the
tensor elements ~3! is obviously involved. We shall see a

Fig. 2. Numerical evaluation of the first branch growth rate in terms of Z � kVb0vp. Parameters are at � 1
30
_ , a� 1

10
_ and b� 0.2.

The beam and return current are along the Zz axis.
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number of analytical conclusions can be reached however.
The analysis detailed in the sequel refers to model 2, namely
non-relativistic beam-hot plasma interaction. This simpli-
fies exposition and relativistic corrections appear straight-
forward.

We start noticing that at large x, the asymptotic form of
Q must be the dispersion relation at high frequency

~v2 � vp
2 � vb

2!~v2 � vp
2 � vb

2 � k 2c2! � 0 so that the
polynomial

P~x! � ~x 2 � 1 � a!~x 2 � 1 � a� Z 20b2 !, ~26!

can be considered as the base of the Q~x,uk! curve, which is
just the P~x! curved disturbed by three singularities located
at x1, x2, and x3 with ~see Fig. 4!

x1 � �Za cos uk � Zat sin uk ,

x2 � �Za cos uk � Zat sin uk ,

x3 � Z cos uk . ~27!

For uk �0 one has x1 �x2. When the angle uk departs from 0,
singularities x1 and x2 depart from each other. One has a
typical curve such as the one depicted on Figure 4. We have
circled the location where real roots may disappear, yielding
the instability.

As uk keeps increasing, we shall come across a very
interesting transition coming from the order of the three
singularities defined by Eq. ~27!. The first one is always
negative, and always smaller than the second one since
x1 � x2 � 2Zat sin uk. As for the second and the third one, a
brief look shows that x2 � x3 for small angles but that x3 is
eventually greater than x2 as the angles approachesp02. The
inversion occurs for a critical angle f such as x2 � x3, that is

f � arctan
1 � a

at

. ~28!

This expression is exact and independent of Z � kVb0vp.
Due to the singularity located at x2 and x3, the local mini-
mum located in between increases when ukr f. As a result,
one has to increase Z higher and higher to recover two real
roots between the singularities. Denoting Zc~uk! the insta-
bility threshold, we see limukrf Zc~uk ! � `. This feature
indicates that the boundary on the stability domain has the
cone uk � f as an asymptote in the k space.

The growth rate in the f direction can be evaluated
developing the dispersion equation around x � Z cos f. In
the limit a,at �� 1, one finds at high Z ~we include relativ-
istic correction!

df ; b� agb

. ~29!

This result is exactly the growth rate calculated for uk �p02
~see Eq. ~21!!. Indeed, it can also be derived from a conti-
nuity argument. Denoting dp02

` and df
` the growth rates at

high Z in the p02 and f directions, both quantities need to
merge for at �� 1 since limatr0 f�p02.

Figure 3b displays a numerical evaluation of the growth
rate for the two-stream0filamentation mode up to the point
~50,3! in the ~Zx , Zz! plane. This plot confirms the trend we

Fig. 3. Numerical evaluation of the two-stream0filamentation growth rate
in vp units, in terms of Z � kVb0vp. ~a!: model 1 with a� 0.1 and b� 0.2.
~b!: model 2 with a� 0.1, at � 1

30
_ and b� 0.2. ~c!: model 3 with a� 0.1,

at � 1
10
_ and gb � 5.
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have already anticipated. One identifies the two-stream
instability growth rate along the Zz axis and the filamenta-
tion one along the Zx axis, but the most remarkable feature
on this figure is the non-decreasing growth rate in the f
direction.

Figure 3a displays exactly the same plot but for the cold
beam interacting with the cold plasma ~model 1!. There is no
such thing as a critical angle here since Eq. ~28! yields
exactly p02 for a cold plasma. Also noticeable is the fila-
mentation saturation at high Z instead of a stabilization.

As mentioned previously, relativistic corrections are straight-
forward. The first point to emphasize is that the expression
of the critical angle evidenced in the non-relativistic case
remains unchanged. The origin of this critical angle lies
in the dispersion relation singularities xi ~Eq. ~27!!. The
critical angle f is then defined by x2 � x3 and one easily
check it bears no relativistic corrections. We now turn to
numerical evaluation all over the wave vector space. We
have used fast ignition scenario parameters: a relativistic
2 MeV ~gb;5! electron beam with nb �1020 cm�3 entering
a 10 keV plasma with np � 1021 cm�3. This gives at � 1

25
_

and a � nb0np � 1
10
_ . Actually, electronic plasma density

ranges from 1022 to 1026 cm�3 within this scenario ~Tabak
et al., 1994! so that a is always smaller than 1

10
_ . These

parameters yield a critical angle f�p02.12 which is close
to the normal direction. Figure 3c displays a numerical
evaluation of the growth rate all over the plane ~Zx , Zz!. One
notices the long unstable filamentation tail up to Zx; 40 in
the normal direction, as well as the reduced two stream
growth rate in the beam direction. The most striking features

are indeed the steady growth rate in the f direction and the
maximum reached for Zz; 1 and Zx; 5. These results are
detailed in Figure 5 which is a contour plot of Figure 3c.
Note that the angle f between the growth rate’s “ridge” and
the normal direction is amplified since the largest wave
vector shown is Z � ~50,2.5!.

4.3. Maximum growth rate all over the k space

It is obvious from Figure 3c that in the relativistic regime,
the maximum growth rate all over the wave vector space is
no longer on one axis but rather in between. We now turn to
some analytical results concerning the maximum growth
rate for any k, in the limit a,at �� 1. Hopefully these limits
are relevant for most experimental situations where the
beam density is much lower than the target one, and the
beam velocity much higher than the target thermal velocity.

The position of the maximum growth rate in the k, or Z
space, can be derived from a continuity argument in the
at �� 1 limit. For a cold plasma the maximum growth rate
dependance on Zx is very weak ~see Fig. 3a!. The maximum
growth rate in the beam direction being always near Zz �1,
we can expect the same value for the Zz maximum growth
rate in the small temperature limit. As for the Zx component
of the maximum, its position coincides with the maximum
filamentation growth rate. Having determined which wave
vector Zm leads to the maximum growth rate in the relativ-
istic regime, we now make use of Figure 6 to find an
analytical expression for the corresponding growth rate
value dm~Zm!. An analysis of these plots shows dm behaves

Fig. 4. Plot of Q~x,uk! defined by Eq. ~25! as a function of x. Parameters are chosen to display clearly the curve topology with Z �15,
b� 0.1, a�at �

1
30
_ and uk �p02.2. The circle indicates the place where real roots can appear or disappear. The dashed line is the curve

of polynomial P~x! defined by Eq. ~26!.
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as a 103 for a �� 1 and as 10gb
103 in the relativistic regime.

Figure 6c shows temperature has almost no effect in the
small at limit so that we can guess dm~Zm! @ ~a0gb!

103. For
this quantity to join the maximum two stream growth rate
for gb;1, the coefficient must be!302403. As a conclusion,
the highest growth rate is reached for

~Zxm , Zzm ! ; � bMat

,1�, ~30!

with

dm~Zm ! ;
M3

2403 � agb
�103

. ~31!

Aresult partially displayed in ~Faı̌nberg et al., 1970!. Eq. ~30!
gives Zxm � 5.3 with the parameters used to plot Figure 3c.

As for the transverse or longitudinal character of the
waves, a plot of the electric field direction displayed on
Figure 7 shows the transition domain between longitudinal
two stream waves and filamentation transverse waves extends
well bellow the f ridge. A longitudinal wave has its field
vector oriented towards the origin of the Z space, and one

can see on this figure that waves are not longitudinal even
for waves vector less oblique than f.

5. DISCUSSION AND CONCLUSION

The interest of working with a fully electromagnetic formal-
ism can easily be measured looking at the filamentation arch
contribution to the growth rates plots displayed on Fig-
ures 3a, 3b, 3c. Since a purely electrostatic approach yields
no filamentation at all, one can see it would fail to describe
the picture in model 3. The analysis conducted in this paper
unravels in fact two major effects for intermediate wave
vector orientations:

1. The existence of a critical anglef for which modes are
unstable at any k. Waves in this direction are only
approximately longitudinal ~see Fig. 7! whereas the
asymptotic growth rate is exactly the maximum fila-
mentation growth rate.

2. The presence of the highest unstable mode all over
the k space out of the main axis. This mode behaves
as 10g103 while filamentation growth rate behaves as
10g102 and two stream as 10g. It is almost longitudinal
and dominates the others all the more thangb increases.

Fig. 5. Contour plot of Figure 3c. Max. growth rate in vp units is about 0.21 for Zz �1 and Zx; 5.3 ~from Eq. ~30!!. One sees growth
rates values of 0.16vp up to Zx; 25 in the f direction.
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These modes share properties pertaining to two-stream and
filamentation modes and can be considered as interpolating
between both or them.

The present investigation allows a exhaustive compari-
son of the various instabilities since the electromagnetic
formalism ensures dispersion equation gives every possible
unstable modes. In the relativistic regime for example, one

must compare two stream0filamentation maximum growth
rate dm ~branch 2! with Weibel growth rate d1,0 ~branch 1,
k 7Vb and k � E!. From ~18,31!, d1,0 �dm reads ~we use the
high Z value for d1,0 and set b;1!

gb �
27

16

a

at
3 . ~32!

Fig. 6. Comparison between maximum filamentation growth rate ~dmp02, long dashed line!, two stream growth rate ~dm0, short dashed
line! and the maximum at all k ~dm, plain line! in terms of b, gb, at and a. ~a! a� 1

10
_ , at � 1

20
_ . ~b! a� 1

10
_ , at � 1

10
_ . ~c! a� 1

10
_ , gb �

2. ~d! gb � 5, at �
1

10
_ . dmp02 and dm0 are derived from Eqs. ~21, 24! while dm is numerically evaluated. Black circles are evaluated from

Eq. ~31!. All growth rates are in vp units.

Fig. 7. Direction of the eigenvector elec-
tric field E~k,vk! for Zz � 1 and Zx � 10
in the cold relativistic beam0hot plasma
system. Same parameters as Figure 3c.
The plain line indicates the f direction.
The arrow represents Zm, the wave vec-
tor yielding the maximum growth rate.
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The basic trend of this equation is that Weibel dominates
over two stream0filamentation at low beam density, high
plasma temperature and high beam energy. However, set-
tingat �

1
25
_ ~10 keV plasma! anda� 1

1000
_ yields a very high

threshold value gb � 26.
The meaning of the critical angle f can be understood

restating Eq. ~28! as

Vth sin f � ~Vb � Vp !cos f. ~33!

A wave with vector making and angle f with the beam
“sees” an electron beam ~or plasma return current! going at
the same velocity than a thermal electron moving in the
~x, y! plane. Electrons from both systems can therefore
remain in phase with the wave for a number of pulsations
and give it energy, according to the wave amplification ~or
damping!mechanism well explained by Landau ~Landau &
Lifshitz, 1981!.

A further step in the analysis of these mixed two stream0
filamentation modes will be to include plasma temperature
in every direction and to study transverse beam temperature
effects as well.
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