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UNIFICATION IN INTERMEDIATE LOGICS

ROSALIE IEMHOFF AND PAUL ROZIÈRE

Abstract. This paper contains a proof–theoretic account of unification in intermediate logics. It is
shown that many existing results can be extended to fragments that at least contain implication and
conjunction. For such fragments, the connection between valuations and most general unifiers is clarified,
and it is shown how from the closure of a formula under the Visser rules a proof of the formula under
a projective unifier can be obtained. This implies that in the logics considered, for the n-unification type
to be finitary it suffices that the m-th Visser rule is admissible for a sufficiently large m. At the end of the
paper it is shown how these results imply several well-known results from the literature.

§1. Introduction. Unification theory is concerned with the problem whether two
given terms can be identified via a substitution against a certain background theory
of equality. In this paper the background theories are fragments of propositional
intermediate logics that contain at least implication and conjunction. Thus the
terms are formulas, and equality is logical equivalence in the logic. In this setting
unification becomes the study of substitutions under which a formula becomes
provable in a logic, in which case the substitutions are called the unifiers of the
formula. This paper presents a proof-theoretic treatment of unification in these
logics. It originates from the unpublished PhD-thesis [32] by the second author,
while the first author obtained new proofs of the theorems in [32] and thereby
strengthened and simplified the results. In this introduction we will explain what
these results are and discuss related work. We start by explaining what unification
types and admissible rules are.

1.1. Unifiers. In intermediate logics, any consistent formula is classically satisfied
under some valuation (assigning 0 or 1 to the atoms). This valuation corresponds
to a unifier of the formula, by taking � for 1 and ⊥ for 0. Thus the existence of
a unifier is equivalent to the consistency of the formula. Finding a maximal unifier
for a formula is less trivial. A substitution is a maximal unifier (mu) of a formula if
among the unifiers of the formula it is maximal in the following ordering:

� � � ≡def ∃�(� =L ��),

and it is a most general unifier (mgu) if it is also unique modulo =L. Here =L is the
equivalence relation on substitutions associated with the logic: � =L � if and only
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714 ROSALIE IEMHOFF AND PAUL ROZIÈRE

if �(p) ↔ �(p) is derivable for all atoms p. If � � � we say that � is less general
than �. Mgus generate all unifiers of a formula, which is the reason that they play
an important role in unification theory. The mgus that are important in the setting
of logics are projective unifiers. � is a projective unifier (pu) of a formula A if it is
a unifier of A and A implies that � is the identity:

∀p : A � �(p)↔ p.

In this caseA is called projective. Projective unifiers were first introduced byWroǹski
under the name transparent unifiers [37], and they form one of the key notions in
unification theory in logic.
In classical propositional logic every consistent formula has a mgu, but in non-
classical logics this no longer is the case. In intuitionistic logic p∨¬p is an example
of such a formula: the two valuations that classically satisfy this formula correspond
to substitutions �1(p) = � and �2(p) = ⊥, that cannot both be less general than
another unifier. For if � is a unifier of p ∨ ¬p, the logic derives either �p or ¬�p
by the disjunction property. Therefore either �1 � � or �2 � � holds, but not both.
Hence p ∨ ¬p has no mgu.

1.2. Unification types. The phenomenon that certain unification problems do
not havemgus gave rise to the definition of unification types, which classify theories
according to the existence or non-existence of mgus and mus. Although this defi-
nition applies to all theories, here we restrict ourselves to logics. A complete set of
unifiers for a formula is a set of unifiers such that every unifier of the formula is less
general than a unifier in the set. A formula is unifiable if it has at least one unifier.
A logic has unitary n-unification type if every unifiable formula of size (number
of symbols) at most n has a mgu and finitary n-unification type if every unifiable
formula of size at most n has a finite complete set of mus. It has unitary unification
type if it has unitary n-unification type for all n, and similarly for the finitary unifi-
cation type. The other two types, infinitary (every unifiable formula has a (in)finite
complete set of mus) and nullary (some unifiable formula does not have mus) will
not be discussed any further in this paper.

1.3. Admissible rules. As it turns out, many modal and intermediate logics have
finitary unification, and this paper provides a proof-theoretic proof of this fact for
intermediate logics. We use a notion that is closely related to unification types, that
of admissible rules. A multi-conclusion rule Γ/Δ for finite sets of formulas Γ and Δ
is admissible, written Γ |∼ LΔ, if and only if

∀� (∀A ∈ Γ �L �A ⇒ ∃A ∈ Δ �L �A) .
Thus a rule is admissible if it can be added to the logic without leading to new
theorems, and the set of admissible rules form the largest class of inferences allowed
to obtain the theorems of a logic and nothing more. It may be useful to know the
admissible rules of a logic for various reasons.Theymay shorten proofs, as is the case
for the cut rule in many Gentzen calculi. Or they may express properties of the logic
that are intuitive yet invisible in standard axiomatizations, such as the disjunction
property in the case of intuitionistic logic. The description of the admissible rules
of a logic is usually given via a basis, which is a set of rules that axiomatize the
admissible rules of the logic, see [18] for further details.
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1.4. Projective approximations. In recent years, these two notions, unification
and admissible rules, have been shown to be intimately connected, starting from the
pioneering work ofGhilardi. In [10]Ghilardi proves that IPC has finitary unification
by showing that every formula has a finite projective approximation ΠA, which is
a finite set of projective formulas such that

∨
ΠA � A |∼ IPCΠA. Note that this

indeed implies that A has a finite complete set of maximal unifiers, namely the
projective unifiers of the formulas in its projective approximation. The proofs in this
paper that certain intermediate logics and fragments thereof have finitary or unitary
unification follow the same pattern. By showing the stronger

∨
ΠA �L A �RL ΠA,

for some particular set of admissible rules R, we simultaneously prove that R is
a basis for the admissible rules of L. Here �RL denotes derivability in L extended by
the rules R. In this way results about unification are closely tied to results about
admissible rules.

1.5. Results. What is new in this paper is the way in which it is proved that the
formulas in the projective approximation are projective. This is related to the way
the projective formulas are obtained. First we show, in the style of [21], that for every
formula A there is a set of formulas ΠA, the irreducible projective approximation
of A, such that

∨
ΠA �L A �VL ΠA and every formula in ΠA is closed under the

Visser rules V. The Visser rules will be introduced in Section 6 and closure under
a rule means that if all formulas in the antecedent are derivable, then so is at least
one of the formulas in the conclusion. Then we show that the formulas in ΠA are
projective by showing that they are strongly satisfiable (to be defined below) and
that, Theorem 5.5, strong satisfiability implies projectivity. The combination of these
results imply that if the Visser rules are admissible, they form a basis and the logic
has finitary or unitary unification.
The use of strong satisfiability also clarifies the connection between classical

valuations and projective unifiers that is already present in Ghilardi’s work [12].
In IPC, the condition of strong satisfiability is also necessary for projectivity, and
therefore it can be viewed as an analogue of Ghilardi’s semantical characterization
of projective formulas.
Most theorems in this paper apply to any fragment of any intermediate logic that

contains implication and conjunction. In this way some of the known results on uni-
fication and admissibility in intermediate logics are generalized to such fragments.
But rather than this slight generalization, which is not very surprising or particularly
useful, we think the merit of this approach is its generality, which stems from the
fact that the proofs are purely syntactic and do not presuppose completeness with
respect to a well-behaved class of Kripke models. It also provides short proofs of
various other results on unification and admissible rules. That it is applicable also
to other logics is shown in [20], where the method is applied to transitive modal
logics.

1.6. Relatedwork. Wesaw that classical logic has unitary unification type and any
intermediate logic with the disjunction property does not. Ghilardi [10] proved that
intuitionistic propositional logic has finitary unification, and he and Wroński [37]
proved that De Morgan Logic and Gödel–Dummett logic have unitary unifica-
tion, respectively. Intermediate logics of nullary type are also known to exist [13].
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Whether there is an intermediate logic with infinitary unification type is not known.
Dzik located logics with unitary unification in the lattice of intermediate logics
by showing that all extensions of De Morgan logic have nullary or unitary uni-
fication, and that for the latter the converse holds too [6]. There exist modal
logics for which the unification problem is undecidable [36], but whether there
exists an intermediate logic with this property is unknown. Rybakov showed that
for intuitionistic and De Morgan logic with parameters the unification type is
finitary [35].
For fragments the situation is as follows. Prucnal [29] proved that the impli-
cation fragment of IPC has unitary unification, and the same holds for the
implication-conjunction and the implication-conjunction-negation fragment of
any intermediate logic [25]. The implication-negation fragment, however, has
finitary instead of unitary unification, as was shown by Cintula and Metcalfe
[4], who in the same paper also provide a basis for the admissible rules of that
fragment.
The paper is built-up as follows. Section 2 contains preliminaries and Section 3
explains the idea behind the proof of the main Theorem 6.7. Section 4 contains the
technicalities needed to prove Theorem 5.5, which is done in Section 5. In Section 6
the relation between the Visser rules and strong satisfiability is established, which
in Section 7 is used to obtain results about projective approximations, which imply
results on unification in Section 8.

§2. Preliminaries. Let L be a language for propositional logic with proposi-
tional variables, or atoms, P = {p1, p2, . . . }. p, q, r, s denote arbitrary elements
of P ∪ {⊥}, and in case that ⊥ is not part of the language, of P . In this paper
L can be any fragment of any propositional intermediate logic that contains the
{∧,→,�}-fragment of intuitionistic logic IPC. � is not strictly necessary, but it will
be convenient to have a separate symbol for truth available. Note that every logic
is a fragment of itself. �L stands for derivability in logic L and we sometimes omit
the “L”.
We use Γ,Π,Δ,Σ to denote finite sets of formulas. Sequents are expressions
Γ ⇒ Δ. In the case that ⊥ and negation do not belong to the language, we
require that Δ is not empty, and in the case that disjunction does not belong to
the language, we require that |Δ| ≤ 1. S,R range over sequents. Given a subset
L′ of L, a formula, sequent or set of sequents is in L′ if all symbols in it belong
to L′.
Atomic implications are implications of the form p → q, where p �= ⊥. Note that
¬p is an atomic implication. Ln is L minus the atoms pi for i > n. Given a set
of sequents G, LG denotes L minus the atoms that do not occur in G and nG is
the number of different atoms that occur in G. For a sequent S, i(S) denotes the
number (n{S}+2m)2, wherem is the number of implications in S, and similarly for
formulas.
A sequent (Γ⇒ Δ) is irreducible if Δ is empty or consists of atoms, andΓ is empty
or consists of atoms and atomic implications. SG is the set of irreducible sequents
in LG . var(A) is the set of atoms that occur in A and similarly for sequents and sets
of sequents. In general, we will use S and T for arbitrary finite sets of sequents and
G andH for finite sets of irreducible sequents.
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We need the following notation, where v stands for variable, i for implication,
a for antecedent, and c for conclusion:

(Γ⇒ Δ)a ≡def Γ (Γ⇒ Δ)c ≡def Δ
Γv ≡def {p ∈ P | p ∈ Γ} Γi ≡def Γ\Γv ΓiΔ ≡def {(p → q) ∈ Γ | p ∈ Δ}
Γa ≡def {p | ∃q (p → q) ∈ Γ} Γc ≡def {q | ∃p (p → q) ∈ Γ}
ΠS ≡def

⋃
{Sai | S ∈ S} ΣGS ≡def {p | G � ΠS ⇒ p}.

For k ∈ {a, c} and l ∈ {a, c, i, v}, Skl abbreviates (Sk)l .
Sequents are interpreted in the usual way: I (S) = (

∧
Sa →

∨
Sc), where an

empty conjunction is � and an empty disjunction ⊥. For notational convenience
we sometimes write S for I (S), for example in � S, which thus should be read as
� I (S). Sets of sequents are interpreted as conjunctions:

I (G) ≡def
∧
S∈G
I (S),

interpreting empty disjunctions by ⊥ and empty conjunctions by �. For sets of
irreducible sequents G we sometimes denote I (G) by the noncalligraphic version
of the name of the set. For example,G ≡def I (G) andGi ≡def I (Gi ). When we speak
of the (in)consistency of G, we mean the (in)consistency of G .
We use � and � to denote substitutions, which are maps from propositional

formulas to propositional formulas that commute with the connectives. � is the
identity substitution. As usual, �Γ = {�A | A ∈ Γ} and �S = (�Sa ⇒ �Sc ).
Throughout the paper substitutions are assumed to have finite domains, denoted
by dom(·). We use the following notation for substitutions with the same domain:

� ↔ � ≡def
∧

p∈dom(�)
�(p)↔ �(p).

Observe that

� � ↔ � implies � �A↔ �A.

Given two finite sets of sequents T and T ′,S is closed under themulti-conclusion rule
T /T ′ if whenever I (S) derives I (T ) it derives I (S) for at least one sequent S in T ′.
The rule is admissible if for all substitutions �, S is closed under the rule �T /�T ′. In
the single-conclusion case, which means the case that |T ′| ≤ 1, T /T ′ is derivable if
I (S) derives I (T )→ I (T ′). The same notions apply to logics by considering a logic
L as the set of its theorems (thus by taking for S the set {(⇒ A) | �L A}). In this
case we write T |∼ LT ′ if the rule is admissible, and T �L T ′ if the rule is derivable.

§3. Proof idea. Themain technical part of the paper is the proof of Theorem 6.7,
which is divided in two parts, the proof of Theorem 5.5 and the proof of Lemma 6.6.
In this section we briefly explain these proofs in general, the next three sections pro-
vide the technical details. The proofs make use of a connection between valuations
and substitutions that goes back to Prucnal [29, 31] and are crucial in the work of
Ghilardi [10] and Rozière [32,33].
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Given a set of atoms I and a formulaAwedefine the valuation vI and substitution
�I as follows:

vI (p) ≡def
{
1 if p ∈ I
0 if p �∈ I �AI (p) ≡def

{
A→ p if p ∈ I
A ∧ p if p �∈ I .

For sequents, vI (S) is short for vI (I (S)) and �SI for �
I (S)
I . It is not difficult to

see that in classical logic vI (A) = 1 implies �CPC �AI A. This no longer holds in
IPC, a counter example is provided below. There is, however, a weaker form of
the statement that does hold. For a certain composition �A of substitutions of
the form �AI and a certain notion of satisfiablity called strong satisfiability, it is
shown in Theorem 5.5 that if A is strongly satisfiable, then �A is a unifier for A.
As �A is a composition of �AI ’s, it is a projective unifier of A, thus showing that
strong satisfiability implies projectivity. Lemma 6.6 shows that closure under the
Visser rules (to be defined below) is a necessary and sufficient condition for strong
satisfiability. Together with Theorem 5.5 it therefore proves Theorem 6.7.
The proof of Lemma 6.6 is fairly straightforward and will be discussed in Sec-
tion 6, but the proof of Theorem 5.5 needs some clarification, which we provide in
the remainder of this section.
Instead of formulas it is convenient to work with a set of irreducible sequents G
and corresponding formula G = I (G). As mentioned above, vI (S) = 1 does not
imply �IPC �SI (S), S = (p ⇒ q, r) and I = {q} being a counter example. But it is
not hard to see that vI (S) = 1 does imply �IPC �SI (S) in case S is an irreducible
sequent and Sc contains at most one formula. So (the formulas corresponding to)
these sequents are projective anyway. For the remaining sequents, those for which
Sc contains more than one atom, we consider them relative to a set of irreducible
sequents S ⊆ G in which they are contained. The notion of satisfiability thatwe need
is that of strong satisfiabilitywith respect toS,meaning that vI(Sav , SaiΣGS ⇒ S

c∩ΣGS),
denoted by vI (S | S), equals 1.
The aim is to prove for S1 ∈ S and a composition � = �m . . . �1 of substitutions
of the form �GI that � �S1 given that S1 is strongly satisfiable with respect to G.
Let us denote �m . . . �i by �i , which means that �1 = �. Note that in order to prove
� �S1, one has to show that � �1Sa1 ⇒ �1Sc1 . For this it suffices to show that for
some i2 ≥ 1 and for all S2 ∈ G:

� �1Sa1 ⇒ I (�i2S2). (1)

This would namely imply that � �1Sa1 ⇒ �i2I (G), which means � �1Sa1 ⇒ �i2G .
And as the �j are such that � G → �i2−1 . . . �1G , an application of �i2 gives
� �i2G ⇒ �1G . Thus � �1Sa1 ⇒ �1G , which implies � �1Sa1 ⇒ �1S1, as S1 ∈ G.
And thus � �1Sa1 ⇒ �1Sc1 .
Repeating this argument shows that to prove (1) it suffices to show that for some
i3 ≥ i2 and for all S3 ∈ G:

� �1Sa1 , �i2Sa2 ⇒ I (�i3S3). (2)

Continuing this argument, one sees that in order to prove � �G it suffices to show
that for all possible sequences S1, . . . , Sm of sequents from G and all numbers
1 ≤ i2 ≤ i3 ≤ · · · ≤ im there is a j ≥ im such that for all S ∈ G:

� �1Sa1 , �i2Sa2 , . . . , �imSaim ⇒ I (�jS). (3)
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As one can see (and will be proved below), if �j = �GI for an I such that vI (S
av ,

Sai
ΣGS
⇒ Sc ∩ ΣGS) = 1, where S ∈ S = {S1, . . . , Sm}, then (3) holds. This is the

core idea behind the proof of Theorem 5.5 stating that strong satisfiability implies
projectivity. This completes the informal explanation, and we continue with the
technical details.

§4. Substitutions and valuations. The discussion above serves as a motivation for
the notions introduced in this section. In this and the next section we consider an
arbitrary finite set G of irreducible sequents, and corresponding formula G = I (G),
and assume the atoms that occur in G to be {p1, . . . , pnG}. Most definitions are
relative to G but for simplicity we do not always indicate this in our notation. G�
consists of those sequents S ∈ G such that (Sav ∩ Scv) is empty. Note that all
sequents in G that are not in G� are derivable.
Wefix an arbitrary enumeration J1, . . . , J2nG of all subsets of {p1, . . . , pnG}, and let

I range over subsets of {p1, . . . , pnG}.Given a set I the valuation vI has been defined
above, and �I denotes �GI , also defined at the beginning of Section 3. We extend it
to a valuation for sequents S relative to a set of sequents S: S is strongly satisfiable
with respect to S if

vI (S | S) ≡def vI (Sav , SaiΣGS ⇒ S
c ∩ ΣGS) = 1.

If Sai
ΣGS
is empty, the right side is read as vI (Sav ⇒ Sc ∩ ΣGS) = 1, similarly for

Sav and Sc ∩ ΣGS . The valuations are extended to sets of sequents in the usual way:
vI (S ′ | S) = 1 if and only if vI (S | S) = 1 for all S ∈ S ′. We write vI (S) for
vI (S | S). G is strongly satisfiable if for all S ⊆ G� there is an I such that vI (S) = 1.
We use the following abbreviations in this and the next section:

g = 2nG �G ≡def (�Jg . . . �J1 )(|G|+1).
Thus �G is the concatenation of g(|G| + 1) substitutions. The i-th substitution in
�G (reading from right to left) is denoted by �i and for i < j, �j . . . �i is denoted by
�j,i . We denote �g(|G|+1),i = �g(|G|+1) . . . �i by �i . For example, �2 = �g+2 = · · · =
�g|G|+1 = �J2 , �1 = �G , and �g+1 = �

|G|. Note that for i < j, �j is the tail of �i .
We denote by Ii the set Jj such that �i = �Jj . For valuations we define: vi ≡def vIi .
Lemma 4.1. For all i < j: � G →

(
� ↔ �i ↔ �j,i

)
and � �jG → �iG .

Proof. The first equivalence in the first statement is clear. The second equivalence
follows from this and the fact that � (B ↔ C ) → (A[B/p] ↔ A[C/p]) for any
atom p.
The first statement implies that � G → �j−1,iG , which implies � �jG → �iG . �
Define

F (i1, . . . , ij , S1, . . . , Sj , A) ≡def �i1Sa1 , �i2Sa2 , . . . �ij Saj ⇒ A. (4)

Proposition 4.2. For allS = {S1, . . . , Sj} ⊆ G and all 1 ≤ i1, . . . , ij ≤ g(|G|+1),
if vI (S) = 1, then for all S ∈ S: � F (i1, . . . , ij , S1, . . . , Sj , �I S).
Proof. First the case that Sav\I or Sc ∩ ΣGS is nonempty. In case p ∈ Sav\I ,

�I (p) = G ∧ p, and thus �I Sa derives G , and therefore it derives Sc and �I Sc
by Lemma 4.1. Thus proving that �I S is derivable, even without the assumptions.
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In case p ∈ Sc ∩ ΣGS , �I (p) = G → p, and � G ∧
∧
h S
a
h → p. Hence also

F (i1, . . . , ij , S1, . . . , Sj , �I p), which gives� F (i1, . . . , ij , S1, . . . , Sj , �I S) asp ∈ Sc .
Finally the remaining case: there is an implication (p → q) ∈ Sa with p ∈ ΣGS ,
p ∈ I and q �∈ I . Thus �I ((p → q)) = (G → p) → G ∧ q. As p ∈ ΣGS ,
G �

∧
h S
a
h → p, and therefore Lemma 4.1 implies �

∧
h �ih S

a
h → (G → p). Hence

�
∧
h �ih S

a
h ∧�I Sa → G∧q. The fact thatS ∈ G finally leads to�

∧
h �ih S

a
h ∧�I Sa →

�I S
c , which is what we had to show. �

§5. Unifiers. In this section we show that every strongly satisfiable set of sequents
G has �G as a projective unifier. We need some terminology to be able to prove
this theorem by backwards induction. A sequence of m numbers followed by m
sequents i1, . . . , im, S1, . . . , Sm is appropriate if m ≤ |G|,

1 = i1 ≤ g < i2 ≤ 2g ≤ · · · < im ≤ mg,

and the sequents are distinct and belong to G. It is G-sufficient if for all num-
bers j such that mg < j ≤ (m + 1)g and vj({S1, . . . , Sm}) = 1, the formula
F (i1, . . . , im, S1, . . . , Sm, �jG) is derivable, where F is defined in (4).

Lemma 5.1. If G is strongly satisfiable, then for every appropriate sequence
i1, . . . , im, S1, . . . , Sm and any number k > 0 there exists a number h such that
kg < h ≤ (k + 1)g and vh({S1, . . . , Sm}) = 1.
Proof. As G is strongly satisfiable, there is a j ≤ g such that vj({S1, . . . , Sm})
equals 1. Since vj = vkg+j , the lemma follows. �
Lemma 5.2. If G is strongly satisfiable then for all m ≤ |G|: if all appropriate
sequences of length 2m are G-sufficient, then so are all appropriate sequences of
length 2m − 2.
Proof. Consider an appropriate i1, . . . , im−1, S1, . . . , Sm−1 and let j be such that
(m − 1)g < j ≤ mg and vj({S1, . . . , Sm−1}) = 1. We have to show that for all
S ∈ G:

� F (i1, . . . , im−1, S1, . . . , Sm−1, �jS). (5)

If S ∈ {S1, . . . , Sm−1}, then (5) follows from Proposition 4.2. If, on the other hand,
S �∈ {S1, . . . , Sm−1}, then i1, . . . , im−1, j, S1, . . . , Sm−1, S is an appropriate sequence
of length 2m. By Lemma 5.1 there exists a number h such thatmg < h ≤ (m + 1)g
and vh({S1, . . . , Sm−1, S}) = 1. Therefore by G-sufficiency

� F (i1, . . . , im−1, j, S1, . . . , Sm−1, S, �hG).

Since � �hG → �jG and S ∈ G, this implies that

� F (i1, . . . , im−1, j, S1, . . . , Sm−1, S, �jS).

Hence � F (i1, . . . , im−1, S1, . . . , Sm−1, �jS), which is what we had to show. �
Lemma 5.3. If S ∈ G and 1, S is G-sufficient, then � �S.
Proof. By Lemma 5.1 there exists an i ≤ 2g such that vi({S}) = 1. Hence
� �1Sa → �iG . Since � �iG → �1G by Lemma 4.1, this gives � �1Sa → �1G .
As S ∈ G, � �1S follows, that is, � �GS. �
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Lemma 5.4. Every appropriate sequence of length 2|G| is G-sufficient.
Proof. Let |G| = m and consider an appropriate sequence i1, . . . , im, S1, . . . , Sm

and let j be such that mg < j ≤ (m + 1)g and vj({S1, . . . , Sm}) = 1. Because
m = |G| and the Si are distinct, {S1, . . . , Sm} = G. Therefore Proposition 4.2 gives
� F (i1, . . . , im, S1, . . . , Sm, �jG). �
Theorem 5.5. If G is strongly satisfiable, then � �GG .
Proof. By Lemma 5.4 every appropriate sequence of length 2|G| is G-sufficient.

By repeated application of Lemma 5.2 it follows that 1, S is G-sufficient for every
S ∈ G. This implies � �GS by Lemma 5.3. �

§6. Rules and satisfiability. In this section we show that closure under the Visser
rules, (in sequent notation)

{Γ⇒ Δ}
{Γ⇒ A | A ∈ Γa ∪ Δ} V (Γ consists of implications only),

implies strong satisfiability, thus proving by Theorem 5.5 that closure under the
Visser rules implies projectivity. We make use of a property, being closed, that
is equivalent to being closed under the Visser rules, Lemma 6.5, but easier to
apply. Before giving the formal definition, we treat two examples indicating how
closure conditions can imply satisisfiability. In both examples G is a consistent set
of sequents, which means that it does not derive the empty sequent.
Given S ∈ G, the only way in which S = (Γ ⇒ Δ) cannot be strongly satisfiable

with respect to G, which means vI (S | G) = vI (Sav , SaiΣG ⇒ S
v ∩ ΣG) = 0 for all

I , is if Γ consists of implications such that Γa ∩ ΣG = Δ ∩ ΣG = ∅. However, if G
is closed under the Visser rules, it contains (Γ ⇒ p) for at least one p ∈ Γa ∪ Δ.
But then p ∈ ΣG , contradicting Γa ∩ ΣG = Δ ∩ ΣG = ∅. This shows that for single
S ∈ G, G being closed under the Visser rules implies that S is strongly satisfiable
with respect to G.
If we consider more than one sequent, we need the notion of being closed,

as illustrated by the following example. Consider sequents S1, S2 ∈ G such that
S1 = (Γ, q → r ⇒ q) and S2 = (q ⇒ Δ) and Γ consists of implications not equal
to (s → s) and q �∈ Δ. If {S1, S2} is not strongly satisfiable with respect to G, then
Γa ∪Δ does not contain elements from ΣG . If G is closed under the Visser rules and
as it derives Γ, q → r ⇒ Δ, it also derives Γ⇒ p for at least one p ∈ Γa ∪ {q} ∪ Δ.
This, however, does no lead to a contradiction as in the case above, as q can be
taken forp. But as wewill show in Lemma 6.5, closure under the Visser rules implies
being closed, which implies that G derives Γ⇒ p for at least one p ∈ Γa ∪Δ, which
is a contradiction. Thus showing that closure under the Visser rules of G implies
that {S1, S2} is strongly satisfiable with respect to G.
The seemingly stronger notion of being closed is defined as follows. We use the

following notation for sets of formulas in which some implications are replaced by
their antecedents:

ΓI ≡def I ∪ Γ\{(p→ q) ∈ Γ | p ∈ I }.
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G is closed if for all irreducible sequents (Γ⇒ Δ) in LG such that Γ does not contain
atoms, G is closed under the rule

{ΓJ ⇒ Δ | J ⊆ I }/{Γ⇒ p | p ∈ (Γa\I ) ∪ Δ}.

Note that the Visser rules are a special instance of the above rule, namely for I = ∅.

6.1. Resolution. To prove that being closed implies being strongly satisfiable, we
argue by contradiction. Assuming that G is not strongly satisfiable, which means
that vI (G) = 0 for all I ⊆ ΣG , we use a resolution proof on the sequents (Sav , SaiΣG ⇒
Sv ∩ ΣG) for S ∈ G, to conclude that G is not closed. The following lemmas about
resolution proofs are needed to draw that conclusion.
Resolution proofs in the usual sense correspond to sequent derivations in which
every sequent contains only atoms, and every inference is a cut. The only difference
between resolution proofs and the Σ-resolution proofs we consider below is that in
our case we use irreducible sequents. And although the only inference rules are cuts
on atoms, the implications are present as additional information that will be used
in the next lemmas.
A sequent S is full in Σ if Saa ∩ Σ ⊆ Sc . FΣG is the set of sequents that are full in
Σ and that can be obtained from S by left implications in Σ:

FΣS ≡def {Sa\Π,Πc ⇒ Sc, (Sa\Π)a ∩ Σ | Π ⊆ SaiΣ } FΣG ≡def ∪{FΣS | S ∈ G}.

Lemma 6.1. F ΣG �� G . For every I ⊆ Σ: vI (FΣS ) = 1 implies vI (S) = 1.
Given a set of atoms Σ, a Σ-resolution proof of S from G is a finite binary tree
labelled with sequents: the leafs are (labelled with) sequents inFΣG , the root is S, and
a sequent at an inner node is the result of a cut in Σ on the two sequents immediately
above it. CR is the set of cut formulas that occur in R. Thus CR ⊆ Σ.
Lemma 6.2. If vI (G) = 0 for all I ⊆ Σ, then there exists a Σ-resolution proof from
G of a sequent S such that Sav ∪ (Sc ∩ Σ) = ∅.
Proof. Let Σ be the complement of Σ in P . Consider

H = {
(
Sav , Sai\SaiΣ ⇒ S

c ∩ Σ
)
| S ∈ G}.

Suppose vI (G) = 0 for all I ⊆ Σ. This implies thatH is classically inconsistent, as all
positive atoms in the sequents inH belong to Σ. From Lemma 6.1 it follows thatFP

H
is classically inconsistent. By the completeness of resolution refutations for classical
logic, there exists a P-resolution proof from FP

H of a sequent that does not contain
atoms. Since all cut formulas belong to Σ, this proof corresponds to an Σ-resolution
proof from G of a sequent S for which Sav ∪ (Sc ∩ Σ) = ∅. �
Lemma 6.3. If R is a Σ-resolution proof of S, then

(Saa ∩ Σ)\CR ⊆ Sc.

Proof. With induction to the number of cuts in R. If R does not contain cuts,
then S ∈ FΣG , which clearly implies the statement. Suppose that R contains cuts,
that S = (Γ,Π⇒ Δ,Λ), and that the lowest cut is:

Γ⇒ p,Δ p,Π⇒ Λ
Γ,Π⇒ Δ,Λ
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Consider q ∈ (Saa ∩ Σ)\CR. Since p ∈ CR, q �= p. Note that q ∈ Γa or q ∈ Πa .
In both cases the induction hypothesis implies that q ∈ Δ∪Λ, which is what we had
to show. �
Lemma 6.4. For all Σ-resolution proofsR of S ∈ G, and all I ⊆ CR:

G � (SaI ⇒ Sc) or I ∩ Sc �= ∅.

Proof. With induction to the number of cuts inR. If there are no cuts, the lemma
follows immediately. Suppose there are cuts inR and consider the lowest cut

Γ⇒ p,Δ p,Π⇒ Λ
Γ,Π⇒ Δ,Λ

Let S be the conclusion, and let R′ andR′′ be resolution proofs of respectively the
left and the right premise. Consider I ⊆ CR and let J = I ∩ Γa and H = I ∩ Πa
and assume that I ∩ (Δ ∪Λ) is empty, otherwise we are done immediately. If there
exists a q ∈ H\CR′′ , then q ∈ Λ by Lemma 6.3, and thus Sc ∩ I is not empty, which
contradicts our assumptions. Therefore H ⊆ CR′′ . Thus G derives (p,ΠH ⇒ Λ)
by the induction hypothesis.
If p ∈ I , this implies that ΠH ∪ {p} ⊆ ΠI , and thus G derives (ΓIΠI ⇒ Δ,Λ).

If, on the other hand, p �∈ I , then p �∈ J . Thus J ⊆ CR′ . Hence G derives
(ΓJ ⇒ p,Δ) by the induction hypothesis. Thus it derives (ΓJ ,ΠH ⇒ Δ,Λ) and
whence (ΓI ,ΠI ⇒ Δ,Λ). �
Lemma 6.5. G is closed if and only if G is closed under the multi-conclusion Visser

rules.

Proof. The direction from left to right follows from the observation at the begin-
ning of this section. For the other direction, we first treat the case that disjunction
is in the language. Consider I and (Γ ⇒ Δ). Let Γ〈H,Δ〉 be the result of replacing
every p ∈ Γa ∩H by (p ∧

∨
Δ).

First we show that with induction to |H | that for all J,H ⊆ I :

{(ΓJ ⇒ Δ) | J ⊆ I } �L Γ〈H,Δ〉J ↔ ΓJ .

Since the← part is trivial, it remains to show

{(ΓJ ⇒ Δ) | J ⊆ I } �L Γ〈H,Δ〉J ⇒ ΓJ . (6)

If H = ∅, then Γ〈H,Δ〉J = ΓJ . Suppose |H | > 0, and consider pi ∈ H , such that
(pi → q) ∈ ΓJ (if there is more than one implication in Γ with antecedent pi , the
argument remains the same). By the induction hypothesis

{(ΓJ ⇒ Δ) | J ⊆ I } �L Γ〈H\{i},Δ〉
J∪{i} ⇒ ΓJ∪{i}.

Since {(ΓJ ⇒ Δ) | J ⊆ I } �L ΓJ∪{i} ⇒ Δ, this implies that

{(ΓJ ⇒ Δ) | J ⊆ I } �L Γ〈H\{i},Δ〉
J∪{i} ⇒ Δ.

As (pi ∧
∨
Δ→ q) ∈ Γ〈H,Δ〉J , (pi → q) �∈ ΓJ∪{i} and pi ∈ ΓJ∪{i}, this gives

{(ΓJ ⇒ Δ) | J ⊆ I } �L Γ〈H,Δ〉J ⇒ (pi → q).
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Thus {(ΓJ ⇒ Δ) | J ⊆ I } �L Γ〈H,Δ〉J ⇒ Γ〈H\{i},Δ〉
J , and the induction hypothesis

gives (6).
Thus we have shown (6), and in particular

{(ΓJ ⇒ Δ) | J ⊆ I } �L Γ〈I,Δ〉 ↔ Γ.

The following observations now prove the lemma:

(ΓJ ⇒ Δ) | J ⊆ I } � Γ⇒ Δ
� Γ〈I,Δ〉 ⇒ Δ
|∼ {Γ〈I,Δ〉 ⇒ p | p ∈ (Γ〈I,Δ〉)a ∪ Δ}
� {Γ⇒ p | p ∈ (Γ〈I,Δ〉)a ∪ Δ}
� {Γ⇒ p | p ∈ Γa\I ∪ Δ}.

The proof for the case that disjunction is not present is similar: we have to replace
(p ∧

∨
Δ→ q) by

∧
r∈Δ(p ∧ r → q). �

Lemma 6.6. If G is closed under V, it is strongly satisfiable.
Proof. Suppose that G is not strongly satisfiable. Observe that this implies in
particular that for all I ⊆ ΣG , vI (G) = 0. By Lemma 6.2 there is a ΣG-resolution
proof R of a sequent S ∈ G for which Sav ∪ (Sc ∩ ΣG) = ∅. Thus Sa consists of
implications. Since CR ⊆ ΣG , Lemma 6.4 implies that G derives SaI ⇒ Sc for all
I ⊆ CR. If G would be closed, it would derive (Sa ⇒ p) for some p ∈ Saa\CR∪Sc .
Hence p ∈ ΣG . Thus p ∈ Sc by Lemma 6.3, which contradicts thatSc ∩ΣG is empty.
Therefore G is not closed, and thus not closed under V by Lemma 6.5. �
Theorem 5.5 and Lemma 6.6 immediately give the following.

Theorem 6.7. If G is closed under V, then G is projective with projective
unifier �G .

IPC is the only intermediate logic with the disjunction property for which all
multi-conclusion Visser rules are admissible [16]. In this logic the closure condition
is a sufficient and necessary condition for strongly satisfiability.

Proposition 6.8. In IPC, G is closed under V if and only if G is strongly satisfiable.
Proof. The direction from left to right is Lemma 6.6. The other direction uses
thatV is admissible in IPC. Suppose that G is ΣG-satisfiable. Hence �G is a projective
unifier of G by Theorem 5.5. Let S/S′ be an instance of V such that G derives S.
Thus �GS is derivable in IPC, and by the admissibility of V in IPC, so is �GS′.
Therefore G derives S′. �

§7. Projective approximations. In the setting of formulas the multi-conclusion
Visser rules are defined as follows:∧

Γ→
∨
Δ

{
∧
Γ→ A}A∈Γa∪Δ

V (Γ implications only).

Observe that we use the same symbol for the formula and sequent setting. This is
justified by the fact that for every instance S/S1, . . . , Sm of the sequent version,
I (S)/I (S1), . . . , I (Sm) is an instance of the formula version and vice versa.
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Recall that an irreducible formula is a formula of the form I (S), where S is
irreducible, and that F(p1, . . . , pn) and S(p1, . . . , pn) are the sets of formulas
respectively sequents in which only atoms in {p1, . . . , pn} occur.

Lemma 7.1. For every n and every set of sequents G ⊆ S(p1, . . . , pn), there exists
a finite set of irreducible sequentsH such that for every Δ ⊆ F(p1, . . . , pn):

1. I (G) |∼Δ if and only if I (H) |∼Δ,
2. I (G) �VΔ if and only if I (H) �VΔ,
3. I (G) �

∧
�(H) for some � that is the identity on F(p1, . . . , pn).

Proof. We follow the method of proof of a similar lemma in [4]. The length of
a formula is the number of symbols occurring in it. Let ml(G) be the multiset of the
lengths of the formulas in the sequents in G. We prove the lemma by induction on
ml(G), using the multiset ordering. At every step we construct a new set of sequents
G′ such that 1–3 hold and ml(G′) < ml(G), until G′ is irreducible. This will prove
the lemma.
If ml(G) ≤ 1, G consists of irreducible sequents, and we can take G for G′.

Therefore supposeml(G) > 1 and consider a formulaA in a sequent S ∈ G that has
length greater than 1. ThusA is not an atom. IfA = (B∧C ) andA ∈ Sa , we replace
S by (Sa\{A}, B,C ⇒ Sc), and if A ∈ Sc we replace S by (Sa ⇒ Sc\{A}, B) and
(Sa ⇒ Sc\{A}, C ). Similarly if A is a disjunction. For H′ being the result of these
replacements, 1–3 clearly hold.
Suppose A = (B → C ). If A ∈ Sc we choose a fresh atom p different from

p1, . . . , pn and replace S by S1 = (Sa ⇒ Sc\{A}, p) and S2 = (p,B ⇒ C ).
If A ∈ Sa , we choose fresh atoms p, q different from p1, . . . , pn and replace S by
S1 = (Sa\{A}, p → q ⇒ Sc), S2 = (p ⇒ B), and S3 = (C ⇒ q). In both cases
call the result G′ and note we have I (S1) ∧ I (S2) ∧ I (S3) � I (S) and therefore
I (G′) � I (G). Note that there is a substitution � that is the identity on p1, . . . , pn
such that I (G) � I (�G′). Namely, in the first case all such substitutions for which
�(p) = B → C , and the second case all such substitutions for which �(p) = B and
�(q) = C . This implies 3.
The direction from left to right of 1. and 2. holds because I (G′) � I (G), as

can be seen from the construction. For the other direction of 1., consider a unifier
� of I (G). This can be extended to a unifier �′ of I (G′) in the way explained in the
previous paragraph. Thus � �′C for someC ∈ Δ. As � equals �′ on Δ, � �C follows,
proving that I (G) |∼Δ. To prove the direction from right to left of 2., assume that
I (G′) �VΔ. For the substitution � defined in the previous paragraph I (�G′) �VΔ
holds by structurality and the fact that � is the identity on Δ. As I (G) � I (�G′),
I (G) �VΔ follows. �

The following lemma has essentially been proved in [21].

Lemma 7.2. For every set of irreducible sequents H there exist sets of irreducible
sequentsH1, . . . ,Hm such that the I (Hi ) are projective and for all i :

I (Hi ) � I (H) �V{I (H1), . . . , I (Hm)}.
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Proof. Define the following (rewrite) relation on finite sets of finite sets of
irreducible sequents in LH, where X and Y range over such sets and Γ over sets of
implications:

X ∪ {G ∪ {Γ⇒ Δ}} �→ X ∪ {G ∪ {Γ⇒ Δ,Γ⇒ p} | p ∈ Γa ∪ Δ}.

Slightly ambiguous, we also use �→ for the transitive closure of this relation. A set of
sequents G is in �→-normal form if there is no H ⊃ G such that G �→ H. As the
number of atoms inH is finite and all sequents involved are irreducible and contain
no atoms than those inH, there areH1, . . . ,Hn such that {H} �→ {H1, . . . ,Hn} and
theHi are in �→-normal form. Observe that the latter means that the Hi are closed
under V, and thus that I (Hi ) is projective by Theorem 6.7. It is easy to see that they
satisfy the other properties in the lemma as well. �
Combining the previous two lemmas gives the following theorem.

Theorem 7.3. For every n and every set of sequents G ⊆ S(p1, . . . , pn), there exist
sets of irreducible sequentsH1, . . . ,Hm such that all I (Hi ) are projective and for every
Δ ⊆ F(p1, . . . , pn):
1. I (G) �VΔ if and only if I (Hi ) �VΔ for all i .
2. I (G) �V{I (�H1), . . . , I (�Hm)} for some� that is the identity onF(p1, . . . , pn).
Proof. Given G, constructH and � as in Lemma 7.1 and then sets of irreducible
sequentsH1, . . . ,Hm as in Lemma 7.2. It is easy to see that 1. holds. For 2., observe
that by Lemma 7.2 and structurality, I (�H) �V{I (�Π1), . . . , I (�Πm)}. As I (G) �
I (�H), 2. follows. �
Given a formula A ∈ F(p1, . . . , pn), a set {B1, . . . , Bm} of projective formulas is
an irreducible projective approximationofA if and only if there are sets of irreducible
sequents H1, . . . ,Hm such that Bi = I (Hi ) and for all B in F(p1, . . . , pn):
1. A |∼B if and only if Bi � B for all i ;
2. A |∼{�B1, . . . , �Bm} for some � that is the identity on F(p1, . . . , pn).
Corollary 7.4. For every formula A, if Vi(A) is admissible, then A has an
irreducible projective approximation.

Proof. Consider a formula A and let n and m be the number of atoms and
implications inA, respectively. LetH1 , . . . ,Hn be as inTheorem7.3,whereG = {(⇒
A)}, and let Bi = I (Hi ). Thus the Bi are projective. We prove that {B1, . . . , Bm} is
an irreducible projective approximation ofA. From the constructions in Lemma 7.1
and Lemma 7.2 it can be seen that the sequents in theHi contain at most (n+2m)2
implications at the left: in Lemma 7.1 at most 2m new atoms will be introduced
and as the sequents in Hi are irreducible, there are at most (n + 2m)2 different
implications occurring in their antecedents. Recall that i(A) is defined as (n+2m)2.
This implies that Γ �Vi(A){

∧
�Π1, . . . ,

∧
�Πm}. Therefore the admissibility of Vi(A)

implies the second requirement of projective approximations. The proof of the
first requirement follows easily by observing that C |∼B if and only if C � B for
projective C and all B. �
Corollary 7.5. If Vi(A) is admissible in L, then A has a finite complete set of
unifiers.
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Proof. Given a formula A, let B1, . . . , Bn be its irreducible projective approxi-
mation, which exists by Corollary 7.4. Thus there exists a � that is the identity on
F(p1, . . . , pn) such that A |∼{�B1, . . . , �Bm}. Let � ′i be the projective unifier of Bi
and let �i be equal to � ′i on the atoms inA and the identity everywhere else.We verify
that {�1, . . . , �n} is a complete set of unifiers for A. Therefore suppose that �L �A.
Then for � as in 2. of Theorem 7.3, �A �V{��B1, . . . , ��Bm}. Thus � ��Bi for at
least one i ≤ n by the admissibility of V. Hence �� � � ′i . Thus � � �i . �

§8. Unification types. In this section we apply the results of the previous section
to obtain results on unification. The following theorem has been proved for the case
L = IPC in [10,32], and for intermediate logics in [21]. In the latter paper the result
for fragments is implicit.

Theorem 8.1. If V9n2 is admissible, then the n-unification type of the logic is
finitary.

Proof. Immediate from Corollary 7.5, using that for formulas A of size at most
n, i(A) ≤ 9n2 �

IPC is the only intermediate logic with the disjunction property for which all
multi-conclusion Visser rules are admissible [16]. Given this fact, the corollaries
above immediately imply what has been proved by Mints, Ghilardi, and Rozière
before.

Corollary 8.2 ([10, 26, 32]). Any fragment of IPC that contains IPC∧,→ has
unitary or finitary unification. If it does not contain disjunction it has unitary
unification.

The fact that Vn+1 is admissible in the n-th Gabbay-De Jongh logic Tn [9, 16]
implies the following.

Corollary 8.3 ([14]). Any fragment of Tn that contains conjunction and implica-
tion has finitary

√
n + 1/9–unification. If it does not contain disjunction it has unitary√

n + 1/9–unification under the same condition.

Another consequence of Corollary 7.5 is the following result by Mints (for IPC)
and Minari and Wroński (for all intermediate logics).

Corollary8.4 ([25,26]). The implication-conjunction(-negation) fragment of any
intermediate logic has unitary unification.

Using the fact that in Gödel–Dummett logic LC a disjunction A∨B is equivalent
to ((A → B) → B) ∧ ((B → A) → A) we can extend the result by Minari and
Wroński [25] that an intermediate logic has projective unification (every formula
has a pu) if and only if it contains LC, to fragments.

Corollary8.5. Any fragment of LC that contains conjunction and implication has
projective unification.
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Studia Logica, vol. 32 (1973), pp. 69–73.
[9] D. Gabbay and D. H. J. de Jongh, A Sequence of Decidable Finitely Axiomatizable Intermediate

Logics with the Disjunction Property, this Journal, vol. 39 (1974), no. 1, pp. 67–78.
[10] S.Ghilardi, Unification in intuitionistic logic, this Journal vol. 64 (1999), no. 2, pp. 859–880.
[11] , Best solving modal equations. Annals of Pure and Applied Logic, vol. 102 (2000),

pp. 183–198.
[12] , A resolution/tableaux algorithm for projective approximations in IPC. Logic Journal of

the IGPL, vol. 10 (2002), no. 3, pp. 227–241.
[13] , Unification, Finite Duality and Projectivity in Varieties of Heyting Algebras. Annals of

Pure and Applied Logic, vol. 127 (2004), no. 1–3, pp. 99–115.
[14] J. G. Goudsmit and R. Iemhoff, On unification and admissible rules in Gabbay–de Jongh logics.

Annals of Pure and Applied Logic, vol. 165 (2014), no. 2, pp. 652–672.
[15] R. Iemhoff, On the admissible rules of intuitionistic propositional logic, this Journal, vol. 66

(2001), no. 1, pp. 281–294.
[16] ,A(nother) characterization of intuitionistic propositional logic.Annals of Pure andApplied

Logic, vol. 113 (2001), no. 1–3, pp. 161–173.
[17] , Intermediate logics and Visser’s rules. Notre Dame Journal of Formal Logic, vol. 46

(2005), no. 1, pp. 65–81.
[18] , A note on consequence, Logic Group Preprint Series, vol. 314, Utrecht University,

Utrecht, 2013.
[19] , On Rules. Journal of Philosophical Logic, to appear.
[20] ,A syntactic approach to unification in transitive reflexivemodal logics.NotreDame Journal

of Formal Logic, to appear.
[21] R. Iemhoff and G. Metcalfe, Proof theory for admissible rules. Annals of Pure and Applied

Logic, vol. 159 (2009), no. 1–2, pp. 171–186.
[22] , Hypersequent systems for the admissible rules of modal and intermediate logics, Lecture

Notes in Computer Science, vol. 5407, Proceedings of LFCS ’09, (S. Artemov and A. Nerode, editors),
Springer, Berlin, 2009, pp. 230–245.
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