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The convergence hypothesis, which is developed in the context of growth economics,
asserts that the income differences across countries are transitory, and developing
countries will eventually attain the level of income of developed ones. On the other hand,
convergence clubs hypothesis claim that the convergence can only be realized across
groups of countries that share some common characteristics. In this study, we propose a
new method to find convergence clubs that combines a pairwise method of testing
convergence with maximum clique and maximal clique algorithms. Unlike many of those
already developed in the literature, this new method aims to find convergence clubs
endogenously without depending on a-priori classifications. In a Monte Carlo simulation
study, the success of the method in finding convergence clubs is compared with a similar
algorithm. Simulation results indicated that the proposed method perform better than the
compared algorithm in most cases. In addition to the Monte Carlo, a new empirical
evidence on the existence of convergence clubs is presented in the context of real data
applications.

Keywords: Growth Economics, Convergence Hypothesis, Convergence Clubs, Maximum
Clique Algorithm, Maximal Clique Algorithm

1. INTRODUCTION

One of the main predictions of (neoclassical) economic growth theory is that
in the long run, all countries with similar technological characteristics would
converge to a balanced growth path (steady state) equilibrium that will be en-
tirely determined by the (exogenously) given growth rate of technical progress,
which in turn would equal labor productivity growth. Hence, economies with
the same productivity would grow at the same rate and converge to the same
equilibrium. This is the so-called growth convergence hypothesis, which has been
one of the main focal points of the empirical economic growth literature. In that
context, a time series interpretation of the convergence hypothesis considers in-
come gaps (or labor productivity gaps) between countries over time and analyzes
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whether these gaps would diminish, hence signifying convergence to a single
steady-state (equilibrium). On the other hand, if there are constant or increasing
returns to capital, there may be a multiplicity of steady states (or absence of
stable steady states) and a country’s initial conditions will determine to which
of these it will converge. In essence, convergence to a single steady-state im-
plies that however poor, a country will inevitably converge in the long run to a
(prosperous) equilibrium shared by all. In the absence of such a single steady-
state, poor countries may only converge to a common equilibrium with other poor
countries and will never catch up with the prosperous ones. The current debate
on growth convergence as it has evolved over the last three decades, has been
one of the most active research areas in economics and has taken the central role
in the empirical growth literature. For possible avenues that growth convergence
may take place, for example, Ketteni et al. (2011) found that countries with high
levels of Information Technology (IT) capital have high output elasticities of
human capital and countries with high levels of human capital have high output
elasticities of IT, a result suggesting a complementarity between the two. In that
case, one may expect homogeneous countries with high levels of IT Capital and
human capital to converge. The main developments in the literature as they have
evolved over time, mainly since the mid-eighties are summarized and presented in
the Durlauf et al. (2005) survey. The earlier literature was based on the analysis of
standard cross section/panel data and its main contributions was to identify all the
main issues that have arisen in that context, such as endogeneity, heterogeneity,
and nonlinearity. However, lately the emphasis has been on utilizing the existing
data sets of long time series of GDP (gross domestic product) data compiled for
most countries after WWII (and for a fewer developed countries going back to the
19th century). The resulting time series approach has built on the work of Bernard
and Durlauf (1995, 1996), who have introduced time series interpretations of the
convergence hypothesis that can be cast in terms of unit root and cointegration
analysis.

In that strand of recent literature, Pesaran (2007) has extended the time series
convergence concepts to the case where there is no requirement that the converging
economies to be identical in all aspects, including initial endowments. The main
result is that for two economies to be convergent it is necessary that their output
gap is stationary with a constant mean, irrespective of whether the individual
country’s output is trend stationary and/or contains unit root. Furthermore, testing
for convergence in that case does not rely on using a benchmark country in order
to define the output gaps that are used in the analysis and uses a pairwise approach
to test convergence. The issue of relying on a benchmark, also renders the analysis
problematic as perceived leaders used as benchmark economies may not retain
the leader title over the whole period of analysis. In that respect, Pesaran’s (2007)
pairwise analysis becomes relevant. This analysis only considers the binary process
of convergence (or lack of it) for all pairs out of a set of countries included in the
initial group. The choice of this initial group is arbitrary and usually accomplished
based on the data availability, geographic, or economic developmental status.
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Therefore, the analysis has nothing to say how if one can also examine the issue
of convergence to a common cluster that can selected out of the initial group.
Pesaran stated that “in principle, the convergence results from the analysis of
pairwise output gaps can be used to form “convergence clubs,” but special care
must be taken in addressing the specification search bias that such a strategy would
entail” [Pesaran (2007), p. 314]. In other words, the analysis so far, has mainly
analyzed the issue of convergence between “country-pairs,” but is mainly silent
on how to proceed to classify countries as belonging to a common “country club.”

Convergence to multiple steady states and the emergence of “convergence clubs”
was put forward by various researchers in the literature, see Baumol (1986),
Durlauf and Johnson (1995), and Galor (1996) to name a few. From a theoretical
point of view, lack of convergence arises if there are constant or increasing returns
to capital. In that case, there may be a multiplicity of steady states (or absence of
stable steady states) and a country’s initial conditions will determine to which of
these it will converge, see Azariadis and Drazen (1990) and Azariadis (1996). In
essence, convergence to a single steady-state implies that however poor, a country
will inevitably converge to prosperity in the long run. In the absence of such a
single steady-state, poor countries may only converge to a common equilibrium
with other poor countries and will never catch up with the prosperous ones. An
alternative more recent and complete theoretical explanation for the emergence
of country clubs can be found in the Unified Growth Theory, see Galor and Weil
(2000), Galor and Moav (2002), and Galor (2011). In that context, the existence
of multiple growth regimes arises naturally over time as economies differ in their
respective phase of economic development. Hence, the differential timing of take-
offs from stagnation to growth has segmented economies into three fundamental
growth regimes: slowly growing economies in the vicinity of a Malthusian steady
state, fast growing countries in a sustained-growth regime, and a third group of
economies in transition from one regime to the other. However, the presence of
multiple convergence clubs may be only a temporary phenomenon as endogenous
forces may ultimately permit members of the Malthusian club to join the members
of the sustained-growth club.1 From an empirical point of view, the broad evidence
suggests that the process of convergence is not smooth but rather characterized by
“start and stop” behavior. As argued by Johnson and Papageorgiou (2017), who
have produced the most comprehensive survey on the subject of convergence up
to date several mechanisms of divergence and convergence may be concurrently
at work across countries in different stages of their development process.

In this paper, we examine convergence to multiple steady states and the emer-
gence of “convergence clubs” by introducing a new method that combines unit
root testing within a I (1)/I (0) framework with maximum and maximal clique
approaches from the computer science graph theory to establish a set of statistical
criteria for cluster formation.2 We will also offer an evaluation of the performance
of our proposed method vis-a-vis other existing methods in the literature by means
of a Monte Carlo simulation. To the best of our knowledge, this is the first time that
the properties of such methods have been explored and analyzed in the literature.
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The paper is organized as follows. In the next section, we will discuss the relevant
literature on club formation. We will then proceed to discuss in detail the competing
approaches that we will be investigating in Section 3 and then we will present the
description of the Monte Carlo design and discuss the data generating processes,
evaluation procedures, and Monte Carlo results in Section 4. In Section 5, we will
present the empirical results of the illustration of the method on real growth data
and finally we will conclude.

2. LITERATURE REVIEW

The definition of a convergence club and the principle of clustering behind its for-
mation gave rise to different empirical strategies to test the convergence hypothesis.
However, the existing early methods were generally focused on the convergence
of various a-priori defined homogeneous country groups, which were assumed to
share the same initial conditions. Baumol (1986), for example, grouped countries
with respect to political regimes (OECD membership, command economies, and
middle income countries), Chatterji (1992) allowed for clustering that based on
initial income per capita levels and tested convergence cross-sectionally, while
Durlauf and Johnson (1995) grouped countries using a regression tree method
based on different variables such as initial income levels and literacy rates that
determined the different “nodes” of the regression tree. An alternative approach to
the cross-sectional notion of β-convergence in the context of cross-sectional was
introduced by Bernard and Durlauf (1995, 1996) based on a time series framework
that makes use of unit root and cointegration analysis, see Durlauf et al. (2005) for
a comprehensive literature review for convergence hypothesis. Hausmann et al.
(2005), similar to previous studies, by considering a priori grouping criteria such
as initial incomes, found some evidence on convergence clubs by using time series
methods.

In a time series context, Pesaran (2007) proposed a testing procedure that applies
unit root tests to pairwise differences of the income per capita time series. This
method relies on the use of unit root tests to all possible pairwise differences of the
per capita income series in any given group of countries. Pesaran also considered
different initial set of countries based on geographic characteristics for his pairwise
method, but found no evidence on convergence clubs. Stengos and Yazgan (2014)
using a long memory framework came to the same conclusion.

Similar to Durlauf and Johnson (1995), Hobijn and Franses (2000) (henceforth
HF) proposed a panel data-based approach for testing convergence. Contrary to
the early attempts that relied on a two-stage method that first assigns membership
to a group and then considers whether this assignment is satisfied by the data, HF
classifies countries into clusters of countries if they satisfy some criterion (desired
convergence property). They clustered countries into subgroups by applying mul-
tivariate stationarity tests to panels consisting of pairwise differences of income
per capita series and in contrast to Durlauf and Johnson (1995) they detected a
larger number of small clubs. A different approach was proposed by Chortareas
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and Kapetanios (2009), and Kapetanios (2003), who developed a method that is
designed to endogenously classify stationary and nonstationary series by sequen-
tially reducing the size of the null by removing series with the most evidence
against the unit root null, classifying these series as stationary. The stopping point
is when the unit root null is not rejected, such that all the remaining regions are
classified as nonconverging.

Using the HF methodology, Corrado et al. (2005) extended this method by
allowing subgroups to vary over time and applied it to European regional sectoral
data of agriculture, manufacturing, and services. Corrado and Weeks (2011) ex-
tended the sequential HF approach to account for short time panels by using a
bootstrapping modification and applied their method to study regional European
convergence. The main contribution of HF is that it does not require a-priori classi-
fication of country groups and detects group formation in an endogenous manner.
A similar approach is advanced using the notion of σ -convergence by Phillips
and Sul (2007), who developed an algorithm based on a log-t regression approach
that clusters countries with a common unobserved factor in their variance. In the
convergence literature, σ -convergence as opposed to β-convergence deals with
the reduction in the variance of the cross-country income distribution over time,
see Quah (1996).

Following Pesaran (2007) and his testing procedure that applies unit root
tests to pairwise differences of the income per capita time series convergence is
reached when the proportion of rejections obtained from the pairwise unit root
tests is greater than a certain threshold. He applied this method to country groups
belonging to different geographical regions and found no evidence of convergence
clubs. However, as is in most of the earlier studies, the country groups under
consideration were defined subjectively a priori without an endogenous clustering
method. The current paper aims at developing a convergence analysis technique
of cluster (club) formation that relies on pairwise testing both in the simpler I (0)

or I (1) framework as in Pesaran (2007) combined with the maximum clique
algorithm widely used in graph theory from the computer science literature, see
Bron and Kerbosch (1973) and Konc and Janezic (2007). Rather than testing a-
priori grouped country clusters, the method explores all convergent groups in a list
of N countries that was previously subjected to pairwise convergence tests within
a I (0)/I (1) or a long memory framework. Within a long memory framework this
method has been introduced recently by Özkan et al. (2018) on a limited scale to
study club formation among small (exogenously) defined groups of homogeneous
countries. We propose to use this approach as a new endogenous cluster formation
method for the all available countries and analyze and compare its properties with
the existing endogenous cluster formation mechanisms of HF as they both rely on
testing the time series properties of the mean function of output gaps as opposed
to the variance (σ -convergence of Phillips and Sul (2007).3 In our paper, we will
compare these two approaches, by means of an extensive Monte Carlo simulation
study using evaluation criteria from the forecasting literature. This will be the first
time that the properties of such mechanisms will be investigated and compared.
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3. METHODOLOGY

The simple pairwise method and HF are both seeking convergence by searching
similarities in movements of outcomes in the process of time. To this end, both
methods expect all pairs in a club to move around zero or a constant, in particular
stationarity in difference of pairs. However, there are several differences in ap-
proaches as well as the treatments of pairs. First, HF constructs clubs endogenously
via a clustering algorithm that runs recursive stationarity tests. On the contrary,
the pairwise method does not construct clubs, but tests the lists of clubs that are
given exogenously. However, our approach will combine pairwise testing with the
maximum and maximal clique algorithms from computer science graph theory
introduced by Özkan et al. (2018). As it will be argued below, there is a crucial
theme in the construction of a single club, HF is a bottom up method that forms
the clubs by adding countries one by one while the maximum clique method, by
definition of employing the pairwise method, is a top-down method that finds all
the set of countries satisfying the definition of a club.

We proceed to present our proposed new convergence analysis technique that
consists of pairwise testing as in Pesaran (2007) combined with a maximum clique
algorithm widely used in graph theory from computer science literature. We first
present the pairwise testing method and then the procedure to find convergence
clubs via the maximum clique technique. We will proceed to compare our proposed
method with that of HF by means of an extensive Monte Carlo simulation study.

3.1. Pairwise Convergence Test

Suppose that the log GDP per capita series of country i and j at time t are as
follows:

Z
ij
t = yi

t − y
j
t = β + εt ∼ I (d), i = 1, . . . , N − 1,

j = i + 1, . . . , N, t = 1, . . . , T ,

where T is the length of time interval, N is the number of countries, and yi
t and

y
j
t denote the log GDP per capita series of i and j , respectively. εt stands for the

disturbance term and d ∈ {0, 1} represents the integration of the series. Here, β

can represent a constant or a function of time as well [see Stengos and Yazgan
(2014)]. Since the difference series are either stationary or nonstationary, that will
determine if the pair is convergent or not. For instance if εt ∼ I (0), the two
log GDP per capita series will be drifting together overtime and in that case it is
appropriate to assert that countries i and j are convergent. On the other hand, if
εt ∼ I (1), a nonstationary process would indicate that the log difference series
between i and j is nonstationary and the two log GDP per capita series would be
drifting apart over time, indicating that countries i and j are not converging.

Determining convergence by applying unit root tests on differences between
GDP per capita series characterizes the time series based approach on convergence
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applied in many different contexts since Bernard and Durlauf (1995, 1996), see
Durlauf et al. (2005) for a comprehensive survey. However, when there are more
than two countries, there is still uncertainty in determining whether the countries
are converging altogether to a steady state. In the literature, the main approach
centers on testing if all countries in the group are converging to the group average
or a chosen country as a benchmark (generally United States), hence applying
unit root tests to the pairwise differences of each group member with the average
or the selected benchmark country. Alternatively, another approach is to apply
multivariate stationarity tests to determine convergence. The former approach is
criticized for the arbitrariness in choosing the benchmark country or the country
average, while the latter is not preferred because of the difficulties in applying it
to large groups.

The pairwise method developed by Pesaran (2007) can offer a remedy to both
of the above difficulties. According to this approach, if one tests for convergence
of a group of N countries, all N(N − 1)/2 pairs are subjected to unit root testing.
Pesaran (2007) showed that, if a group of N countries are nonconvergent, the
rejection rate of the null hypothesis of nonstationarity (H0 : Zt ∼ I (1)) calculated
by N(N − 1)/2 tests is equal to the nominal size of the individual tests, i.e.,
the probability of Type 1 error. More specifically, it is shown that under the null
hypothesis of N countries being nonconvergent, the rejection rate of individual
tests converges to the nominal size, α, as N and T → ∞, even though individual
tests are not independent cross-sectionally. Since the null hypothesis in this case is
nonconvergence (divergence) of N countries, in order to find evidence in favor of
the null, it is enough to show that the proportion of rejections over N(N−1)/2 tests
is not larger than the significance level of individual tests. In that case for example,
if the significance level is 5%, the proportion of rejections must not exceed 0.05.4

To summarize, rejection rates of H0 : Zt ∼ I (1), higher than a given significance
level in a given application would imply evidence against the nonconvergence
(divergence) null hypothesis in favor of the convergence alternative. On the other
hand, rejection rates lower or close to the employed significance level will provide
evidence for the nonrejection (validity) of divergence.

3.2. Maximum Clique Method for Finding Convergence Clubs

The maximum clique method that we present in this subsection, combines the
maximum clique algorithm of graph theory with the previously described pairwise
convergence tests of H0 : Zt ∼ I (1). Rather than testing a priori grouped country
clusters, the method explores all convergent groups in a list of N countries that
was previously subjected to pairwise convergence tests. In this sense, the method
is an endogenous extension of Pesaran (2007) similar to the one proposed by HF.

The method consists of two steps. First, all possible pairwise differences of N

countries are subjected to unit root tests, where the null denotes a unit root process
as evidence of nonconvergence. If the rejection rate obtained from N(N − 1)/2
tests is well above the significance level, that would be evidence against the null
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hypothesis of nonconvergence (divergence) hypothesis in favor of the alternative
of convergence and the list of N countries will be taken to form a convergent
group. If this club involves all examined countries, then all countries are said
to be convergent and we do not go any further in seeking out the presence of
convergence clubs. However, as shown in Pesaran (2007), Dufrénot et al. (2012),
and Stengos and Yazgan (2014) it is very unlikely that, by examining all countries
as a single group, one will find evidence of convergence for all with pairwise
testing. Nevertheless, if a subgroup of countries is found convergent via pairwise
method, then it can be said that this subgroup constitutes a convergence club. The
main challenge, as indicated above, is to find a method to determine this subgroup
rather than relying on a-priori classifications. In the second step, we undertake this
task.

Assume that U denotes the set of all countries. Hence, by definition, the cardi-
nality of U is equal to N ; mathematically if #() denotes the cardinality, we have
#(U) = N . Moreover, suppose that E is a subset ofU . In this case, in order E to be a
convergence club, all binary combinations obtained from the elements of E should
satisfy the stationarity hypothesis in the pairwise tests. In other words, the null of
Zt ∼ I (1) should be rejected for all m(m − 1)/2 pairs, where #(E) = m < N .

In the second step, from the N(N − 1)/2 test results, the objective is to find
a class of subsets G for which all subsets, e.g., E , satisfy pairwise convergence
property. Mathematically, let G denotes the class of all subsets satisfying the
desired pairwise (stationarity) property. Then, the problem is

G := {E : ∨i, j ∈ E, t (Zij ) = 1},
where Zij = yi − yj , t (·) is the test result of the series in the bracelet and takes
the value of 1 for a convergent pair, i, j , and 0 otherwise.5 Hence, the problem
can be expressed as

arg max
G

{ #(E) : E ∈ G}.
In graph theory terms, countries become vertices, the test result (rejecting or

not rejecting pairs) of a pair become edges, and as such the set of all vertices and
edges constitutes an undirected graph. If an undirected graph has edges between all
vertices then the graph is said to be complete. If there is a subset of an undirected
graph having all properties of a complete graph, the subset is so called a clique.
Therefore, in our case, all convergence clubs of a country list can be expressed as
cliques. Solving the problem defined above is known as finding maximum cliques.

Pairwise test results form an undirected graph and accordingly, countries and
test results determine the vertices and edges respectively. Hence, the problem
becomes to find a subgraph with the maximum number of vertices, where an edge
is defined between two vertices, or in other words, a maximum clique. Figures 1
and 2 present the notions mentioned above.

Finding a maximum clique can be too hard from a computational point of view.
The computational complexity of solution to maximum clique problem is known
as NP-Complete whose brute-force solution requires 2N − (

N
2

) − N − 1 trials.
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FIGURE 1. A sample undirected graph.

First, Bron and Kerbosch (1973) developed an algorithm to solve the problem in
exponential time. In the recent literature, various planar graph algorithms have
been developed that enables the problem to be solved in polynomial time. In this
study, we will employ the branch and bound algorithm proposed by Konc and
Janezic (2007), which is an improved branch-and-bound algorithm that ends in
polynomial time. We will apply this method using the R programming language
with the igraph package.

We should note that, the maximum clique method is not a conclusive technique.
In other words, it does not cluster the country list into subgroups, but finds club(s)
having a maximum number of elements. Hence, we offer the following clustering
algorithm to detect convergence clubs.

1. Apply the desired stationarity test to all Zij such that i, j ∈ U , and i �= j .
2. Test the unit root null hypothesis. The resulting variable takes the value of 0 if null of

nonstationarity (unit root) is not rejected, 1 if it is rejected (evidence for stationarity).
3. Construct adjacency matrix from the resulting variable values obtained in (2).
4. Find maximum clique(s) from the adjacency matrix via the algorithm proposed by

Konc and Janezic (2007).
5. The group of countries in the clique is labeled as a convergence club. Eliminate

respective rows and columns of the countries from the adjacency matrix. And step
back to (4). Stop if all the rows and columns are eliminated from adjacency matrix.
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FIGURE 2. A sample maximum clique.

3.3. The HF Method

As mentioned in the introduction, the method presented above bears certain simi-
larities to the endogenous cluster analysis proposed by HF. Hence, it is important
to compare the accuracy of our method with HF. To this end, we will first present
HF and review both methods by means of a simulation comparison in the following
two subsections.6 An important difference between the maximum clique method
described above and the HF approach is that the former is based on testing the null
of a unit root (divergence), whereas in the latter the null hypothesis is stationarity
(convergence).

HF is a clustering algorithm that applies multivariate KPSS tests recursively to
panels enlarged by a series in each iteration. More generally, the algorithm allows
a new country to enter the convergence group until null hypothesis of stationarity
is rejected. HF relies on two definitions of convergence clubs. The first of these,
perfect convergence, requires club members to have statistically equal GDP per
capita series. Perfect convergence occurs if the pairwise difference of the club
members’ output series are stationary around a zero mean. This definition of con-
vergence indicates a more stringent state, since it ignores catching-up possibilities
or other differences stemming from initial conditions. The second definition of
convergence, the so-called relative convergence, describes similar movements in
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the output series over time irrespective of initial conditions, i.e., the pairwise
differences follow the nonzero mean stationarity property.

As mentioned above, HF determines convergence of a group by utilizing multi-
variate KPSS tests. The method is based on the construction of a panel containing
pairwise differences of consecutive series, then it applies KPSS test to this panel.
In this manner, to test if country group C = {cn1 , cn2 , . . . , cnp

: np < N} is
converging, the panel xC

t ≡ MpyC
t is defined, where Mp and yC

t ∈ R
p are as

follows.

Mp
(p−1)×p

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · · · · 0
0 1 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . 1 −1 0

0 · · · · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and yC
t =

⎡
⎢⎢⎢⎢⎣

y1t

...

...

ykt

⎤
⎥⎥⎥⎥⎦ .

Here, xC
t denotes the matrix of consecutive differences of incomes, Z

(i−1)i
t , ∀i ∈

{n1, . . . , np}, and the stationarity test applied to xC
t determines whether or not

country group C constitutes a convergence club. HF tests perfect and relative
convergence separately by employing two respective multivariate KPSS tests.
Convergence clubs from N countries are clustered via the following algorithm.

HF Algorithm:

1. Initially, set each countries as a club by defining li = {i} for i = 1, . . . , N .
2. For each i < j , construct yC

t where C = li ∪ lj . Through these matrices, apply the
multivariate KPSS test to xC

t . If null hypothesis of stationarity is rejected for all i, j ,
reject convergence hypothesis and stop. If it is not rejected for any pair, i, j proceed
to next step.

3. Choose i, j that is tested to have largest p-value from the KPSS test in the previous
step. For i < j , redefine li as li = li ∪ lj and set lj = ∅. Step back to (2).

4. Label nonempty sets obtained with more than one member as convergence clubs.

3.4. Comparison of Methods

HF is a method that relies on a “bottom up” algorithm that clusters groups one
by one. On the contrary, the maximum clique method relies on a “top–down”
process that detects all subsets satisfying club properties. Other than clustering,
there is a substantial difference in testing convergence. To determine whether a
set of countries is convergent, HF applies multivariate stationarity test to panels
comprised of consecutive pairwise difference series set elements and confirms
convergence if the null hypothesis of stationarity of the panel is not rejected.
However, the panels do not include all possible pairwise differences but only
differences of consecutive pairs. For example, if we want to test the convergence
of countries 1,2,3, and 7, a panel consisting of Z12, Z23, and Z37 is subjected to

639

https://doi.org/10.1017/S1365100518000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100518000391


FUAT C. BEYLUNIOĞLU ET AL.

the test, and if stationarity cannot be rejected the panel is then augmented with
series other than 1, 2, 3, and 7, each added separately. If then for each of these
additional panels the stationarity null is rejected, then these four countries are said
to be convergent. On the other hand, our proposed pairwise method depends on
a different definition of clubs, so that for m countries to be convergent, we need
to achieve rejection of the null of a unit root for all m(m − 1)/2 pairs. Hence, in
order for the list of countries in the previous example to form a convergence club,
the rejection rate of 4(4 − 1)/2 = 6 pairs from unit root tests should exceed some
significance level.

3.5. Monte Carlo Structure

In this subsection, we will discuss the data generating processes that is used in our
Monte Carlo study. We generated various types of data to conduct the evaluation of
the clustering methods that we compare in order to determine factors and sources
leading to success and failure. The data sets are classified in two groups. In the first
group, we include single club and many nonconvergent pairs, while the ones in
the second group include multiple clubs together with only some nonconvergent
pairs. In the following parts of this subsection, we will present the data generating
processes and evaluation procedures employed in this study.

Data generating processes. The simulation assumes that the log GDP series
is given as follows:

yit = ci + γift + εit , (1)

where εit ∼ I (0) is the error term and ft is the common factor that affects all
countries the same way (such as technology). If we assume nonstationarity of the
factor, a pair of countries can only be convergent if both countries utilize the factor
likewise. This can be possible if the country specific constants, γi that measure
that effect are equal. In other words, for the pair i and j , if γi = γj , ft is canceled
out and yit − yjt becomes ci − cj + εit − εjt . In this case, since the error terms
are assumed to be stationary, we have ci − ct + εit − εjt ∼ I (0) and the pair i and
j would be convergent by definition. Likewise, for any subset of countries having
equal γi terms, all pairwise difference series in that subset would be stationary and
hence these countries would constitute a convergence club. On the other hand, the
constants, ci , are country specific and are generated once for all data sets.

The nonstationarity of ft is modeled under an ARIMA process following below:

ft = ft−1 + vt , vt = ρvvt−1 + et , et ∼ i.i.d. N(0, 1 − ρ2
v ),

where we allow ρv = {0.2, 0.6} as separate cases. Besides, we also allow the error
term of the log GDP series in equation (1) to have serial dependence, following
the specification below:

εit = ρiεi,t−1 + vit , vit ∼ i.i.d. N(0, σ 2
vi
(1 − ρ2

i )).
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Above, the error terms, vit are independent and identically distributed (i.i.d.)
distributed Normal random variables. Here, the autoregressive coefficient ρi and
σ 2

vi
are country specific and invariant among the data sets. To be more precise,

before proceeding to data generation, we generated the coefficients to have the
following property.

σ 2
vi ∼ i.i.d. U[0.5, 1.5], ρi ∼ i.i.d. U[0.2, 0.6].

To generate a single club containing data set, the coefficients of m convergent
countries, are assumed to be γi = γj = 1. For the remaining (N − m) countries,
γi generated randomly as γi ∼ i.i.d. X 2

κi
. It is worth noting that γi are generated

once, yet, when the number of club members (m) is 10 instead of 5, for example,
arbitrarily selected 5 of the remaining coefficients are substituted with 1 to allow
them to be convergent. Last, we also generate country-specific constants as ci ∼
i.i.d. X 2

κi
.

For multiple clubs, the club sizes, m’s associated with each club, when the
number of clubs (k) and the number of countries (N ) are given, are determined
by allowing different varieties in club sizes and in a manner in which two single
nonconvergent countries that do not belong to any club are present in the data.
Additionally, for a given k and N we selected, the clubs sizes m’s are randomly
drawn from a Poisson distribution with a rate of λ = N/k. For each N , random
draws are repeated k times.7

For both procedures, γi’s are equal for countries constituting a
club, but unequal among clubs. In particular, γi are chosen from
{1, 2, 4, 5, 6, 9, 11, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25, 26, 28, 30} and the re-
maining coefficients of nonconvergent countries are generated as in single clubs.
The simulations are repeated 10,000 times for various time intervals; num-
ber of countries, clubs, and club members. In particular, simulations are per-
formed using different combinations of T = {50, 75, 100, 200} time intervals,
N = {10, 20, 30, 40} count of countries and k = {1, 2, 3, 4, 5, 6, 7, 8} number of
clubs.

Testing and evaluating procedures. We start by generating the repeated data
sets based on the number of replications following the above specifications and
choice of parameters. Both methods are applied to each generated data sets and
the resulting club(s) obtained via both methods are evaluated by comparing the
predicted club formation of each method with the actual club formation from the
data generating processes described above. The general evaluation of the success
of each method is considered for each data type.

To the best of our knowledge there is no other comparable Monte Carlo study in
the literature that evaluates clustering methods in the same context as we do here.
We will make use of some statistics from other fields to evaluate the maximum
clique algorithm and HF and the methods that we will propose differ for single
club to the multiple club cases. We will first present the single club evaluation
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methods, for which we will utilize two different evaluation tools. The first one
is the Kupiers score (KS), while the second one is the Pesaran and Timmermann
(1992) test statistics (PT) commonly used in the forecasting times series literature
for the evaluation of sign forecasts. It is worth noting that sign forecasts are used for
predicting whether an underlying series would appreciate (increase) or depreciate
(decrease) relative to a benchmark. In our case, success in detecting a country’s
membership in a club is equivalent to success in forecasting the sign of a time
series.

Since success of bidirectional results such as upside and downside movement
or membership in a club, can occur randomly,8 KS takes true forecasts and false
alarms into account separately. For instance, if we are evaluating a forecast of a
bad event or calamity in economics, an estimate of false alarms would help us
avoid the issue of scare-mongering. Here, KS is defined as H − F where

H = II

II + IO
and F = OI

OI + OO

The capital letters I and O in the above formulae refers to whether the country
under investigation is a member (“in” the club) or not (“out” of the club). Regarding
the order of the letters, the first letter indicates whether the country is found to be a
member in the experiment, while the second letter denotes its actual membership
state (i.e., whether the country is actually in the club or not). Therefore, II

indicates that the country, as a member of the club is correctly identified whereas,
OO denotes that that the country, as an outsider of the club is also correctly
identified. Furthermore, IO indicates that a country is detected to be in the club,
while actually it is not (false detection). Similarly, OI refers to the case where
the country is misclassified as being outside, even though it is a member of the
club (false alarm). The ratio H captures the rate of “correct hits” in detecting club
membership, whereas F denotes the “false alarm” rate, that is the rate of false
exclusions.

As in the case of sign prediction in the forecasting literature, success can be the
outcome of a pure chance probability event of 0.5. Hence, to test the statistical
significance of KS, we will employ the following PT statistic:

PT = P̂ − P̂ ∗

[V̂ (P̂ ) − V̂ (P̂ ∗)]1/2
∼ N(0, 1),

where P̂ refers to the proportion of correct predictions (correct detections of
countries as being a member or non member) over all predictions (N countries),
and P̂ ∗ denotes the proportion of correct detections under the hypothesis that the
detections and actual occurrences are independent (where success is a random
event of probability 0.5), while V̂ (P̂ ) and V̂ (P̂ ∗) stand for the variances of P̂ and
P̂ ∗, respectively.

In simulations involving multiple clubs, it is not possible to use KS and the PT
statistic due to the more complicated nature of the success/failure classification,
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which is no longer binary as in the case of the single club case. In the situation
of a single club, a country can be either detected (correctly or incorrectly) to be
a member of this single club or not. In the multiple club case, on the other hand
there are more than two distinct cases for the actual membership state: the country
can be either a member of the correct club, belong to the “wrong” club, or not be
a member of any club.

To confront this problem, in the case of multiple clubs, we will use a much
stricter criterion by counting the successful cases in our simulations in which all
countries are detected correctly to be in their correct positions. In other words, we
do not evaluate success as a binary outcome, country by country as in the case of a
single club in each replication. Instead, we will look at the overall results in each
replication. If, in one replication, all countries are placed correctly in their correct
position we will consider this as one successful outcome out of a total of 10,000
replications and as fail otherwise.

3.6. Simulation Results

We now proceed to discuss the findings of the simulations based on the data
generating processes of club formation discussed above. We will first discuss the
comparison between the pairwise unit root based approach augmented with the
maximum clique algorithm and the HF approach based on multivariate KPSS
testing for the single club case and then the multiple club case.

Single club results. The results are presented in Tables 1 and 2. Table 1
presents two choices of the number of club members (m = {3, 5}), whereas
Table 2 choices for (m = {7, 10}). In each table, there are four choices of the
total number of countries involved N, (N = 10, 20, 30, 40); four choices of time
span (T = 50, 75, 100, 200) for the analysis that would mimic the real-data time
span availability; and two choices of the persistence parameter (ρv = {0.2, 0.6}).
The pairwise unit root testing approach is combined with the maximum clique
algorithm using an ADF pairwise test9, while HF is based on the multivariate
KPSS testing procedure. Among the three versions of the pairwise approach, the
ADF one gives better and more consistent results that overall outperform its all
competitors, including HF. The last set of columns for example in Table 2, for the
H − F results (the “correct hit” ratio net of “false alarms,” indicates that with
m = 10, N = 40, T = 100, and ρ = 0.6, ADF with a 0.951 KS outperforms
the others including the HF method that has a KS of 0.845. Similarly, the PT test
statistics yield 579.5 for the pairwise ADF test versus 552.2 for HF. Note, that the
rejections of the null hypothesis of random success outcomes are higher with the
PT test for both methods (slightly more so for the pairwise ADF approach). Our
method conducting the pairwise analysis based on ADF alone combined with the
maximum clique algorithm will be henceforth denoted as MCL. Tables A.1 and
A.2 in the appendix extend Tables 1 and 2 to include also results using 1% and
10% significance levels.
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TABLE 1. Single club: Kupiers scores and PT statistics, m = {3, 5}, 5% significance level

No constant With constant

H F KS PT H F KS PT

m N ρ T MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

3

10

0.2

50 0.985 0.947 0.033 0.023 0.952 0.924 296.1 292.2 0.877 0.849 0.087 0.316 0.789 0.532 244.3 154.5
75 0.987 0.964 0.037 0.025 0.950 0.939 294.5 294.9 0.959 0.902 0.091 0.320 0.867 0.582 263.2 168.6

100 0.989 0.972 0.041 0.030 0.948 0.943 293.3 294.7 0.965 0.928 0.095 0.293 0.870 0.634 263.2 183.9
200 0.989 0.983 0.050 0.024 0.939 0.959 289.2 300.1 0.975 0.956 0.109 0.212 0.866 0.745 260.0 217.7

0.6

50 0.977 0.947 0.045 0.018 0.932 0.929 288.5 294.5 0.895 0.869 0.050 0.276 0.845 0.593 266.5 172.6
75 0.982 0.966 0.043 0.022 0.940 0.944 290.8 296.9 0.979 0.917 0.036 0.291 0.942 0.626 292.9 181.7

100 0.986 0.974 0.042 0.023 0.944 0.950 292.1 298.2 0.984 0.938 0.037 0.274 0.947 0.664 294.0 192.6
200 0.988 0.983 0.046 0.025 0.942 0.958 290.7 299.7 0.986 0.966 0.039 0.191 0.948 0.775 293.7 227.2

20

0.2

50 0.859 0.864 0.056 0.029 0.802 0.834 335.8 368.6 0.371 0.592 0.183 0.257 0.188 0.336 73.4 116.1
75 0.834 0.902 0.064 0.030 0.770 0.872 320.4 378.7 0.305 0.687 0.220 0.275 0.085 0.412 32.2 139.1

100 0.814 0.918 0.074 0.032 0.740 0.887 304.7 381.6 0.299 0.749 0.240 0.276 0.059 0.473 22.0 158.7
200 0.742 0.955 0.097 0.030 0.645 0.926 260.6 395.1 0.284 0.870 0.257 0.225 0.027 0.645 9.7 220.6

0.6

50 0.905 0.882 0.047 0.024 0.858 0.858 360.1 380.5 0.486 0.663 0.122 0.229 0.363 0.434 152.1 152.2
75 0.893 0.918 0.052 0.025 0.841 0.893 351.3 390.0 0.447 0.755 0.146 0.245 0.301 0.509 122.4 174.1

100 0.887 0.939 0.053 0.024 0.834 0.915 348.0 397.1 0.423 0.817 0.155 0.251 0.268 0.567 107.7 191.7
200 0.843 0.964 0.066 0.028 0.777 0.936 321.5 399.5 0.358 0.907 0.174 0.208 0.184 0.699 73.0 240.7

30

0.2

50 0.938 0.834 0.046 0.027 0.891 0.808 427.8 428.7 0.703 0.590 0.119 0.206 0.584 0.384 251.5 146.6
75 0.950 0.882 0.056 0.027 0.894 0.855 416.8 445.4 0.872 0.669 0.131 0.232 0.740 0.437 301.1 160.8

100 0.958 0.903 0.061 0.028 0.896 0.875 411.3 450.0 0.908 0.710 0.133 0.242 0.774 0.468 312.0 169.8
200 0.963 0.940 0.085 0.031 0.878 0.909 381.9 456.2 0.920 0.782 0.146 0.216 0.774 0.566 305.1 208.9

0.6

50 0.940 0.861 0.044 0.020 0.896 0.841 433.1 451.7 0.755 0.630 0.084 0.192 0.671 0.438 308.1 169.5
75 0.953 0.899 0.049 0.021 0.904 0.878 429.2 463.2 0.905 0.694 0.091 0.218 0.813 0.475 353.5 176.8

100 0.960 0.920 0.052 0.023 0.908 0.897 426.2 465.9 0.940 0.746 0.097 0.221 0.843 0.525 359.3 193.6
200 0.968 0.952 0.063 0.024 0.905 0.928 413.1 474.0 0.953 0.833 0.100 0.197 0.852 0.636 360.3 238.3
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TABLE 1. Continued

No constant With constant

H F KS PT H F KS PT

m N ρ T MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

40

0.2

50 0.808 0.806 0.049 0.023 0.759 0.783 410.7 475.4 0.336 0.502 0.137 0.174 0.199 0.328 92.6 136.9
75 0.810 0.849 0.058 0.024 0.752 0.825 393.8 489.9 0.375 0.577 0.162 0.200 0.213 0.378 92.5 149.9

100 0.796 0.882 0.066 0.024 0.730 0.857 373.1 502.1 0.371 0.620 0.168 0.205 0.203 0.415 87.2 162.5
200 0.765 0.923 0.090 0.025 0.675 0.897 323.8 516.1 0.362 0.702 0.178 0.198 0.184 0.504 77.9 197.9

0.6

50 0.862 0.844 0.042 0.018 0.821 0.826 449.4 508.4 0.455 0.530 0.098 0.163 0.357 0.367 180.3 155.7
75 0.865 0.886 0.047 0.020 0.818 0.867 438.4 518.4 0.570 0.604 0.106 0.182 0.464 0.421 222.4 171.1

100 0.859 0.908 0.053 0.019 0.806 0.889 423.0 528.3 0.588 0.650 0.107 0.198 0.481 0.452 228.4 178.7
200 0.840 0.945 0.065 0.021 0.775 0.924 393.2 537.0 0.576 0.769 0.116 0.185 0.460 0.584 214.4 231.6

10

0.2

50 0.995 0.910 0.026 0.021 0.969 0.889 306.4 281.8 0.906 0.812 0.064 0.299 0.842 0.513 266.3 163.3
75 0.997 0.944 0.034 0.024 0.963 0.920 304.6 290.9 0.983 0.872 0.083 0.311 0.900 0.561 285.3 180.5

100 0.997 0.958 0.039 0.027 0.958 0.931 303.1 294.5 0.988 0.903 0.093 0.297 0.894 0.605 283.8 195.4
200 0.998 0.978 0.050 0.024 0.948 0.954 300.0 301.7 0.990 0.950 0.112 0.218 0.878 0.732 279.0 234.8

0.6

50 0.995 0.910 0.032 0.018 0.963 0.893 304.6 283.1 0.916 0.821 0.030 0.264 0.886 0.557 280.5 176.9
75 0.996 0.947 0.034 0.021 0.963 0.926 304.5 292.9 0.993 0.880 0.034 0.297 0.959 0.583 303.3 187.3

100 0.997 0.960 0.036 0.023 0.961 0.937 304.2 296.3 0.996 0.914 0.034 0.274 0.961 0.640 304.2 205.9
200 0.998 0.977 0.039 0.023 0.958 0.954 303.3 301.6 0.996 0.949 0.038 0.214 0.958 0.736 303.1 235.9
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TABLE 1. Continued

No constant With constant

H F KS PT H F KS PT

m N ρ T MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

5

20

0.2

50 0.988 0.896 0.025 0.018 0.963 0.879 421.9 400.1 0.849 0.683 0.075 0.218 0.774 0.465 338.2 190.8
75 0.991 0.934 0.030 0.021 0.961 0.913 418.8 408.7 0.955 0.773 0.084 0.243 0.871 0.530 367.5 211.8

100 0.991 0.950 0.035 0.023 0.956 0.927 415.2 411.8 0.969 0.827 0.088 0.243 0.881 0.584 369.6 231.8
200 0.992 0.974 0.044 0.024 0.948 0.950 408.6 418.6 0.979 0.922 0.103 0.205 0.876 0.717 363.0 285.4

0.6

50 0.989 0.899 0.027 0.014 0.961 0.885 420.5 404.3 0.885 0.717 0.035 0.200 0.851 0.517 381.9 212.9
75 0.991 0.937 0.029 0.017 0.962 0.920 420.2 413.3 0.980 0.803 0.033 0.223 0.947 0.579 413.3 232.6

100 0.992 0.956 0.035 0.020 0.957 0.936 415.4 416.1 0.982 0.855 0.038 0.232 0.945 0.623 410.2 247.7
200 0.994 0.976 0.035 0.023 0.959 0.953 416.0 420.3 0.989 0.933 0.038 0.200 0.951 0.733 412.0 291.8

30

0.2

50 0.979 0.861 0.041 0.019 0.938 0.842 481.4 469.8 0.847 0.587 0.095 0.191 0.752 0.396 370.1 184.7
75 0.985 0.904 0.054 0.022 0.930 0.881 466.8 480.0 0.968 0.673 0.121 0.215 0.847 0.458 392.8 205.6

100 0.986 0.924 0.062 0.022 0.924 0.902 458.7 487.4 0.983 0.718 0.131 0.231 0.852 0.488 390.3 214.8
200 0.990 0.957 0.086 0.026 0.903 0.931 433.8 493.6 0.992 0.826 0.143 0.207 0.849 0.619 383.9 273.0

0.6

50 0.978 0.876 0.038 0.015 0.941 0.861 485.3 480.8 0.861 0.616 0.069 0.178 0.792 0.438 403.7 206.4
75 0.986 0.916 0.043 0.017 0.943 0.898 481.0 491.5 0.967 0.696 0.087 0.200 0.880 0.496 424.1 224.9

100 0.988 0.936 0.049 0.022 0.939 0.914 474.7 492.2 0.982 0.753 0.095 0.207 0.886 0.545 421.9 243.3
200 0.990 0.966 0.064 0.025 0.925 0.941 456.9 498.1 0.992 0.857 0.102 0.199 0.890 0.657 419.1 290.3

40

0.2

50 0.971 0.850 0.035 0.017 0.935 0.832 544.5 533.1 0.730 0.524 0.098 0.161 0.632 0.363 346.3 187.9
75 0.977 0.896 0.046 0.018 0.930 0.877 527.2 549.8 0.910 0.605 0.109 0.185 0.801 0.420 411.8 206.6

100 0.981 0.919 0.050 0.021 0.931 0.898 522.8 553.5 0.943 0.664 0.116 0.191 0.827 0.473 418.1 228.4
200 0.986 0.952 0.067 0.024 0.920 0.928 499.1 559.6 0.975 0.787 0.121 0.190 0.854 0.597 425.9 283.0

0.6

50 0.972 0.870 0.034 0.012 0.937 0.858 546.7 553.1 0.803 0.556 0.062 0.148 0.741 0.408 429.1 214.0
75 0.980 0.913 0.038 0.014 0.942 0.899 543.4 565.4 0.952 0.642 0.070 0.172 0.882 0.470 480.4 233.4

100 0.984 0.934 0.044 0.015 0.940 0.919 534.5 571.5 0.969 0.709 0.075 0.180 0.893 0.528 479.1 256.6
200 0.987 0.961 0.053 0.023 0.934 0.938 519.6 564.5 0.984 0.830 0.081 0.175 0.903 0.655 477.6 313.7
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TABLE 2. Single club: Kupiers scores and PT statistics, m = {7, 10}, 5% significance level

No constant With constant

H F KS PT H F KS PT

m N ρ T MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

7

20

0.2

50 0.991 0.837 0.025 0.015 0.967 0.821 428.8 381.4 0.849 0.653 0.055 0.199 0.794 0.454 359.4 202.0
75 0.997 0.897 0.029 0.019 0.968 0.878 428.1 399.2 0.977 0.748 0.070 0.225 0.906 0.523 396.8 227.2

100 0.997 0.927 0.035 0.021 0.962 0.905 424.6 408.3 0.984 0.804 0.081 0.239 0.904 0.565 394.0 243.0
200 0.997 0.962 0.045 0.024 0.952 0.938 418.7 418.9 0.990 0.910 0.103 0.206 0.887 0.704 384.1 301.8

0.6

50 0.991 0.840 0.028 0.012 0.963 0.828 426.9 384.6 0.862 0.676 0.027 0.180 0.835 0.497 382.2 221.6
75 0.996 0.899 0.030 0.018 0.966 0.882 427.0 401.2 0.986 0.765 0.029 0.209 0.957 0.556 424.4 241.6

100 0.996 0.932 0.036 0.020 0.960 0.912 423.6 410.9 0.994 0.820 0.032 0.223 0.962 0.597 425.6 257.1
200 0.997 0.963 0.035 0.021 0.962 0.942 424.7 420.9 0.996 0.913 0.034 0.198 0.961 0.714 424.6 306.4

30

0.2

50 0.984 0.801 0.041 0.020 0.943 0.781 497.6 450.3 0.824 0.556 0.094 0.179 0.730 0.377 383.7 197.2
75 0.991 0.865 0.055 0.022 0.935 0.843 486.2 472.1 0.970 0.635 0.124 0.209 0.845 0.426 419.3 213.7

100 0.992 0.898 0.067 0.026 0.925 0.872 475.9 480.1 0.989 0.694 0.132 0.217 0.857 0.477 421.4 235.4
200 0.994 0.945 0.089 0.027 0.905 0.918 457.3 496.7 0.995 0.808 0.148 0.210 0.848 0.597 412.9 290.2

0.6

50 0.984 0.818 0.038 0.014 0.947 0.804 501.0 464.0 0.835 0.578 0.066 0.165 0.769 0.414 414.1 218.2
75 0.992 0.880 0.044 0.017 0.947 0.863 497.0 484.1 0.970 0.658 0.092 0.192 0.878 0.466 445.5 235.2

100 0.992 0.911 0.049 0.019 0.943 0.892 492.3 493.0 0.986 0.719 0.098 0.201 0.888 0.518 446.9 256.9
200 0.994 0.950 0.066 0.024 0.928 0.927 477.6 502.6 0.995 0.841 0.108 0.194 0.888 0.648 442.7 315.6

40

0.2

50 0.980 0.795 0.033 0.016 0.947 0.779 570.2 520.5 0.773 0.501 0.087 0.152 0.686 0.349 406.8 205.1
75 0.989 0.858 0.045 0.020 0.944 0.838 557.0 540.7 0.953 0.589 0.102 0.178 0.851 0.411 471.4 227.9

100 0.990 0.892 0.051 0.019 0.939 0.873 549.4 555.9 0.976 0.656 0.113 0.181 0.863 0.475 470.2 258.9
200 0.993 0.940 0.069 0.025 0.924 0.915 527.2 566.7 0.990 0.771 0.122 0.183 0.869 0.588 468.4 312.8

0.6

50 0.982 0.809 0.033 0.012 0.949 0.798 571.4 534.6 0.813 0.530 0.054 0.140 0.759 0.390 467.8 230.8
75 0.989 0.873 0.037 0.015 0.952 0.858 568.3 555.1 0.966 0.613 0.068 0.165 0.898 0.447 516.4 250.3

100 0.991 0.905 0.043 0.017 0.949 0.887 560.8 564.1 0.984 0.681 0.076 0.173 0.908 0.509 514.6 278.1
200 0.992 0.950 0.054 0.022 0.938 0.928 546.3 574.4 0.992 0.814 0.083 0.182 0.910 0.632 510.6 333.6

https://doi.org/10.1017/S1365100518000391 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1365100518000391


648
FU

AT
C

.B
EY

LU
N

IO
Ğ
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TABLE 2. Continued

No constant With constant

H F KS PT H F KS PT

m N ρ T MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

10 20

0.2

50 0.990 0.739 0.024 0.015 0.966 0.725 431.9 334.4 0.824 0.598 0.056 0.189 0.768 0.409 346.0 187.3
75 0.998 0.834 0.029 0.019 0.969 0.815 433.6 368.6 0.980 0.696 0.072 0.219 0.908 0.477 406.5 214.1

100 0.998 0.878 0.033 0.021 0.966 0.856 432.1 384.9 0.991 0.766 0.087 0.238 0.904 0.528 405.4 236.1
200 0.998 0.945 0.046 0.022 0.952 0.923 426.4 412.9 0.994 0.882 0.113 0.210 0.881 0.672 396.2 301.7

0.6

50 0.990 0.745 0.026 0.011 0.964 0.734 431.2 338.4 0.830 0.610 0.026 0.168 0.804 0.442 363.2 202.8
75 0.998 0.837 0.030 0.017 0.968 0.820 433.0 370.6 0.986 0.715 0.028 0.206 0.958 0.509 428.4 228.3

100 0.998 0.881 0.028 0.017 0.970 0.864 434.0 388.3 0.997 0.780 0.033 0.219 0.964 0.561 431.4 250.9
200 0.999 0.945 0.033 0.022 0.965 0.923 431.9 413.1 0.998 0.893 0.035 0.201 0.962 0.692 430.7 310.7

30

0.2

50 0.985 0.713 0.041 0.018 0.944 0.695 509.3 414.5 0.805 0.510 0.098 0.173 0.707 0.337 387.3 192.6
75 0.994 0.804 0.056 0.024 0.938 0.780 501.9 446.9 0.973 0.592 0.135 0.207 0.839 0.386 439.6 211.1

100 0.995 0.851 0.066 0.025 0.929 0.826 495.5 465.5 0.992 0.654 0.147 0.217 0.845 0.437 440.6 234.7
200 0.996 0.923 0.093 0.028 0.903 0.894 477.1 492.4 0.997 0.783 0.161 0.212 0.836 0.570 434.7 300.2

0.6

50 0.986 0.727 0.037 0.014 0.948 0.713 512.2 424.3 0.812 0.526 0.069 0.160 0.742 0.365 412.0 209.5
75 0.995 0.818 0.046 0.017 0.948 0.801 509.5 458.9 0.973 0.611 0.096 0.188 0.877 0.422 464.8 232.1

100 0.995 0.864 0.055 0.019 0.940 0.845 503.5 475.8 0.991 0.680 0.107 0.201 0.884 0.478 465.6 257.2
200 0.996 0.931 0.069 0.022 0.927 0.909 493.6 501.2 0.996 0.813 0.120 0.200 0.877 0.613 459.9 322.4

40

0.2

50 0.984 0.707 0.033 0.015 0.951 0.692 586.3 485.2 0.801 0.467 0.075 0.144 0.726 0.323 455.4 211.8
75 0.993 0.799 0.043 0.017 0.950 0.782 578.9 524.0 0.968 0.557 0.106 0.169 0.862 0.388 505.7 240.5

100 0.994 0.846 0.053 0.019 0.941 0.827 568.5 541.4 0.987 0.620 0.112 0.176 0.876 0.444 509.7 268.5
200 0.995 0.918 0.077 0.024 0.919 0.894 545.8 566.8 0.994 0.751 0.128 0.184 0.866 0.567 499.2 331.2

0.6

50 0.984 0.723 0.032 0.011 0.953 0.712 587.7 498.3 0.808 0.493 0.050 0.131 0.758 0.362 486.0 239.2
75 0.993 0.815 0.039 0.013 0.955 0.803 584.0 536.6 0.972 0.581 0.070 0.157 0.902 0.425 541.2 264.2

100 0.994 0.861 0.043 0.016 0.951 0.845 579.5 552.2 0.989 0.643 0.079 0.173 0.910 0.470 540.8 283.5
200 0.995 0.928 0.056 0.020 0.939 0.907 566.4 575.9 0.996 0.791 0.089 0.178 0.907 0.612 534.4 356.2
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DETECTING CONVERGENCE CLUBS

Multiple club results. The results for the multiple club case are presented
in Tables 3 and 4. The multiple clubs cases involve classifications with k =
2, 3, 4, 5, 6, 7, 8, and N = 10, 20, 30, 40 for T = 50, 75, 100, 200. In Table 3,
the club sizes (m’s) for multiple clubs are chosen in several combination varieties,
whereas in Table 4 they are randomly picked from a Poisson distribution with a
rate of λ = N/k. The m’s associated with each club are explicitly listed in the third
columns of Tables 3 and 4 for each k and N . We only present the ADF version
of the pairwise method as it was clear from the previous single club analysis that
the other two versions were outperformed by the simple ADF. Again, the pairwise
MCL algorithm outperforms HF in the majority of cases and especially when N

(the pool of countries available) and T , the time span increases, both in the case
of the presence of a constant or not. For example, with N = 20, k = 5, T = 100,
and ρv = 0.6 the pairwise MCL detects 89.9% correct classifications without the
constant and 80.0% cases with the constant DGP, while HF detects 53.6% and
53.1% such cases, respectively. The results suggest that in terms of accuracy the
ADF-maximum clique augmented pairwise method does quite well in detecting
correctly the presence of clubs or clusters of countries. This gives us confidence
that using the above method to real data would provide us with useful insights
about how countries over time collect themselves into different groups and club
formations of similar characteristic as far as economic activity is concerned. Tables
A.3 and A.4 in the appendix extend Tables 3 and 4 to include also the results using
1% and 10% significance levels.

4. REAL DATA APPLICATION: GROWTH CONVERGENCE

In this section to apply the club formation methods analyzed earlier using the
GDP per capita data from the Penn World Tables (PWT) and the Maddison Project
Databases.10

The data from the Maddison Project go back in time for certain countries to
the early 1800’s. Data availability increases mainly after 1930. In fact, after 1930,
36 countries have no missing data point between 1930 and 2010 and the largest
number of countries available for the period of 1950–2010 is 95. On the other
hand, PWT data are available for the period of 1950–2014 for 55 countries only.
In addition to these three data groups, we also consider three different types
of predetermined country groups that are considered important in the empirical
growth literature: Europe, the Group of Seven (G7) and the S&P Emerging Mar-
kets classification group. Table 5 displays the list of the countries covered under
each data classification. In our applications given in Table 6, we used different
combinations of these predetermined data groups.

In the application, we will follow a slightly different clustering algorithm,
maximal clique, that is an extension of the one we used in the multiple club
simulations. In the simulations, we used an iterative methodology that finds and
tags the maximum clique (the clique with maximum number of members) of a
given graph as a club, excludes the members from the initial list of countries
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TABLE 3. Multiple clubs: Success percentages, N = {10, 20, 30, 40}, 5% significance level

Data type No constant With constant Data type No constant With constant

N k m ρ T MCL HF MCL HF N k m ρ T MCL HF MCL HF

10

2 4,4

0.2

50 90.1% 54.3% 28.8% 28.0%

30

5 6,6,6,5,5

0.2

50 79.3% 8.2% 1.2% 3.4%
75 93.0% 68.4% 80.8% 40.0% 75 89.4% 23.7% 50.6% 11.3%

100 92.9% 74.0% 83.6% 47.0% 100 88.1% 36.1% 55.3% 18.5%
200 92.2% 83.6% 80.9% 62.6% 200 77.8% 57.9% 44.1% 37.5%

0.6

50 87.9% 56.5% 32.0% 34.1%

0.6

50 78.3% 8.0% 1.7% 5.1%
75 92.0% 69.6% 89.8% 44.1% 75 90.1% 24.2% 71.0% 13.6%

100 92.6% 75.0% 94.2% 50.7% 100 90.0% 36.9% 83.1% 22.4%
200 93.2% 83.6% 94.6% 63.4% 200 91.2% 59.4% 79.1% 39.1%

3 3,3,2

0.2

50 86.1% 63.0% 25.2% 27.6%

6 5,5,5,5,4,4

0.2

50 81.1% 12.3% 2.0% 4.3%
75 86.9% 71.6% 45.5% 38.7% 75 88.6% 29.2% 49.8% 12.9%

100 85.4% 76.1% 41.2% 45.7% 100 87.3% 39.1% 51.3% 20.4%
200 81.0% 83.7% 33.2% 63.1% 200 82.6% 59.9% 39.5% 37.7%

0.6

50 86.5% 63.8% 36.4% 35.1%

0.6

50 80.8% 12.4% 2.9% 6.7%
75 89.3% 72.8% 71.2% 45.0% 75 89.6% 29.7% 72.4% 16.8%

100 89.4% 76.9% 73.9% 51.6% 100 90.0% 39.5% 81.4% 23.7%
200 88.2% 83.8% 70.2% 64.9% 200 89.1% 59.8% 76.6% 41.0%
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TABLE 3. Continued

Data type No constant With constant Data type No constant With constant

N k m ρ T MCL HF MCL HF N k m ρ T MCL HF MCL HF

20

4 5,5,4,4

0.2

50 82.7% 27.5% 5.5% 31.9%

40

7 6,6,6,6,6,4,4

0.2

50 74.5% 1.5% 0.4% 6.9%
75 88.5% 46.1% 49.1% 44.3% 75 88.3% 9.5% 46.0% 22.0%

100 87.1% 56.1% 49.3% 51.3% 100 88.0% 20.2% 54.8% 33.4%
200 83.2% 72.2% 39.8% 65.9% 200 84.2% 43.7% 44.0% 55.2%

0.6

50 82.2% 27.9% 7.2% 35.0%

0.6

50 72.5% 1.3% 0.3% 7.4%
75 90.2% 45.7% 73.9% 47.1% 75 89.8% 9.7% 63.8% 23.5%

100 89.7% 56.5% 80.1% 53.9% 100 90.1% 20.3% 82.8% 34.5%
200 89.8% 71.5% 77.4% 67.1% 200 90.3% 45.1% 79.9% 55.4%

5 4,4,4,3,3

0.2

50 84.3% 26.1% 8.9% 31.3%

8 5,5,5,5,5,5,4,4

0.2

50 77.8% 3.6% 0.9% 10.2%
75 88.1% 43.2% 50.6% 42.8% 75 88.8% 15.6% 47.5% 27.0%

100 87.0% 52.9% 48.7% 51.1% 100 87.0% 26.8% 51.4% 39.1%
200 82.6% 68.4% 38.9% 64.8% 200 83.0% 49.9% 39.7% 58.5%

0.6

50 83.5% 26.1% 12.0% 34.1%

0.6

50 77.2% 3.2% 1.0% 11.4%
75 89.3% 44.4% 75.0% 45.0% 75 89.2% 15.4% 68.8% 29.4%

100 89.9% 53.6% 80.0% 53.1% 100 90.0% 27.1% 80.7% 40.4%
200 88.6% 68.8% 76.5% 66.3% 200 88.7% 50.4% 69.4% 58.8%
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TABLE 4. Multiple clubs: Success counts for poisson settlement, N = {10, 20, 30, 40}, 5% significance level

Data type No constant With constant Data type No constant With constant

N k m ρ T MCL HF MCL HF N k m ρ T MCL HF MCL HF

10

2 6,3

0.2

50 92.4% 49.7% 34.4% 27.5%

30

5 6,6,4,4,3

0.2

50 79.6% 15.2% 2.4% 4.4%
75 96.3% 66.8% 86.0% 37.5% 75 85.7% 33.4% 27.2% 11.7%

100 93.5% 73.6% 86.2% 45.2% 100 83.1% 46.4% 24.7% 19.7%
200 93.6% 83.1% 85.8% 60.7% 200 78.1% 64.5% 20.0% 36.9%

0.6

50 91.3% 50.2% 37.8% 31.6%

0.6

50 80.0% 16.5% 4.7% 6.9%
75 94.2% 67.7% 92.2% 41.0% 75 87.3% 34.9% 57.5% 16.1%

100 92.5% 74.5% 93.7% 47.9% 100 87.5% 45.9% 59.3% 25.3%
200 94.2% 83.3% 95.5% 61.7% 200 85.8% 65.6% 56.8% 41.0%

3 4,4,2

0.2

50 91.3% 53.4% 31.8% 33.1%

6 8,7,5,4,3,3

0.2

50 78.7% 5.8% 1.2% 3.6%
75 95.5% 69.0% 78.7% 40.1% 75 93.4% 20.4% 65.3% 11.5%

100 92.0% 72.5% 80.6% 47.4% 100 92.2% 32.9% 76.7% 20.8%
200 93.5% 81.4% 81.4% 63.6% 200 92.0% 56.5% 80.7% 40.7%

0.6

50 90.4% 53.9% 37.7% 36.5%

0.6

50 77.5% 6.4% 1.7% 4.8%
75 93.9% 69.6% 89.8% 44.5% 75 92.4% 21.2% 75.5% 12.1%

100 91.8% 73.2% 92.7% 49.7% 100 92.0% 32.8% 91.1% 23.5%
200 93.6% 81.1% 94.8% 64.1% 200 93.1% 56.2% 93.6% 41.2%
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TABLE 4. Continued

Data type No constant With constant Data type No constant With constant

N k m ρ T MCL HF MCL HF N k m ρ T MCL HF MCL HF

20

4 5,5,3,2

0.2

50 84.4% 34.6% 7.4% 9.2%

40

7 7,7,7,6,6,4,2

0.2

50 74.6% 1.9% 0.2% 1.0%
75 87.8% 51.3% 43.1% 19.2% 75 88.9% 11.0% 47.3% 5.1%

100 86.0% 61.2% 42.7% 27.2% 100 88.0% 22.7% 59.4% 10.7%
200 83.0% 73.0% 39.4% 46.2% 200 85.5% 46.4% 51.8% 27.8%

0.6

50 83.2% 35.2% 13.7% 15.4%

0.6

50 73.4% 2.0% 0.3% 1.4%
75 89.5% 53.3% 72.4% 26.3% 75 90.3% 11.0% 65.6% 6.8%

100 88.5% 61.0% 76.4% 33.7% 100 89.5% 22.1% 83.2% 13.1%
200 89.8% 74.6% 76.7% 49.9% 200 90.5% 46.0% 84.7% 30.8%

5 4,4,4,3,2

0.2

50 87.4% 35.4% 13.4% 12.9%

8 6,6,4,4,3,3,3,2

0.2

50 24.7% 7.8% 0.1% 0.2%
75 89.3% 50.6% 54.9% 21.3% 75 17.2% 20.1% 0.1% 0.7%

100 87.7% 59.5% 52.7% 28.8% 100 10.9% 28.6% 0.0% 1.6%
200 85.1% 72.5% 48.3% 44.1% 200 1.3% 47.4% 0.0% 8.5%

0.6

50 84.8% 34.6% 18.7% 18.0%

0.6

50 41.0% 8.8% 0.3% 0.6%
75 90.1% 50.5% 80.3% 27.0% 75 35.9% 22.6% 0.4% 2.1%

100 89.6% 59.8% 83.1% 34.9% 100 30.1% 32.4% 0.1% 4.2%
200 90.9% 72.4% 84.1% 49.4% 200 12.2% 51.4% 0.0% 17.2%
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TABLE 5. Country groups based on economic characteristics and data availability
for growth application

Penn (T = 65, N = 55)

Argentina, Australia, Austria, Belgium, Bolivia, Brazil,
Canada, Colombia, Costa.Rica, Cyprus, Denmark,
Congo, Ecuador, Egypt, El.Salvador, Ethiopia, Finland,
France, Germany, Guatemala, Honduras, Iceland, India,
Ireland, Israel, Italy, Japan, Kenya, Luxembourg,
Mauritius, Mexico, Morocco, Netherlands, New
Zealand, Nicaragua, Nigeria, Norway, Pakistan, Panama,
Peru, Philippines, Portugal, South.Africa, Spain, Sri
Lanka, Sweden, Switzerland, Thailand, Trinidad and
Tobago, Turkey, Uganda, United Kingdom, United
States, Uruguay, Venezuela

Maddison (T = 61, N = 95)

Albania, Algeria, Angola, Argentina, Australia, Austria,
Bahrain, Bangladesh, Belgium, Bolivia, Brazil, Bulgaria,
Burkina Faso, Burma, Cambodia, Cameroon, Canada,
Chile, China, Colombia, Congo Kinshasa, Costa Rica,
Cote d’Ivoire, Czecho-slovakia, Denmark, Dominican
Rep., Ecuador, Egypt, Ethiopia, Finland, France,
Germany, Ghana, Greece, Guatemala, Hong Kong,
Hungary, India, Indonesia, Iran, Iraq, Ireland, Israel,
Italy, Jamaica, Japan, Jordan, Kenya, Kuwait,
Madagascar, Malawi, Malaysia, Mali, Mexico, Morocco,
Mozambique, Netherlands, New Zealand, Niger,
Nigeria, Norway, Oman, Pakistan, Peru, Philippines,
Poland, Portugal, Qatar, Romania, Saudi Arabia,
Senegal, Singapore, South Africa, South Korea, Spain,
Sri Lanka, Sudan, Sweden, Switzerland, Syria, Taiwan,
Tanzania, Thailand, Tunisia, Turkey, UAE, Uganda,
United Kingdom, United States, Uruguay, Venezuela,
Vietnam, Yemen, Zambia, Zimbabwe

1930 (T = 81, N = 36)

Argentina, Australia, Austria, Belgium, Brazil, Canada,
Chile, Colombia, Costa Rica, Denmark, Ecuador,
Finland, France, Germany, Greece, Guatemala, India,
Ireland, Italy, Japan, Mexico, Netherlands, New Zealand,
Norway, Peru, Portugal, South Africa, Spain, Sri Lanka,
Sweden, Switzerland, Turkey, United Kingdom,
Uruguay, United States, Venezuela

Europe (T = 61, N = 22)

Albania, Austria, Belgium, Bulgaria, Switzerland,
Germany, Denmark, Spain, Finland, France, United
Kingdom, Greece, Hungary, Ireland, Italy, Netherlands,
Norway, Poland, Portugal, Romania, Sweden, Turkey

G7 (T = 61, N = 7)
Canada, France, Germany, Italy, Japan, United Kingdom,

United States

S&P (T = 61, N = 19)

Brazil, Chile, China, Colombia, Egypt, Greece, Hungary,
India, Indonesia, Malaysia, Mexico, Morocco, Peru,
Philippines, Poland, South Africa, Taiwan, Thailand,
Turkey
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DETECTING CONVERGENCE CLUBS

TABLE 6. Application on growth convergence: 5% significance level

Data / T / N Model # 2 # 3 # 4 # 5 # 6 # 7

Penn MCL 26 90 7
T = 65, N = 55 HF 6 8 1 3

Maddison MCL 60 69 1 1
T = 61, N = 95 HF 18 7 6 0 0 2

1930 MCL 14 21 7
T = 81, N = 36 HF 5 2 5

Europe MCL 17
T = 61, N = 22 HF 4 3 0 1

Europe+G7 MCL 25 5
T = 61, N = 25 HF 5 2 1 1

Europe+S&P MCL 11 14
T = 61, N = 37 HF 7 3 1 2

G7+S&P MCL 10 9
T = 61, N = 26 HF 5 4 1

and applies the same procedure to the rest of the list iteratively. This very strict
procedure fits the purpose of Monte Carlo simulations where the true club for-
mation mechanism is known and one seeks to obtain perfect club detection. In
that case, misclassifications would arise from statistical sampling errors due to the
adopted testing procedure. However, with real data such a procedure may lead to
club formations beyond the largest club that are incompletely characterized. For
instance, if we go back to the example presented in Figures 1 and 2, the maximum
clique algorithm would only detect the largest clique (that contains countries 1–7)
among several others existing in the graph. Hence, it would disregard smaller ones
(e.g., the one with members 6, 7, 8, and 9) which may be meaningful in economic
terms. In this case, the above iterative procedure will choose and tag the larger
clique (1–7) in the first iteration, breaking off members 6 and 7 from the smaller
4-member club. Figure 3 illustrates this case.

To overcome this problem, we will make use of another notion from graph
theory, maximal clique. A maximal clique can be defined as a clique that is not a
subset of any other clique. Thus, detecting all maximal cliques in a group of N

countries provides us the list of all convergence clubs excluding their subsets. In
other words, the set of all convergence clubs, C is a subset of G which is not a
subset of any other E ∈ G. Hence, compared to the procedure, we applied in the
multiple club simulations, the maximal clique algorithm does not disregard smaller
clubs, but lists them as potential convergence clubs.11 As illustrated in Figure 4,
countries 6 and 7 are detected to be in two different clubs and counted accordingly
as members of these two clubs, since they may share important characteristics
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FIGURE 3. An example of a broken club.

about their economies. Note that in our Monte Carlo setting, where there were
only nonoverlapping clubs the maximum and maximal clique algorithms coincide.

Table 6 displays the number clubs that are found by HF and maximal-clique
algorithms12 using a 5% significance level, where for our MCL pairwise method
the lags for the application of the ADF tests are selected automatically by the
Akaike Information Criterion. Examining for example the results obtained for the
1,930 group (N = 36), the MCL method finds 14 clubs with 2 countries (# 2), 21
clubs with 3 countries (# 3), and finally 7 clubs with 4 countries (# 4). For the HF
method there are 5, 2, and 5 clubs with # 2, # 3 and # 4 members, respectively.
Recall that the search of these convergence clubs is done over the total of 315
(= N(N − 1)/2 = 36(35)/2) country pairs. As explained above, MCL does not
exclude the possibility of overlapping countries in different clubs with the same
number of countries. In that case for instance, at least some of the seven clubs
with four countries would be expected to include some of the same countries. On
the other hand, HF as a result of its algorithm categorizes the list of all countries
as convergence clubs with distinct (nonoverlapping) elements. Therefore, the five
clubs with four countries contain necessarily distinct countries.

Figures 5–12 illustrate some of the club formations over different data sets. For
the data combining Euro and S&P, MCL finds Morocco, Portugal, and Spain and
HF finds Austria, Egypt, Finland, Indonesia, and Italy as constituting a club. For
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FIGURE 4. A sample maximal clique.

FIGURE 5. Illustration of a club: Europe + G7 (MCL).

G7 + Europe, MCL detects United States, Netherlands, and Germany and United
States, France, and Germany as different alternatives, whereas HF finds Bulgaria,
Germany, Netherlands, Poland, and United Kingdom, and finally for G7 + S&P,
MCL finds United States, France, and Germany and United States, France, and
Italy as alternatives, whereas HF finds Egypt, France, and Indonesia as constituting
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FIGURE 6. Illustration of a club: Europe + G7 (MCL).

FIGURE 7. Illustration of a club: Europe + G7 (HF).

FIGURE 8. Illustration of a club: Europe + S&P (MCL).
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FIGURE 9. Illustration of a club: Europe + S&P (HF).

FIGURE 10. Illustration of a club: G7 + S&P (MCL).

FIGURE 11. Illustration of a club: G7 + S&P (MCL).
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FIGURE 12. Illustration of a club: G7 + S&P (HF).

a convergence club. Overall, it seems that the MCL algorithm is allowing for more
homogeneity in the clubs that are formed, since the overlapping groups that enter
more than one club act as common factors that are shared by all. On the other
hand, the HF method emphasizes distinctness and as such some of the clubs that
are formed are difficult to interpret from an economic point of view as they mainly
pertain to economies with different structures.

5. CONCLUSIONS

In this paper, we have introduced a new method that combines unit root testing
within a I (1)/I (0) framework with the maximum clique and maximal clique
approaches of graph theory to establish a set of statistical criteria for cluster
formation. We offer an evaluation of the performance of our proposed MCL
method vis-a-vis the HF method in the literature, that is closer in spirit to our
approach, by means of a Monte Carlo simulation. To the best of our knowledge,
this is the first time that the properties of these methods have been explored and
analyzed in the literature. In the application, we encountered almost the same
patterns as in the single club simulations. The results with real data reveal that the
MCL method based on the maximal clique algorithm provides more meaningful
club classifications than HF, even though both methods result is similar numbers
of clubs being formed. However, it is worth noting that both MCL and HF are
methods based on statistical testing, and the accuracy of the club formation results
will depend on the power properties of the underlying test statistics used.

We have compared our proposed MCL method that is a top-down approach to
the simple bottom up approach of HF. In future research, we also plan to extend
our analysis to also cover alternative variants of the HF approach as in Corrado and
Weeks (2011) and the alternative method proposed by Chortareas and Kapetanios
(2009). It is worth noting that the methods proposed and examined here are based
on an analysis of the mean function and they do not account for σ -convergence as
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in Phillips and Sul (2007). Examining the properties of the latter method is also left
for future research. Finally, it would be interesting to examine the evolution of club
formation over time by combining the methodology that we have introduced here
and the Markov Switching model within a long memory framework of Beylunioğlu
et al. (2018) to study the evolution of club formation over time and potentially
distinguish whether these clubs are permanent in nature (as in the case of poverty
traps) or changing between states as the unified growth theory would suggest.

NOTES

1. In a recent paper, Beylunioğlu et al. (2018) have analyzed the evolution of output gaps between
pairs of countries within a long memory framework using a Markov Switching Model that traces the
evolution of the long memory parameter. It is then possible that several mechanisms of divergence and
convergence are concurrently at work across countries in different stages of their development process
and plotting the evolution of the long memory parameter would allow us to directly observe such
behavior. Combining the above approach with the clustering formation mechanism that we examine
in this paper could potentially allow one to study the evolution of club formation over time. Hence
one could distinguish whether these clubs are permanent in nature (as in the case of a trap) or they are
changing as the unified growth theory would suggest.

2. The difference between maximum clique and maximal clique algorithms will be discussed in
subsequent sections.

3. In the last few years, there are a number of papers that have looked at (club) cluster formation in
different research areas. Fritsche and Kuzin (2011), Abbott et al. (2012), Kim and Rous (2012), Abbott
and De Vita (2013), Apergis and Padhi (2013), Yilmazkuday (2013), and Ikeno (2014) to name a few.

4. No doubt, nominal size of the tests may differ from the significance level. In applications, the
power of the tests used relative to size distortions should be given attention. Another matter to be
attentive to is the fact that the rejection rate would converge to α in the limit and that of course would
not be the case if N and T are relatively small in a given application.

5. Notice that in order to satisfy the property explained above, E to be a convergence group, all
pairs i, j ∈ E, i �= j should satisfy the convergence property. Conversely, we require the nonrejection
rate of H0 : Zt ∼ I (1), which denotes divergence, to be zero, which is a much more stringent
condition, since it does not allow Type 1 error. Similarly, we expect the rejection of H0 : Zt ∼ I (1)

to be unity if convergence holds. One can relax this condition by allowing rejection rate up to a given
level. As explained above, Pesaran (2007) shows that when the number countries in a club, N → ∞
the pairwise rejection rates approaches to significance level of stationarity tests. Although adopting
Pesaran’s approach is possible for large number of countries, it is questionable for the club sizes
considered in the simulations. It is also worth noting that allowing the rejection rate up to a given level
(say at the nominal size of a significance test) may have an impact on how much Type 1 error created
by the unit root test would carry over in club formation. However, since our main goal is to compare
different club formations mechanisms with Monte Carlo simulations relying on the same unit root
tests, all these methods under comparison will be on the same footing.

6. As remarked in the literature review, other than HF, another method developed by Phillips and
Sul (2007) stands out by means of not requiring a priori classification of countries. However, we
exclude this method for the following reason. Unlike HF and our proposed pairwise maximum clique
method, Phillips and Sul (2007) is based on σ type convergence. The method depends on the definition
of convergence by means of reduction of variance over time and thus convergence of series to a steady
state. Therefore, it is not appropriate to compare this method with HF and the method developed in
this study as both of the latter deal with convergence of the mean (function) of the series.

7. Obviously we did not allow the sum of m to exceed N , if this happens we redrew the last club
size.

8. This is similar to expecting an unbiased coin to come up heads with 50% probability.
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9. Even though we initially considered three different ways that the pairwise unit root testing
approach could be combined with the maximum clique algorithm, one that uses an ADF test, the
second using the ADF with a GLS corrected unit root test and a third one using the KPSS test, to
conserve space we only report the one that uses the ADF test as it outperforms the other alternatives.

10. The Maddison-Project: http://www.ggdc.net/maddison/maddison-project/home.htm, 2013 ver-
sion,; Penn World Tables: https://www.rug.nl/ggdc/productivity/pwt/, version 9.0.

11. To detect maximal cliques, we used maximal.cliques command in the igraph package
12. Although maximal clique algorithm differs from the maximum clique algorithm used in the

simulations, we will continue to use the same MCL acronym as they are both very closely related.
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APPENDIX

TABLE A.1. Single club: Kupiers scores and PT statistics, m = {3, 5}, 1% and 10% significance levels
No constant With constant

H F KS PT H F KS PT

MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

m N ρ T 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%

3

10

0.2

50 0.956 0.977 0.947 0.945 0.013 0.065 0.022 0.023 0.943 0.912 0.924 0.922 299.5 279.2 292.3 291.7 0.685 0.916 0.848 0.847 0.062 0.140 0.317 0.317 0.622 0.776 0.531 0.529 208.5 232.5 154.1 153.6

75 0.995 0.981 0.964 0.962 0.008 0.075 0.025 0.026 0.987 0.906 0.939 0.936 310.9 275.9 295.0 294.2 0.944 0.950 0.899 0.901 0.031 0.157 0.322 0.321 0.913 0.793 0.577 0.580 287.4 235.1 167.4 168.1

100 0.996 0.981 0.972 0.969 0.010 0.078 0.029 0.030 0.986 0.903 0.943 0.939 310.2 274.6 294.9 293.9 0.980 0.960 0.927 0.925 0.028 0.162 0.295 0.294 0.952 0.798 0.632 0.631 297.3 236.0 183.2 182.9

200 0.996 0.985 0.983 0.978 0.012 0.096 0.024 0.024 0.984 0.889 0.959 0.954 308.9 267.9 299.9 298.8 0.985 0.970 0.957 0.955 0.038 0.179 0.212 0.211 0.947 0.791 0.745 0.744 293.9 232.4 217.7 217.6

0.6

50 0.948 0.970 0.947 0.945 0.018 0.085 0.019 0.019 0.929 0.885 0.928 0.927 294.7 268.9 294.3 294.0 0.693 0.935 0.870 0.867 0.051 0.079 0.275 0.277 0.641 0.855 0.595 0.589 216.6 262.4 173.1 171.6

75 0.993 0.976 0.966 0.963 0.011 0.080 0.023 0.023 0.983 0.896 0.944 0.940 309.2 272.3 296.8 295.9 0.960 0.969 0.917 0.916 0.014 0.074 0.291 0.292 0.946 0.895 0.625 0.624 299.8 273.4 181.4 180.9

100 0.994 0.979 0.974 0.970 0.010 0.081 0.023 0.023 0.984 0.898 0.950 0.947 309.6 272.7 298.2 297.4 0.994 0.974 0.938 0.936 0.007 0.075 0.275 0.275 0.987 0.899 0.662 0.661 311.3 274.1 192.2 192.0

200 0.995 0.984 0.983 0.979 0.011 0.090 0.025 0.025 0.984 0.894 0.958 0.954 309.4 270.3 299.6 298.7 0.996 0.981 0.965 0.963 0.008 0.078 0.192 0.193 0.987 0.903 0.773 0.770 311.0 274.6 226.7 225.8

20

0.2

50 0.866 0.828 0.865 0.860 0.027 0.090 0.029 0.030 0.839 0.738 0.835 0.831 372.4 294.0 368.9 367.0 0.368 0.384 0.584 0.587 0.111 0.241 0.259 0.256 0.257 0.143 0.325 0.331 115.1 52.1 112.5 114.8

75 0.887 0.804 0.902 0.895 0.029 0.100 0.031 0.032 0.858 0.704 0.871 0.863 375.7 278.1 377.9 374.8 0.399 0.356 0.685 0.683 0.141 0.268 0.278 0.277 0.258 0.088 0.407 0.406 107.1 31.1 137.5 137.3

100 0.872 0.778 0.920 0.915 0.035 0.115 0.032 0.032 0.837 0.663 0.888 0.884 363.7 258.1 382.1 380.8 0.330 0.355 0.748 0.744 0.169 0.289 0.274 0.276 0.160 0.066 0.474 0.469 64.9 23.0 159.2 157.3

200 0.801 0.709 0.956 0.946 0.054 0.141 0.030 0.030 0.747 0.568 0.926 0.916 320.1 216.6 394.9 391.5 0.246 0.351 0.873 0.869 0.205 0.302 0.224 0.225 0.040 0.049 0.649 0.644 15.8 16.9 221.8 220.1

0.6

50 0.901 0.883 0.880 0.878 0.019 0.081 0.024 0.024 0.881 0.802 0.855 0.853 392.5 319.3 379.8 379.1 0.461 0.439 0.667 0.660 0.076 0.171 0.227 0.228 0.385 0.267 0.441 0.431 180.5 104.6 154.6 151.4

75 0.936 0.866 0.919 0.914 0.019 0.089 0.025 0.026 0.917 0.777 0.894 0.888 403.2 307.2 390.1 388.2 0.641 0.393 0.750 0.750 0.073 0.194 0.247 0.245 0.568 0.199 0.504 0.505 248.7 76.3 172.1 172.6

100 0.934 0.860 0.939 0.930 0.019 0.091 0.024 0.025 0.915 0.769 0.915 0.904 402.1 303.8 397.1 392.8 0.612 0.366 0.819 0.818 0.085 0.205 0.249 0.249 0.527 0.160 0.570 0.569 227.5 60.9 193.1 192.7

200 0.900 0.814 0.962 0.957 0.028 0.109 0.028 0.028 0.872 0.705 0.934 0.928 380.8 274.0 398.8 396.7 0.509 0.309 0.907 0.900 0.112 0.221 0.209 0.209 0.397 0.088 0.698 0.691 168.3 33.2 240.3 238.1

30

0.2

50 0.905 0.928 0.834 0.831 0.021 0.078 0.027 0.027 0.884 0.850 0.807 0.805 464.7 377.9 428.0 427.5 0.492 0.776 0.590 0.587 0.075 0.163 0.206 0.207 0.416 0.613 0.384 0.381 212.7 241.3 146.9 145.5

75 0.962 0.937 0.883 0.873 0.026 0.092 0.026 0.028 0.936 0.845 0.856 0.845 473.5 363.9 446.3 440.1 0.814 0.884 0.668 0.673 0.083 0.178 0.232 0.230 0.731 0.705 0.436 0.443 331.0 268.0 160.5 163.3

100 0.970 0.946 0.901 0.894 0.030 0.099 0.028 0.029 0.940 0.846 0.873 0.865 467.8 359.0 449.2 445.6 0.909 0.895 0.714 0.712 0.088 0.184 0.241 0.240 0.822 0.711 0.473 0.471 359.6 267.9 171.5 171.1

200 0.973 0.956 0.939 0.931 0.047 0.127 0.031 0.032 0.926 0.829 0.908 0.899 439.3 334.7 455.5 451.7 0.929 0.913 0.782 0.782 0.099 0.198 0.217 0.216 0.829 0.715 0.565 0.566 353.2 264.6 208.5 209.1

0.6

50 0.910 0.931 0.861 0.860 0.018 0.075 0.020 0.020 0.893 0.856 0.841 0.839 474.7 383.1 451.6 451.5 0.547 0.821 0.633 0.629 0.055 0.117 0.191 0.191 0.492 0.704 0.442 0.438 264.2 296.6 171.1 169.7

75 0.969 0.947 0.899 0.896 0.019 0.082 0.021 0.021 0.950 0.864 0.877 0.874 491.1 379.2 462.2 461.4 0.853 0.910 0.694 0.693 0.058 0.124 0.217 0.218 0.795 0.786 0.477 0.475 379.7 321.5 177.8 176.7

100 0.976 0.952 0.920 0.911 0.021 0.087 0.023 0.023 0.955 0.864 0.897 0.888 489.1 375.0 466.4 462.4 0.933 0.931 0.746 0.743 0.065 0.128 0.221 0.223 0.867 0.803 0.525 0.520 397.1 324.7 193.5 191.5

200 0.982 0.962 0.954 0.946 0.030 0.100 0.024 0.025 0.952 0.861 0.929 0.921 472.6 363.2 474.5 471.6 0.971 0.936 0.832 0.832 0.075 0.133 0.198 0.198 0.896 0.803 0.633 0.634 397.5 322.0 236.8 237.3

40

0.2

50 0.810 0.786 0.809 0.804 0.025 0.077 0.023 0.023 0.784 0.709 0.786 0.781 470.5 350.8 476.8 474.7 0.272 0.366 0.503 0.502 0.085 0.185 0.174 0.174 0.187 0.181 0.329 0.327 104.1 75.7 137.1 136.6

75 0.853 0.774 0.846 0.841 0.030 0.092 0.025 0.025 0.824 0.682 0.821 0.817 476.5 324.3 487.4 484.9 0.415 0.366 0.579 0.579 0.106 0.211 0.199 0.200 0.309 0.154 0.380 0.379 153.6 61.8 150.9 150.6

100 0.844 0.775 0.881 0.874 0.034 0.102 0.025 0.025 0.809 0.673 0.856 0.849 460.1 311.9 500.8 498.0 0.462 0.372 0.625 0.619 0.113 0.218 0.204 0.206 0.349 0.154 0.421 0.414 168.3 61.0 165.0 162.1

200 0.806 0.742 0.922 0.915 0.050 0.131 0.025 0.025 0.756 0.611 0.897 0.891 407.3 266.7 516.6 514.0 0.414 0.378 0.702 0.697 0.128 0.227 0.197 0.198 0.286 0.151 0.504 0.499 133.9 59.1 198.0 196.0

0.6

50 0.861 0.841 0.846 0.841 0.018 0.070 0.017 0.018 0.843 0.771 0.829 0.824 513.1 384.5 510.2 507.9 0.351 0.478 0.524 0.530 0.065 0.132 0.164 0.163 0.286 0.347 0.361 0.367 169.6 158.5 153.0 155.9

75 0.912 0.839 0.886 0.880 0.019 0.081 0.020 0.020 0.893 0.759 0.866 0.860 530.0 366.7 518.0 514.7 0.584 0.544 0.606 0.601 0.070 0.140 0.181 0.184 0.515 0.404 0.425 0.417 276.1 179.2 173.0 168.9

100 0.908 0.838 0.906 0.900 0.022 0.087 0.020 0.020 0.886 0.750 0.886 0.880 520.6 356.4 526.0 522.7 0.677 0.542 0.652 0.648 0.071 0.142 0.197 0.199 0.606 0.401 0.455 0.449 315.2 176.9 179.6 177.2

200 0.893 0.825 0.945 0.936 0.030 0.104 0.022 0.021 0.863 0.721 0.923 0.914 490.9 329.0 535.0 532.1 0.716 0.520 0.769 0.767 0.079 0.152 0.184 0.184 0.637 0.368 0.585 0.583 318.8 159.6 232.5 231.7
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TABLE A.1. Continued
No constant With constant

H F KS PT H F KS PT

MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

m N ρ T 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%

5

10

0.2

50 0.958 0.995 0.910 0.909 0.004 0.058 0.022 0.021 0.954 0.937 0.888 0.888 301.8 296.7 281.6 281.5 0.708 0.954 0.812 0.812 0.022 0.124 0.299 0.299 0.686 0.830 0.513 0.513 225.3 263.2 163.2 163.3

75 0.998 0.995 0.944 0.942 0.008 0.070 0.024 0.024 0.991 0.925 0.919 0.918 313.3 293.2 290.9 290.6 0.963 0.980 0.872 0.872 0.020 0.147 0.312 0.310 0.943 0.833 0.560 0.562 298.2 265.6 180.3 180.7

100 0.999 0.996 0.958 0.957 0.008 0.077 0.027 0.027 0.991 0.920 0.931 0.929 313.4 291.6 294.6 293.9 0.993 0.983 0.904 0.903 0.025 0.161 0.296 0.295 0.968 0.823 0.608 0.608 306.1 262.9 196.3 196.1

200 0.999 0.996 0.978 0.976 0.013 0.092 0.024 0.024 0.986 0.904 0.954 0.952 311.9 287.1 301.8 301.0 0.995 0.987 0.950 0.950 0.039 0.185 0.218 0.218 0.956 0.803 0.733 0.732 302.6 257.6 235.0 234.8

0.6

50 0.956 0.995 0.910 0.910 0.006 0.064 0.018 0.017 0.950 0.930 0.893 0.892 300.8 294.7 283.1 283.0 0.712 0.964 0.821 0.821 0.010 0.067 0.266 0.265 0.702 0.897 0.555 0.556 231.2 283.7 176.0 176.4

75 0.999 0.995 0.947 0.946 0.007 0.071 0.021 0.021 0.992 0.924 0.926 0.924 313.8 292.8 293.0 292.5 0.965 0.990 0.880 0.881 0.006 0.073 0.297 0.295 0.959 0.917 0.583 0.586 303.4 290.5 187.3 188.3

100 0.999 0.995 0.960 0.959 0.007 0.076 0.023 0.024 0.992 0.920 0.937 0.936 313.7 291.5 296.3 295.9 0.998 0.992 0.914 0.914 0.005 0.073 0.274 0.274 0.992 0.919 0.640 0.640 313.8 291.1 206.0 206.1

200 0.999 0.997 0.977 0.975 0.007 0.080 0.023 0.023 0.992 0.917 0.954 0.952 313.8 290.9 301.8 301.1 0.999 0.994 0.949 0.949 0.007 0.080 0.215 0.214 0.992 0.914 0.735 0.735 313.7 289.8 235.5 235.7

20

0.2

50 0.953 0.985 0.896 0.896 0.005 0.052 0.017 0.017 0.948 0.933 0.879 0.879 428.4 400.0 400.4 400.5 0.630 0.900 0.682 0.680 0.044 0.126 0.217 0.220 0.586 0.775 0.465 0.460 288.8 321.8 191.1 188.9

75 0.996 0.985 0.934 0.933 0.007 0.062 0.021 0.021 0.989 0.923 0.913 0.912 439.6 392.5 408.7 408.3 0.937 0.950 0.773 0.773 0.027 0.144 0.243 0.242 0.910 0.806 0.530 0.531 404.2 328.4 211.8 212.6

100 0.997 0.987 0.950 0.948 0.008 0.067 0.023 0.023 0.988 0.919 0.927 0.925 438.9 389.5 412.0 411.1 0.981 0.960 0.829 0.826 0.027 0.147 0.242 0.245 0.953 0.812 0.587 0.582 418.0 329.8 233.0 230.9

200 0.996 0.988 0.974 0.972 0.011 0.084 0.024 0.024 0.985 0.904 0.949 0.948 436.2 378.5 418.2 417.7 0.988 0.974 0.921 0.920 0.039 0.169 0.207 0.207 0.948 0.806 0.715 0.713 410.8 323.2 284.4 283.6

0.6

50 0.955 0.985 0.900 0.900 0.006 0.056 0.013 0.013 0.950 0.929 0.887 0.886 428.7 397.1 405.1 404.8 0.673 0.929 0.716 0.719 0.022 0.065 0.202 0.198 0.652 0.864 0.514 0.521 325.3 372.2 211.4 215.0

75 0.997 0.986 0.937 0.936 0.005 0.060 0.017 0.018 0.991 0.926 0.919 0.918 441.5 394.5 412.6 412.2 0.957 0.970 0.803 0.802 0.008 0.067 0.224 0.225 0.949 0.903 0.579 0.577 427.1 384.5 232.5 231.5

100 0.997 0.988 0.955 0.954 0.008 0.070 0.020 0.020 0.989 0.918 0.935 0.934 439.3 388.0 415.8 415.5 0.994 0.972 0.856 0.855 0.007 0.077 0.231 0.231 0.986 0.895 0.626 0.624 438.9 377.7 248.7 248.1

200 0.998 0.991 0.976 0.975 0.008 0.072 0.023 0.022 0.990 0.919 0.953 0.953 439.3 387.9 420.2 420.5 0.995 0.983 0.933 0.933 0.009 0.076 0.202 0.201 0.987 0.906 0.731 0.732 438.2 381.9 291.0 291.3

30

0.2

50 0.943 0.977 0.861 0.860 0.015 0.071 0.019 0.019 0.928 0.905 0.842 0.842 504.9 444.3 469.9 469.9 0.623 0.908 0.589 0.589 0.051 0.146 0.191 0.192 0.572 0.762 0.398 0.397 330.6 348.9 186.0 185.4

75 0.987 0.981 0.904 0.902 0.024 0.088 0.022 0.022 0.964 0.893 0.882 0.880 507.4 429.2 480.6 479.4 0.921 0.967 0.671 0.675 0.069 0.169 0.218 0.215 0.852 0.798 0.453 0.460 426.2 354.5 202.9 206.4

100 0.990 0.982 0.924 0.923 0.030 0.099 0.022 0.022 0.960 0.883 0.902 0.901 499.7 418.2 487.5 487.2 0.976 0.978 0.720 0.720 0.084 0.178 0.229 0.229 0.892 0.801 0.491 0.491 430.7 352.9 216.5 216.6

200 0.992 0.989 0.957 0.955 0.048 0.128 0.026 0.026 0.944 0.861 0.931 0.929 476.7 395.3 493.6 493.2 0.995 0.990 0.825 0.824 0.097 0.196 0.209 0.209 0.899 0.795 0.616 0.615 425.7 345.5 271.3 271.3

0.6

50 0.945 0.976 0.877 0.876 0.012 0.069 0.015 0.015 0.933 0.908 0.861 0.861 510.3 447.4 481.4 481.3 0.653 0.918 0.614 0.617 0.035 0.107 0.177 0.177 0.619 0.811 0.436 0.441 366.4 386.5 205.5 207.7

75 0.990 0.979 0.916 0.915 0.016 0.075 0.018 0.017 0.974 0.904 0.898 0.898 518.9 441.4 491.0 491.6 0.924 0.970 0.693 0.694 0.048 0.121 0.201 0.200 0.876 0.850 0.491 0.494 451.8 394.2 222.7 224.1

100 0.991 0.983 0.935 0.934 0.020 0.082 0.022 0.022 0.971 0.901 0.914 0.912 513.9 435.5 492.0 491.0 0.971 0.982 0.752 0.751 0.062 0.126 0.209 0.208 0.909 0.856 0.543 0.544 452.4 394.1 242.0 242.5

200 0.993 0.988 0.966 0.964 0.029 0.104 0.025 0.025 0.964 0.884 0.941 0.939 501.5 415.9 498.5 497.1 0.993 0.990 0.856 0.855 0.076 0.135 0.199 0.199 0.917 0.855 0.657 0.656 445.6 389.9 290.6 290.2

40

0.2

50 0.935 0.967 0.849 0.849 0.013 0.062 0.017 0.017 0.922 0.905 0.832 0.832 576.5 497.8 533.0 533.6 0.518 0.804 0.522 0.523 0.058 0.145 0.162 0.163 0.460 0.659 0.361 0.360 301.7 329.0 186.3 185.7

75 0.984 0.969 0.896 0.895 0.019 0.080 0.018 0.018 0.966 0.889 0.878 0.877 582.7 473.3 549.6 549.2 0.854 0.904 0.605 0.605 0.062 0.157 0.185 0.186 0.792 0.747 0.419 0.420 450.7 360.6 206.1 206.1

100 0.986 0.976 0.918 0.918 0.023 0.084 0.021 0.020 0.964 0.892 0.898 0.897 575.4 470.6 553.3 553.4 0.947 0.933 0.661 0.663 0.069 0.165 0.193 0.192 0.879 0.768 0.468 0.471 480.1 365.8 225.7 227.2

200 0.991 0.982 0.952 0.949 0.033 0.106 0.024 0.024 0.957 0.876 0.928 0.924 556.4 446.1 559.4 557.4 0.983 0.971 0.787 0.787 0.077 0.173 0.189 0.190 0.906 0.798 0.598 0.597 483.0 375.0 283.9 283.0

0.6

50 0.942 0.967 0.870 0.869 0.010 0.064 0.012 0.012 0.932 0.903 0.857 0.857 586.8 494.8 552.6 552.8 0.585 0.870 0.562 0.561 0.037 0.091 0.146 0.147 0.549 0.779 0.417 0.414 373.9 416.3 218.8 217.1

75 0.988 0.972 0.913 0.913 0.012 0.069 0.014 0.014 0.975 0.903 0.899 0.899 598.3 490.1 565.5 565.6 0.904 0.949 0.641 0.645 0.039 0.101 0.173 0.172 0.866 0.848 0.468 0.473 511.6 438.1 232.1 234.7

100 0.990 0.977 0.934 0.933 0.016 0.077 0.015 0.015 0.973 0.900 0.919 0.917 590.0 480.1 571.5 570.3 0.965 0.963 0.710 0.708 0.046 0.106 0.180 0.180 0.918 0.857 0.531 0.529 522.8 437.7 257.7 256.8

200 0.992 0.983 0.961 0.959 0.023 0.092 0.023 0.024 0.968 0.892 0.937 0.935 576.1 463.8 564.0 561.8 0.989 0.981 0.830 0.827 0.056 0.113 0.174 0.174 0.933 0.867 0.657 0.653 515.9 436.7 314.8 312.8
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TABLE A.2. Single club: Kupiers scores and PT statistics, m = {7, 10}, 1% and 10% significance levels
No constant With constant

H F KS PT H F KS PT

MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

m N ρ T 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%

7

20

0.2

50 0.919 0.993 0.837 0.836 0.005 0.050 0.015 0.015 0.914 0.943 0.823 0.821 416.4 414.2 381.9 381.2 0.623 0.920 0.653 0.654 0.018 0.106 0.199 0.198 0.606 0.814 0.454 0.456 307.2 355.9 202.1 203.0

75 0.997 0.995 0.898 0.897 0.007 0.059 0.019 0.019 0.990 0.935 0.879 0.878 441.9 409.6 399.8 399.4 0.920 0.977 0.749 0.749 0.018 0.126 0.223 0.223 0.902 0.851 0.527 0.527 407.9 367.1 228.7 228.7

100 0.998 0.994 0.927 0.927 0.008 0.071 0.022 0.021 0.990 0.923 0.905 0.905 441.6 402.9 407.9 408.3 0.987 0.981 0.806 0.805 0.023 0.141 0.238 0.238 0.964 0.840 0.568 0.567 428.4 361.3 244.3 243.9

200 0.999 0.996 0.962 0.961 0.012 0.085 0.025 0.025 0.987 0.911 0.937 0.937 439.1 396.2 418.5 418.3 0.993 0.987 0.908 0.909 0.040 0.164 0.207 0.207 0.953 0.823 0.701 0.702 420.3 352.5 300.5 300.7

0.6

50 0.920 0.992 0.840 0.840 0.005 0.057 0.012 0.012 0.915 0.935 0.827 0.828 416.5 410.0 384.4 384.8 0.634 0.935 0.677 0.678 0.007 0.059 0.180 0.179 0.627 0.876 0.498 0.499 319.7 387.9 221.9 222.7

75 0.997 0.994 0.900 0.899 0.006 0.064 0.017 0.017 0.991 0.930 0.882 0.882 442.5 406.7 401.4 401.3 0.928 0.987 0.765 0.764 0.005 0.062 0.208 0.209 0.922 0.925 0.558 0.555 419.0 405.3 242.6 241.2

100 0.998 0.995 0.932 0.932 0.007 0.073 0.020 0.020 0.991 0.922 0.912 0.912 442.2 402.3 411.0 411.0 0.993 0.990 0.821 0.822 0.006 0.066 0.222 0.221 0.987 0.924 0.599 0.601 441.2 404.3 257.8 258.7

200 0.999 0.996 0.963 0.963 0.007 0.073 0.021 0.022 0.992 0.923 0.942 0.941 442.4 402.6 421.1 420.7 0.998 0.992 0.912 0.912 0.008 0.074 0.199 0.199 0.991 0.918 0.713 0.713 441.8 400.5 305.8 306.0

30

0.2

50 0.912 0.986 0.800 0.801 0.014 0.071 0.020 0.019 0.899 0.915 0.780 0.782 499.7 469.5 449.9 451.4 0.587 0.904 0.553 0.553 0.045 0.145 0.180 0.181 0.542 0.759 0.373 0.372 333.1 376.2 195.4 194.9

75 0.990 0.988 0.865 0.865 0.024 0.089 0.023 0.023 0.967 0.900 0.842 0.842 517.5 455.5 471.4 471.1 0.896 0.979 0.636 0.636 0.069 0.172 0.208 0.209 0.827 0.806 0.428 0.427 436.0 389.0 215.1 213.9

100 0.993 0.990 0.897 0.897 0.031 0.104 0.026 0.026 0.962 0.886 0.871 0.871 510.9 443.8 479.6 480.0 0.975 0.986 0.696 0.694 0.085 0.179 0.215 0.217 0.890 0.807 0.481 0.477 453.1 388.1 237.4 235.6

200 0.995 0.993 0.945 0.944 0.049 0.132 0.027 0.027 0.947 0.861 0.918 0.917 494.3 423.3 496.9 496.2 0.997 0.994 0.808 0.807 0.104 0.196 0.212 0.211 0.893 0.798 0.595 0.596 446.1 380.3 289.0 289.4

0.6

50 0.914 0.987 0.817 0.817 0.011 0.069 0.014 0.015 0.902 0.918 0.803 0.802 503.3 471.9 463.6 463.0 0.605 0.911 0.576 0.575 0.030 0.103 0.167 0.167 0.575 0.809 0.409 0.408 359.2 412.2 215.5 214.8

75 0.992 0.989 0.880 0.879 0.016 0.078 0.017 0.018 0.976 0.910 0.863 0.861 527.0 464.4 483.8 482.7 0.902 0.980 0.660 0.658 0.046 0.127 0.189 0.190 0.855 0.853 0.470 0.468 460.1 421.3 238.0 236.9

100 0.995 0.990 0.911 0.910 0.020 0.086 0.019 0.019 0.975 0.904 0.892 0.892 523.5 458.3 493.0 493.1 0.974 0.988 0.717 0.718 0.062 0.130 0.203 0.201 0.912 0.858 0.514 0.517 473.0 422.7 254.7 256.5

200 0.996 0.993 0.950 0.949 0.032 0.106 0.024 0.024 0.964 0.887 0.926 0.925 510.9 443.2 502.2 502.0 0.994 0.995 0.842 0.842 0.081 0.139 0.193 0.193 0.913 0.856 0.649 0.649 464.2 419.0 316.2 316.2

40

0.2

50 0.909 0.981 0.794 0.794 0.011 0.061 0.016 0.016 0.899 0.920 0.778 0.778 577.5 532.5 520.4 519.8 0.530 0.862 0.502 0.500 0.048 0.133 0.153 0.152 0.483 0.728 0.349 0.348 342.5 398.6 204.7 204.2

75 0.988 0.985 0.858 0.858 0.018 0.076 0.020 0.020 0.970 0.909 0.838 0.838 596.6 514.6 540.9 540.3 0.876 0.956 0.588 0.587 0.054 0.150 0.178 0.178 0.822 0.806 0.410 0.409 495.4 426.2 227.3 227.1

100 0.993 0.987 0.892 0.892 0.022 0.087 0.019 0.019 0.971 0.900 0.873 0.873 593.0 503.5 556.0 556.7 0.969 0.971 0.655 0.651 0.066 0.162 0.180 0.182 0.903 0.809 0.475 0.469 520.6 422.7 259.2 255.8

200 0.995 0.990 0.941 0.940 0.035 0.112 0.025 0.025 0.960 0.878 0.916 0.915 573.1 477.6 566.6 566.3 0.995 0.986 0.772 0.771 0.078 0.172 0.183 0.182 0.917 0.814 0.589 0.589 517.3 421.4 313.4 313.5

0.6

50 0.912 0.982 0.810 0.809 0.009 0.060 0.012 0.012 0.903 0.923 0.798 0.798 581.7 534.1 535.3 534.8 0.571 0.895 0.530 0.533 0.029 0.085 0.140 0.139 0.542 0.810 0.389 0.394 395.2 464.6 230.5 233.4

75 0.991 0.985 0.872 0.873 0.012 0.069 0.015 0.015 0.980 0.916 0.857 0.858 608.9 523.8 554.4 556.0 0.894 0.973 0.611 0.610 0.034 0.100 0.165 0.167 0.859 0.873 0.446 0.443 532.3 482.7 250.2 247.7

100 0.995 0.988 0.904 0.904 0.015 0.077 0.017 0.017 0.979 0.911 0.887 0.887 604.1 515.3 564.4 564.2 0.973 0.983 0.681 0.681 0.045 0.106 0.172 0.172 0.928 0.876 0.509 0.508 550.2 480.3 278.5 278.0

200 0.995 0.990 0.950 0.950 0.023 0.092 0.022 0.022 0.973 0.897 0.928 0.928 592.2 498.4 575.6 575.1 0.994 0.991 0.814 0.813 0.058 0.114 0.183 0.182 0.935 0.877 0.631 0.631 540.9 476.5 333.1 333.2

20

0.2

50 0.893 0.995 0.739 0.739 0.005 0.050 0.015 0.015 0.889 0.945 0.724 0.724 399.6 423.1 334.2 334.2 0.575 0.911 0.597 0.598 0.015 0.108 0.189 0.188 0.560 0.803 0.408 0.410 274.3 359.3 186.7 187.7

75 0.996 0.997 0.834 0.834 0.006 0.060 0.019 0.019 0.990 0.937 0.815 0.815 442.7 419.8 368.4 368.4 0.899 0.985 0.696 0.696 0.019 0.132 0.221 0.220 0.880 0.853 0.475 0.476 394.9 384.0 213.2 213.5

100 0.999 0.997 0.878 0.878 0.007 0.066 0.021 0.021 0.992 0.931 0.857 0.857 443.6 417.3 385.0 385.1 0.987 0.989 0.765 0.765 0.025 0.152 0.241 0.241 0.962 0.837 0.524 0.524 430.4 378.2 234.2 234.2

200 0.999 0.998 0.945 0.945 0.013 0.085 0.022 0.022 0.986 0.912 0.923 0.923 441.1 409.4 413.1 413.1 0.996 0.993 0.883 0.882 0.043 0.178 0.209 0.211 0.953 0.815 0.673 0.671 426.5 369.9 302.3 301.6

0.6

50 0.894 0.995 0.745 0.745 0.005 0.053 0.011 0.011 0.888 0.942 0.734 0.735 399.4 421.8 338.5 338.8 0.579 0.921 0.610 0.611 0.006 0.059 0.167 0.168 0.573 0.862 0.443 0.443 281.7 385.8 203.1 203.2

75 0.996 0.997 0.838 0.837 0.005 0.063 0.017 0.017 0.990 0.935 0.821 0.820 443.0 418.7 371.2 370.6 0.901 0.992 0.716 0.717 0.004 0.062 0.206 0.206 0.897 0.930 0.510 0.510 403.0 416.4 228.6 228.9

100 0.999 0.997 0.881 0.881 0.005 0.063 0.018 0.017 0.994 0.933 0.863 0.864 444.7 418.2 388.1 388.4 0.990 0.995 0.780 0.780 0.006 0.069 0.220 0.219 0.985 0.926 0.560 0.562 440.4 415.0 250.3 251.1

200 1.000 0.997 0.945 0.945 0.007 0.072 0.021 0.022 0.993 0.925 0.924 0.923 444.0 414.8 413.4 413.1 0.999 0.996 0.893 0.893 0.007 0.075 0.201 0.201 0.992 0.921 0.691 0.692 443.8 412.7 310.6 311.0
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TABLE A.2. Continued
No constant With constant

H F KS PT H F KS PT

MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF MCL HF

m N ρ T 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%

10 30

0.2

50 0.889 0.990 0.713 0.714 0.014 0.072 0.018 0.018 0.875 0.918 0.695 0.696 490.6 488.7 414.5 415.2 0.554 0.897 0.507 0.508 0.042 0.155 0.175 0.174 0.513 0.742 0.332 0.334 323.6 390.8 190.0 190.9

75 0.991 0.993 0.804 0.804 0.025 0.092 0.023 0.023 0.967 0.901 0.781 0.781 524.4 476.6 447.2 447.7 0.881 0.984 0.593 0.592 0.072 0.185 0.204 0.205 0.809 0.798 0.389 0.387 440.7 414.2 213.0 211.6

100 0.996 0.994 0.852 0.851 0.032 0.102 0.024 0.024 0.964 0.892 0.828 0.827 520.6 470.3 466.7 466.0 0.977 0.991 0.654 0.654 0.095 0.195 0.216 0.217 0.882 0.796 0.438 0.437 466.9 412.3 235.6 234.7

200 0.997 0.995 0.923 0.923 0.053 0.136 0.028 0.029 0.944 0.859 0.894 0.894 505.3 449.1 492.4 492.2 0.998 0.995 0.783 0.783 0.117 0.213 0.212 0.213 0.881 0.782 0.572 0.570 462.6 404.3 300.9 299.9

0.6

50 0.890 0.990 0.727 0.727 0.011 0.069 0.014 0.014 0.879 0.921 0.713 0.713 493.6 491.0 424.1 424.4 0.562 0.904 0.525 0.527 0.028 0.113 0.160 0.157 0.534 0.791 0.366 0.369 340.8 421.6 210.0 212.2

75 0.993 0.993 0.818 0.818 0.017 0.080 0.017 0.017 0.976 0.913 0.801 0.801 531.1 484.8 458.6 458.9 0.884 0.984 0.613 0.612 0.048 0.133 0.187 0.188 0.837 0.851 0.426 0.424 460.7 445.4 234.0 232.8

100 0.997 0.994 0.864 0.864 0.022 0.091 0.019 0.019 0.975 0.903 0.845 0.845 528.6 477.8 475.8 475.9 0.977 0.992 0.680 0.680 0.067 0.141 0.200 0.201 0.910 0.851 0.480 0.480 486.7 444.7 258.1 257.9

200 0.997 0.995 0.931 0.931 0.034 0.109 0.022 0.022 0.964 0.886 0.909 0.909 519.9 466.2 501.2 501.0 0.996 0.996 0.814 0.814 0.092 0.151 0.199 0.201 0.904 0.845 0.615 0.613 478.0 440.5 323.4 322.2

40

0.2

50 0.888 0.988 0.707 0.707 0.011 0.060 0.015 0.015 0.877 0.928 0.692 0.692 570.8 559.2 485.2 485.5 0.548 0.892 0.467 0.468 0.032 0.123 0.145 0.144 0.516 0.769 0.322 0.324 384.3 453.5 211.3 212.5

75 0.991 0.991 0.798 0.798 0.017 0.075 0.017 0.017 0.974 0.916 0.782 0.781 608.0 545.4 523.8 523.3 0.878 0.976 0.557 0.557 0.051 0.157 0.168 0.168 0.827 0.819 0.390 0.388 517.8 467.1 241.7 241.0

100 0.995 0.992 0.845 0.846 0.024 0.088 0.020 0.020 0.971 0.904 0.825 0.826 601.2 533.1 540.3 540.5 0.976 0.986 0.617 0.617 0.065 0.159 0.177 0.178 0.911 0.827 0.440 0.440 548.1 470.4 266.5 266.0

200 0.997 0.994 0.918 0.919 0.040 0.116 0.024 0.024 0.957 0.878 0.894 0.894 584.3 509.2 567.2 567.2 0.997 0.993 0.751 0.750 0.083 0.179 0.184 0.185 0.914 0.814 0.566 0.565 540.0 458.5 330.9 330.2

0.6

50 0.888 0.989 0.723 0.723 0.008 0.061 0.011 0.011 0.880 0.928 0.712 0.712 574.3 558.8 498.4 498.2 0.559 0.899 0.494 0.492 0.021 0.085 0.131 0.131 0.538 0.815 0.363 0.360 407.1 492.7 239.0 237.5

75 0.992 0.991 0.816 0.816 0.012 0.071 0.012 0.012 0.981 0.920 0.803 0.804 614.5 548.9 537.1 537.5 0.882 0.981 0.583 0.582 0.033 0.104 0.156 0.157 0.849 0.877 0.427 0.425 540.5 513.3 265.8 264.2

100 0.996 0.992 0.861 0.862 0.015 0.078 0.016 0.016 0.981 0.914 0.845 0.846 612.4 542.6 552.4 552.8 0.976 0.988 0.644 0.643 0.045 0.112 0.173 0.174 0.931 0.876 0.470 0.469 569.1 510.1 283.7 282.7

200 0.997 0.994 0.928 0.928 0.023 0.094 0.020 0.020 0.974 0.899 0.908 0.907 603.2 528.2 576.5 576.0 0.996 0.994 0.790 0.791 0.063 0.121 0.179 0.179 0.933 0.873 0.611 0.611 559.3 504.7 355.4 355.6
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TABLE A.3. Multiple clubs: Success percentages, N = {10, 20, 30, 40}, 1% and 10% significance levels

No constant With constant No constant With constant

Data type MCL HF MCL HF Data type MCL HF MCL HF

N k m ρ T 1% 10% 1% 10% 1% 10% 1% 10% N k m ρ T 1% 10% 1% 10% 1% 10% 1% 10%

10

2 4,4

0.2

50 52.0% 88.2% 54.3% 54.1% 1.5% 51.4% 28.0% 28.0%

30

5 6,6,6,5,5

0.2

50 9.4% 83.1% 8.2% 8.1% 0.0% 12.1% 3.4% 3.4%
75 96.7% 87.5% 68.4% 68.1% 52.8% 74.1% 40.0% 39.9% 75 90.6% 83.5% 23.7% 23.5% 9.5% 44.6% 11.3% 11.3%

100 98.3% 87.5% 74.0% 73.6% 91.3% 72.8% 47.0% 46.8% 100 95.5% 81.5% 36.1% 35.6% 68.0% 42.1% 18.5% 18.5%
200 97.8% 86.4% 83.6% 82.9% 93.2% 70.4% 62.6% 62.3% 200 88.6% 68.2% 57.9% 56.8% 64.3% 32.8% 37.5% 37.3%

0.6

50 52.7% 85.6% 56.5% 56.3% 1.6% 59.4% 34.1% 34.1%

0.6

50 9.2% 81.8% 8.0% 7.9% 0.0% 17.7% 5.1% 5.1%
75 95.8% 86.8% 69.6% 69.3% 54.8% 87.9% 44.1% 44.0% 75 90.4% 83.8% 24.2% 23.9% 11.1% 72.1% 13.6% 13.5%

100 97.7% 86.9% 75.0% 74.6% 94.7% 88.6% 50.7% 50.5% 100 96.7% 84.0% 36.9% 36.4% 81.3% 73.3% 22.4% 22.3%
200 97.8% 88.0% 83.6% 83.1% 99.0% 89.3% 63.4% 63.0% 200 98.7% 0.9% 59.4% 58.5% 92.2% 68.7% 39.1% 38.8%

3 3,3,2

0.2

50 60.9% 81.6% 63.0% 62.1% 4.0% 29.6% 27.6% 27.5%

6 5,5,5,5,4,4

0.2

50 15.2% 82.0% 12.3% 12.2% 0.0% 14.8% 4.3% 4.2%
75 93.0% 80.4% 71.6% 69.8% 45.6% 33.3% 38.7% 38.5% 75 92.0% 82.3% 29.2% 28.5% 14.6% 41.5% 12.9% 12.8%

100 93.5% 78.7% 76.1% 73.7% 63.4% 29.0% 45.7% 45.2% 100 95.0% 80.7% 39.1% 38.3% 67.6% 37.9% 20.4% 20.2%
200 90.2% 73.5% 83.7% 80.7% 53.0% 23.3% 63.1% 62.1% 200 91.6% 75.7% 59.9% 58.0% 61.0% 28.7% 37.7% 37.2%

0.6

50 61.7% 82.5% 63.8% 62.6% 4.9% 50.1% 35.1% 35.0%

0.6

50 14.5% 81.7% 12.4% 12.3% 0.0% 22.9% 6.7% 6.7%
75 94.7% 83.1% 72.8% 70.9% 57.9% 62.7% 45.0% 44.8% 75 92.3% 83.5% 29.7% 29.1% 17.7% 69.9% 16.8% 16.8%

100 96.4% 83.5% 76.9% 74.8% 86.9% 62.4% 51.6% 51.2% 100 96.5% 83.5% 39.5% 38.7% 84.5% 70.5% 23.7% 23.4%
200 95.4% 81.6% 83.8% 81.0% 86.2% 58.5% 64.9% 63.7% 200 96.2% 83.2% 59.8% 58.0% 90.6% 65.5% 41.0% 40.4%

20

4 5,5,4,4

0.2

50 23.5% 82.9% 27.5% 27.2% 0.0% 20.2% 31.9% 31.8%

40

7 6,6,6,6,6,4,4

0.2

50 3.5% 81.5% 1.5% 1.4% 0.0% 6.7% 6.9% 6.9%
75 92.8% 82.0% 46.1% 45.2% 21.8% 40.2% 44.3% 44.3% 75 87.3% 82.3% 9.5% 9.4% 3.6% 43.9% 22.0% 22.0%

100 94.9% 80.3% 56.1% 54.9% 68.3% 36.7% 51.3% 51.3% 100 95.6% 81.2% 20.2% 19.7% 62.1% 41.7% 33.4% 33.4%
200 91.9% 76.0% 72.2% 70.2% 60.0% 28.9% 65.9% 65.8% 200 92.7% 77.3% 43.7% 42.4% 64.4% 32.4% 55.2% 55.2%

0.6

50 23.3% 82.4% 27.9% 27.5% 0.0% 31.4% 35.0% 35.0%

0.6

50 2.9% 80.3% 1.3% 1.3% 0.0% 9.5% 7.4% 7.4%
75 93.5% 83.8% 45.7% 44.8% 25.4% 69.6% 47.1% 47.1% 75 87.6% 83.9% 9.7% 9.6% 4.5% 69.6% 23.5% 23.4%

100 96.7% 83.5% 56.5% 55.2% 86.0% 69.6% 53.9% 53.8% 100 96.6% 83.9% 20.3% 19.8% 74.5% 73.0% 34.5% 34.5%
200 96.4% 83.3% 71.5% 69.4% 91.4% 66.0% 67.1% 67.0% 200 96.7% 83.9% 45.1% 43.6% 92.4% 69.6% 55.4% 55.3%

5 4,4,4,3,3

0.2

50 31.4% 82.4% 26.1% 25.5% 0.0% 23.6% 31.3% 31.3%

8 5,5,5,5,5,5,4,4

0.2

50 8.0% 81.5% 3.6% 3.5% 0.0% 10.4% 10.2% 10.2%
75 92.7% 81.6% 43.2% 41.9% 27.3% 40.7% 42.8% 42.7% 75 90.4% 82.4% 15.6% 15.1% 7.5% 40.9% 27.0% 27.0%

100 94.7% 80.4% 52.9% 51.0% 68.6% 35.9% 51.1% 51.0% 100 94.9% 80.2% 26.8% 25.4% 65.7% 37.1% 39.1% 39.0%
200 91.5% 75.6% 68.4% 64.9% 59.9% 27.8% 64.8% 64.6% 200 92.0% 75.8% 49.9% 46.9% 60.5% 28.3% 58.5% 58.4%

0.6

50 31.7% 81.9% 26.1% 25.5% 0.1% 35.6% 34.1% 34.1%

0.6

50 7.6% 81.0% 3.2% 3.0% 0.0% 14.9% 11.4% 11.4%
75 93.5% 83.0% 44.4% 43.0% 33.5% 69.4% 45.0% 45.0% 75 91.0% 83.3% 15.4% 14.8% 9.9% 69.2% 29.4% 29.3%

100 96.6% 83.8% 53.6% 51.8% 86.2% 69.1% 53.1% 53.0% 100 96.7% 83.5% 27.1% 26.0% 80.9% 69.8% 40.4% 40.4%
200 95.9% 81.7% 68.8% 65.9% 90.4% 65.0% 66.3% 66.2% 200 96.0% 82.3% 50.4% 47.3% 92.1% 64.3% 58.8% 58.7%
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TABLE A.4. Multiple clubs: Success counts for poisson settlement, N = {10, 20, 30, 40}, 1000 replications, 1% and 10% significance
levels

No constant With constant No constant With constant

Data type MCL HF MCL HF Data type MCL HF MCL HF

N k m ρ T 1% 10% 1% 10% 1% 10% 1% 10% N k m ρ T 1% 10% 1% 10% 1% 10% 1% 10%

10

2 6,3

0.2

50 59.5% 90.3% 49.7% 49.4% 1.7% 56.3% 27.5% 27.5%

30

5 6,6,4,4,3

0.2

50 21.8% 78.9% 15.2% 15.1% 0.0% 10.5% 4.4% 4.3%
75 98.4% 92.7% 66.8% 66.4% 64.2% 78.0% 37.5% 37.3% 75 89.7% 79.3% 33.4% 33.0% 14.9% 19.0% 11.7% 11.7%

100 98.7% 87.9% 73.6% 72.7% 93.8% 78.2% 45.2% 45.1% 100 90.1% 75.9% 46.4% 45.6% 45.7% 16.4% 19.7% 19.5%
200 98.6% 88.3% 83.1% 82.1% 95.0% 76.1% 60.7% 60.1% 200 86.4% 70.7% 64.5% 63.0% 36.0% 12.4% 36.9% 36.4%

0.6

50 59.0% 88.8% 50.2% 49.9% 1.7% 66.6% 31.6% 31.6%

0.6

50 21.7% 77.9% 16.5% 16.2% 0.0% 22.2% 6.9% 6.8%
75 97.2% 90.9% 67.7% 67.3% 65.5% 88.8% 41.0% 40.8% 75 92.0% 81.0% 34.9% 34.4% 21.8% 47.9% 16.1% 16.0%

100 97.8% 88.7% 74.5% 73.6% 96.9% 88.6% 47.9% 47.7% 100 94.6% 81.4% 45.9% 45.2% 72.7% 45.3% 25.3% 25.1%
200 98.7% 89.3% 83.3% 82.3% 99.4% 91.5% 61.7% 61.1% 200 94.0% 80.0% 65.6% 63.9% 76.7% 45.2% 41.0% 40.5%

3 4,4,2

0.2

50 58.3% 88.0% 53.4% 53.0% 2.0% 50.9% 33.1% 33.1%

6 8,7,5,4,3,3

0.2

50 9.6% 84.7% 5.8% 5.7% 0.0% 15.1% 3.6% 3.6%
75 98.2% 90.8% 69.0% 67.9% 62.0% 70.5% 40.1% 39.9% 75 93.0% 88.0% 20.4% 20.0% 13.0% 62.2% 11.5% 11.4%

100 98.7% 87.0% 72.5% 71.8% 91.1% 71.5% 47.4% 47.2% 100 97.2% 87.1% 32.9% 32.1% 76.8% 64.4% 20.8% 20.4%
200 97.9% 86.3% 81.4% 79.7% 93.2% 71.5% 63.6% 63.2% 200 97.8% 86.5% 56.5% 54.5% 92.6% 71.1% 40.7% 39.7%

0.6

50 57.3% 86.7% 53.9% 53.4% 2.1% 63.7% 36.5% 36.5%

0.6

50 9.4% 82.5% 6.4% 6.3% 0.0% 19.8% 4.8% 4.8%
75 97.3% 89.7% 69.6% 68.5% 64.8% 86.8% 44.5% 44.1% 75 91.8% 86.4% 21.2% 20.9% 13.1% 79.9% 12.1% 12.0%

100 97.5% 87.8% 73.2% 72.5% 96.3% 86.7% 49.7% 49.5% 100 97.4% 85.4% 32.8% 31.9% 82.0% 83.6% 23.5% 23.0%
200 98.0% 88.3% 81.1% 79.4% 98.9% 90.2% 64.1% 63.6% 200 97.9% 89.4% 56.2% 54.2% 98.9% 88.9% 41.2% 40.3%

20

4 5,5,3,2

0.2

50 37.3% 81.4% 34.6% 34.1% 0.1% 17.4% 9.2% 9.2%

40

7 7,7,7,6,6,4,2

0.2

50 2.4% 82.5% 1.9% 1.9% 0.0% 5.3% 1.0% 1.0%
75 92.5% 81.2% 51.3% 50.0% 32.8% 33.0% 19.2% 19.0% 75 87.5% 84.2% 11.0% 10.9% 2.6% 46.4% 5.1% 5.1%

100 94.4% 79.6% 61.2% 59.6% 61.8% 30.4% 27.2% 27.0% 100 94.6% 81.3% 22.7% 22.2% 65.1% 47.3% 10.7% 10.5%
200 92.4% 75.9% 73.0% 70.2% 58.1% 28.5% 46.2% 45.5% 200 94.0% 79.0% 46.4% 44.9% 71.7% 38.6% 27.8% 27.4%

0.6

50 37.2% 79.9% 35.2% 34.5% 0.0% 36.9% 15.4% 15.4%

0.6

50 2.5% 82.1% 2.0% 1.9% 0.0% 8.7% 1.4% 1.4%
75 93.7% 84.6% 53.3% 52.2% 42.3% 63.8% 26.3% 26.1% 75 88.0% 84.6% 11.0% 10.8% 3.3% 70.4% 6.8% 6.7%

100 96.0% 82.6% 61.0% 59.4% 86.4% 64.2% 33.7% 33.3% 100 97.2% 83.0% 22.1% 21.7% 76.1% 74.8% 13.1% 13.0%
200 96.7% 82.8% 74.6% 71.9% 90.6% 65.5% 49.9% 49.2% 200 97.6% 84.1% 46.0% 44.5% 95.4% 75.2% 30.8% 30.2%

5 4,4,4,3,2

0.2

50 40.0% 83.3% 35.4% 34.9% 0.3% 25.3% 12.9% 12.9%

8 6,6,4,4,3,3,3,2

0.2

50 8.8% 16.2% 7.8% 7.5% 0.0% 0.2% 0.2% 0.2%
75 95.1% 83.4% 50.6% 49.2% 40.2% 44.0% 21.3% 21.1% 75 32.1% 10.0% 20.1% 19.2% 0.4% 0.0% 0.7% 0.6%

100 95.4% 81.2% 59.5% 57.9% 73.2% 40.8% 28.8% 28.4% 100 26.4% 3.5% 28.6% 27.2% 0.3% 0.0% 1.6% 1.6%
200 94.5% 77.4% 72.5% 69.7% 68.8% 37.4% 44.1% 43.1% 200 6.4% 0.5% 47.4% 44.6% 0.0% 0.0% 8.5% 8.2%

0.6

50 39.8% 81.7% 34.6% 34.1% 0.3% 43.4% 18.0% 18.0%

0.6

50 11.8% 32.8% 8.8% 8.6% 0.0% 0.7% 0.6% 0.6%
75 95.3% 85.6% 50.5% 49.3% 46.3% 73.8% 27.0% 26.9% 75 51.8% 24.1% 22.6% 21.6% 0.9% 0.1% 2.1% 2.1%

100 96.7% 83.1% 59.8% 57.9% 89.9% 71.9% 34.9% 34.4% 100 47.2% 20.3% 32.4% 30.8% 0.8% 0.0% 4.2% 4.1%
200 97.0% 84.7% 72.4% 69.8% 94.9% 74.7% 49.4% 48.2% 200 26.9% 6.2% 51.4% 47.9% 0.0% 0.0% 17.2% 16.6%
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